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ABSTRACT
In this paper, we initiate the study of fairly dividing a set of indivis-
ible resources under the fairness notion of Maximin share (MMS),
for the setting where the agents have assignment or OXS valuation
functions. These are a popular subclass of functions that lie between
the well-studied submodular and additive function classes.

KEYWORDS
Fair Division; OXS Valuations; Maximin share

ACM Reference Format:
Pooja Kulkarni, Rucha Kulkarni, and Ruta Mehta. 2023. Maximin Share
Allocations for Assignment Valuations: Extended Abstract. In Proc. of the
22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023,
IFAAMAS, 2 pages.

Typically in much of economics and game theory, when investigat-
ing resource allocation among agents, the valuation functions of
agents are assumed to be beyond-additive, and have a decreasing
marginal returns property; this is essentially a complement-free-kind
property, where the value of a set of resources is less than the sum
of the values of any subsets that cover this set. [16] described a
hierarchy of five valuation function classes that have this property.
OXS is the first beyond-additive class in this hierarchy, and holds
particular importance within microeconomic theory, for instance
[3, 6, 9, 16, 19, 22]. Furthermore, OXS functions have a rich struc-
ture, and can be syntactically defined in various ways: for instance,
as depth 2 trees of ORs of XORs of additive functions [16], or using
bipartite matchings [10], or matrices [20]. We use the definition
via bipartite matchings, which intuitively is as follows. Every agent
is associated with a weighted bipartite graph where all the goods
form one part of vertices. The value of a set of goods is the value
of the maximum weight matching in the graph induced by this set.
It is somewhat surprising that no work, to the best of our knowl-
edge, has explored the fundamental problem of finding fair resource
allocations, which is a central focus in both economics and game the-
ory, under OXS valuations. We initiate this study under the fairness
notion of Maximin share (MMS) [7].
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The best known algorithmic and non-existence results for the
MMS problem under OXS valuations are due to the results for sub-
modular and additive cases, which relate to the OXS class as: Addi-
tive ⊂ OXS ⊂ Submodular. A PTAS to find a 1/3-MMS allocation
for submodular functions [12], and the non-existence of 39/40-MMS
allocations for the case with additive valuations [11] is known. We
note that, even when the number of agents is two, no better than a
1/3-MMS algorithm is known. Given the strong connection of OXS
functions with bipartite matching, and the richness of the mathemat-
ical structure this allows, it is natural to ask the following questions.

Q: For an efficient computation, can the barrier of 1/3 be broken
for OXS functions?

Q: Can the 39/40 factor non-existence result be improved when
valuations are beyond-additive?

We note that a negative result for OXS would extend to its super
classes as well. Similarly, consider the task of computing the MMS
value of any agent. This problem is equivalent to finding a 1-MMS
allocation when the agents are identical. But solving this problem,
even approximately up to any constant factor better than 1/3 remains
open for valuations that are beyond additive. This is in sharp contrast
to the additive valuations where a PTAS is known [23], motivating
the third question,

Q: Does a PTAS exist for computing the MMS value for OXS
valuations? If not, is there an algorithm for a factor better than 1/3?

We analyze all the three questions in this paper, and as a result
provide efficient algorithms, non-existence result, as well as hardness
results, summarised below. As a corollary, we provide additional
guarantees of EF1, PO, and max social welfare for the special case
with agents with identical valuations.

Efficient algorithm. We show the existence of 1
3 (1+

2/3
(𝑛−2/3) )-MMS

allocation, breaking the barrier of 1/3 for the OXS valuations, and
design a PTAS to compute one. As a corollary, this yields improved
factors for small number of agents, e.g., 1/2 with 2 agents, 3/7 with
3 agents, 2/5 with 4 agents and so on. Note that the study of 𝛼-MMS
allocations for small number of agents is a well-studied problem
by itself. For instance, under additive valuations, for three agents
[1] showed that a 7/8-MMS allocation always exists. This factor
was later improved to 8/9 in [13]. For four agents, [12] showed
that a 4/5-MMS allocation always exists. [15] gave an algorithm
that, given an instance with constantly many agents, and any 𝜖 > 0,
computes an (𝛼 − 𝜖)-MMS allocation, for the highest 𝛼 ∈ (0, 1] for
which an 𝛼-MMS allocation exists for the instance.



To break the barrier of 1/3, we uncover important properties of
OXS functions (w.r.t. the MMS problem). Importantly, we show
that, every agent can assign one representative value to every good
and as a result there is an ordering of the goods. Using this, we
analyze the round-robin procedure to obtain a factor better than 1/3.
The challenge in the analysis is to bound the loss in value when a
good is matched to an agent, as 𝑂 (𝑛) goods get discarded due to
this matching, due to being connected to the same right side vertex
as the matched good in the OXS graph. These insights, together
with a simple algorithm for beyond-additive valuations, may be of
independent interest to analyze other fairness notions for OXS and
other special classes of submodular functions, like gross-substitutes.

Non-existence of better than 2/3-MMS. We show a simple example
with 2 agents and 4 goods where an allocation strictly better than 2/3-
MMS does not exist. This gives an improved non-existence result for
valuations that subsume OXS, namely gross-substitutes, Rado, and
submodular valuations, as the previous best known result was for
the submodular functions [12], with a non-existence of 3/4-MMS
allocations.

Computing MMS value. We show that the problem of computing
MMS values of agents with OXS functions is strongly NP-hard,
negating the possibility of a PTAS. To counter the impossibility
result, we show an efficient algorithm to compute the MMS value of
an agent within a factor of 1/2.
EF1 +PO and EF1+MSW allocations with identical agents. A key
subroutine of our algorithm with identical agents resolves another
popular fair and efficient notion, namely the EF1+PO allocation.
Introduced by [7], EF1 allocations are those where every agent values
their bundle more than any other agent’s bundle upon removing
some good from the other bundle. EF1 allocations can be found
efficiently using envy cycle removal procedure introduced by [17].
An allocation is called PO if there is no other allocation where every
agent receives a bundle of equal or higher value, and at least one
agent gets a strictly better bundle. Finding an EF1+PO allocation is
a widely studied problem, with little success. [4] showed a pseudo-
polynomial time algorithm to obtain an EF1 + PO allocation on a
goods manna. A series of works [2, 8, 18, 21, 24] studied special
cases of the problem. [14] and [5] showed the existence and efficient
computation for the case of matroid rank valuations. The existence
of an EF1+PO allocation is open, even with identical agents, in the
beyond-additive valuations setting.

We show such an allocation exists in the OXS valuations setting
with identical agents. In fact, we show the existence of an allocation
that is not only PO but also has the maximum social welfare (MSW),
meaning the sum of values of all the bundles is maximized.

Our work opens several directions for future work. First, apart
from closing the gap of existence and non-existence results for the
problem under OXS functions, a natural direction is to study MMS
approximations for other subclasses of submodular functions, like
weighted matroid rank functions. Second, our result on identical
agents could be improved to show Pareto efficiency as well. Note
that we start with an MSW allocation. One needs to bound or remove
the loss in welfare while achieving the 1/2-MMS guarantee. Finally,
our analysis with non-identical agents, specifically the notion to
obtain a preference relation of the items corresponding to an OXS

function, using a fairness notion, may be applicable to analyze other
fairness notions for OXS.
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