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Abstract 
Bayesian hybrid models (BHMs) fuse physics-based insights with machine learning 
constructs to correct for systematic bias. In this paper, we demonstrate a scalable 
computational strategy to embed BHMs in an equation-oriented modelling environment. 
Thus, this paper generalizes stochastic programming, which traditionally focuses on 
aleatoric uncertainty (as characterized by a probability distribution for uncertainty model 
parameters) to also consider epistemic uncertainty, i.e., mode-form uncertainty or 
systematic bias as modelled by the Gaussian process in the BHM. As an illustrative 
example, we consider ballistic firing using a BHM that includes a simplified glass-box 
(i.e., equation-oriented) model that neglects air resistance and a Gaussian process model 
to account for systematic bias (i.e., epistemic or model-form uncertainty) induced from 
the model simplification. The gravity parameter and the GP hypermeters are inferred from 
data in a Bayesian framework, yielding a posterior distribution. A novel single-stage 
stochastic program formulation using the posterior samples and Gaussian quadrature rules 
is proposed to compute the optimal decisions (e.g., firing angle and velocity) that 
minimize the expected value of an objective (e.g., distance from a stationary target). 
PySMO is used to generate expressions for the GP prediction mean and uncertainty in 
Pyomo, enabling efficient optimization with gradient-based solvers such as Ipopt. A 
scaling study characterizes the solver time and number of iterations for up to 2,000 
samples from the posterior.  
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1. Introduction 
Predictive models play a key role in control and decision-making (Adjiman et al., 2021). 
While the glass-box models are constructed from scientific principles and have a deeper 
understanding of the underlying processes, they are often complex to form and solve. 
Many glass-box models contain unknown parameters that are inferred from experimental 
data. These data are often subject to random phenomena such as variability between 
experiments or observation noise (Kalyanaraman et al., 2015), which gives rise to aleatory 
(i.e., parametric) uncertainties. Stochastic programming and robust optimization are 
routinely used to directly incorporate parametric uncertainty into decision-making 
frameworks. However, to maintain computational tractability, glass-box models are often 
simplified or replaced with surrogate models in multiscale engineering frameworks 
(Biegler et al., 2014). The systematic bias from model inadequacy arising from such 
simplifications is often referred to as model-form or epistemic uncertainty (McClarren, 
2018).  
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Bayesian hybrid models (BHM) offer a principled framework to quantify, propagate, and 
mitigate aleatoric and epistemic uncertainties by combining physical glass-box models 
with black-box surrogate models. In their seminal work, statisticians Kennedy and 
O’Hagan (2001) proposed a (Bayesian) hybrid modelling framework using Gaussian 
process models: 

𝑦 = 𝜂(𝒙|𝜽) + 𝛿(𝒙|𝝓,𝑫) + 𝜀		 (1) 

The prediction 𝑦	consists of three components: the inadequate (simplified or reduced 
order) glass-box model 𝜂(𝒙|𝜽)  which depends on the state variables 𝒙  and model 
parameters 𝜽 ; the Gaussian process discrepancy 𝛿(𝒙|𝝓,𝑫)  which models epistemic 
uncertainty as a function of the state variables 𝒙, hyperparameters 𝝓, and data 𝑫 = [𝒙𝒐𝒃𝒔,	
𝒚𝒐𝒃𝒔]; and, finally, the observation error 𝜀 which is modeled as a random variable with 
known probability distribution. Unlike other hybrid model architectures, such as a neural 
differential equation, the probabilistic nature of the GP enables the use of Bayesian 
calibration (Higdon et al., 2004) to infer the model parameters and hyperparameters and 
provides readily interpretable uncertainty information. The joint posterior distribution of 
model parameters resulting from Bayesian model calibration informs the uncertainty in 
the models; specifically, the distribution of model parameters 𝜽 and observation error 𝜀 
quantifies aleatory uncertainty while the GP output quantifies epistemic uncertainty. We 
emphasize that prior applications of the Kennedy-O’Hagan framework in chemical 
engineering (Mebane et al., 2013, Kalyanaraman et al., 2015, Kalyanaraman et al., 2016, 
Bhat et al., 2017) predominately considers model calibration and uncertainty propagation 
and not decision-making under uncertainty.  

2. Methods  
2.1 Stochastic Programming Formulation 

In this work, we develop and implement a single-stage stochastic program formulation in 
Pyomo (Hart et al., 2017) to optimize decisions using BHMs by minimizing the expected 
values of an arbitrary objective function 𝑢(𝑦) in the form of Eqs. (2a): 

min
𝒙

E
𝜽,𝝓
[𝑢(𝑦)] ≈

1
√𝜋

<<𝑤(𝑤)𝑢(,)
)∈+(∈,

 (2a) 

𝛿) = 𝜇(𝒙|𝝓,𝑫) + √2	𝑧) 	𝜎(𝒙	|𝝓,𝑫), ∀𝑗 ∈ 𝐽	 (2b) 

𝜂( = 𝜂(𝒙|𝜽(),			∀𝑠 ∈ 𝑆	 (2c) 

𝑦(,) = 𝑓I𝜂(, 𝛿)J, ∀𝑠, 𝑗 ∈ 𝑆 × 𝐽 (2d) 

𝑢(,) = 𝑢(𝑦(,))	, ∀𝑠, 𝑗 ∈ 𝑆 × 𝐽 (2e) 

In Eq. (2a), the expectation E  of 𝑢(𝑦)  is approximated using scenario weights 𝑤( =
1 |𝑆|⁄ . Set 𝑆 contains samples from the posterior distribution (trace) of 𝜽. Set 𝐽 contains 
Gauss-Hermite quadrature nodes 𝑧)  and weights 𝑤) , which are used in Eq. (2b) to 
approximate the GP output distribution characterized by GP prediction mean 𝜇  and 
standard deviation 𝜎. In Eq. (2c), the glass-box model is evaluated at samples 𝜃(. In Eqs. 
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(2d) and (2e), the BHM output 𝑦 and objective function 𝑢(𝑦) are evaluated over the set 
𝑆 × 𝐽. This formulation is computationally attractive because the highly nonlinear GP 
prediction mean and standard deviation are evaluated only once, while the glass-box 
model, and the objective function are evaluated |𝑆|, and |𝑆| × |𝐽| times, respectively.  

2.2 Ballistics Firing Example 

We apply the stochastic program to the ballistics example from Eugene et al. (2020):   

𝜂( =	
-.!"

/#
∙ sin𝜓 ∙ cos𝜓, ∀𝑠 ∈ 𝑆 (3a) 

𝑦(,) = 𝜂( 	+ 𝛿) , ∀𝑠, 𝑗 ∈ 𝑆 × 𝐽	 (3b) 

𝑦(,) − 𝑦T = 𝑢(,)0 −	𝑢(,)1 , 		𝑢(,) = 𝑢(,)0 +	𝑢(,)1 ,			𝑢(,)0 , 𝑢(,)1 ≥ 0, ∀𝑠, 𝑗 ∈ 𝑆 × 𝐽 (3c) 

Eqs. (3a, b) describe the BHM. The state variables are 𝒙 = [𝑣2, 𝜓], where 𝑣2 (m/s) is the 
firing velocity and 𝜓	(°)	is the firing angle. The glass-box model has one uncertain 
parameter, the acceleration due to gravity 𝑔. 𝑦 (m) is the distance to the impact location 
of the projectile measured horizontally from 𝑦=0 which is the firing location of the 
projectile. We seek to predict the optimum conditions 𝒙 to hit a target a fixed distance 
𝑦T = 100	m away, despite neglecting air resistance (epistemic uncertainty) in the glass-
box model. The objective function 𝑢(𝑦) = |𝑦 − 𝑦T| is reformulated using slack variables 
in Eq. (3c) to provide differentiable constraints for gradient-based optimization. By 
combining Eqs. (2) and (3), the expectation of 𝑢 is minimized to find the optimum 𝒙 =
[𝑣2, 𝜓] to hit the target.  

The observed data 𝑫 = [𝒙𝒐𝒃𝒔,	𝒚𝒐𝒃𝒔] is generated from the true physical model which 
includes the effects of air-resistance on the projectile resulting in its non-parabolic 
trajectory as described by Eugene et al. (2020). Six data points corresponding to 
observations from experiments 1 to 5 and 6c in Table 1 of Eugene et al., 2020 were used 
for the sequential Bayesian calibration of the hybrid model. First, the glass-box model is 
calibrated using the data 𝑫, a likelihood function, and priors (see Eugene et al. 2020 for 
details) via Hamiltonian Monte Carlo in PyMC3 (Salvatier et al., 2016) which returns a 
trace of 2,000 samples from the posterior distribution of the glass-box model parameter 
𝑔. Next, using the mean value of 𝑔 from the trace, 𝑔̅, we compute the residuals 𝒚𝒐𝒃𝒔 −
	𝜂(𝒙𝒐𝒃𝒔, 𝑔̅)  which represents the systematic bias in the model due to epistemic 
uncertainty. These residuals are used to train a discrepancy function for which we assume 
a Gaussian process with kriging kernel: 

𝒚𝒐𝒃𝒔 − 	𝜂(𝒙𝒐𝒃𝒔, 𝑔̅) = 	𝛿(𝒙|𝝓,𝑫) ∼ 𝒢𝒫(𝜇, 𝑘(⋅,⋅)) (4a) 

𝑘I𝑥) , 𝑥3J = 	𝜎4-		exp d−∑ 𝛽5g𝑥5) − 𝑥53g
-6

578 h , 𝑗, 𝑘 ∈ 1,…	,𝑚, 𝛽5 ≥ 0   (4b) 

where 𝜇 and 𝜎4- are the prediction mean and the variance of the GP model, respectively 
and 𝛽5  is the kriging weight. 𝑛=2 denotes the number of input dimensions for 𝒙 =
[𝑣2, 𝜓	], and m = 6 is the number of observations in the training data set for the GP. The 
GP model hyperparameters 𝝓 = l𝜇, 𝜎4-, 𝛽8, 𝛽-m = [-0.68, 2.28, 1.53, 0.13] are trained 
using maximum likelihood estimation (MLE) (Forrester et al., 2008) implemented in the 
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PySMO toolbox of IDAES (Lee et al., 2021). We do not explicitly model aleatory 
uncertainty due to observation noise in this study. 

3. Results 
The optimization problem in Eqs. (2, 3) is constructed in Pyomo and solved using IPOPT 
and the linear solver MA57 (HSL, 2007) using |𝑆| =1000 and |𝐽|=10. To visualize the 
objective function surface and contours in Fig. 1, square instances of Eqs. (2,3), i.e., 𝒙 is 
fixed such that there are no degrees of freedom, are evaluated using a grid of 2750 
uniformly space samples over 𝑣2 ∈ [40, 100] (m/s) and 𝜓 ∈ [5.7, 85.5] (°). Fig. 1 (left) 
shows that firing at large angles (near vertical orientation) with large velocities results in 
undesirably high objective values with expected miss distances over 120 m. In contrast, 
firing at shallower angles (near horizontal orientation) and modest velocities results in 
expected miss distances less than 15 m. The dashed blue line in Fig. 1 (right) shows the 
combinations of angles and velocities that result in a direct hit based on simulations of 
the true physical model. The optimum calculated by the gradient-based solver Ipopt 
(purple star), and the grid search optimum (yellow dot), are nearly identical and both close 
to the direct hit line, indicating Bayesian hybrid model and stochastic programming 
formulation accurately account for epistemic uncertainty. The optimization problem is 
reliably solved by Ipopt in approximately 4 s on a MacBook with a 2.6 GHz Intel Core i7 
CPU, finding an optimal solution as 𝑣2 =65.34 m/s, 𝜓 =12.99 °  and an objective 
function value of 5.07 m. The optimum found by the grid search is 𝑣2 =64.49 m/s, 
𝜓 =13.1	°, and the optimized expectation value is 5.14 m. As expected, the gradient-
based solver outperforms the grid search. 
 
Next, we demonstrate the scalability of the proposed stochastic programming formulation. 
Fig. 2 shows the variation in CPU time and the number of Ipopt iterations as the number 
of scenarios |𝑆| increases. For each value of |𝑆|, Eqs. (2, 3) are resolved 50 times using 
samples randomly drawn from the posterior distribution trace. For |𝑆| = 2000, Eqs. (2, 
3) are solved once using the entire trace. The dots represent the medians for both metrics, 
while the error bar represents the 75th and 25th percentiles. Fig. 2 (left) shows that as |𝑆| 
increases, the median CPU time increases from 0.03 s with 10 scenarios, to 4.8 s with 

 
Fig.1. The expectation of the utility function changes with the velocity and the angle 
visualized in a 3D surface (left) and contour plot (right). 
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2000 scenarios. Likewise, Fig. 2 (right) shows median of the number of Ipopt iterations 
increases from 19 with 10 scenarios, achieving a peak at 152.5 with 1,000 scenarios, and 
decreases to 88 with 2,000 scenarios. We hypothesize the large variability in metrics for 
a given |𝑆| is due to the different scenario data considered for each of the 50 replicates. 
The problem considering 2,000 scenarios can be solved in less than 4.8 s and 88 iterations 
with 82,014 variables and 62,012 equality constraints, showing that this stochastic 
program can be reliably solved by gradient-based solvers with small computational 
burden. It is also noted that the optimum decisions are practically the same as |𝑆| 
increases. This highlights the potential to accommodate larger problems with multiple 
sources of model-form uncertainty, i.e., multiple GP discrepancy functions, by using only 
a modest number of posterior scenarios, e.g., |𝑆| is 10 or 50.  

4. Conclusions 
In this paper, we demonstrate a scalable stochastic programming formulation for 
optimization under both aleatoric (i.e., parametric) and epistemic (i.e., model-form) 
uncertainties using Bayesian hybrid models (BHMs). By leveraging both Gaussian 
quadrature rules and PySMO, we demonstrate efficient optimization using the equation-
oriented Pyomo modeling environment and gradient-based Ipopt nonlinear programming 
solver. Through an illustrative ballistics example, we show the Kennedy-O’Hagan 
inspired BHMs effectively capture epistemic uncertainty; their predictions are consistent 
with the full-physics true model. Moreover, accounting for epistemic uncertainty in the 
stochastic programming formulation may be accomplished using as little as 10 samples. 
As future work, we plan to explore the application of optimization-supported decision-
making with hybrid models for diverse applications in process system engineering and 
adjacent domains. We are especially interested in using BHMs to account for information-
loss from model simplified in molecular-to-systems engineering frameworks.    
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Fig.2. The CPU time and number of IPOPT iterations increase with the number of samples 
|𝑆|. The dots represent the median and the error bars denote the 25%-ile and 75%-ile for 50 
random samples exct for |𝑆| =2,000. 
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