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Abstract

We study the problem of estimating the trace of a matrix A

that can only be accessed through matrix-vector multiplica-

tion. We introduce a new randomized algorithm, Hutch++,

which computes a (1±ε) approximation to tr(A) for any pos-

itive semidefinite (PSD) A using just O(1/ε) matrix-vector

products. This improves on the ubiquitous Hutchinson’s

estimator, which requires O(1/ε2) matrix-vector products.

Our approach is based on a simple technique for reducing the

variance of Hutchinson’s estimator using a low-rank approx-

imation step, and is easy to implement and analyze. More-

over, we prove that, up to a logarithmic factor, the complex-

ity of Hutch++ is optimal amongst all matrix-vector query

algorithms, even when queries can be chosen adaptively. We

show that it significantly outperforms Hutchinson’s method

in experiments. While our theory requires A to be positive

semidefinite, empirical gains extend to applications involving

non-PSD matrices, such as triangle estimation in networks.

1 Introduction

A ubiquitous problem in numerical linear algebra is that
of approximating the trace of a d × d matrix A that
can only be accessed via matrix-vector multiplication
queries. In other words, we are given access to an oracle
that can evaluate Ax for any x ∈ Rd, and the goal is to
return an approximation to tr(A) using as few queries
to this oracle as possible. An exact solution can be
obtained with d queries because tr(A) =

∑d
i=1Aii =∑d

i=1 eTi Aei, where ei denotes the ith standard basis
vector. The goal is thus to develop algorithms that use
far fewer than d matrix-vector multiplications.

Known as implicit or matrix free trace estima-
tion, this problem arises in applications that require
the trace of a matrix A, where A is itself a transfor-
mation of some other matrix B. For example, A =
Bq, A = B−1, or A = exp(B). In all of these
cases, explicitly computing A would require roughly
O(d3) time, whereas multiplication with a vector x
can be implemented more quickly using iterative meth-
ods. For example, Bqx can be computed in just
O(d2) time for constant q, and for well-conditioned
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matrices, B−1x and exp(B)x can also be computed
in O(d2) time using the conjugate gradient or Lanc-
zos methods [Hig08]. Implicit trace estimation is used
to approximate matrix norms [HMAS17, MNS+18],
spectral densities [LSY16, CKSV18, BKKS20], log-
determinants [BDKZ15, HMS15], the Estrada in-
dex [US18, WSMB20], eigenvalue counts in intervals
[DNPS16], triangle counts in graphs [Avr10], and much
more [Che16, LSTZ20]. In these applications, we typ-
ically have that A is symmetric, and often positive
semidefinite (PSD).

1.1 Hutchinson’s Estimator The most common
method for implicit trace estimation is Hutchinson’s
stochastic estimator [Hut90]. This elegant randomized
algorithm works as follows: let G = [g1, . . . ,gm] ∈
Rd×m be a matrix containing i.i.d. random variables
with mean 0 and variance 1. A simple calculation
shows that E[gTi Agi] = tr(A) for each gi ∈ Rd, and
gTi Agi can be computed with just one matrix-vector
multiplication. So to approximate tr(A), Hutchinson’s
estimator returns the following average:

Hutchinson’s Estimator:

Hm(A) =
1

m

m∑
i=1

gTi Agi =
1

m
tr(GTAG).(1.1)

Hutchinson’s original work suggests using random ±1
sign vectors for g1, . . . ,gm, and an earlier paper by Gi-
rard suggests standard normal random variables [Gir87].
Both choices perform similarly, as both random vari-
ables are sub-Gaussian. For vectors with sub-Gaussian
random entries, it can be proven that, when A is posi-
tive semidefinite, (1−ε) tr(A) ≤ Hm(A) ≤ (1+ε) tr(A)
with probability ≥ 1 − δ if we use m = O

(
log(1/δ)/ε2

)
matrix-vector multiplication queries [AT11, RA15].1

For constant δ (e.g., δ = 1/10 ) the bound is O(1/ε2).

1.2 Our results Since Hutchinson’s work, and the
non-asymptotic analysis in [AT11], there has been no
improvement on this O(1/ε2) matrix-vector multiplica-

1For non-PSD matrices, this generalizes to tr(A) − ε‖A‖F ≤
Hm(A) ≤ tr(A) + ε‖A‖F , which implies the relative error bound
since when A is PSD, ‖A‖F ≤ tr(A).
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tion bound for trace approximation. Our main contribu-
tion is a quadratic improvement: we provide a new algo-
rithm, Hutch++, that obtains the same (1±ε) guarantee
with O(1/ε) matrix-vector multiplication queries. This
algorithm is nearly as simple as the original Hutchin-
son’s method, and can be implemented in just a few
lines of code.

Algorithm 1 Hutch++

input: Matrix-vector multiplication oracle for PSD
matrix A ∈ Rd×d. Number m of queries.
output: Approximation to tr(A).

1: Sample S ∈ Rd×m3 and G ∈ Rd×m3 with i.i.d.
{+1,−1} entries.

2: Compute an orthonormal basis Q ∈ Rd×m3 for the
span of AS (e.g., via QR decomposition).

3: return Hutch++(A) = tr(QTAQ) + 3
m tr(GT (I −

QQT )A(I −QQT )G).

Hutch++ requires m matrix-vector multiplications with
A: m/3 to compute A · S, m/3 to compute A ·Q, and
m/3 to compute A · (I −QQT )G. It requires O(dm2)
additional runtime to compute the basis Q and the
product (I−QQT )G = G−QQTG. For concreteness,
we state the method with random sign matrices, but the
entries of S and G can be any sub-Gaussian random
variables with mean 0 and variance 1, including e.g.,
standard Gaussians. Our main theorem on Hutch++ is:

Theorem 1.1. If Hutch++ is implemented with m =
O(
√

log(1/δ)/ε + log(1/δ)) matrix-vector multiplication
queries, then for any PSD A, with probability ≥ 1 − δ,
the output Hutch++(A) satisfies:

(1− ε) tr(A) ≤ Hutch++(A) ≤ (1 + ε) tr(A).

Hutch++ can be viewed as a natural variance reduced
version of Hutchinson’s estimator. The method starts
by computing an orthonormal span Q ∈ Rd×m3 by run-
ning a single iteration of power method with a random
start matrix S. Q coarsely approximates the span of
A’s top eigenvectors. Then we separate A into its pro-
jection onto the subspace spanned by Q, and onto that
subspace’s orthogonal compliment, writing tr(A) =
tr(QQTAQQT ) + tr

(
(I −QQT )A(I −QQT )

)
. By

the cyclic property of the trace, the first term is equal
to tr(QTAQ), which is computed exactly by Hutch++

with m
3 matrix-vector multiplications. The second term

is approximated using Hutchinson’s estimator with the
random vectors in G.

Thus, the error in estimating tr(A) is entirely due
to approximating this second term. The key observation
is that the variance when estimating this term is much

lower than when estimating tr(A) directly. Specifically,
it is proportional to ‖(I−QQT )A(I−QQT )‖2F , which,
using standard tools from randomized linear algebra
[CEM+15, Woo14], we can show is bounded by ε tr(A)2

with good probability when m = O(1/ε). This yields
our improvement over Hutchinson’s method applied
directly to A, which has variance bounded by tr(A)2.
The full proof of Theorem 1.1 is in Section 3.

Algorithm 1 is adaptive: it multiplies A by
a sequence of query vectors r1, . . . , rm, where later
queries depend on earlier ones. In contrast, Hutchin-
son’s method is non-adaptive: r1, . . . , rm are chosen
in advance, before computing any of the products
Ar1, . . . ,Arm. In addition to Algorithm 1, we give
a non-adaptive variant of Hutch++ that obtains the
same O(1/ε) bound. We complement these results with
a nearly matching lower bound, proven in Section 4.
Specifically, via a reduction from the Gap-Hamming
problem from communication complexity, we show that
any matrix-vector query algorithm whose queries have

bounded bit complexity requires m = Ω
(

1
ε log(1/ε)

)
queries to estimate the trace of a PSD matrix up to
a (1 ± ε) multiplicative approximation. We also prove
a tight m = Ω

(
1
ε

)
lower bound for non-adaptive algo-

rithms in the real RAM model of computation.

Empirical Results. In Section 5 we complement our
theoretical results with experiments on synthetic and
real-world matrices, including applications of trace es-
timation to approximating log determinants, the graph
Estrada index, and the number of triangles in a graph.
We demonstrate that Hutch++ improves substantially
on Hutchinson’s estimator, and on related estimators
based on approximating the top eigenvalues ofA. While
our theory applies to positive semidefinite matrices,
Hutch++ can be applied unmodified to non-positive
semidefinite trace estimation, and continues to perform
very well empirically. We note that Hutch++ is simple
to implement and essentially parameter free – the only
choice needed is the number of matrix-vector multipli-
cation queries m.

1.3 Prior Work Upper bounds. A nearly tight
non-asymptotic analysis of Hutchinson’s estimator for
positive semidefinite matrices was given by Avron and
Toledo using an approach based on reducing to Johnson-
Lindenstrauss random projection [AT11, DG03, Ach03].
A slightly tighter approach from [RA15] obtains a (1±ε)
multiplicative error bound with m = O(1/ε2) matrix-
vector multiplication queries. This bound is what we
improve on with Hutch++.

A number of papers suggest variance reduction
schemes for Hutchinson’s estimator. Some take advan-
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tage of sparsity structure in A [TS11, SLO13] and oth-
ers use a “decomposition” approach similar to Hutch++

[APJ+18]. Most related to our work are two papers
which, like Hutch++, perform the decomposition by pro-
jecting onto some Q that approximately spans A’s top
eigenspace [GSO17, Lin17]. The justification is that this
method should perform much better than Hutchinson’s
when A is close to low-rank, because tr(QTAQ) will
capture most of A’s trace. Our contribution is an anal-
ysis of this approach which 1) improves on Hutchin-
son’s even when A is far from low-rank and 2) shows
that a very coarse approximation to the top eigen-
vectors suffices (computed using one iteration of the
power method). Finally, we note two papers which
directly use the approximation tr(A) ≈ tr(QTAQ),
where Q is computed with a randomized SVD method
[SAI17, HL20]. Of course, this approach works best for
nearly-low rank matrices.

Lower bounds. Our lower bounds extend a recent line
of work on lower bounds for linear algebra problems in
the “matrix-vector query model” [SEAR18, SWYZ19,
BHSW20]. [WWZ14] proves a lower bound of Ω(1/ε2)
queries for PSD trace approximation in an alternative
model that allows for adaptive “quadratic form” queries:
rT1Ar1, . . . , r

T
mArm. This model captures Hutchinson’s

estimator, but not Hutch++, which is why we are able
to obtain an upper bound of O(1/ε) queries.

2 Preliminaries

Notation. For a ∈ Rd, ‖a‖2 = (
∑d
i=1 a

2
i )

1/2 denotes

the `2 norm and ‖a‖1 =
∑d
i=1 |ai| denotes the `1 norm.

For A ∈ Rn×d, ‖A‖F = (
∑n
i=1

∑d
j=1A

2
ij)

1/2 denotes

the Frobenius norm. For square A ∈ Rd×d, tr(A) =∑d
i=1Aii denotes the trace. Our main results on

trace approximation are proven for symmetric positive
semidefinite (PSD) matrices, which are the focus of
many applications. Any symmetric A ∈ Rd×d has
eigendecomposition A = V ΛV T , where V ∈ Rd×d is
orthogonal and Λ is a real-valued diagonal matrix. We
let λ = diag(Λ) be a vector containing A’s eigenvalues
in descending order: λ1 ≥ λ2 ≥ . . . ≥ λd. When
A is PSD, λi ≥ 0 for all i. We use the identities
tr(A) = ‖λ‖1 and ‖A‖F = ‖λ‖2. We let Ak =
arg minB,rank(B)=k ‖A−B‖F denote the optimal k-rank
approximation to A. For a PSD matrix A, Ak =
VkΛkV

T
k , where Vk ∈ Rd×k contains the first k columns

of V and Λk is the k × k top left submatrix of Λ.

Hutchinson’s Analysis. We require a standard
bound on the accuracy of Hutchinson’s estimator:

Lemma 2.1. Let A ∈ Rd×d, δ ∈ (0, 1/2], ` ∈ N. Let
H`(A) be the `-query Hutchinson estimator defined in

(1.1), implemented with mean 0, i.i.d. sub-Gaussian
random variables with constant sub-Gaussian parame-
ter. For fixed constants c, C, if ` > c log(1/δ), then with
probability ≥ 1− δ,

|H`(A)− tr(A)| ≤ C
√

log(1/δ)

`
‖A‖F .

So, if ` = O
(

log(1/δ)
ε2

)
then, with probability ≥ 1 − δ,

|H`(A)− tr(A)| ≤ ε‖A‖F .

We refer the reader to [RV+13] for a formal definition
of sub-Gaussian random variables: both normal N (0, 1)
random variables and ±1 random variables are sub-
Gaussian with constant parameter. Lemma 2.1 is
proven in Appendix A for completeness. It is slightly
more general than prior work [RA15] in that it applies to
non-PSD, and even asymmetric matrices, which will be
important in the analysis of our non-adaptive algorithm.
A similar result was recently shown in [CK20].

3 Complexity Analysis

We start by providing the technical intuition behind
Hutch++. First note that, for a PSD matrix with eigen-
values λ, ‖A‖F ≤ tr(A), so Lemma 2.1 immediately
implies that Hutchinson’s estimator obtains a relative
error guarantee with O(1/ε2) queries. However, this
bound is only tight when ‖λ‖2 ≈ ‖λ‖1, i.e., when A
has significant mass concentrated on just a small num-
ber of eigenvalues.

Hutch++ simply eliminates this possibility by ap-
proximately projecting off A’s large eigenvalues using a
projection QQT . By doing so, it only needs to compute
a stochastic estimate for the trace of (I −QQT )A(I −
QQT ). The error of this estimate is proportional to
‖(I −QQT )A(I −QQT )‖F , which we show is always
much smaller than tr(A). In particular, suppose that
Q = Vk exactly spanned the top k eigenvectors A and
thus (I−QQT )A(I−QQT ) = A−Ak. Then we have:

Lemma 3.1. Let Ak be the best rank-k approximation
to PSD matrix A. Then, ‖A−Ak‖F ≤ 1√

k
tr(A).

Proof. We have λk+1 ≤ 1
k

∑k
i=1 λi ≤

1
k tr(A), so:

‖A−Ak‖2F =
d∑

i=k+1

λ2
i ≤ λk+1

d∑
i=k+1

λi

≤ 1

k
tr(A)

d∑
i=k+1

λi ≤
1

k
tr(A)2.
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This result immediately suggests the possibility of an
algorithm with O(1/ε) query complexity: Set k =
O(1/ε) and split tr(A) = tr(Ak) + tr(A − Ak). The
first term can be computed exactly with O(1/ε) matrix-
vector multiplication queries if Vk is known, since
tr(Ak) = tr(V T

k AVk). By Lemma 3.1 combined with
Lemma 2.1, the second can be estimated to error
±ε tr(A) using just O(1/ε) queries instead of O(1/ε2).
Of course, we can’t compute Vk exactly with a small
number of matrix-vector multiplication queries, but this
is easily resolved by using an approximate projection.
Using standard tools from randomized linear algebra,
O(k) queries suffices to find a Q with ‖(I−QQT )A(I−
QQT )‖F ≤ O(‖A−Ak‖F ), which is all that is needed
for a O(1/ε) query result.

Concretely, we use Lemma 3.1 to prove the following
general theorem, from which Theorem 1.1 and our
non-adaptive algorithmic result will follow as direct
corollaries.

Theorem 3.1. Let A ∈ Rd×d be PSD, δ ∈ (0, 1/2),
` ∈ N, k ∈ N. Let Ã and ∆ be any matrices with:

tr(A) = tr(Ã) + tr(∆) and ‖∆‖F ≤ 2‖A−Ak‖F .

For fixed constants c, C, if ` > c log(1/δ), then with

probability 1− δ, Z =
[
tr(Ã) + H`(∆)

]
satisfies:∣∣∣Z − tr(A)

∣∣∣ ≤ 2C

√
log(1/δ)
k` · tr(A).

In particular, if k = ` = O

(√
log(1/δ)

ε + log(1/δ)

)
, Z is

a (1± ε) error approximation to tr(A).

Proof. We have with probability ≥ 1− δ:

|Z − tr(A)| = |H`(∆)− tr(∆)|

(since Z = tr(Ã) + H`(∆) and tr(A) = tr(Ã) + tr(∆))

≤ C
√

log(1/δ)
` ‖∆‖F

(by the standard Hutchinson’s analysis, Lemma 2.1)

≤ 2C

√
log(1/δ)

` ‖A−Ak‖F

(by the assumption that ‖∆‖F ≤ 2‖A−Ak‖F )

≤ 2C

√
log(1/δ)
k` tr(A).(by Lemma 3.1)

As discussed, Theorem 3.1 would immediately yield
an O(1/ε) query algorithm if we knew an optimal k-rank
approximation for A. Since computing one is infeasible,
our first version of Hutch++ (Algorithm 1) instead uses
a projection onto a subspace Q which is computed with
one iteration of the power method. We have:

Theorem 1.1 Restated 1. If Algorithm 1 is imple-
mented with m = O(

√
log(1/δ)/ε + log(1/δ)) matrix-

vector multiplication queries, then for any PSD A, with
probability ≥ 1 − δ, the output Hutch++(A) satisfies:
(1− ε) tr(A) ≤ Hutch++(A) ≤ (1 + ε) tr(A).

Proof. Let S, G, and Q be as in Algorithm 1. We
instantiate Theorem 3.1 with Ã = QTAQ and ∆ =
(I−QQT )A(I−QQT ). Note that, since Q is orthogo-
nal, (I −QQT ) is a projection matrix, so (I −QQT ) =
(I −QQT )2. This fact, along with the cyclic property
of the trace, gives:

tr(Ã) = tr(AQQT ) and tr(∆) = tr(A(I −QQT )),

and thus tr(Ã) + tr(∆) = tr(A) as required by The-
orem 3.1. Furthermore, since multiplying by a projec-
tion matrix can only decrease Frobenius norm, ‖∆‖2F ≤
‖A(I −QQT )‖2F = ‖A−AQQ‖2F .

Recall that Q is an orthogonal basis for the column
span of AS, where S is a random sign matrix with m

3
columns. Q is thus an orthogonal basis for a linear
sketch of A’s column space, and it is well known that
Q will align with large eigenvectors of A, and ‖A −
AQQT ‖2F will be small [Sar06, Woo14]. Concretely,
applying Corollary 7 and Claim 1 from [MM20], we have
that, as long as m

3 ≥ O(k + log(1/δ)), with probability
≥ 1− δ:

‖A−AQQT ‖2F ≤ 2‖A−Ak‖2F .

Accordingly, ‖∆‖F ≤ 2‖A − Ak‖2F as required by
Theorem 3.1. The result then immediately follows
by setting k = O(

√
log(1/δ)/ε + log(1/δ)) and not-

ing that Hutch++(A) =
[
tr(Ã) + H`(∆)

]
where ` =

O(
√

log(1/δ)/ε+ log(1/δ)).

3.1 A Non-Adaptive Variant of Hutch++ As
discussed in Section 1, Algorithm 1 is adaptive: it uses
the result of computing AS to compute Q, which is
then multiplied by A to compute the tr(QTAQ) term.
Meanwhile, Hutchinson’s estimator is non-adaptive:
it samples a single random matrix upfront, batch-
multiplies by A once, and computes an approximation
to tr(A) from the result, without any further queries.

Not only is non-adaptivity an interesting theoret-
ical property, but it can be practically useful, since
parallelism or block iterative methods often make it
faster to multiply an implicit matrix by many vectors
at once. With these considerations in mind, we de-
scribe a non-adaptive variant of Hutch++, which we call
NA-Hutch++. NA-Hutch++ obtains nearly the same
theoretical guarantees as Algorithm 1, although it tends
to perform slightly worse in our experiments.
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We leverage a streaming low-rank approximation
result of Clarkson and Woodruff [CW09] which shows
that if S ∈ Rd×m and R ∈ Rd×cm are sub-Gaussian
random matrices with m = O(k log(1/δ)) and c > 1
a fixed constant, then with probability 1 − δ, the ma-
trix Ã = AR(STAR)+(AS)T satisfies ‖A − Ã‖F ≤
2‖A−Ak‖F . Here + denotes the Moore-Penrose pseu-
doinverse. We can compute tr(Ã) efficiently without
explicitly constructing Ã ∈ Rd×d by noting that it is
equal to tr((STAR)+(AS)T (AR)) via the cyclic prop-
erty of the trace. This yields:

Algorithm 2 NA-Hutch++ (Non-Adaptive variant of
Hutch++)

input: Matrix-vector multiplication oracle for PSD
matrix A ∈ Rd×d. Number m of queries.
output: Approximation to tr(A).

1: Fix constants c1, c2, c3 such that c1 < c2 and
c1 + c2 + c3 = 1.

2: Sample S ∈ Rd×c1m, R ∈ Rd×c2m, and G ∈ Rd×c3m
with i.i.d. {+1,−1} entries.

3: Compute Z = AR and W = AS.
4: return NA-Hutch++(A) = tr((STZ)+(W TZ)) +

3
m

[
tr(GTAG)− tr(GTZ(STZ)+W TG)

]
NA-Hutch++ requires m matrix-vector multiplications
with A. In our experiments, it works well with c1 =
c3 = 1/4 and c2 = 1/2. Assuming m < d, it requires
O(dm2) further runtime, to perform the matrix mul-
tiplications on line 4 and to compute (STZ)+, which
takes O(dm2 +m3) time.

Theorem 3.2. If NA-Hutch++ is implemented with
m = O(log(1/δ)/ε) matrix-vector multiplication queries
and c2

c1
a sufficiently large constant, then for any PSD

A, with probability ≥ 1−δ, the output NA-Hutch++(A)
satisfies: (1 − ε) tr(A) ≤ NA-Hutch++(A) ≤ (1 +
ε) tr(A).

Proof. We apply Theorem 3.1 with Ã = Z(STZ)+W T ,

∆ = A − Ã, k = O(1/ε) and ` = c3m = O( log(1/δ)
ε ).

tr(A) = tr(Ã)+tr(∆) and NA-Hutch++(A) = [tr(Ã)+
H`(∆)]. By Theorem 4.7 of [CW09], since c1m =
O(k log(1/δ)), ‖∆‖F ≤ 2‖A − Ak‖F with probability
≥ 1− δ as required.

4 Lower Bounds

A natural question is if the O(1/ε) matrix-vector query
bound of Theorem 1.1 and Theorem 3.2 is tight. In this
section, we prove that it is up to a logarithmic factor,
even for algorithms that perform adaptive queries like
Hutch++. Our lower bound is via a reduction to

communication complexity: we show that a better
algorithm for PSD trace estimation would imply a
better 2-party communication protocol for the Gap-
Hamming problem, which would violate known adaptive
lower bounds for that problem [CR12]. To prove this
result we need to assume a fixed precision model of
computation. Specifically we require that the entries
in each query vector r are integers bounded in absolute
value by 2b, for some fixed constant b. By scaling, this
captures the setting where the query vectors are non-
integer, but have bounded precision. Formally, we prove
in Section 4.1:

Theorem 4.1. Any algorithm that accesses a posi-
tive semidefinite matrix A via matrix-vector multi-
plication queries Ar1, . . . ,Arm, where r1, . . . , rm are
possibly adaptively chosen vectors with integer entries

in {−2b, . . . , 2b}, requires m = Ω
(

1
ε(b+log(1/ε))

)
such

queries to output an estimate t so that, with probabil-
ity > 2/3, (1− ε) tr(A) ≤ t ≤ (1 + ε) tr(A).

For constant b our lower bound is Ω
(

1
ε log(1/ε)

)
, which

matches Theorem 1.1 and Theorem 3.2 up to a log(1/ε)
factor. We also provide an alternative lower bound
which holds in the real RAM model of computation (all
inputs and arithmetic operations involve real numbers).
This second lower bound is tight up to constants, but
only applies to non-adaptive algorithms. It is proven
using different information theoretic techniques – we
reduce to a hypothesis testing problem involving nega-
tively spiked covariance matrices [CMW15, PWBM18].
Formally, we prove in Appendix B:

Theorem 4.2. Any algorithm that accesses a postive
semidefinite matrix A through matrix-vector multipli-
cation queries Ar1, . . . ,Arm, where r1, . . . , rm are real
valued non-adaptively chosen vectors requires m =
Ω
(

1
ε

)
such queries to output an estimate t so that, with

probability > 3/4, (1− ε) tr(A) ≤ t ≤ (1 + ε) tr(A).

4.1 Adaptive lower bound The proof of Theo-
rem 4.1 is based on reducing the Gap-Hamming problem
to trace estimation. This problem has been well studied
in communication complexity since its introduction in
[IW03].

Problem 4.1. (Gap-Hamming) Let Alice and Bob be
communicating parties who hold vectors s ∈ {−1, 1}n
and t ∈ {−1, 1}n, respectively. The Gap-Hamming
problem asks Alice and Bob to return:

1 if 〈s, t〉 ≥
√
n and −1 if 〈s, t〉 ≤ −

√
n.

A tight lower bound on the unbounded round, random-
ized communication complexity of this problem was first
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proven in [CR12], with alternative proofs appearing in
[Vid12, She12]. Formally:

Lemma 4.1. (Theorem 2.6 in [CR12]) The ran-
domized communication complexity for solving Prob-
lem 4.1 with probability ≥ 2/3 is Ω(n) bits.

With Lemma 4.1 in place, we have all we need to prove
Theorem 4.1.

Proof. [Proof of Theorem 4.1 ] Fix a perfect square
n ∈ N. Consider an instance of Problem 4.1 with
inputs s ∈ Rn and t ∈ Rn. Let S ∈ R

√
n×
√
n and

T ∈ R
√
n×
√
n contain the entries of s and t rearranged

into matrices (e.g., placed left-to-right, top-to-bottom).
Let Z = S + T and let A = ZTZ. A is positive
semidefinite and we have:

tr(A) = ‖Z‖2F = ‖s + t‖22 = ‖s‖22 + ‖t‖22 + 2〈s, t〉
= 2n+ 2〈s, t〉.

If 〈s, t〉 ≥
√
n then we will have tr(A) ≥ 2(n+

√
n) and if

〈s, t〉 ≤ −
√
n then we will have tr(A) ≤ 2(n−

√
n). So,

if Alice and Bob can approximate tr(A) up to relative
error (1± 1/

√
n), then they can solve Problem 4.1. We

claim that they can do so with just O(m ·
√
n(log n+b))

bits of communication if there exists an m-query adap-
tive matrix-vector multiplication algorithm for positive
semidefinite trace estimation achieving error (1±1/

√
n).

Specifically, Alice takes charge of running the query
algorithm. To compute Ar for a vector r, Alice and
Bob first need to compute Zr. To do so, Alice sends r
to Bob, which takes O(

√
n · b) bits since r has entries

bounded by 2b. Bob then computes T r, which has
entries bounded by

√
n2b. He sends the result to Alice,

using O(
√
n(b + log n)) bits. Upon receiving T r, Alice

computes Zr = Sr + T r. Next, they need to multiply
Zr by ZT to obtain Ar = ZTZr. To do so, Alice
sends Zr to Bob (again using O(

√
n(b+log n)) bits) who

computes T TZr. The entries in this vector are bounded
by 2n2b, so Bob sends the result back to Alice using
O(
√
n(b + log n)) bits. Finally, Alice computes STZr

and adds the result to T TZr to obtain ZTZr = Ar.
Given this result, Alice chooses the next query vector
according to the algorithm and repeats.

Overall, running the full matrix-vector query algo-
rithm requires O(m ·

√
n(log n + b)) bits of commu-

nication. So, from Lemma 4.1 we have that m =
Ω(
√
n/(log n + b)) queries are needed to approximate

the trace to accuracy 1± ε for ε = 1/
√
n, with probabil-

ity > 2/3.

5 Experimental Validation

We complement our theory with experiments on syn-
thetic matrices and real-world trace estimation prob-
lems. Code for Hutch++ and NA-Hutch++ is available

at https://github.com/RaphaelArkadyMeyerNYU/

HutchPlusPlus. We compare these methods to
four algorithms, including both our adaptive and
non-adaptive methods:

• Hutchinson’s. The standard estimator run with
{+1,−1} random vectors.

• Subspace Projection. The method from [SAI17],
which computes an orthogonal matrix Q ∈ Rd×k
that approximately spans the top eigenvector sub-
space of A ∈ Rd×d and returns tr(QTAQ) as an
approximation to tr(A). A similar approach is
employed in [HL20]. [SAI17] computes Q using
subspace iteration, which requires k(q+ 1) matrix-
vector multiplications when run for q iterations. A
larger q results in a more accurate Q, but requires
more multiplications. As in [SAI17], we found that
setting q = 1 gave the best performance, so we did
so in our experiments. With q = 1, this method
is similar to Hutch++, except that is does not ap-
proximate the remainder of the trace outside the
top eigenspace.

• Hutch++. The adaptive method of Algorithm 1
with {+1,−1} random vectors.

• NA-Hutch++. The non-adaptive method of Al-
gorithm 2 with c1 = c3 = 1/4 and c2 = 1/2 and
{+1,−1} random vectors.

5.1 Synthetic Matrices We first test the methods
above on random matrices with power law spectra.
For varying constant c, we let Λ be diagonal with
Λii = i−c. We generate a random orthogonal matrix
Q ∈ R5000×5000 by orthogonalizing a random Gaussian
matrix and setA = QTΛQ. A’s eigenvalues are the val-
ues in Λ. A larger c results in a more quickly decaying
spectrum, so we expect Subspace Projection to perform
well. A smaller c results in a slowly decaying spectrum,
which will mean that ‖A‖F � tr(A). In this case, we
expect Hutchinson’s to outperform its worst case mul-
tiplicative error bound: instead of error ±ε tr(A) after
O(1/ε2) matrix-multiplication queries, Lemma 2.1 pre-
dicts error on the order of ±ε‖A‖F . Concretely, for di-
mension d = 5000 and c = 2, we have ‖A‖F = .63·tr(A)
and for c = .5 we have ‖A‖F = .02 · tr(A). In general,
unlike the Subspace Projection method and Hutchin-
son’s estimator, we expect Hutch++ and NA-Hutch++

to be less sensitive to A’s spectrum.
In Figure 1 we plot results for various c. Relative

error should scale roughly as ε = O(m−γ), where
γ = 1/2 for Hutchinson’s and γ = 1 for Hutch++ and
NA-Hutch++. We thus use log-log plots, where we
expect a linear relationship between the error ε and
number of iterations m.
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(a) Fast Eigenvalue Decay
(c = 2)

(b) Medium Eigenvalue De-
cay (c = 1.5)

(c) Slow Eigenvalue Decay
(c = 1)

(d) Very Slow Eigenvalue De-
cay (c = .5)

Figure 1: Relative error versus number of matrix-
vector multiplication queries for trace approximation
algorithms run on random matrices with power law
spectra. We report the median relative error of the
approximation t after 200 trials. The upper and lower
bounds of the shaded region around each curve are the
25th and 75th percentile errors. Subspace Projection
has consistently low variance, but as expected, only
performs better than Hutchinson’s when c = 2 and
there is very fast eigenvalue decay. Hutch++ and
NA-Hutch++ typically outperform both methods.

The superior performance of Hutch++ and
NA-Hutch++ shown in Figure 1 is not surprising.
These methods are designed to achieve the “best of
both worlds”: when A’s spectrum decays quickly, our
methods approximate tr(A) well by projecting off the
top eigenvalues. When it decays slowly, they perform
essentially no worse than Hutchinson’s. We note that
the adaptivity of Hutch++ leads to consistently better
performance over NA-Hutch++, and the method is
simpler to implement as we do not need to set the
constants c1, c2, c3. Accordingly, this is the method we
move forward with in our real data experiments.

5.2 Real Matrices To evaluate the real-world per-
formance of Hutch++ we test it in the common setting
where A = f(B). In most applications, B is symmetric
with eigendecomposition V TΛV , and f : R → R is a
function on real valued inputs. Then we have f(B) =
V T f(Λ)V where f(Λ) is simply f applied to the real-
valued eigenvalues on the diagonal of Λ. When f re-

turns negative values, A may not be postive semidef-
inite. Generally, computing f(B) explicitly requires a
full eigendecomposition and thus Ω(n3) time. However,
many iterative methods can more quickly approximate
matrix-vector queries of the form Ar = f(B)r. The
most popular and general is the Lanczos method, which
we employ in our experiments [UCS17, MMS18].2

We consider trace estimation in three example ap-
plications, involving both PSD and non-PSD matrices.
We test on relatively small inputs, for which we can ex-
plicitly compute tr(f(B)) to use as a baseline for the
approximation error. However, our methods can scale
to much larger matrices.

(a) A = exp(B), where B
is the Roget’s Thesaurus se-
mantic graph adjacency ma-
trix. For use in Estrada index
computation. A is PSD.

(b) A = log(B + λI), where
B is a 2D Gaussian process
kernel covariance matrix. For
use in log-likelihood compu-
tation. A is not PSD.

Figure 2: Relative error versus number of matrix-
vector multiplication queries for trace approximations of
transformed matrices, which were multiplied by vectors
using the Lanczos method. We report median relative
error of the approximation t after 100 trials. The
upper and lower bounds of the shaded region around
each curve are the 25th and 75th percentile errors. As
expected, Subspace Project and Hutch++ outperform
Hutchinson’s when A = exp(B), as exponentiating
leads to a quickly decaying spectrum. On the other
hand, Hutchinson’s performs well for A = log(B+λI),
which has a very flat spectrum. Hutch++ is still
essentially as fast, even though this matrix is not PSD.
Subspace Project fails in this case because the top
eigenvalues of A do not dominate its trace.

Graph Estrada Index. Given the binary adjacency
matrix B ∈ {0, 1}d×d of a graph G, the Estrada
index is defined as tr(exp(B)) [Est00, dlPGR07], where
exp(x) = ex. This index measures the strength of
connectivity within G. A simple transformation of the

2We use our implementation of Lanczos available at

https://github.com/cpmusco/fast-pcr, but modified to block
matrix-vector multiplies when run on multiple query vectors r.
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Estrada index yields the natural connectivity metric,
defined as log

(
1
d tr(exp(B))

)
[JBYJHZ10, EHB12].

In our experiments, we approximated the Estrada
index of the Roget’s Thesaurus semantic graph, avail-
able from [BM06]. The Estrada index of this 1022 node
graph was originally studied in [EH08]. We use the
Lanczos method to approximate matrix multiplication
with exp(B), running it for 40 iterations, after which
the error of application was negligible compared to the
approximation error of trace estimation. Results are
shown in Figure 2.

(a) A = B3 where B is a
Wikipedia voting network ad-
jacency matrix. For use in
triangle counting. A is not
PSD.

(b) A = B3 where B is
an arXiv.org citation network
adjacency matrix. For use in
triangle counting. A is not
PSD.

Figure 3: Relative error versus number of matrix-
vector multiplication queries for trace approximations
of transformed matrices. We report the median relative
error of the approximation t after 100 trials. The
upper and lower bounds of the shaded region around
each curve are the 25th and 75th percentile errors.
Hutch++ still outperforms the baseline methods even
though A is not PSD. We note that Subspace Project
has somewhat uneven performance: increasing m will
take into account a larger number of top eigenvalues
when approximating the trace. However, since these
may be positive or negative, approximation error does
not monotonically decrease. Hutch++ is not sensitive to
this issue since it does not use just the top eigenvalues:
see Figure 4 for more discussion.

Gaussian Process Log Likelihood. Let B ∈ Rd×d
be a PSD kernel covariance matrix and let λ ≥ 0
be a regularization parameter. In Gaussian process
regression, the model log likelihood computation re-
quires computing log det(B + λI) = tr(f(B)) where
f(x) = log(x + λ) [WR96, Ras04]. This quantity
must be computed repeatedly for different choices of
B and λ during hyper-parameter optimization, and
it is often approximated using Hutchinson’s method
[BDKZ15, UCS17, HMAS17, DEN+17]. We note that,
while B is positive semidefinite, log(B + λI) typically

will not be. So our theoretical bounds do not apply in
this case, but Hutch++ can be applied unmodified, and
as we see in Figure 2, still gives good performance.

In our experiments we consider a benchmark 2D
Gaussian process regression problem from the GIS
literature, involving precipitation data from Slovakia
[NM13]. B is the kernel covariance matrix on 6400
randomly selected training points out of 196,104 total
points. Following the setup of [EMM20], we let B be
a Gaussian kernel matrix with width parameter γ = 64
and regularization parameter λ = .008, both determined
via cross-validation on `2 regression loss.

(a) Eigenvalues for Wikipedia
voting network adjacency
matrix B.

(b) Eigenvalues for arXiv.org
citation network adjacency
matrix B.

Figure 4: Even when estimating the trace of a non-PSD
matrix like A = B3, which for the triangle counting
examples above will have both positive and negative
eigenvalues, Hutch++ can far outperform Hutchinson’s
method. It will approximately project off the largest
magnitude eigenvalues from A (whether postive or
negative), which will reduce the variance in estimating

the trace tr(A) =
∑d
i=1 λi(B)3.

Graph Triangle Counting. Given the binary adja-
cency matrix B ∈ {0, 1}d×d of an undirected graph G,
the number of triangles in G is equal to 1

6 tr(B3). The
triangle count is an important measure of local connec-
tivity and extensive research studies its efficient approx-
imation [SW05, BBCG08, PT12]. Popular approaches
include applying Hutchinson’s method to A = B3

[Avr10], or using the EigenTriangle estimator, which is
similar to the Subspace Projection method [Tso08].

In our experiments, we study approximate trian-
gle counting on two common benchmark graphs: an
arXiv.org collaboration network3 with 5,243 nodes and
48,260 triangles, and a Wikipedia administrator voting
network4 with 7,115 nodes and 608,389 triangles.

We again note that the adjacency matrix B is
not positive semidefinite, and neither is A = B3.
Nevertheless, we can apply Hutch++ and see very
strong performance. In this setting we do not need

3Link: https://snap.stanford.edu/data/ca-GrQc.html.
4Link: https://snap.stanford.edu/data/wiki-Vote.html.
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to apply Lanczos for matrix-vector query computation:
Ar can be computed exactly using three matrix-vector
multiplications withB. Results are shown Figure 3 with
graph spectral visualized in Figure 4

Acknowledgments: D. Woodruff would like to
thank support from the National Institute of Health
(NIH) grant 5R01 HG 10798-2 and a Simons Investi-
gator Award.

References

[Ach03] Dimitris Achlioptas. Database-friendly random
projections: Johnson-Lindenstrauss with binary coins.
Journal of Computer and System Sciences, 66(4):671–
687, 2003. Preliminary version in the 20th Symposium
on Principles of Database Systems (PODS).

[APJ+18] Ryan P. Adams, Jeffrey Pennington, Matthew J.
Johnson, Jamie Smith, Yaniv Ovadia, Brian Patton,
and James Saunderson. Estimating the spectral den-
sity of large implicit matrices. arXiv:1802.03451, 2018.

[AT11] Haim Avron and Sivan Toledo. Randomized algo-
rithms for estimating the trace of an implicit symmet-
ric positive semi-definite matrix. Journal of the ACM,
58(2), 2011.

[Avr10] Haim Avron. Counting triangles in large graphs
using randomized matrix trace estimation. In Pro-
ceedings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining
(KDD), 2010.

[BBCG08] Luca Becchetti, Paolo Boldi, Carlos Castillo, and
Aristides Gionis. Efficient semi-streaming algorithms
for local triangle counting in massive graphs. In
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 16–24, 2008.

[BDKZ15] Christos Boutsidis, Petros Drineas, Prabhanjan
Kambadur, and Anastasios Zouzias. A randomized
algorithm for approximating the log determinant of a
symmetric positive definite matrix. Linear Algebra and
its Applications, 533, 03 2015.

[BHSW20] Mark Braverman, Elad Hazan, Max Simchowitz,
and Blake Woodworth. The gradient complexity of lin-
ear regression. In Proceedings of the 33rd Annual Con-
ference on Computational Learning Theory (COLT),
volume 125, pages 627–647, 2020.

[BKKS20] Vladimir Braverman, Robert Krauthgamer,
Aditya Krishnan, and Roi Sinoff. Schatten norms in
matrix streams: Hello sparsity, goodbye dimension. In
Proceedings of the 37th International Conference on
Machine Learning (ICML), 2020.

[BM06] Vladimir Batagelj and Andrej Mr-
var. Pajek datasets. http://vlado.fmf.uni-
lj.si/pub/networks/data/, 2006.

[CEM+15] Michael Cohen, Sam Elder, Cameron Musco,
Christopher Musco, and Madalina Persu. Dimension-
ality reduction for k-means clustering and low rank ap-

proximation. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing (STOC), pages
163–172, 2015.

[Che16] Jie Chen. How accurately should I compute implicit
matrix-vector products when applying the Hutchinson
trace estimator? SIAM Journal on Scientific Comput-
ing, 38(6):A3515–A3539, 2016.

[CK20] Alice Cortinovis and Daniel Kressner. On random-
ized trace estimates for indefinite matrices with an ap-
plication to determinants. arXiv:2005.10009, 2020.

[CKSV18] David Cohen-Steiner, Weihao Kong, Christian
Sohler, and Gregory Valiant. Approximating the spec-
trum of a graph. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD), pages 1263–1271,
2018.

[CMW15] Tony Cai, Zongming Ma, and Yihong Wu. Opti-
mal estimation and rank detection for sparse spiked co-
variance matrices. Probability theory and related fields,
161:781–815, 2015.

[CR12] Amit Chakrabarti and Oded Regev. An opti-
mal lower bound on the communication complexity of
gap-hamming-distance. SIAM Journal on Computing,
41(5):1299–1317, 2012.

[CW09] Kenneth L. Clarkson and David P. Woodruff. Nu-
merical linear algebra in the streaming model. In Pro-
ceedings of the 41st Annual ACM Symposium on The-
ory of Computing (STOC), pages 205–214, 2009.

[DEN+17] Kun Dong, David Eriksson, Hannes Nickisch,
David Bindel, and Andrew Gordon Wilson. Scalable
log determinants for Gaussian process kernel learning.
In Advances in Neural Information Processing Systems
30 (NeurIPS), pages 6327–6337, 2017.

[DG03] Sanjoy Dasgupta and Anupam Gupta. An elemen-
tary proof of a theorem of Johnson and Lindenstrauss.
Random Structures & Algorithms, 22(1):60–65, 2003.
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A Proof of Lemma 2.1

We start by stating the Hanson-Wright inequality for
i.i.d sub-Gaussian random variables:

Imported Theorem A.1. ([RV+13]) Let x ∈ Rn be
a vector of mean 0, i.i.d. sub-Gaussian random vari-
ables with constant sub-Gaussian parameter C. Let
A ∈ Rn×n be a matrix. Then, there exists a constant c
only depending on C such that for every t ≥ 0,

Pr
{
|xTAx− E[xTAx]| > t

}
≤ 2 exp

(
−c ·min

{
t2

‖A‖2F
,

t

‖A‖2

})
.

Above, ‖A‖2 = maxx ‖Ax‖2/‖x‖2 denotes the spectral
norm. We refer the reader to [RV+13] for a formal def-
inition of sub-Gaussian random variables: both normal
N (0, 1) random variables and ±1 random variables are
sub-Gaussian with constant C.

Lemma 2.1 Restated 1. Let A ∈ Rd×d, δ ∈ (0, 1/2],
` ∈ N. Let H`(A) be the `-query Hutchinson estimator
defined in (1.1), implemented with mean 0, i.i.d. sub-
Gaussian random variables with constant sub-Gaussian
parameter. For fixed constants c, C, if ` > c log(1/δ),
then with prob. 1− δ,

|H`(A)− tr(A)| ≤ C
√

log(1/δ)

`
‖A‖F .

Proof. Let Ā ∈ R`d×`d be a block-diagonal matrix
formed from ` repetitions of A:

Ā :=


A 0 . . . 0
0 A . . . 0

0 0
. . .

...
0 0 . . . A

 .
Let G ∈ Rd×` be as in (1.1). Let gi be G’s ith column
and let g = [g1, . . . ,g`] ∈ Rd` be a vectorization of G.
We have that ` · H`(A) = tr(GTAG) = gT Āg. So, by
Imported Theorem A.1,

Pr
{
|gT Āg − E[gT Āg]| > t

}
(A.1)

≤ 2 exp

(
−c ·min

{
t2

‖Ā‖2F
,

t

‖Ā‖2

})
.

We let t′ = t/`, and substitute E[gT Āg] = tr(Ā) =
` tr(A), ‖Ā‖2F = `‖A‖2F , and ‖Ā‖2 = ‖A‖2 into (A.1)
to get:

Pr {|H`(A)− tr(A)| > t′}

≤ 2 exp

(
−cmin

{
`t′2

‖A‖2F
,
`t′

‖A‖2

})
.

Now, taking t′ =
√

ln(2/δ)
c` ‖A‖F , we have:

Pr

{
|H`(A)− tr(A)| >

√
ln(2/δ)

c`
‖A‖F

}

≤ 2 exp

(
−min

{
log(2/δ),

√
c` log(2/δ)

‖A‖F
‖A‖2

})
Since ‖A‖F‖A‖2 ≥ 1, if we take ` ≥ ln(2/δ)/c, we have that

the minimum takes value log(2/δ), so

Pr

{
|H`(A)− tr(A)| >

√
ln(2/δ)

c`
‖A‖F

}
≤ δ.

The final result follows from noting that ln(2/δ) ≤
2 ln(1/δ) for δ ≤ 1/2.
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B Proof of Theorem 4.2

To prove our non-adaptive lower bound for the real
RAM moodel we first introduce a simple testing prob-
lem which we reduce to estimating the trace of a PSD
matrix A to (1± ε) relative error:

Problem B.1. Fix d, n ∈ N such that d ≥ n and
n := 1

ε for ε ∈ (0, 1]. Let D1 = In and D2 =
(
In−1

0

)
.5

Consider A = GTDG generated by selecting G ∈ Rn×d
with i.i.d. random Guassian N (0, 1) entries and D =
D1 or D = D2 with equal probability. Then consider
any algorithm which fixes a query matrix U ∈ Rd×m,
observes AU ∈ Rd×m, and guesses if D = D1 or
D = D2.

The reduction from Problem B.1 to relative error trace
estimation is as follows:

Lemma B.1. For any ε ∈ (0, 1] and sufficient large d,
if a randomized algorithm A can estimate the trace of
any d×d PSD matrix to relative error 1± ε

4 with success
probability ≥ 3

4 using m queries, then A can be used to
solve Problem B.1 with success probability ≥ 2

3 using m
queries.

Proof. To solve Problem B.1 we simply apply A to
the matrix A = GTDG and guess D1 if the trace
is closer to d

ε and D2 if it’s closer to d
ε − d. To see

that this succeeds with probability 2/3, we first need
to understand the trace of A. To do so, note that
tr(A) = tr(GTDG) is simply a scaled Hutchinson
estimate for tr(D), i.e. tr(GTDG) = d · Hd(D). So,
via Lemma 2.1, for large enough d we have that with
probability ≥ 11

12 both of the following hold:

1

d
tr(GTD1G) ≥

(
1− ε

4

)
tr(D1) and

1

d
tr(GTD2G) ≤

(
1 +

ε

4

)
tr(D2).

Additionally, with probability 3
4 , A computes an ap-

proximation Z with (1− ε
4 ) tr(A) ≤ Z ≤ (1 + ε

4 ) tr(A).
By a union bound, all of the above events happen with
probability ≥ 2

3 . If D = D1:

Z ≥ (1− ε
4 ) tr(A) ≥ (1− ε

4 )2 · d · tr(D1) > (1− ε
2 ) · d

ε
.

On the other hand, if D = D2,

Z ≤ (1 + ε
4 ) tr(A) ≤ (1 + ε

4 )2 · d · tr(D2)

= (1 + ε
4 )2 · (1− ε) · d

ε
< (1− ε

2 ) · d
ε
.

5Here Ir denotes an r × r identity matrix.

Thus, with probability 2/3, Z is closer to d
ε when

D = D1 and closer to d
ε − d when D = D2, so the

proposed scheme guesses correctly.

In the remainder of the section we show that Prob-
lem B.1 requires Ω(1/ε) queries, which combined with
Lemma B.1 proves our main lower bound, Theorem 4.2.

Throughout, we let X
dist
= Y denote that X and Y are

identically distributed. We first argue that for Prob-
lem B.1, the non-adaptive query matrix U might as
well be chosen to be the first m standard basis vectors.

Lemma B.2. For Problem B.1, without loss of gener-
ality, we may assume that the query matrix U equals
U = Em =

[
e1 . . . em

]
, the first m standard basis

vectors.

Proof. First, we may assume without loss of generality
that U is orthonormal, since if it were not, we could
simply reconstruct the queries AU by querying A with
an orthonormal basis for the columns of U . Next, by ro-
tational invariance of the Gaussian distribution, if G ∈
Rn×d is an i.i.d. N (0, 1) matrix, and Q ∈ Rd×d is any
orthogonal matrix, thenGQ is distributed identically to
G. Let Ū ∈ Rd×d−m be any orthonormal span for the
nullspace of U , so that Q :=

[
U Ū

]
is orthogonal.

We have that QGTDGEm
dist
= QQTGTDGQEm =

GTDGU . So, using the result GTDGEm of querying
with matrix Em, we can just multiply by Q on the left
to obtain a set of vectors that has the same distribution
as if U had been used as a query matrix.

With Lemma B.2 in place, we are able to reduce
Problem B.1 to a simpler testing problem on distin-
guishing m random vectors drawn from normal distri-
butions with different covariance matrices:

Problem B.2. Let n = 1
ε and let z ∈ Rn be a

uniformly random unit vector. Let N ∈ Rn×m contain
m i.i.d. random Gaussian vectors drawn from an n-
dimensional Gaussian distribution, N (0,C), where the
covariance matrix C either equals I or I − zzT , with
equality probability. The goal is to use N to distinguish,
with probability > 1

2 what the true identity of C is.

Lemma B.3. Let A be an algorithm that solves Prob-
lem B.1 with m queries and success probability p. Then
A can be used to solve Problem B.2 with m Gaussian
samples and the same success probability.

Proof. By Lemma B.2, it suffices to show how to use the
observed matrix N in Problem B.2 to create a sample
from the distribution GTDGEm where G ∈ Rn×d has
i.i.d. N (0, 1) entries. Specifically, we claim that, if we
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sample L ∈ Rn×(d−m) with i.i.d. N (0, 1) entries, and
compute

M =

[
NTN
LTN

]
,

then M is identically distributed to GTDGEm. I.e, if
we let Gm ∈ Rn×m contain the first m columns of G
and let Gd−m contain the remaining d−m columns, our

goal is the show that M
dist
=
[
Gm Gd−m

]T
DGm.

To see this is the case, let Z ∈ Rn×n be a
uniformly random orthogonal matrix and let D1,D2

be as in Problem B.1. The first observation is that
N ∼ N (0,C) is identically distributed to ZDS where
S ∈ Rd×m has standard normal entries ∼ N (0, 1) and
D = D1 or D = D2 with equal probability. This
follows simply from that fact that ZD1D1Z

T = I and
ZD2D2Z

T = I − znzTn , where zn is the last row of
Z, which is a uniformly random unit vector. It follows

that NTN
dist
= STDTZTZDS = STDS

dist
= GT

mDGm.
Next, observe that LTZ is independent of G and
has i.i.d. N (0, 1) entries since Z is orthogonal (and

Gaussians are rotationally invariant). So, LTN
dist
=

LTZDS
dist
= GT

d−mDG and overall:

M =

[
NTN
LTN

]
dist
=

[
GT
mDGm

GT
d−mDGm

]
=
[
Gm Gd−m

]T
DGm.

Finally, we directly prove a lower bound on the
number of samples m required to solve Problem B.2,
and thus, via Lemma B.3, Problem B.1. Combined
with Lemma B.1, this immediately yields our main lower
bound on non-adaptive trace estimation, Theorem 4.2.

Lemma B.4. If m < c
ε for a fixed constant c, then

Problem B.2 cannot be solved with probability ≥ 2
3 .

Proof. The proof follows from existing work on lower
bounds for learning “negatively spiked” covariance ma-
trices [CMW15, PWBM18]. Let P be the distribution
of N in Problem B.2, conditioned on C = I, and let Q
be the distribution conditioned on C = I − zzT . These
distributions fall into the spiked covariance model of
[PWBM18], specifically the negatively spiked Wishart
model (see Defn. 5.1 in [PWBM18]) with spike size
β = −1, and spike distribution X the uniform distribu-
tion over unit vectors in Rn. Let Dχ2(P‖Q) denote the
χ2 divergence between P and Q. Specifically,

Dχ2(Q‖P) =

∫
X∈Rd×m

(
Q(X)

P(X)

)2

P(X)dX − 1.

We have DKL(Q‖P) ≤ Dχ2(Q‖P), so to prove that
P,Q cannot be distinguished with good probability, it
suffices to prove an upper bound on Dχ2(Q‖P). In
[CMW15] (Lemma 7) it is proven that, letting v and
v′ be independent random unit vectors in Rn,

Dχ2(Q‖P) = E
v,v′

[(
1− 〈v,v′〉2

)−m/2]− 1.(B.2)

Equation (B.2) uses the notation of Prop. 5.11 in
[PWBM18], which restates and proves a slightly less
general form of the equality from [CMW15]. Our goal
is to prove that the expectation term in (B.2) is ≤ 1+C
for some small constant C when m = c

ε = cn for a
sufficiently small constant c.

We first note that 〈v,v′〉 is identically distributed
to x ∈ [−1, 1] where x is the first entry in a random unit
vector in Rn. It is well known that x+1

2 is distributed
according to a beta distribution with parameters α =
β = n−1

2 [FKN90]. Specifically, this gives that x has
density:

p(x) =
Γ(2α)

2Γ(α)2
·
(

1− x2

4

)α−1

.

Plugging this density back in to the expectation term
in (B.2) we obtain:

E
v,v′

[(
1− 〈v,v′〉2

)−m/2]
=

=

∫ 1

−1

Γ(2α)

2Γ(α)2
·
(

1− x2

4

)α−1

(1− x2)−m/2dx

=

∫ 1

−1

Γ(2α)

2Γ(α)2
·
(

1

4

)α−1

(1− x2)α−1−m/2dx

Assume without loss of generality that n is an odd
integer, and thus α = n−1

2 is an integer. Let m/2 = cα
for some constant c� 1 such that cα is an integer and
thus (1− c)α is an integer. Then:

E
v,v′

[(
1− 〈v,v′〉2

)−m/2]
=

(B.3)

=

Γ(2α)
Γ(α)2

Γ(2(1−c)α)
Γ((1−c)α)2

·
(

1

4

)cα
·

∫ 1

−1

Γ(2(1− c)α)

2Γ((1− c)α)2

(
1

4

)(1−c)α−1

(1− x2)(1−c)α−1dx

=

Γ(2α)
Γ(α)2

Γ(2(1−c)α)
Γ((1−c)α)2

·
(

1

4

)cα
,
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where the equality follows because the term being
integrated is the density of x where x+1

2 is distributed
according to a beta distribution with parameters (1 −
c)α, (1 − c)α. Since we have chosen parameters such
that α is a positive integer, we have:

Γ(2α)

Γ(α)2
=

(2α− 1)!

(α− 1)!(α− 1)!
=
α

2
·
(

2α

α

)
.

Similarly, Γ(2(1−c)α)
Γ((1−c)α)2 = (1−c)α

2 ·
(

2(1−c)α
(1−c)α

)
. Each of the

binomial coefficients in these expressions is a central
binomial coefficient (i.e., proportional to a Catalan
number), and we can use well known methods like
Stirling’s approximation to bound them. In particular,
we employ a bound given in Lemma 7 of [MS77],
which gives 1

2
4z√
z
≤
(

2z
z

)
≤ 1√

π
4z√
z
. for any integer z.

Accordingly, we have

Γ(2α)
Γ(α)2

Γ(2(1−c)α)
Γ((1−c)α)2

=
1

1− c
·

(
2α
α

)(
2(1−c)α
(1−c)α

)
≤ 1

1− c
· 1/
√
π

1/2

4α

4(1−c)α ·
√

(1− c)α
α

=
2√

π(1− c)
· 4cα.

Plugging into (B.3) and requiring c ≤ .1 we have:

E
v,v′

[(
1− 〈v,v′〉2

)−m/2] ≤ 2√
π · .9

<
6

5
.

It follows that DKL(Q‖P) ≤ Dχ2(Q‖P) ≤ 6
5 − 1 = 1

5 ,
and thus by Pinsker’s inequality that

DTV (Q,P) ≤ 1√
10

<
1

3
.

Thus, no algorithm can solve Problem B.2 with proba-

bility ≥ 1
2 + 1/3

2 = 2
3 , completing the lemma.
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