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Abstract

This paper investigates the impact of language
model (LM) size on low-resource ASR, using
data from five widely-spoken low-resource lan-
guages and one endangered Native American
language. Our findings demonstrate that hav-
ing larger LMs does not necessarily result in
lower WER; this is most evident for the endan-
gered language, where larger LMs actually led
to significantly worse performance than that
observed in the widely-spoken low-resource
languages. We conjecture that one of the po-
tential driving forces behind this discrepancy is
the domain mismatch between the transcripts
of the audio data and the supplementary texts
used to train the LM. We discuss the implica-
tions of our results in the context of creating
ASR corpora for low-resource languages.

1 Motivation

The language model (LM) has long been noted as
an important component for the decoding process
of automatic speech recognition (ASR) (Bahl et al.,
1989; Chelba et al., 2012; Sak et al., 2012; Arisoy
et al., 2015; Park et al., 2019). The texts used for
training LMs usually consist of transcripts of the
audio training data along with additional texts from
other sources, such as Web text, literature, or tran-
scripts of previously recorded audio (see Section 3).
When building an ASR corpus, researchers typi-
cally make efforts to gather large amounts of these
supplementary texts in order to improve LM cover-
age and reduce out-of-vocabulary (OOV) rates.
For high-resource languages, considerable
amounts of supplementary text are relatively easy
to find and process. Acquiring additional data for
low-resource languages can be more challenging.
For some widely spoken low-resource languages,
such as Swahili, which has millions of speakers and
an established writing system, additional textual
data can be acquired from websites and documents
that have been digitized (Liu et al., 2022a). Thus,
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when building ASR corpora for widely spoken low-
resource languages, researchers usually collect ad-
ditional text data (Laleye et al., 2016; Juan et al.,
2014; Gauthier et al., 2016).

The situation for endangered languages is much
more complex. Collecting additional text for endan-
gered languages often involves digitizing archival
materials held by tribal authorities or archiving or-
ganizations. Processing these materials requires
manual oversight and linguistic expertise, partic-
ularly when there are multiple conflicting ortho-
graphic traditions.

While obtaining additional texts for widely spo-
ken low-resource languages may also be labor-
intensive, it is more straightforward to ensure that
the additional texts will belong to domains sim-
ilar to that of the audio transcripts. In contrast,
for endangered languages, particularly those of
North America, the additional texts are often from
restricted domains such as religious documents,
grammar textbooks, or fieldwork materials from
decades ago (Liu et al., 2022b). The subject matter
and linguistic characteristics of these texts can be
quite different from those of the recordings usually
used for ASR acoustic training, which are typically
recent recordings of elders telling stories or hav-
ing conversations. These differences can lead to
substantial domain mismatch.

These limitations on acquiring additional LM
training text for low-resource languages raises the
question: how important is additional text for im-
proving low-resource ASR? Or put differently: is
it necessary to take the time to acquire and process
additional text to build a larger LM?

This study takes up these questions with data
from five widely-spoken low-resource languages
and one endangered language. We investigate to
what extent and in what context LMs impact ASR
performance. Given the different challenges for
widely-spoken vs. truly low-resource languages,
we expect the role of the LM to be different. It is



Language Data sources

Audio Additional written texts

Audio Additional Train Test N of words N of words  Proportion
texts in audio training data
Fongbe daily living news; 5h44m 1h26m 45,544 990,146 21.74
phrases Bible
Wolof read speech exactly same  15hl1lm 3h47m 121,220 601,639 4.96
(Wikipedia/ source as
Bible) audio
Swahili news news; 8h47m 2hl1lm 84,287 29,237,493  346.88
books
Iban radio/television  news 6h49m 1h42m 57,608 2,082,452 36.15
station
Bemba literature; religious 19h40m  4h55m 106,657 4,614,319 43.26
radio magazines
Hupa the elder’s grammar 1h16m 19m 7,369 41,386 5.62
(verified) stories books
Hupa same as same as 6h6m 1h31m 32,640 1.27
(coarse) verified data verified data

Table 1: Descriptive statistics for audio data and additional written texts used to train language models for each
language in the experiments. Note that the numerical counts here were derived directly from the public repositories
and may be different from those originally reported in the papers. Proportion refers to the relative ratio between N
of words in additional texts and N of words in the transcripts of the audio training data.

possible that adding additional text to build larger
LMs for an endangered language might not actually
lower WER as much as one might expect, if at all.

2 Related Work

A number of studies have focused on providing
ASR data sets and models for languages that have
many speakers but limited existing ASR training
resources (see Section 3), such as Fongbe (Lal-
eye et al.,, 2016) and Iban (Juan et al., 2014).
For languages that lack both resources and large
numbers of speakers, there have also been ef-
forts utilizing ASR technologies to support their
documentation (Adams et al., 2018; Jimerson
and Prud’hommeaux, 2018; Gupta and Boulianne,
2020b,a). For instance, Shi et al. (2021) built end-
to-end models for the Oto-Manguean language,
Yoloxo6chitl Mixtec. Zahrer et al. (2020) studied
phoneme recognition for the Muyu language from
the Trans—New Guinea language family.

Another line of relevant work attends to in-
vestigating effective evaluation methods for low-
resource ASR, in a way to strive for more gen-
eralizable model performance. Comparing three
model architectures, including both neural and non-
neural alternatives, across five languages, Morris

et al. (2021) pointed out that no model architecture
is a clear “winner”; rather the results for model
rankings depend on the language. Liu et al. (forth-
coming) explored how different data split methods
influence WER scores for under-resourced scenar-
ios using five languages as the test cases. Their
findings demonstrated that the commonly-applied
“held-out speakers” evaluation scheme for ASR
falls short when there exists high speaker variabil-
ity in the data set; in other words, the performance
of ASR systems for low-resource languages, at
least in the context that they investigated, is not
speaker-independent.

3 Meet the data

We used ASR corpora for five widely-spoken low-
resource languages, which are publicly available:
Fongbe (Laleye et al., 2016), Wolof (Gauthier et al.,
2016), Swahili (Gauthier et al., 2016), Iban (Juan
et al., 2014), and Bemba (Sikasote and Anasta-
sopoulos, 2022). We also included one data set
developed for Hupa, a critically endangered lan-
guage indigenous to North America. Details of
the sources for the transcripts of the audio data
and the additional texts gathered to train the LM
are presented in Table 1. We present additional



information for the Hupa language below.

The audio recordings for Hupa came from lin-
guistic fieldwork which started in 2005 and is still
ongoing. The recordings were produced by a sin-
gle female elder speaker from the speech commu-
nity, a scenario that is unfortunately common for
critically endangered languages. Transcription of
these recordings included several stages of manual
correction, and ambiguous or unclear audio was
confirmed with the elder before being considered
as complete. Hence, some transcripts have been
checked more thoroughly than others. Depending
solely on the differences of transcription quality,
the recordings and their transcripts were divided
into two sets, which we will refer to as “verified"
vs. “coarse" data respectively.

Looking across the data described here, it seems
likely that there is less domain overlap between the
audio data and the additional LM-training text for
Hupa than for the other languages. For Fongbe,
Swahili, Iban and Bemba, both the audio and the
additional text are related to news or local radios;
for Wolof, the audio data and the additional texts
are from the exact same source. For Hupa, the
grammar book data used for LM training are more
formal in style and has little overlap in content with
the contemporary fieldwork recordings.

4 Experiments

We probe whether the assumption that having a
larger LM (i.e., an LM built on more words of
training text) leads to lower WER will hold for
low-resource languages. A recent study of ASR
for Bemba (Sikasote and Anastasopoulos, 2022)
compared the impact of two LMs on WER, one
of which was 29 times larger than the other. The
results showed that, surprisingly, the larger LM led
to slightly worse performance than the smaller one.
We sought to address whether the data of other
languages demonstrates the same pattern. Specifi-
cally, we carried out different experimental settings
(basic and simulated settings). In each setting we
explored different configurations of the training
texts for the LM in order to investigate the role of
LM size on ASR performance.

4.1 Basic settings

For the data set(s) of each language, in the basic set-
ting, we first created two different LMs, LM_base
and LM_large: the former was built using only
the transcripts of the audio training data, while

training for the latter also included all the addi-
tional LM training text.

In addition to comparing ASR performance in
a given language with and without supplementary
LM training text, which can vary considerably in
size, we also investigated the impact of the LM
training corpus size relative to the size of the corpus
of transcriptions. Note that for the coarse data set
of Hupa, the size of the additional texts is only 1.27
times of that of the transcripts of the audio training
data (Table 1). This is proportionally smaller by
comparison to other languages as well as to the
verified data set of Hupa. Therefore, for each of
the other data sets, except for the coarse data of
Hupa, we kept the audio training and test data the
same, then randomly sampled (3 times) sentences
from the additional texts such that the ratio between
the size of these texts and that of the transcripts
of the audio training data also approximates 1.27.
These sampled sentences along with the transcripts
of the audio training data were then combined to
build what we refer to as a proportionally-sized
LM, LM_prop.

4.2 Simulated settings

Given that the amount of audio training data is dif-
ferent for each language, it is possible that even
when the LM size is the same proportionally, the
WER results are dependent on the amount of audio.
With that in mind, we also explored simulated set-
tings to ensure that more fair conclusions could be
drawn, especially when comparing widely-spoken
vs. truly low-resource languages.

Here we focused on Fongbe, Iban, and Swabhili
(which have the smallest audio dataset sizes com-
pared to Wolof and Bemba). Again, since Hupa has
the least amount of either audio data (verified data
set) or additional LM training text by proportion
(coarse data set), our simulated settings involve
data subsampling from each of the other three lan-
guages above in order to construct augmented data
sets whose audio training data size is similar to
that of the two data sets for Hupa. Hence, for each
language, we created a verified and a coarse set-
ting. (It would be ideal to create these two settings
such that the audio data quality difference between
the two mimic that between the verified and the
coarse data sets of Hupa; however, it is not exactly
clear how this can be achieved in a principled way,
making it beyond the scope of this work.)

Take Iban as an example. Recall that each record-



ing for every language has been manually seg-
mented into utterances. For the verified setting,
we first randomly sampled (3 times) a number of
utterances such that the total duration of these utter-
ances was similar to the total duration of audio of
the verified data set for Hupa. We then created two
different LMs, LM_base and LM_prop for the
sampled audio data in the same way as we did for
the basic settings described above. For the coarse
setting, we carried out the same procedure except
that the total duration of the sample audios was
similar to that for the coarse data set of Hupa.

4.3 LMs and acoustic models

All LMs are trigram LMs trained with Witten-
Bell discounting using the SRILM (Stolcke, 2002)
toolkit. To build acoustic models, we used the open-
source Kaldi toolkit (Povey et al., 2011). Specifi-
cally, we adopted a recipe of a fully connected deep
neural network (DNN) from Kaldi with the default
sequence training parameters; this model architec-
ture has six hidden layers with 1024 hidden units in
each. This architecture has been shown to outper-
form other statistical alternatives such as subspace
Gaussian mixture models, as well as neural mod-
els such as the time delay neural networks (Morris
et al., 2021; Morris, 2021).

For the data set of every language other than
those for Swahili and Hupa, we conducted acoustic
feature transformations for each individual speaker.
For the data of Swabhili, which lacks clear speaker
identity information, and the two data sets of Hupa,
which only contains recordings from one speaker,
we carried out acoustic feature transformation for
each recording date or recording session separately.
Model training was carried out with state-level
minimum Bayes risk criterion and a per-utterance
Stochastic Gradient Descent weight update. For
decoding, we used the Kaldi finite state transducer-
based decoder.

4.4 Evaluation scheme

It is common to perform ASR evaluating using
“held-out speaker(s)”, namely holding out the data
of one set of speakers as the test set and leaving
the remaining data for training, without conducting
cross-validation (i.e., using the data of different
sets of speakers as the test set) (Gauthier et al.,
2016; Zeyer et al., 2019). Nevertheless, Liu et al.
(forthcoming) found this evaluation scheme to be
problematic in that the performance of the acoustic
models is dependent on which speaker(s) were in-

cluded in the test set. Alternatively, they proposed
using random splits, presenting strong evidence
that the average WER across all held-out speakers
is comparable not only to the average WER derived
from multiple random splits of the full acoustic
data, but also to the WER of just one random split.

Here we also adopted random splits for ASR
evaluation. Specifically, the audio data of each
language was randomly split into training/test sets
(3 times) such that their respective total utterance
duration approximates a ratio of 4:1.!

5 Results

We present the results from the basic settings in
Table 2. Note that we are not trying to compare
WER scores across languages, as they are evidently
not comparable. Instead, our focus is to compare
WER scores derived from different LM sizes for
each individual language, then examine whether
the effect of LM size is in the same direction across
the data sets of the languages studied here. (While
we attend to WER here, we also calculated char-
acter error rate (CER) as an additional evaluation
metric; the patterns of CER largely follow those of
WER). Table 2 suggests that having an LM built
on a larger text data set does not always lead to
lower WER. For widely-spoken low-resource lan-
guages, having larger LMs (both LM_prop and
LM_large) resulted in lower WER for Iban, Be-
mba and Swahili. On the other hand, the WER
scores became mildly worse for Fongbe and Wolof
when the LM size was larger. Particularly for Hupa,
the truly low-resource language studied here, larger
LMs had a negative impact; this is most evident in
the case of the coarse data set, where LM_large
actually increased WER score by 37.73% com-
pared to LM_base.

To further examine whether LM size potentially
has a different effect on Hupa compared to other
languages, and that the effects are not necessarily
caused by other languages having more audio data,
let us turn to the results from the simulated settings.
As demonstrated in Table 3, in both the verified
and coarse settings for most languages except for
Fongbe, larger LM size resulted in lower WER

'Note that the ASR corpora of most languages here provide
a lexicon file (required by Kaldi), possibly extracted from
external dictionaries, for the decoding process of the acoustic
models. Since we are interested in the size of LMs, we tried to
control for additional factors as much as possible. Therefore
every time a new model was to be trained, we generated a
lexicon file directly from the corresponding LM.



Language LM_base LM_prop LM_large
WER (CER) WER (CER) WER (CER) reduction ~WER (CER) WER (CER) reduction

Fongbe 59.81(0.36) 60.44 (0.37)  -1.05 (-2.78) 61.7 (0.36) -3.16 (0)
Wolof 28.75(0.15)  29.11(0.14) -1.25(6.67) 29.41 (0.14)  -2.3(6.67)
Swahili 30.24 (0.13)  28.59(0.13) 5.46 (0) 25.35(0.11)  16.17 (15.38)
Iban 14.8 (0.06) 14.8 (0.06) 0(0) 13.53(0.05) 8.58 (16.67)
Bemba 46.09 (0.12) 44.38(0.12) 3.71 (0) 42.82 (0.11)  7.09 (8.33)
Hupa (verified) 54.06 (0.31) 56.42 (0.29) -4.37 (6.45) 54.83 (0.32) -1.42(-3.23)
Hupa (coarse) 43.68 (0.22) - - 60.16 (0.31)  -37.73 (-40.91)

Table 2: Evaluation results from basic settings; reduction (%) refers to WER (CER) reduction compared to the

WER (CER) (%) when using LM_base.

Language Setting LM_base LM_prop
WER/CER  WER/CER reduction
Fongbe verified  66.29 (0.42) 67.65(0.46) -2.05 (-9.52)
Fongbe coarse - - -
Swahili verified  54.86 (0.28) 50.84 (0.26) 7.33 (7.14)
Swahili coarse 3042 (0.14) 28.26 (0.13) 7.1 (7.14)
Iban verified  30.07 (0.13)  26.93 (0.12) 10.44 (7.69)
Iban coarse 15.38 (0.06) 14.41 (0.06) 6.31 (0)

Table 3: Evaluation results from simulated settings; note that course setting does not apply to Fongbe given its audio
data size; verified and coarse refer to the simulated settings following the setup of Hupa, and do not refer to the
quality of the data; reduction (%) refers to WER (CER) reduction compared to the WER (CER) (%) when using

LM_base.

instead, indicating better model performance.
These findings have two implications. First, they
suggest that the influence of LM size on ASR per-
formance varies between widely-spoken and truly
low-resource languages, and that larger LMs are
more likely to have negative effects for the latter,
at least in the settings that we investigated. One
possible explanation for this discrepancy is that de-
scribed in Section 3, namely that there often exists
a more substantial domain mismatch between the
transcripts of the audio data and the additional LM
texts for endangered languages, an important factor
that was not mitigated by simply having more train-
ing texts for LMs. Second, comparing the results
from Table 2 and Table 3, for widely-spoken low-
resource languages in particular, it seems that the
impact of LM size could also interact with the size
of the audio data, in the sense that when the amount
of audio data is small, having a larger LM tends to
have more positive influence on ASR performance.

6 Discussion and Conclusion

With data from five widely-spoken low-resource
languages and one endangered language of North
America, we studied the impact of LM size on
ASR performance. Our results demonstrate that,
perhaps surprisingly, having larger LMs does not

always result in lower WER. This observation is
the most pronounced for the truly low-resource
(endangered) language in contrast to the widely-
spoken low-resource languages. In addition, our
findings suggest that the effect of LM size is po-
tentially modulated by the amount of audio data
available; larger LMs more consistently lead to bet-
ter model performance when the amount of audio
data is relatively small.

The aforementioned observations indicate there
would be value in collecting additional texts to
build ASR corpora for widely-spoken low-resource
languages. However, they raise questions about the
utility of such endeavors for endangered languages,
when the domain of these texts might be very dif-
ferent from that of the audio transcripts. For future
work, it would be worthwhile to study a wider set of
typologically diverse languages with varying sizes
for the LMs, in order to assess how the languages’
phonological and morphological properties might
potentially affect ASR performance. Additionally,
one should carry out experiments comparing the
impact of LMs whose training texts are explicitly
from different domains, which would help further
confirm the influence of domain mismatch. Rele-
vant findings could in turn inform the creation of
ASR corpora for low-resource languages broadly.
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