
Sublinear Time Spectral Density Estimation
Vladimir Braverman

Johns Hopkins University

Baltimore, MD, USA

vova@cs.jhu.edu

Aditya Krishnan

Johns Hopkins University

Baltimore, MD, USA

akrish23@jhu.edu

Christopher Musco

New York University

New York, NY, USA

cmusco@nyu.edu

ABSTRACT
We present a new sublinear time algorithm for approximating

the spectral density (eigenvalue distribution) of an 𝑛 × 𝑛 normal-

ized graph adjacency or Laplacian matrix. The algorithm recovers

the spectrum up to 𝜖 accuracy in the Wasserstein-1 distance in

𝑂 (𝑛 · poly(1/𝜖)) time given sample access to the graph. This result

compliments recent work by David Cohen-Steiner, Weihao Kong,

Christian Sohler, and Gregory Valiant (2018), which obtains a so-

lution with runtime independent of 𝑛, but exponential in 1/𝜖 . We

conjecture that the trade-off between dimension dependence and

accuracy is inherent.

Our method is simple and works well experimentally. It is based

on a Chebyshev polynomial moment matching method that em-

ployees randomized estimators for the matrix trace. We prove that,

for any Hermitian𝐴, this moment matching method returns an 𝜖 ap-

proximation to the spectral density using just𝑂 (1/𝜖) matrix-vector

products with𝐴. By leveraging stability properties of the Chebyshev

polynomial three-term recurrence, we then prove that the method is

amenable to the use of coarse approximate matrix-vector products.

Our sublinear time algorithm follows from combining this result

with a novel sampling algorithm for approximating matrix-vector

products with a normalized graph adjacency matrix.

Of independent interest, we show a similar result for the widely

used kernel polynomial method (KPM), proving that this practical

algorithm nearly matches the theoretical guarantees of our moment

matching method. Our analysis uses tools from Jackson’s seminal

work on approximation with positive polynomial kernels.

CCS CONCEPTS
• Theory of computation → Streaming, sublinear and near
linear time algorithms; Graph algorithms analysis.

KEYWORDS
density estimation, moment matching, approximate matrix-vector

multiplication, graph approximation

ACM Reference Format:
Vladimir Braverman, Aditya Krishnan, and Christopher Musco. 2022. Sub-

linear Time Spectral Density Estimation. In Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing (STOC ’22), June 20–24,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’22, June 20–24, 2022, Rome, Italy
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9264-8/22/06. . . $15.00

https://doi.org/10.1145/3519935.3520009

2022, Rome, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3519935.3520009

1 INTRODUCTION
A ubiquitous task in computational science, engineering, and data

science is to extract information about the eigenvalue spectrum of

a matrix 𝐴 ∈ R𝑛×𝑛 . A full eigendecomposition takes at least𝑂 (𝑛𝜔)
time

1
, which is prohibitively expensive for large matrices [3, 29]. So,

we are typically interested in extracting partial information about

the spectrum. This can be done using iterative methods like the

power or Lanczos methods, which access 𝐴 via a small number of

matrix-vector multiplications. Each multiplication takes at most

𝑂 (𝑛2) time to compute, and can be accelerated when 𝐴 is sparse or

structured, leading to fast algorithms.

However, the partial spectral information computed by most iter-

ative methods is limited. Algorithms typically only obtain accurate

approximations to the outlying, or largest magnitude eigenvalues of
𝐴, missing information about the interior of 𝐴’s spectrum that may

be critical in applications. For example, in network science, clusters

of interior eigenvalues can indicate graph structures like repeated

motifs [11]. In deep learning, information on how the spectrum of

a weight matrix differs from its random initialization can give hints

about model convergence and generalization [23, 31], and Hessian

eigenvalues are useful in optimization [13]. Coarse information

about interior eigenvalues is also used to initialize parallel GPU

based methods for full eigendecomposition [1, 21].

To address these needs and many other applications, there has

been substantial interest in methods for estimating the full spectral
density of a matrix 𝐴 [41]. Concretely, assume that 𝐴 is Hermit-

ian with real eigenvalues 𝜆1, . . . , 𝜆𝑛 . We view its spectrum as a

probability density 𝑠:

Spectral density: 𝑠 (𝑥) = 1

𝑛

𝑛∑
𝑖=1

𝛿 (𝑥 − 𝜆𝑖) . (1)

Here 𝛿 is the Dirac delta function. The goal is to find a probabil-

ity density 𝑞 that approximates 𝑠 in some natural metric, like the

Wasserstein distance. The density 𝑞 can either be continuous (rep-

resented in some closed form) or discrete (represented as a list of

approximate eigenvalues
˜𝜆1, . . . , ˜𝜆𝑛). See Figure 1 for an illustration.

Both sorts of approximation are useful in applications.

Methods for spectral density estimation that run in 𝑜 (𝑛𝜔) time

were first introduced for applications in condensed matter physics

and quantum chemistry [34, 36, 39]. Many are based on the combina-

tion of two important tools: 1) moment matching, and 2) stochastic

trace estimation. Specifically, if we had access to moments of the

distribution 𝑠 , i.e. 1

𝑛

∑𝑛
𝑖=1 𝜆𝑖 ,

1

𝑛

∑𝑛
𝑖=1 𝜆

2

𝑖
,
1

𝑛

∑𝑛
𝑖=1 𝜆

3

𝑖
, etc., then we

could find a good approximation 𝑞 by finding a distribution that

1
Here 𝜔 < 2.373 is the fast matrix multiplication exponent.

1144

https://doi.org/10.1145/3519935.3520009
https://doi.org/10.1145/3519935.3520009
https://doi.org/10.1145/3519935.3520009
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519935.3520009&domain=pdf&date_stamp=2022-06-10

STOC ’22, June 20–24, 2022, Rome, Italy Vladimir Braverman, Aditya Krishnan, and Christopher Musco

Figure 1: Different approximations for the spectrum of a matrix 𝐴 with eigenvalues in [−1, 1]. A typical approximation com-
puted using an iterative eigenvalue algorithmmostly preserves information about the largest magnitude eigenvalues. In con-
trast, the spectral density estimates in the two right figures coarsely approximate the entire distribution of 𝐴’s eigenvalues,
the first with a low-degree polynomial, and the second with a discrete distribution.

agrees with 𝑠 on these moments. Moreover, these spectral moments
can be computed via the matrix trace: note that tr(𝐴) = ∑𝑛

𝑖=1 𝜆𝑖 ,

tr(𝐴2) = ∑𝑛
𝑖=1 𝜆

2

𝑖
, tr(𝐴3) = ∑𝑛

𝑖=1 𝜆
3

𝑖
, etc. While we cannot hope to

compute tr(𝐴𝑘) exactly in 𝑜 (𝑛𝜔) time, thanks to stochastic trace

estimators like Hutchinson’s method, this trace can be approxi-

mated much more quickly [2, 15]. Such estimators are based on

the observation that, for any matrix 𝐵 ∈ R𝑛×𝑛 , tr(𝐵) can be well

approximated by tr(𝐺𝑇𝐵𝐺) where 𝐺 ∈ R𝑛×𝑚 contains random

sub-Gaussian entries and𝑚 ≪ 𝑛. For any 𝑘 degree polynomial 𝑔,

𝐺𝑇𝑔(𝐴)𝐺 can be computed with just 𝑂 (𝑘𝑚) matrix-vector multi-

plications, so we can quickly approximate any low-degree moment

of 𝐴’s spectral density.

While this high-level approach and related techniques have been

applied successfully to estimating the spectra of a wide variety of

matrices [22, 41], theoretical guarantees have only appeared rela-

tively recently. Perhaps surprisingly, it can be shown that many

common methods provably run in linear time for any Hermitian

matrix 𝐴. For instance, in work concurrent to ours, Chen, Trog-

dan, and Ubaru [6] show that for any 𝑛 × 𝑛 Hermitian matrix 𝐴

with spectral density 𝑠 , the popular Stochastic Lanczos Quadrature

(SLQ) method provably computes an approximate spectral density

𝑞 satisfying:

𝑊1 (𝑠, 𝑞) ≤ 𝜖 (2)

using just poly(1/𝜖) matrix-vector multiplications with 𝐴. Above

𝑊1 denotes the Wasserstein-1 distance, aka the “earth-movers dis-

tance”.
2
Wedefer a formal definition of𝑊1 to Section 2. Themeasure

is convenient because, unlike many other measures of statistical

distance, it allows a discrete distribution like the spectral density

to be meaningfully compared to a possibly continuous approxi-

mation. For discrete approximations, the Wasserstein distance is

related to a simple ℓ1 metric. If we let Λ = [𝜆1, . . . , 𝜆𝑛] be a vector
of 𝐴’s eigenvalues and Λ̃ = [˜𝜆1, . . . , ˜𝜆𝑛] be a vector of approximate

eigenvalues, then ∥Λ − Λ̃∥1 ≤ 𝑛𝜖 if and only if𝑊1 (𝑠, 𝑞) ≤ 𝜖 for the

discrete spectral density 𝑞 with eigenvalues in Λ̃.
As a step towards our main sublinear time result, in this work we

show that similar bounds to [6] can also be proven for the popular

kernel polynomial method (KPM) [41] and for a natural moment

matching algorithm based on Chebyshev polynomials.

2
We assume ∥𝐴 ∥2 ≤ 1 for simplicity of stating errror guarantees, noting that

Wasserstein distance is not scale invariant. This assumption is without loss of generality

since ∥𝐴 ∥2 can always be scaled after computing the top eigenvector up to constant

fact accuracy, which takes just𝑂 (log𝑛) matrix-vector multiplications [26].

1.1 Our Contributions
With linear time spectral density estimation algorithms in hand for

all Hermitian matrices, a natural question is if we can go faster for

specific classes of matrices. In particular, there has been growing

interest in SDE algorithms for graph structured matrices like ad-

jacency matrices and Laplacians [11]. A remarkable recent result

by Cohen et al. [8] shows that, for normalized graph adajeceny

matrices, it is possible to achieve guarantee (2) in 2
𝑂 (1/𝜖)

time,

given appropriate query access to the target graph. Importantly,

this runtime does not depend on 𝑛. However, given the exponen-

tial dependence on 𝜖 , the algorithm is impractical even for coarse

spectral approximations.

Our main contribution is a method that obtains a polynomial
dependence on 𝜖 , at the cost of a linear dependence on the matrix

dimension 𝑛. Since 𝐴 can have 𝑛2 non-zero entries, the runtime is

still sublinear in the problem size, but with a much more acceptable

dependence on accuracy.

Theorem 1.1 (Sublinear time spectral density estimation

for graphs.). Let𝐺 = (𝑉 , 𝐸) be an unweighted, undirected 𝑛-vertex
graph and let 𝐴 ∈ R𝑛×𝑛 be the normalized adjacency of 𝐺 with
spectral density 𝑠 . Let 𝜖, 𝛿 ∈ (0, 1) be fixed values. Assume that we can
1) uniformly sample a random vertex in constant time, 2) uniformly
sample a random neighbor of any vertex 𝑖 ∈ 𝑉 in constant time,
and 3) for a vertex 𝑖 with degree 𝑑𝑖 , read off all neighbors in 𝑂 (𝑑𝑖)
time.3 Then there is a randomized algorithm with expected running
time 𝑂 (𝑛 poly(log(1/𝛿)/𝜖)) which outputs a density function 𝑞 :

[−1, 1] → R+ such that𝑊1 (𝑞, 𝑠) ≤ 𝜖 with probability at least 1 − 𝛿 .

Note that the normalized graph Laplacian 𝐿 = 𝐼 − 𝐴 has the

same eigenvalues as 𝐴 up to a shift and reflection, so Theorem 1.1

also yields a sublinear time result for normalized Laplacians, whose

spectral densities are of interest in network science [11].

1.1.1 Robust spectral density estimation. Theorem 1.1 is proven

in Section 5. A key component of the result is a sublinear time

routine for computing coarse approximate matrix-vector products

with any normalized graph adjacency matrix. To make use of such

a routine, we need to develop an SDE algorithm that is robust to
the use of an approximate matrix-vector oracle. This is one of the

3
A standard adjacency list representation of the graph would support these oper-

ations. As discussed in Section 5, assumption (3) can be eliminated at the cost of an

extra log𝑛 in the runtime as long as we know vertex degrees.

1145

Sublinear Time Spectral Density Estimation STOC ’22, June 20–24, 2022, Rome, Italy

main contributions of our work, as previous methods assume exact

matrix-vector products. Formally, we assume access to the oracle:

Definition 1.2. An 𝜖MV-approximate matrix-vector multiplication
oracle for 𝐴 ∈ R𝑛×𝑛 and error parameter 𝜖MV ∈ (0, 1) is an algo-

rithm that, given any vector 𝑦 ∈ R𝑛 , outputs a vector 𝑧 such that

∥𝑧 −𝐴𝑦∥2 ≤ 𝜖MV ∥𝐴∥2∥𝑦∥2. We will denote a call to such an oracle

for by AMV(𝐴,𝑦, 𝜖MV).

In Section 4.2 we prove the following for any Hermitian matrix

𝐴 (e.g., real symmetric) under the assumption that ∥𝐴∥2 ≤ 1, i.e.,

that 𝐴’s eigenvalues lie in [−1, 1]:

Theorem 1.3 (Robust spectral density estimation). Let 𝐴 ∈
R𝑛×𝑛 be a Hermitian matrix with spectral density 𝑠 and ∥𝐴∥2 ≤ 1. Let
𝐶,𝐶 ′,𝐶 ′′ be fixed positive constants. For any 𝜖, 𝛿 ∈ (0, 1) and 𝜖MV =

𝐶 ′′𝜖−3 ln(1/𝜖), there is an algorithm (Algorithm 1, with Algorithm
3 used as a subroutine to approximate moments) which makes 𝑇 =

𝐶ℓ/𝜖 calls to an 𝜖MV-approximate matrix-vector oracle for 𝐴, where

ℓ = max

(
1, 𝐶′

𝑛 𝜖−2 log2 (1
𝜖𝛿
) log2 (1𝜖)

)
, and in poly(1/𝜖) additional

runtime, outputs a probability density function 𝑞 : [−1, 1] → R≥0
such that𝑊1 (𝑠, 𝑞) ≤ 𝜖 with probability 1 − 𝛿 .

The requirement for the approximate matrix-vector oracle in

Theorem 1.3 is relatively weak: we only need accuracy 𝜖MV that

is polynomial in the final accuracy 𝜖 . Importantly, there is no de-

pendence on 1/𝑛, which allows for the theorem to be combined

with coarse AMV methods, including the one developed in Section

5 for normalized adjacency matrices. Based on random sampling,

that method returns an 𝜖-approximate matrix-vector multiply in

𝑂 (𝑛/𝜖2) time. This immediately yields our result for graphs given

by Theorem 1.1.We hope that Theorem 1.3 will find broader applica-

tions, since spectral density estimation is often applied to matrices

where we only have inexact access to 𝐴. For example, 𝐴 might be a

Hessian matrix that we can multiply by approximately using sto-

chastic approximation [30, 43], or the inverse of some other matrix,

which we can multiply by approximately using an iterative solver.

We note that the result in Theorem 1.3 actually improves as 𝑛
increases. Intuitively, when 𝐴 is larger, each matrix-vector product

returns more information about the spectral density 𝑠 , so we can

estimate it more easily. We also remark that the density function 𝑞

returned by Algorithm 1 is in the form of an 𝑂 (1/𝜖3) dimensional

vector, with the 𝑖-th entry corresponding to probability mass placed

on the 𝑖-th point of an evenly spaced grid on [−1, 1]. Alternatively,
a simple rounding scheme that runs in 𝑂 (𝑛 + poly(1/𝜖)) time can

extract from 𝑞 a vector of approximate eigenvalues Λ̃ = [˜𝜆1, . . . , ˜𝜆𝑛]
satisfying ∥Λ − Λ̃∥1 ≤ 𝑛𝜖 , which, as discussed, is 𝜖 close to the

spectral density 𝑠 in Wasserstein distance (see Theorem B.1 [5]).

Our approach for density estimation is based on amomentmatch-

ing method that approximates Chebyshev polynomial moments in-

stead of the standard moments. I.e. we approximate tr(𝑇0 (𝐴)), . . .,
tr(𝑇𝑁 (𝐴)) where 𝑇0, . . . ,𝑇𝑁 are the Chebyshev polynomials of the

first kind and then return a distribution whose Chebyshev moments

closely match our approximations. By leveraging Jackson’s theo-

rem on polynomial approximation of Lipschitz functions [17], we

show how to bound the Wasserstein distance between two distri-

butions in terms of the magnitude of the differences between their

first 𝑁 = 𝑂 (1/𝜖) Chebyshev moments (see Lemma 3.1). Unlike

results for standard moments [20], the bound shows a near-linear

relationship between Wasserstein distance and difference in the

Chebyshev moments. Ultimately this allows us to obtain a polyno-

mial dependence on 𝜖 in the number of approximate matrix-vector

multiplications needed in Theorem 1.3.

Along the way to proving that theorem, in Section 4.1 we first

establish the follow result that is compatible with exact matrix-

vector multiplications:

Theorem 1.4 (Linear time spectral density estimation). Let
𝐴 ∈ R𝑛×𝑛 be a Hermitian matrix with spectral density 𝑠 and ∥𝐴∥2 ≤
1. Let 𝐶,𝐶 ′ be fixed positive constants. For any 𝜖, 𝛿 ∈ (0, 1), there is
an algorithm (Algorithm 1, with Algorithm 2 used as a subroutine
to approximate moments) which computes 𝑇 = 𝐶ℓ/𝜖 matrix-vector

multiplications with 𝐴 where ℓ = max

(
1, 𝐶′

𝑛 𝜖−2 log2 (1
𝜖𝛿
) log2 (1𝜖)

)
,

and in poly(1/𝜖) additional runtime, outputs a probability density
function 𝑞 : [−1, 1] → R≥0 such that𝑊1 (𝑠, 𝑞) ≤ 𝜖 with probability
1 − 𝛿 .

As in Theorem 1.3, the theorem improves as 𝑛 increases, requir-

ing just 𝑇 = 𝑂 (1/𝜖) matrix vector multiplies when 𝑛 = Ω(1/𝜖2).
The runtime of Theorem 1.4 is dominated by the cost of the matrix-

vector multiplications, which take 𝑂 (𝑇 · 𝑛2) time to compute for

a dense matrix, and 𝑂 (𝑇 · nnz(𝐴)) time for a sparse matrix with

nnz(𝐴) non-zero entries, so the algorithm runs in linear time when

𝜖, 𝛿 are considered constant.

Given Theorem 1.4, we prove Theorem 1.3 by showing that

the error introduced by approximate matrix-vector multiplications

does not hinder our ability to estimate the Chebyshev polynomial

moments. We do so by drawing on stability results for the three-

term recurrence relation defining these polynomials [7, 27].

Remark. The number of matrix-vector multiplies in Theorems 1.3

and 1.4, 𝑁ℓ = 𝑁 ·max(1, 𝐶′𝑛 𝜖−2 log2 (1
𝜖𝛿
) log2 (1𝜖)), can be improved

by up to a log
2 (1/𝜖) factor in the regimewhen𝑛 is small, specifically

𝑛 ≤ 𝐶 ′𝜖−2 log2 (1/(𝜖𝛿)). This is discussed further in Section 4.

1.1.2 Spectral density estimation via the kernel polynomial method.
In addition to the Chebyshev moment matching method used to

give Theorem 1.4 and Theorem 1.3, we prove that a version of

the popular kernel polynomial method (KPM) can be used to ob-

tain a spectral density estimate with similar running times, albeit

with slightly worse dependence on the accuracy parameter 𝜖 .4

Along with the Stochastic Lanczos Quadrature method, the kernel

polynomial method is one of two dominant spectrum estimation

algorithms used in practice.

Given sufficiently accurate approximations to the Chebyshev

polynomial moments, the KPM method outputs a density function

𝑞 in the form of a𝑂 (1/𝜖) degree polynomial multiplied by a simple

closed form function. This is described in Algorithm 6 in Section

A.2 of the full version [5] and should be thought of as analagous to

Algorithm 1. Specifically, we can obtain Theorem 1.4 and Theorem

1.3 with ℓ = max(1, 𝐶′
𝑛 𝜖−4 log2 (1

𝜖𝛿
)) and 𝜖MV = 𝐶 ′′𝜖−4 (in the ro-

bust setting), by using Algorithm 6 in Braverman et al. [5] instead of

4
We believe that the extra𝑂 (𝜖−2) factor in the number of matrix-vector multi-

plications (or calls to an approximate matrix-vector oracle in the robust setting) may

be an artifact of our analysis and can be further improved to match the approximate

Chebyshev moment matching bounds.

1146

STOC ’22, June 20–24, 2022, Rome, Italy Vladimir Braverman, Aditya Krishnan, and Christopher Musco

Algorithm 1. Our proof in the KPM case is again based on Jackson’s

work on polynomial approximations for Lipschitz functions: we

take advantage of the fact that Jackson constructs approximations

that are both linear and preserve positivity [16].

1.2 Related Work
As mentioned, most closely related to our sublinear time result

on graphs is the result of Cohen et al. [8]. They prove a result

which matches the guarantee of Theorem 1.1, but with runtime of

2
𝑂 (1/𝜖)

– i.e., with no dependence on 𝑛. In comparison, our result

depends linearly on 𝑛, but only polynomially on 1/𝜖 . An interesting

open question is if a poly(1/𝜖) time algorithm is possible but we

conjecture that the trade-off between the dependence on 𝑛 and the

accuracy 𝜖 is inherent. Our bound in Lemma 3.1 on theWasserstein-

1 distance between two distributions can be seen as analagous to

Proposition 1 from [20], which is the basis of the result in [8]. They

bound the Wasserstein-1 distance between two distributions in

terms of the differences in the standardmoments of the distributions.

The bound requires an exponentially small dependence on 1/𝜖 , i.e.
2
−𝑂 (1/𝜖)

, in the difference between the standard moments while the

bound from Lemma 3.1 only requires an 𝑂 (𝜖/ln(1/𝜖)) difference
in the Chebyshev moments.

As discussed, algorithms for spectral density estimation have

been studied since the early 90s [34, 36, 39] but only analyzed

recently. In addition to the work of Chen, Trogdon, and Ubaru that

was discussed [6], [28] provides an algorithm for computing an

approximate histogram for the spectrum of matrix. That result can

be shown to yield an 𝜖 error approximation to the spectral density

in the Wasserstein-1 distance with roughly 𝑂 (1/𝜖5) matrix-vector

multiplications. This compares to the improved 𝑂 (1/𝜖) matrix-

vector multiplications required by our Theorem 1.4.

Matrix-vector query algorithms.Our work fits into a broader
line of work on proving upper and lower bounds on the matrix-
vector query complexity of linear algebraic problems, from top eigen-

vector, to matrix inversion, to rank estimation [4, 10, 24, 35, 37]. The

goal in this model is to minimize the total number of matrix-vector

multiplications with𝐴, recognizing that such multiplications either

1) dominate runtime cost or 2) are the only way to access 𝐴 when

it is an implicit matrix. The matrix-vector query model generalizes

both classical Krylov subspace methods, as well as randomized

sketching methods [42]. Studying other basic linear algebra prob-

lem when matrix-vector multiplication queries are only assumed

to be approximate (as in Definition 1.2) is an interesting future

direction.

1.3 Paper Roadmap
We describe notation and preliminaries on polynomial approxi-

mation in Section 2. We use these tools in Section 3 to prove that

a good approximation to the first 𝑂 (1/𝜖) Chebyshev polynomial

moments of the spectral density can be used to extract a good ap-

proximation in Wasserstein-1 distance. This result is the basis for

our result on robust spectral density estimation stated in Theorem

1.4 and linear time spectral density estimation stated in Theorem

1.3, which are proven in Section 4. Finally, we give a randomized

algorithm to implement an approximate matrix-vector multplica-

tion oracle for adjacency matrices in Section 5 and prove our main

result, Theorem 1.1. In Section 6, we empirically investigate the

potential of combining approximate matrix-vector multiplications

with our moment matching method, the kernel polynomial method,

and the stochastic Lanczos quadrature method studied in [6]. We

show that all three can achieve accurate SDE estimates in sublinear

time for a variety of graph Laplacians.

2 PRELIMINARIES
Throughout we assume that 𝐴 ∈ R𝑛×𝑛 is Hermitian with eigen-

decomposition 𝐴 = 𝑈Λ𝑈 ∗, where 𝑈𝑈 ∗ = 𝑈 ∗𝑈 = 𝐼𝑛×𝑛 . We as-

sume that 𝐴’s eigenvalues satisfy −1 ≤ 𝜆𝑛 ≤ · · · ≤ 𝜆1 ≤ 1. In

many applications 𝐴 is real symmetric. We denote 𝐴’s spectral den-

sity by 𝑠 , which is defined in (1). Our goal is to approximate 𝑠 in

the Wasserstein-1 metric with another distribution 𝑞 supported

on [−1, 1]. Specifically, as per the dual formulation given by the

Kantorovich-Rubinstein theorem [18], for 𝑠, 𝑞 supported on [−1, 1]
the metric is equal to:

𝑊1 (𝑠, 𝑞) = sup

𝑓 :R→R
|𝑓 (𝑥)−𝑓 (𝑦) |≤ |𝑥−𝑦 |

{∫
1

−1
𝑓 (𝑥)

(
𝑠 (𝑥) − 𝑞(𝑥)

)
𝑑𝑥

}
. (3)

In words, 𝑠 and 𝑞 are close in Wasserstein-1 distance if their dif-

ference has small inner product with all 1-Lipschitz functions 𝑓 .

Alternatively,𝑊1 (𝑠, 𝑞) is equal to the cost of “changing” one distri-

bution to another, where the cost of moving one unit of mass from

𝑥 to 𝑦 is |𝑥 − 𝑦 |: this is the “earthmover’s” formulation common in

computer science. Note that (3) can be applied to arbitrary functions

𝑠, 𝑞, even if they are not distributions, and we will occasionally do

so.

Functions and inner products. We introduce notation for func-

tions used throughout the paper. Let F ([−1, 1],R) denote the space
of real-valued functions on [−1, 1]. For 𝑔, ℎ ∈ F ([−1, 1],R), let
⟨𝑔, ℎ⟩ denote ⟨𝑔, ℎ⟩ B

∫
1

−1 𝑔(𝑥)ℎ(𝑥)𝑑𝑥 . For 𝑓 ∈ F ([−1, 1],R), we
define ∥ 𝑓 ∥2 B

√
⟨𝑓 , 𝑓 ⟩ and let ∥ 𝑓 ∥∞ denote the max-norm ∥ 𝑓 ∥∞ =

max𝑥 ∈[−1,1] |𝑓 (𝑥) |. We let ∥ 𝑓 ∥1 denote ∥ 𝑓 ∥1 =
∫
1

−1 |𝑓 (𝑥) |𝑑𝑥 .
Let F (Z,R) be the space of real-valued functions on the integers,

Z. For 𝑓 , 𝑔 ∈ F (Z,R) let (𝑓 ∗ 𝑔) denote the discrete convolution:
(𝑓 ∗ 𝑔) [𝑛] = ∑∞

𝑚=−∞ 𝑓 [𝑚]𝑔[𝑛 −𝑚]. Let F (N,R) be the space of
real-valued functions on the natural numbers, N. For functions in
F (Z,R) or F (N,R) we typically used square brackets instead of

parentheses.

For two functions 𝑓 , 𝑔 let ℎ = 𝑓 𝑔 (or ℎ = 𝑓 · 𝑔) and 𝑗 = 𝑓 /𝑔
denote the pointwise product and quotient respectively. I.e. ℎ(𝑥) =
𝑓 (𝑥)𝑔(𝑥) and 𝑗 (𝑥) = 𝑓 (𝑥)/𝑔(𝑥) for all 𝑥 .

Chebyshev polynomials. Our approach is based on approximating

Chebyshev polynomial moments of 𝐴’s spectral density, and we

will use basic properties of these polynomials, the 𝑘th of which

we denote 𝑇𝑘 . The Chebyshev polynomial of the first kind can be

defined via the recurrence:

𝑇0 (𝑥) = 1 𝑇1 (𝑥) = 𝑥

𝑇𝑘 (𝑥) = 2𝑥 ·𝑇𝑘−1 (𝑥) −𝑇𝑘−2 (𝑥) for 𝑘 ≥ 2.

We will use the well known fact that the Chebyshev polynomials of

the first kind are bounded between [−1, 1], i.e.max𝑥 ∈[−1,1] |𝑇𝑘 (𝑥) | ≤
1.

1147

Sublinear Time Spectral Density Estimation STOC ’22, June 20–24, 2022, Rome, Italy

Let𝑤 (𝑥) B 1√
1−𝑥2

. It is well known that ⟨𝑇0,𝑤 ·𝑇0⟩ = 𝜋 , ⟨𝑇𝑘 ,𝑤 ·
𝑇𝑘 ⟩ = 𝜋/2 for 𝑘 > 0, and

⟨𝑇𝑖 ,𝑤 ·𝑇𝑗 ⟩ = 0 for 𝑖 ≠ 𝑗 .

In other words, the Chebyshev polynomials are orthogonal on

[−1, 1] under the weight function𝑤 . The first 𝑘 Chebyshev polyno-

mials form an orthogonal basis for the degree 𝑘 polynomials under

this weight function. We let 𝑇𝑘 denote the normalized Chebyshev

polynomial 𝑇𝑘 B 𝑇𝑘/
√
⟨𝑇𝑘 ,𝑤 ·𝑇𝑘 ⟩.

Definition 2.1 (Chebyshev Series). The Chebyshev expansion or
series for a function 𝑓 ∈ F ([−1, 1],R) is given by∞∑

𝑘=0

⟨𝑓 ,𝑤 ·𝑇𝑘 ⟩ ·𝑇𝑘 .

We call

∑𝑁
𝑘=0
⟨𝑓 ,𝑤 ·𝑇𝑘 ⟩ ·𝑇𝑘 the truncated Chebyshev expansion or

series of degree 𝑁 .

Other notation. Let [𝑛] denote 1, . . . , 𝑛. For a scalar function

𝑓 : R → R and 𝑛 × 𝑛 matrix 𝐴 with eigendecomposition 𝑈Λ𝑈 ∗

, we let 𝑓 (𝐴) denote the matrix function 𝑈 𝑓 (Λ)𝑈 ∗. Here 𝑓 (Λ) is
understood to mean 𝑓 applied entrywise to the diagonal matrix

Λ containing 𝐴’s eigenvalues. Note that tr(𝑓 (𝐴)) = ∑𝑛
𝑖=1 𝑓 (𝜆𝑖).

When 𝑓 (𝑥) is a degree 𝑞 polynomial, 𝑐0 + 𝑐1𝑥 + . . . , 𝑐𝑞𝑥𝑞 , then we

can check that 𝑓 (𝐴) exactly equals 𝑐0𝐼 + 𝑐1𝐴 + . . . , 𝑐𝑞𝐴𝑞
, where 𝐼

is then 𝑛 × 𝑛 identity matrix. So 𝑓 (𝐴)𝑦 can be computed for any

vector 𝑦 using 𝑞 matrix-vector multiplications with 𝐴.

3 APPROXIMATE CHEBYSHEV MOMENT
MATCHING

In this section we show that the spectral density 𝑠 of a Hermitian

matrix 𝐴 with eigenvalues in [−1, 1] can be well approximated

given access to approximations of the first 𝑁 = 𝑂 (1/𝜖) normalized

Chebyshev polynomial moments of 𝑠 , i.e., to approximations of

tr(𝑇1 (𝐴)), . . . , tr(𝑇𝑁 (𝐴)). We state our result in Algorithm 1. We

show later, in Section 4, a method to approximate these moments

using a stochastic trace estimator, implemented with either exact

or approximate matrix vector multiplications with 𝐴.

Given approximations 𝜏1, . . . , 𝜏𝑁 to the first𝑁 normalized Cheby-

shev moments of 𝐴, a natural approach is to find a probability

density 𝑞 : [−1, 1] → R+ such that the first 𝑁 normalized Cheby-

shev moments of 𝑞, i.e., ⟨𝑇1, 𝑞⟩, . . . , ⟨𝑇𝑁 , 𝑞⟩, closely approximate

𝜏1, . . . , 𝜏𝑁 . In order for this approximate moment matching ap-

proach to return a good spectral density estimate, it requires that:

for any density function 𝑞, if the first 𝑁 Chebyshev moments of 𝑞
closely approximate those of 𝑠 , then 𝑞 must be close to 𝑠 in Wasserstein
distance. To that end, we prove the following lemma:

Lemma 3.1. Let 𝑁 ∈ 4N+ be a degree parameter and 𝑝, 𝑞 be distri-
butions on [−1, 1].

𝑊1 (𝑝, 𝑞) ≤
36

𝑁
+ 2

𝑁∑
𝑘=1

|⟨𝑇𝑘 , 𝑝⟩ − ⟨𝑇𝑘 , 𝑞⟩|
𝑘

.

Lemma 3.1 shows that if the first 𝑁 normalized Chebyshev mo-

ments of two distributions are identical, then the Wasserstein dis-

tance between the distributions is at most 𝑂 (1/𝑁). When the mo-

ments between the distributions differ, the contribution of the dif-

ference between the 𝑘-th moments to the Wasserstein distance is

scaled by 𝑂 (1/𝑘). In particular, the lemma shows that deviation in

the lower moments between distributions contributes more to the

Wasserstein distance.

To prove Lemma 3.1, we will use two well-known results on ap-

proximating Lipschitz functions by polynomials. The first is proven

in [17]. and concerns uniform approximation of Lipschitz continu-

ous functions by a Chebyshev series:

Fact 3.2. Let 𝑓 ∈ F ([−1, 1],R) be a Lipschitz continuous function
with Lipschitz constant 𝜆 > 0. Then, for every 𝑁 ∈ 4N+, there
exists 𝑁 + 1 constants ˆ𝑏𝑁 [0] > · · · > ˆ𝑏𝑁 [𝑁] ≥ 0 such that the

polynomial ¯𝑓𝑁 =
∑𝑁
𝑘=0

ˆ𝑏𝑁 [𝑘]
ˆ𝑏𝑁 [0]

⟨𝑓 ,𝑤 · 𝑇𝑘 ⟩𝑇𝑘 has the property that

max𝑥 ∈[−1,1] |𝑓 (𝑥) − ¯𝑓𝑁 (𝑥) | ≤ 18𝜆/𝑁 .

The coefficients of the polynomial in Fact 3.2 are not explicitly

stated since we only require the existence of such a polynomial in

order to prove Lemma 3.1. We defer the reader to Appendix A.1 in

[5] for an explicit construction of the polynomial
5
and Appendix

C.6 in the same for a proof of Fact 3.2.

Next, we state a well-known fact that the magnitude of the

inner-product of a Lipschitz function 𝑓 with the 𝑘-th Chebyshev

polynomial (for 𝑘 ≥ 1) under the Chebyshev weight function𝑤 =

1/
√
1 − 𝑥2 is bounded by 𝑂 (1/𝑘), i.e., |⟨𝑓 ,𝑤 · 𝑇𝑘 ⟩| ≤ 𝑂 (1/𝑘). Our

proof is given in Appendix and is a simple adaptation of the proof

of Theorem 4.2 in [38].

Fact 3.3. Let 𝑓 ∈ F ([−1, 1],R) be a Lipschitz continuous function
with Lipschitz constant 𝜆 > 0. Then, for any 𝑘 ≥ 1, we have that
|⟨𝑓 ,𝑤 ·𝑇𝑘 ⟩| = |

∫
1

−1 𝑓 (𝑥)𝑇𝑘 (𝑥)𝑤 (𝑥)𝑑𝑥 | ≤ 2𝜆/𝑘 .

With Fact 3.2 and 3.3 in place, we are now ready to prove Lemma

3.1

Proof of Lemma 3.1. Recall that the dual formulation of the

Wasserstein-1 distance due to Kantorovich-Rubinstein gives us

that𝑊1 (𝑝, 𝑞) = sup𝑓 ∈lip
1

∫
1

−1 𝑓 (𝑥) (𝑝 (𝑥) − 𝑞(𝑥))𝑑𝑥 where lip
1
de-

notes the set of 1-Lipschitz functions on [−1, 1]. Let 𝑓 ∈ lip
1
be an

arbitrary 1-Lipschitz function and let { ˆ𝑏𝑁 [𝑘]}𝑁𝑘=0 and
¯𝑓𝑁 be the

coefficients and polynomial respectively from Fact 3.2 for function

𝑓 . We can then bound𝑊 B𝑊1 (𝑝, 𝑞) using the triangle inquality
as

𝑊 ≤
∫

1

−1
|𝑓 (𝑥) − ¯𝑓𝑁 (𝑥) | (𝑝 (𝑥) − 𝑞(𝑥))𝑑𝑥︸ ︷︷ ︸

𝑡1

+
∫

1

−1
¯𝑓𝑁 (𝑝 (𝑥) − 𝑞(𝑥))𝑑𝑥︸ ︷︷ ︸

𝑡2

Using the fact that 𝑓 is Lipschitz and the bound from Fact 3.2, along

with the fact that 𝑝 and 𝑞 are distributions, we have that 𝑡1 ≤ 36/𝑁 .

It is left to bound 𝑡2. We expand 𝑡2 using the Chebyshev series ex-

pansion of
¯𝑓𝑁 and note that ⟨𝑔/𝑤,𝑤 ·𝑇𝑘 ⟩ = ⟨𝑔,𝑇𝑘 ⟩ for any function

𝑔 ∈ F ([−1, 1],R), giving us

𝑡2 =

∫
1

−1
¯𝑓𝑁 (𝑥)𝑤 (𝑥)

𝑝 (𝑥) − 𝑞(𝑥)
𝑤 (𝑥) 𝑑𝑥

=

∫
1

−1
¯𝑓𝑁 (𝑥)𝑤 (𝑥)

∞∑
𝑘=0

⟨𝑝 − 𝑞,𝑇𝑘 ⟩𝑇𝑘 (𝑥)𝑑𝑥

5
The construction of the polynomial

¯𝑓𝑁 in Fact 3.2 and its uniform approximation

to 𝑓 forms the basis of our alternate approach, the Kernel Polynomial Method, which

is discussed in-depth in Appendix A.1.

1148

STOC ’22, June 20–24, 2022, Rome, Italy Vladimir Braverman, Aditya Krishnan, and Christopher Musco

=

∫
1

−1

©­«𝑤 (𝑥)
𝑁∑
𝑘=0

ˆ𝑏𝑁 [𝑘]
ˆ𝑏𝑁 [0]

⟨𝑓 ,𝑤𝑇𝑘 ⟩𝑇𝑘 (𝑥)
ª®¬ ©­«
∞∑
𝑘=0

⟨𝑝 − 𝑞,𝑇𝑘 ⟩𝑇𝑘 (𝑥)
ª®¬𝑑𝑥.

By the orthogonality of the Chebyshev polynomials under the

weight function𝑤 and the fact that ⟨𝑇𝑘 ,𝑇𝑘 ⟩ = 1 for all 𝑘 ∈ [𝑁], we
can bound the magnitude of 𝑡2 as

|𝑡2 | ≤
𝑁∑
𝑘=1

|⟨𝑓 ,𝑤 ·𝑇𝑘 ⟩| · |⟨𝑇𝑘 , 𝑝⟩ − ⟨𝑇𝑘 , 𝑞⟩|

since we have that 0 ≤ ˆ𝑏𝑁 [𝑘]/ ˆ𝑏𝑁 [0] ≤ 1 and |
∫
1

−1𝑇𝑘 (𝑝 (𝑥) −
𝑞(𝑥))𝑑𝑥 | = |⟨𝑇𝑘 , 𝑝⟩ − ⟨𝑇𝑘 , 𝑞⟩| for each 𝑘 ∈ [𝑁]. Additionally, since
𝑝 and 𝑞 are distributions we have that ⟨𝑇0, 𝑠⟩ = ⟨𝑇0, 𝑧⟩ = 1/

√
𝜋 . We

then use the bound from Fact 3.3 on |⟨𝑓 ,𝑤 ·𝑇𝑘 ⟩| for each 𝑘 ∈ [𝑁].
Putting this together gives us that |𝑡2 | ≤

∑𝑁
𝑘=1

2|⟨𝑇𝑘 , 𝑝⟩ − ⟨𝑇𝑘 , 𝑞⟩|/𝑘 .
Putting together the bound on 𝑡1 and 𝑡2 gives us the bound on

𝑊1 (𝑝, 𝑞). □

Moment matching algorithm. With Lemma 3.1 in place, our

next step is develop a method to find a distribution 𝑞 with Cheby-

shev moments closely matching a given set of target moments. In

order to search for a distribution, we consider an evenly-spaced grid

of the interval [−1, 1]. Specifically, let 𝑑 ∈ N+ be a discretization
parameter and let 𝑋𝑑 = [−1,−1 + 2

𝑑
, . . . , 1 − 2

𝑑
, 1] be a (𝑑 + 1)-

length evenly-spaced grid of the interval [−1, 1]. Our goal is to
output a distribution supported on 𝑋𝑑 for an appropriately chosen

value of 𝑑 . Any such distribution can be described by a vector in

R𝑑≥0 such that the 𝑖-th entry corresponds to the probability mass

placed at point −1 + 2𝑖/𝑑 on the grid. Where it is clear from the

context, we will denote the distribution and its probability mass

vector interchangeably.

In order to compute the first 𝑁 normalized Chebyshev moments

of functions on the grid𝑋𝑑 , we define twomatricesT𝑑
𝑁
, T̂𝑑

𝑁
∈ R𝑁×𝑑

such that for 𝑘 ∈ [𝑁] and 𝑖 ∈ [𝑑],

(T𝑑
𝑁)𝑘,𝑖 = 𝑇𝑘 (−1 + 2𝑖/𝑑) and (T̂𝑑

𝑁)𝑘,𝑖 =
𝑇𝑘 (−1 + 2𝑖𝑑)

𝑘
.

The matrix T𝑑
𝑁

corresponds to a “discretization” of the continuous

operator that computes the first 𝑁 normalized Chebyshev moments

of a continuous function on [−1, 1]. In particular, for a distribution

𝑞 supported on 𝑋𝑑 , we have that ⟨𝑞,𝑇𝑘 ⟩ =
∑𝑑
𝑖=0 𝑞𝑖𝑇𝑘 (−1 + 2𝑖/𝑑) =

(T𝑑
𝑁
𝑞)𝑘 . Notice that the matrix T𝑑

𝑁
does not contain the row for

𝑇0; since we are working with distributions we know that 𝑇0 (𝑞) =
1/
√
𝜋 ·

∫
1

−1 𝑞𝑑𝑥 = 1/
√
𝜋 for any distribution 𝑞 on [−1, 1]. The matrix

T̂𝑑
𝑁

is the matrix T𝑑
𝑁

with the 𝑘-th row scaled by 1/𝑘 . With this

notation in place, we state the approximate moment matching

algorithm in full in Algorithm 1.

Note that the optimization problem in Line 3 of Algorithm 1

can easily be written as a linear program in 𝑂 (𝑑 + 𝑁) variables
and constraints and hence can be solved efficiently in poly(𝑁,𝑑) =
poly(1/𝜖) time

6
. Since this method is independent of the matrix

6
Additionally, note that the optimization problem has a convex objective and

constraints – in particular, the set of distributions supported on 𝑋𝑑 is a convex set.

The objective function ∥ T̂𝑑
𝑁
𝑞 − 𝑧 ∥1 is not differentiable, but has subgradients. Hence,

this program can be solved efficiently in poly(1/𝜖) time using a projected subgradient

method. This requires an oracle that projects onto the the probability simplex supported

on the grid𝑋𝑑 – an algorithm that runs in𝑂 (𝑑 log𝑑) time has been given in multiple

papers, see [40] for more details.

Algorithm 1 Approximate Chebyshev Moment Matching

Input: Symmetric 𝐴 ∈ R𝑛×𝑛 , degree parameter 𝑁 ∈ 4N+, algo-
rithmM(𝐴) that computes moment approximations 𝜏1, . . . , 𝜏𝑁
with the guarantee that |𝜏𝑘 − 1

𝑛 tr(𝑇𝑘 (𝐴)) | ≤ (𝑁 ln(𝑒𝑁))−1 for
all 𝑘 .

Output: A vector 𝑞 corresponding to a discrete density function

on [−1, 1].
1: For 𝑘 = 1, . . . , 𝑁 use M to compute 𝜏1, . . . , 𝜏𝑁 and set 𝑧 =

[𝜏1/1, 𝜏2/2, . . . , 𝜏𝑁 /𝑁].
2: Set 𝑑 = ⌈𝑁 3/2⌉ and compute matrix T̂𝑑

𝑁
∈ R𝑁×𝑑 . ⊲

(T̂𝑑
𝑁
)𝑘,𝑖 = 𝑇𝑘 (−1 + 2𝑖

𝑑
)/𝑘 .

3: Minimize ∥T̂𝑑
𝑁
𝑞 − 𝑧∥1 subject to 𝑞⊤®1 = 1 and 𝑞 ≥ 0.

4: Return 𝑞.

dimension 𝑛, it is a lower order term in the running time stated in

Theorems 1.4 and 1.3, as we will discuss in Section 4.

We show that when 𝑁 = 𝑂 (1/𝜖), Algorithm 1 returns a distribu-

tion satisfying𝑊 (𝑠, 𝑞) ≤ 𝜖 .

Lemma 3.4. Let 𝜖 ∈ [0, 1] and let 𝑁 ≥ 18/𝜖 . Then the distribution
𝑞 : [−1, 1] → R+ returned by Algorithm 1 satisfies𝑊1 (𝑞, 𝑠) ≤ 3𝜖.

Proof. We start by giving some notation – for a distribution

𝑦 : [−1, 1] → R+, we denote ®𝜏𝑦 B [⟨𝑇1, 𝑦⟩, . . . , ⟨𝑇𝑁 , 𝑦⟩] to be the

vector of the first 𝑁 normalized Chebyshev moments of 𝑦. For

an integer 𝑘 ∈ N+, we denote ®𝑘 to be the vector in R𝑘 given by

®𝑘 B [1, . . . , 𝑘] and for a vector 𝑦 ∈ R𝑘 write 𝑦/®𝑘 to denote the

vector 𝑦/®𝑘 B [𝑦1/1, . . . , 𝑦𝑘/𝑘]. Notice then that we have ®𝜏𝑞 = T𝑑
𝑁
𝑞

and ®𝜏𝑞/ ®𝑁 = T̂𝑑
𝑁
𝑞.

We start by bounding the scaled differences in the first 𝑁 nor-

malized Chebyshev moments of 𝑞 and 𝑠 in order to use Lemma

3.1 on 𝑞 and 𝑠:∥®𝜏𝑞/ ®𝑁 − ®𝜏𝑠/ ®𝑁 ∥1 ≤ ∥®𝜏𝑞/ ®𝑁 − 𝑧∥1 + ∥𝑧 − ®𝜏𝑠/ ®𝑁 ∥1 ≤
∥®𝜏𝑞/ ®𝑁 − 𝑧∥1 + 1

𝑁
. The first inequality follows by applying the tri-

angle inequality and in the second inequality we used the fact that

∥𝑧 − ®𝜏𝑠/ ®𝑁 ∥1 =
∑𝑁
𝑘=1
|𝜏𝑘 − (®𝜏𝑠)𝑘 |/𝑘 ≤ 𝐻𝑛 · (𝑁 ln(𝑒𝑁))−1 ≤ 1/𝑁 .

Next we show that there exists a distribution 𝑞′ supported on𝑋𝑑
such that ∥®𝜏𝑞′/ ®𝑁 − 𝑧∥ ≤ 1/𝑁 . To this end, consider the following

distribution 𝑞∗ on 𝑋𝑑 :

𝑞∗ (𝑥) = 1

𝑛

𝑛∑
𝑖=1

𝛿 (𝑥 − argmin

𝑝∈𝑋𝑑

|𝑝 − 𝜆𝑖 |).

In words, 𝑞∗ is the distribution corresponding to moving the mass

from each 𝜆𝑖 to its nearest point on the grid 𝑋𝑑 . Notice that we

have𝑊1 (𝑠, 𝑞∗) ≤ 1/𝑑 due to the earthmover distance interpretation

of the Wasserstein-1 distance.

Applying the triangle inequality and the guarantee from the mo-

ment approximations, we get that ∥®𝜏𝑞∗/ ®𝑁 − 𝑧∥1 ≤ 1/𝑁 + ∥®𝜏𝑞∗/ ®𝑁 −
®𝜏𝑠/ ®𝑁 ∥1. It is left then to bound ∥®𝜏𝑞∗/ ®𝑁 − ®𝜏𝑠/ ®𝑁 ∥1. To this end, we
state the following well-known fact about the derivatives of Cheby-

shev polynomials.

Fact 3.5. For 𝑘 ≥ 1, 𝑑𝑇𝑘 (𝑥)
𝑑𝑥

= 𝑘𝑈𝑘−1 (𝑥).

1149

Sublinear Time Spectral Density Estimation STOC ’22, June 20–24, 2022, Rome, Italy

We then have using the definition of 𝑞∗ that, for any 1 ≤ 𝑘 ≤ 𝑁 ,

|⟨𝑇𝑘 , 𝑠⟩ − ⟨𝑇𝑘 , 𝑞∗⟩| =

������ 1𝑛 𝑛∑
𝑖=1

𝑇𝑘 (𝜆𝑖) −𝑇𝑘 (argmin

𝑝∈𝑋𝑑

|𝑝 − 𝜆𝑖 |)

������
≤ 1

𝑛

𝑛∑
𝑖=1

�����𝑇𝑘 (𝜆𝑖) −𝑇𝑘 (argmin

𝑝∈𝑋𝑑

|𝑝 − 𝜆𝑖 |)
�����

≤
√
2

𝑛
√
𝜋

𝑛∑
𝑖=1

max

𝑥 ∈[−1,1]

����𝑑𝑇𝑘 (𝑥)𝑑𝑥

���� · |𝜆𝑖 − argmin

𝑝∈𝑋𝑑

|𝑝 − 𝜆𝑖 | | ≤
√
2𝑘2

𝑑
√
𝜋

where in the last inequality we used the fact that max𝑥 ∈[−1,1]
|𝑈𝑘−1 (𝑥) | ≤ 𝑘 . It follows then that

∥®𝜏𝑞∗/ ®𝑁 − ®𝜏𝑠/ ®𝑁 ∥1 =
𝑁∑
𝑘=1

| (®𝜏𝑞∗)𝑘 − (®𝜏𝑠)𝑘 |
𝑘

≤ 𝑁 (𝑁 + 1)
𝑑
√
2𝜋

≤ 1

𝑁

by taking the sum over all 𝑘 and noting that 𝑑 ≥ 𝑁 3/2. Putting
these bounds together gives us that ∥®𝜏𝑞∗/ ®𝑁 − 𝑧∥1 ≤ 2/𝑁 .

Since ∥®𝜏𝑞/ ®𝑁 − 𝑧∥1 ≤ ∥®𝜏𝑞∗/ ®𝑁 − 𝑧∥1 from Line 3 of Algorithm 1,

we plug this into the bound on ∥®𝜏𝑞/ ®𝑁 − ®𝜏𝑠/ ®𝑁 ∥1 to get that ∥®𝜏𝑞/ ®𝑁 −
®𝜏𝑠/ ®𝑁 ∥1 ≤ 3/𝑁 . We can then use Lemma 3.1 with distributions 𝑞

and 𝑠 along with the fact that ∥®𝜏𝑞/ ®𝑁 − ®𝜏𝑠/ ®𝑁 ∥1 =
∑𝑁
𝑘=1
| (®𝜏𝑠)𝑘 −

(®𝜏𝑞)𝑘 |/𝑘 ≤ 3/𝑁 to give us the result since 𝑁 > 18/𝜖 . □

Remark. Note that Algorithm 1 can easily be adapted when the

minimization problem in Line 3 is solved approximately – as is the

case if projected subgradient descentmethods are used. In particular,

a constant factor approximation to the minimal loss increases the

Wasserstein distance bound in Lemma 3.4 by an 𝑂 (1) factor.

4 EFFICIENT CHEBYSHEV MOMENT
APPROXIMATION

With Lemma 3.4 in place, we are ready to prove our main results.

To do so, we need to show how to efficiently approximate the

first 𝑁 Chebyshev moments of a matrix 𝐴’s spectral density 𝑠 , as

required by Algorithm 1. Recall that the 𝑘th normalized Chebyshev

moment of 𝑠 is equal to ⟨𝑠,𝑇𝑘 ⟩ = 1

𝑛 tr(𝑇𝑘 (𝐴)). We will prove that

this trace can be approximated using Hutchinson’s stochastic trace

estimator, implemented with either exact or approximate matrix-

vector multiplications with 𝐴.

This estimator requires repeatedly computing 𝑇𝑘 (𝐴)𝑔 for a ran-

dom vector𝑔, which is done using the standard three-term (forward)

recurrence for the Chebyshev polynomials and requires a total of

𝑘 matrix-vector multiplications with 𝐴. We analyze the basic ap-

proach in Section 4.1, which yields Theorem 1.4. Then in Section 4.2,

we argue that the approach is stable even when implemented with

approximate matrix-vector multiplication, which yields Theorem

1.3.

4.1 Exact Matrix-Vector Multiplications
Hutchinson’s estimator is a widely used estimator to efficiently com-

pute accurate estimates of tr(𝑅) for any square matrix 𝑅 ∈ R𝑛×𝑛 .
Each instance of the estimator computes the quadratic form 𝑔⊤𝑅𝑔
for a random vector 𝑔 ∈ {−1, 1}𝑛 whose entries are Rademacher

random variables. This an unbiased estimator for tr(𝑅) with vari-

ance ≤ 2∥𝑅∥2
𝐹
, and its error has been analyzed in several earlier

results [2, 32]. We apply a standard high-probability bound from

[24, 33]:

Lemma 4.1 (Lemma 2, [24]).7 Let 𝑅 ∈ R𝑛×𝑛 , 𝛿 ∈ (0, 1/2], 𝑙 ∈ N. Let
𝑔 (1) , . . . , 𝑔 (ℓ) ∈ {−1, 1}𝑛×𝑛 be ℓ random vectors with i.i.d {−1, +1}
random entries. For a fixed constant𝐶 , with probability at least 1 − 𝛿 ,������tr(𝑅) − 1

ℓ

𝑙∑
𝑖=1

(𝑔 (𝑖))⊤𝑅𝑔 (𝑖)
������ ≤ 𝐶 log(1/𝛿)

√
ℓ

∥𝑅∥𝐹 .

For a polynomial 𝑝 ∈ F ([−1, 1],R) with degree 𝑘 , applying

Hutchinson’s estimator to 𝑅 = 𝑝 (𝐴) requires computing 𝑝 (𝐴)𝑔,
which can always be done with 𝑘 matrix-vector multiplies with𝐴. If

𝑝 (𝑥) admits a recursive construction, like the Chebyshev polynomi-

als, then this recurrence can be used. Specifically, for the Chebyshev

polynomials, we have:

𝑇0 (𝐴)𝑔 = 𝑔 𝑇1 (𝐴)𝑔 = 𝐴𝑔

𝑇𝑘 (𝐴)𝑔 = 2𝐴 ·𝑇𝑘−1 (𝐴)𝑔 −𝑇𝑘−2 (𝐴)𝑔 for 𝑘 ≥ 2. (4)

A moment estimation algorithm based on Hutchinson’s estima-

tor is stated as Algorithm 2.

Algorithm 2 Hutchinson Moment Estimator

Input: Symmetric 𝐴 ∈ R𝑛×𝑛 with ∥𝐴∥2 ≤ 1, degree 𝑁 ∈ 4N+,
number of repetitions ℓ ∈ N+.

Output: Approximation 𝜏𝑘 to moment
1

𝑛 tr(𝑇𝑘 (𝐴)) for all 𝑘 ∈
1, . . . , 𝑁 .

1: Draw 𝑔 (1) , . . . , 𝑔 (𝑙) ∼ Uniform({−1, 1}𝑛).
2: For 𝑘 = 1, . . . , 𝑁 , 𝜏𝑘 ←

√
2/𝜋
ℓ𝑛

∑𝑙
𝑖=1 (𝑔 (𝑖))⊤𝑇𝑘 (𝐴)𝑔 (𝑖) . ⊲

Computed using recurrence in (4)

3: Return 𝜏1, . . . , 𝜏𝑁 .

Remark. In total, Algorithm 2 requires 𝑁 · ℓ matrix multipli-

cations with 𝐴 since for each 𝑖 𝑇1 (𝐴)𝑔 (𝑖) , . . . ,𝑇𝑁 (𝐴)𝑔 (𝑖) can but

computed using the same 𝑁 steps of the (4) recurrence. It requires

𝑂 (𝑛ℓ𝑁) additional runtime to compute and sum all inner products

of the form (𝑔 (𝑖))𝑇𝑇𝑘 (𝐴)𝑔 (𝑖) .
Our main bound on the accuracy of Algorithm 2 follows:

Lemma 4.2. If Algorithm 2 is run with ℓ = max(1,𝐶 · log
2 (𝑁 /𝛿)
(𝑛Δ2)),

where 𝐶 is a fixed positive constant, then with probability 1 − 𝛿 the
approximate moments returned satisfy |𝜏𝑘 − 1

𝑛 tr(𝑇𝑘 (𝐴)) | ≤ Δ for all
𝑘 = 1, . . . , 𝑁 .

Proof. Fix𝑘 ∈ {1, . . . , 𝑁 }. Note that tr(𝑇𝑘 (𝐴))𝑛 =

√
2/𝜋
𝑛 tr(𝑇𝑘 (𝐴)).

Let 𝐶 be the constant from Lemma 4.1. If ℓ = max(1,𝐶2 log
2 (𝑁 /𝛿)
(𝑛Δ2)),

then by that lemma we have that with probability at least 1 − 𝛿/𝑁 :�����𝜏𝑘 −
√
2/𝜋
𝑛

tr(𝑇𝑘 (𝐴))
����� ≤ 1

𝑛

𝐶 log(𝑁 /𝛿)
√
ℓ

∥𝑇𝑘 (𝐴)∥𝐹

≤
𝐶
√
2/𝜋
√
𝑛

√
log(𝑁 /𝛿)

ℓ
≤ Δ.

7
In [24] the lemma is stated with an assumption that ℓ > 𝑂 (1/𝛿) . However,

it is easy to see that the same claim holds without this assumption, albeit with a

quadratically worse log(1/𝛿) dependence. The proof follows from same application

of the Hanson-Wright inequality used in that work.

1150

STOC ’22, June 20–24, 2022, Rome, Italy Vladimir Braverman, Aditya Krishnan, and Christopher Musco

The second to last inequality follows from the fact that ∥𝑇𝑘 (𝐴)∥2 ≤
1 and thus ∥𝑇𝑘 (𝐴)∥𝐹 ≤

√
𝑛. Applying a union bound over all 𝑘 ∈

1, . . . , 𝑁 gives the claim. □

Theorem 1.4 immediately follows as a corollary of Lemma 4.2

and Lemma 3.4.

Proof of Theorem 1.4. We implement Algorithm 1 with Algo-

rithm 2 as a subroutine to approximate the Chebyshev polynomial

moments, which requires setting Δ = 1

𝑁 ln(𝑒𝑁) . By Lemma 4.2, we

conclude that we need to set ℓ = max(1, 𝐶𝑁 2

𝑛 log
2 (𝑁

𝛿
) log2 (𝑒𝑁)).

Then, by Lemma 3.4, setting 𝑁 = 𝑂 (1/𝜖) ensures that Algorithm 1

returns a distribution 𝑞 which is 𝜖 close to 𝐴’s spectral density 𝑠 in

Wasserstein distance. □

4.2 Approximate Matrix-Vector Multiplications
Algorithm 2 assumes access to an oracle for computing exact matrix-

vector multiplies with 𝐴. In this section, we show that the method

continues to work well even when each term in Hutchinson’s esti-

mator, 𝑔⊤𝑇𝑘 (𝐴)𝑔, is computed using an approximate matrix-vector

multiplication oracle for 𝐴 (see Definition 1.2). As discussed in Sec-

tion 1.1, the robustness of the estimator allows the approximate

moment matching method to be applied in many settings where 𝐴

can only be access implicitly. It also forms the basis of our sublinear

time algorithm for computing the spectral density of a normalized

graph adjacency or Laplacian matrix, which are presented in the

Section 5.

To show that approximate matrix-vector multiplications suffice,

we leverage well understood stability properties of the three-term

forward recurrence for Chebyshev polynomials of the first kind

[7, 27]. These properties allows us to analyze the cumulative er-

ror when 𝑇𝑘 (𝐴)𝑔 is computed via this recurrence. Specifically, we

analyze the following algorithm:

Algorithm 3 Hutchinson Moment Estimator w/ Approximate Mul-

tiplications

Input: Symmetric 𝐴 ∈ R𝑛×𝑛 with ∥𝐴∥2 ≤ 1, degree 𝑁 ∈ 4N+,
number of repetitions ℓ ∈ N+, 𝜖MV-approximate matrix vector

multiplication oracle AMV for 𝐴 (see Definition 1.2).

Output: Approximation 𝜏𝑘 to moment
1

𝑛 tr(𝑇𝑘 (𝐴)) for all 𝑘 ∈
1, . . . , 𝑁 .

1: for 𝑖 = 1, . . . , ℓ iterations do
2: Draw 𝑔 ∼ Uniform({−1, 1}𝑛).
3: 𝑣0 ← 𝑔, 𝑣1 ← AMV(𝐴,𝑔, 𝜖MV).
4: 𝜏1,𝑖 ← 𝑔𝑇 𝑣1
5: for 𝑘 = 2 to 𝑁 do
6: 𝑣𝑘 ← 2 · AMV(𝐴, 𝑣𝑘−1, 𝜖MV) − 𝑣𝑘−2.
7: 𝜏𝑘,𝑖 ← 𝑔𝑇 𝑣𝑘

8: For 𝑘 = 1, . . . , 𝑁 , 𝜏𝑘 ← 1

ℓ

∑ℓ
𝑖=1 𝜏𝑘,𝑖 .

9: Return 𝜏1, . . . , 𝜏𝑁 .

Algorithm 3 assumes access to an approximate matrix-vector

multiplication oracle for 𝐴 with error 𝜖MV (recall Definition 1.2).

Since ∥𝐴∥2 ≤ 1, for any vector 𝑦, we have that:

∥AMV(𝐴,𝑦, 𝜖MV) −𝐴𝑦∥2 ≤ 𝜖MV ∥𝑦∥2 . (5)

The algorithm uses this oracle to apply the recurrence from (4),

approximately computing each 𝑇𝑘 (𝐴)𝑔 for 𝑘 = 1, . . . , 𝑁 , which

in turn allows us to approximately compute 𝑔⊤𝑇𝑘 (𝐴)𝑔. Note that
when 𝜖MV = 0, Algorithm 3 is exactly equivalent to Algorithm 2.

Notation.Analyzing this approach requires accounting for error
accumulates across iterations. To do so, we introduce some basic no-

tation. Let 𝑣𝑘 denote the true value of𝑇𝑘 (𝐴)𝑔, and let 𝑣𝑘 denote our

computed approximation. We initialize the recurrence with 𝑣−1 = ®0
and 𝑣0 = 𝑣0 = 𝑔. For 𝑘 = 0, . . . , 𝑁 −1, let𝑤𝑘 = AMV(𝐴, 𝑣𝑘 , 𝜖MV) and
note that ∥𝑤𝑘−𝐴𝑣𝑘 ∥2 ≤ 𝜖MV ∥𝑣𝑘 ∥2. In iteration 𝑘 of the recurrence,

we compute 𝑣𝑘+1 by applying the recurrence:

𝑣𝑘+1 B 2𝑤𝑘 − 𝑣𝑘−1 .

For each 𝑖 ∈ 0, . . . , 𝑁 we denote:

• 𝛿𝑘 B 𝑣𝑘 − 𝑣𝑘 , with 𝛿0 = ®0. This is the accumulated error up
to iteration 𝑘 .

• 𝜉𝑘+1 B 𝐴𝑣𝑘 − 𝑤𝑘 , with 𝜉0 = 0. 2𝜉𝑘+1 is the new error in-
troduced in iteration 𝑘 due to approximate matrix-vector

multiplication.

As in Clenshaw’s classic work [7], it can be shown that 𝛿𝑘 itself
evolves according to a simple recurrence, which ultimately lets us

show that it can be expressed as a summation involving Cheby-

shev polynomials of the second kind, which are easily bounded.

Specifically, we have:

Fact 4.3. 𝛿1 = 𝜉1 and for 2 ≤ 𝑘 ≤ 𝑁 , 𝛿𝑘 = 2𝐴𝛿𝑘−1 − 𝛿𝑘−2 + 2𝜉𝑘 .

Proof. The claim for 𝛿1 is direct since 𝑣0 = 𝑣0: we have 𝛿1 =

𝑣1 − 𝑣1 = 𝐴𝑣0 −𝑤0. For 2 ≤ 𝑘 ≤ 𝑁 , we prove the claim by writing

the difference 𝛿𝑘 = 𝑣𝑘 −𝑣𝑘 = 𝑣𝑘 −2(𝐴𝑣𝑘−1+𝜉𝑘) +𝑣𝑘−2. We can then

replace 𝑣𝑘 = 2𝐴𝑣𝑘−1 − 𝑣𝑘−2 and substitute in (𝑣𝑘−1 − 𝑣𝑘−1) = 𝛿𝑘−1
and (𝑣𝑘−2 − 𝑣𝑘−2) = 𝛿𝑘−2. □

The Chebyshev polynomials of the second kind are defined via

the following recurrence:

Definition 4.4 (Chebyshev Polynomials of the Second Kind). For

𝑘 ∈ N≥0 the 𝑘-th Chebyshev polynomial of the second kind 𝑈𝑘 (𝑥)
is given by

𝑈0 (𝑥) = 1 𝑈1 (𝑥) = 2𝑥

𝑈𝑘 (𝑥) = 2𝑥 ·𝑈𝑘−1 (𝑥) −𝑈𝑘−2 (𝑥) for 𝑘 ≥ 2.

We also define𝑈−1 (𝑥) = 0, which is consistent with the recurrence.

Using these polynomials, we can characterize the accumulated

error 𝛿𝑘 in terms of the error introduced in each of the prior itera-

tions.

Lemma 4.5. For 𝑘 = 1, . . . , 𝑁 , we have

𝛿𝑘 = 𝑈𝑘−1 (𝐴)𝜉1 + 2
𝑘∑
𝑖=2

𝑈𝑘−𝑖 (𝐴)𝜉𝑖 . (6)

Proof. We prove the lemma by induction on 𝑗 ≤ 𝑘 . For 𝑗 = 0,

the lemma is trivial since 𝛿0 = 0 by definition and𝑈−1 (𝐴) = 0. For

𝑗 = 1, 𝛿1 = 𝜉1 = 𝑈0 (𝐴)𝜉1. By Fact 4.3, for 2 ≤ 𝑗 < 𝑘 , we have:

𝛿 𝑗 = 2𝜉 𝑗 + 2𝐴𝛿 𝑗−1 − 𝛿 𝑗−2︸ ︷︷ ︸
𝑧1

. (7)

1151

Sublinear Time Spectral Density Estimation STOC ’22, June 20–24, 2022, Rome, Italy

We can apply the inductive hypothesis on 𝑧1 and recombine terms

using Definition 4.4 to get:

𝑧1 = 2𝐴
©­«𝑈 𝑗−2 (𝐴)𝜉1 + 2

𝑗−1∑
𝑖=2

𝑈 𝑗−1−𝑖 (𝐴)𝜉𝑖
ª®¬

−𝑈 𝑗−3 (𝐴)𝜉1 − 2
𝑗−2∑
𝑖=2

𝑈 𝑗−2−𝑖 (𝐴)𝜉𝑖

= 𝑈 𝑗−1 (𝐴)𝜉1 +𝑈1 (𝐴)2𝜉 𝑗−1 +
𝑗−2∑
𝑖=2

(
2𝐴𝑈 𝑗−1−𝑖 (𝐴) −𝑈 𝑗−2−𝑖 (𝐴)

)
2𝜉𝑖

= 𝑈 𝑗−1 (𝐴)𝜉1 +
𝑗−1∑
𝑖=2

𝑈 𝑗−𝑖 (𝐴)2𝜉𝑖

Noting that plugging into (7) and noting that 2𝜉 𝑗 = 2𝑈0 (𝐴)𝜉 𝑗 com-

pletes the proof. □

Our goal is to use Lemma 4.5 to establish that 𝛿𝑘 is small because

each 𝜉𝑖 is small. It is well known that the Chebyshev polynomials

of the second kind satisfy the following bounds for any 𝑘 ∈ N:
|𝑈𝑘 (𝑥) | ≤ 𝑘 + 1 for 𝑥 ∈ [−1, 1] . (8)

This is the upper bound we need to proceed. Specifically, we will

show that each estimator using Algorithm 3, 𝑔⊤𝑣𝑘 , well approxi-
mates Hutchinson’s estimator 𝑔⊤𝑇𝑘 (𝐴)𝑔 = 𝑔⊤𝑣𝑘 .

Claim 4.6. For quantities 𝑣𝑘 , 𝑣𝑘 and 0 ≤ 𝜖MV ≤ 1/2𝑘2, we have��𝑔⊤𝑇𝑘 (𝐴)𝑔 − 𝑔⊤𝑣𝑘 �� ≤ 2 𝜖MV ·(𝑘 + 1)2∥𝑔∥22 .

Proof. By the definition of 𝛿𝑘 , we have |𝑔⊤𝑇𝑘 (𝐴)𝑔 − 𝑔⊤𝑣𝑘 | =
|𝑔⊤𝛿𝑘 |. By Cauchy-Schwarz we can bound |𝑔⊤𝛿𝑘 | ≤ ∥𝑔∥2∥𝛿𝑘 ∥2. We

are left to bound ∥𝛿𝑘 ∥2. Applying Lemma 4.5 and triangle inequality,

we have

∥𝛿𝑘 ∥2 ≤ ∥𝑈𝑘−1 (𝐴)∥2∥𝜉1∥2 +
𝑘∑
𝑖=2

2∥𝑈𝑘−𝑖 (𝐴)∥2∥𝜉𝑖 ∥2

Then applying (8) and the fact that ∥𝐴∥2 ≤ 1, we have ∥𝑈𝑘−𝑖 (𝐴)∥2 ≤
(𝑘 − 𝑖 + 1) . Hence,

∥𝛿𝑘 ∥2 ≤ 𝑘 ∥𝜉1∥2 +
𝑘∑
𝑖=2

2(𝑘 − 𝑖 + 1)∥𝜉𝑖 ∥2 ≤
𝑘∑
𝑖=1

2(𝑘 − 𝑖 + 1)∥𝜉𝑖 ∥2 .

Using that 𝜉𝑖 ≤ 𝜖MV ∥𝑣𝑖−1∥2, and that ∥𝑇𝑖 (𝐴)∥2 ≤ 1 for all 𝑖 and

thus ∥𝑣𝑖 ∥2 ≤ ∥𝑔∥2, we have:
∥𝛿𝑘 ∥2 ≤

∑𝑘
𝑖=1 2(𝑘 − 𝑖 + 1) 𝜖MV ∥𝑣𝑖−1∥2 ≤ 2 𝜖MV

∑𝑘
𝑖=1 (𝑘 − 𝑖 +

1) (∥𝑣𝑖−1∥2 + ∥𝛿𝑖−1∥2) ≤ 𝜖MV 𝑘 (𝑘 + 1)
(
∥𝑔∥2 +max𝑖<𝑘 ∥𝛿𝑖 ∥2

)
. In-

ducting on 𝛿 𝑗 for 𝑗 ≤ 𝑘 gives us ∥𝛿𝑘 ∥2 ≤ 2 𝜖MV (𝑘 + 1)2∥𝑔∥2, which
completes the proof. □

Lemma 4.7. If Algorithm 3 is run with ℓ = max(1,𝐶 log
2 (𝑁 /𝛿)
(𝑛Δ2))

and 𝜖MV = Δ/4𝑁 2, where 𝐶 is a fixed positive constant, then with
probability 1 − 𝛿 the approximate moments returned satisfy |𝜏𝑘 −
1

𝑛 tr(𝑇𝑘 (𝐴)) | ≤ Δ for all 𝑘 = 1, . . . , 𝑁 .

Proof. Fix 𝑘 ∈ {1, . . . , 𝑁 }. Let 𝑔 (1) , . . . , 𝑔 (ℓ) be the random vec-

tors drawn in the outer for-loop of Algorithm 3. Let {𝑣 (𝑖)
𝑘
}𝑖∈[ℓ] be

the ℓ vectors computed by the inner for-loop and let {𝛿 (𝑖)
𝑘
B 𝑣

(𝑖)
𝑘
−

𝑇𝑘 (𝐴)𝑔 (𝑖) }𝑖∈[ℓ] be the ℓ error vectors. Recalling that 1

𝑛 tr(𝑇𝑘 (𝐴)) =√
2/𝜋
𝑛 tr(𝑇𝑘 (𝐴)), we have:�����𝜏𝑘 −

√
2/𝜋
𝑛

tr(𝑇𝑘 (𝐴))
����� ≤

√
2/𝜋
𝑛ℓ

ℓ∑
𝑖=1

���(𝑔 (𝑖))⊤𝛿 (𝑖)
𝑘

���
+

������
√
2/𝜋
𝑛ℓ

ℓ∑
𝑖=1

(𝑔 (𝑖))⊤𝑇𝑘 (𝐴)𝑔 (𝑖) −
tr(𝑇𝑘 (𝐴))

𝑛

������ .
Applying Claim 4.6 and Lemma 4.1, with probability at least 1−𝛿/𝑁 ,

we thus have

|𝜏𝑘 −
tr(𝑇𝑘 (𝐴))

𝑛
| ≤ 2(𝑘 + 1)2 𝜖MV ·

√
2/𝜋
𝑛ℓ

ℓ∑
𝑖=1

∥𝑔 (𝑖) ∥2
2
+ Δ/2 ≤ Δ.

The last inequality follows from the fact that ∥𝑔 (𝑖) ∥2
2
= 𝑛 for all

𝑖 ∈ [ℓ], and the choice of 𝜖MV = Δ/4𝑁 2
. Applying a union bound

over all 𝑘 = 1, . . . , 𝑁 gives the claim. □

Theorem 1.3 immediately follows.

Proof of Theorem 1.3. We implement Algorithm 1 with Algo-

rithm 3 used as a subroutine to approximate the Chebyshev polyno-

mial moments, which requires setting Δ = 1

𝑁 ln(𝑒𝑁) . By Lemma 4.7,

we conclude thatwe need to set ℓ = max(1,𝐶 𝑁 2

𝑛 log
2 (𝑁

𝛿
) log2 (𝑒𝑁))

and 𝜖MV = 1/(4𝑁 3
ln(𝑒𝑁)). Then, by Lemma 3.4, setting 𝑁 =

𝑂 (1/𝜖) ensures that Algorithm 1 returns a distribution 𝑞 which is

𝜖 close to 𝐴’s spectral density 𝑠 in Wasserstein distance. □

5 SUBLINEAR TIME METHODS FOR GRAPHS
With the proof of Theorem 1.3 in place, we are now ready to state

our sublinear time result for adjacency matrices of graphs. The

significance of Theorem 1.3 is that it allows for the approximate

Chebyshev moment matching method in Algorithm 1 to be com-

bined with any randomized algorithm for approximating matrix-

vector multiplications with 𝐴. In this section we prove Theorem

1.1 by showing that for the normalized adjacency matrix of any

undirected, un-weighted graph, such an algorithm can actually be

implemented in sublinear time, leading to a sublinear time spectral

density estimation (SDE) algorithm for computing graph spectra

from these matrices.

Computational Model. Let 𝐴 ∈ R𝑛×𝑛 be the adjacency ma-

trix for an unweighted, 𝑛-vertex graph 𝐺 = (𝑉 , 𝐸) and let 𝐴 =

𝐷−1/2𝐴𝐷−1/2 be the symmetric normalized adjacencymatrix, where

𝐷 is an 𝑛×𝑛 diagonal matrix containing the degree of each vertex in

𝑉 . For a node 𝑖 , letN(𝑖) = { 𝑗 : (𝑗, 𝑖) ∈ 𝐸} denote the set of 𝑖’s neigh-
boring vertices. We assume a computational model where we can

1) uniformly sample a random vertex in constant time, 2) uniformly

sample a random neighbor of any vertex 𝑖 in constant time, and

3) for a vertex 𝑖 with degree 𝑑𝑖 , read off all neighbors of 𝑖 in 𝑂 (𝑑𝑖)
time. A standard adjacency list representation of the graph would

allow us to perform these operations but weaker access models

would also suffice.
8

8
E.g., random crawl access to a network [19]. We also note that, if desired, as-

sumption 3) can be removed entirely with a small logarithmic runtime overhead, as

long as we know the degree of 𝑖 . Specifically, 3) can be implemented with𝑂 (𝑑𝑖 log𝑛)
calls to 2): we simply randomly sample neighbors until all 𝑑𝑖 are found. A standard

1152

STOC ’22, June 20–24, 2022, Rome, Italy Vladimir Braverman, Aditya Krishnan, and Christopher Musco

Using this model for accessing the adjacency matrix, we show

that, for any 𝜖MV ∈ (0, 1) and failure probability 𝛿 ∈ (0, 1), an
𝜖MV-approximate matrix-vector multiplication oracle for 𝐴 can be

implemented in 𝑂 (𝑛 𝜖MV
−2

log(1/𝛿)) time. Via Theorem 1.3, this

immediately yields an algorithm for computing an SDE that is 𝜖

close in Wasserstein-1 distance to 𝐴’s spectral density in roughly

𝑂̃ (𝑛/𝜖7) time for sufficiently large 𝑛, and at most 𝑂̃ (𝑛/𝜖9) time, for

fixed 𝛿 where the 𝑂̃ (·) hides factors of poly(log(1/𝜖)). Our main

result is stated as Theorem 1.1 in Section 1.1.

The same algorithm can be used to approximate the spectral

density of the normalized Laplacian of 𝐺 by a simple shift and

scaling. Specifically, 𝐴 can be obtained from the normalized Lapla-

cian 𝐿 via 𝐴 = 𝐼 − 𝐿, and the spectral density of 𝐿, 𝑠𝐿̄ (𝑥) satisfies
𝑠𝐿̄ (1 − 𝑥) = 𝑠𝐴 (𝑥), where 𝑠𝐴 is the spectral density of 𝐴. So if we

obtain an 𝜖-approximate SDE 𝑞 for 𝐴 by Theorem 1.1, then the

function 𝑝 satisfying 𝑝 (1 − 𝑥) = 𝑞(𝑥) is an 𝜖-approximate SDE for

𝑠𝐿̄ . We thus have:

Corollary 5.1. Given the the normalized adjacency matrix of 𝐺 ,
there exists an algorithm that takes 𝑂 (𝑛 poly(log(1/𝛿)𝜖)) expected
time and outputs a density function 𝑞 that is 𝜖 close to the spectral
density of the normalized Laplacian of 𝐺 with probability at least
1 − 𝛿 .

ApproximateMatrix-Vector Multiplication for Adjacency
Matrices.We implement an approximate matrix-vector multiplica-

tion oracle for 𝐴 in Algorithm 4, which is inspired by a randomized

matrix-multiplication method of [12]. Throughout this section, let

𝐴𝑖
denote the 𝑖th column of 𝐴. Given a sampling budget 𝑡 ∈ N, the

algorithm samples 𝑡 indices from 1, . . . , 𝑛 independently and with

replacement – i.e., the same index might be sample multiple times.

For each index it samples, the algorithm decides to accept or reject

the column corresponding to that index with some probability. To

approximate 𝐴𝑦, the algorithm outputs the multiplication of the

accepted columns, rescaled appropriately, with the corresponding

elements of 𝑦.

Algorithm 4 AMV Multiplication Oracle for Normalized Adja-

cency Matrices

Input: Normalized adjacency matrix 𝐴 ∈ R𝑛×𝑛 , degrees

[𝑑1, . . . , 𝑑𝑛], 𝑦 ∈ R𝑛 , and parameter 𝑡 ∈ N.
Output: A vector 𝑧 ∈ R𝑛 that approximates 𝐴𝑦.

1: Initialize 𝑧 ← ®0.
2: for 𝑡 iterations do
3: Sample a node 𝑗 uniformly at random from {1, . . . , 𝑛}.
4: Sample a neighbor 𝑖 ∈ N (𝑗) uniformly at random.

5: Sample 𝑥 uniformly at random from [0, 1].
6: if 𝑥 ≤ 1

𝑑𝑖
then

7: 𝑤 ← 1

𝑝𝑖
· 𝑦𝑖𝐴𝑖

where 𝑝𝑖 =
1

𝑛𝑑𝑖

∑
𝑗 ∈N(𝑖)

1

𝑑 𝑗
.

8: else
9: 𝑤 ← ®0.
10: 𝑧 ← 𝑧 +𝑤 .

11: return 1

𝑡 𝑧

analysis of the coupon collector problem [Section 3.6, 25] shows that that the expected

number of samples will be𝑂 (𝑑𝑖 log𝑑𝑖) ≤ 𝑂 (𝑑𝑖 log𝑛) .

The following lemma bounds the expected squared error of Al-

gorithm 4’s:

Lemma 5.2. Let 𝑧 ∈ R𝑛 be the output of Algorithm 4 with sampling
budget 𝑡 . We have:

E[∥𝐴𝑦 − 𝑧∥2
2
] = 𝑛

𝑡
∥𝑦∥2

2
− 1

𝑡
∥𝐴𝑦∥2

2

Proof. Let 𝑏 denote 𝑏 = 𝐴𝑦. Consider a single iteration of the

main loop in Algorithm 4, which generates a vector𝑤 that is added

to 𝑧. Let 𝑋𝑖 be an indicator random variable that is 1 if𝑤 is set to

a scaling of 𝐴𝑖
on that iteration, and 0 otherwise. 𝑋𝑖 = 1 if and

only if 1) a neighbor of 𝑖 is sampled at Line 3 of the algorithm, 2) 𝑖

is sampled at Line 4 of the algorithm, and 3) the uniform random

variable 𝑥 satisfies 𝑥 < 1/𝑑𝑖 . So, we see that Pr[𝑋𝑖 = 1] is exactly
equal to 𝑝𝑖 =

1

𝑛𝑑𝑖

∑
𝑗 ∈N(𝑖)

1

𝑑 𝑗
. It follows that, by the time we reach

Line 11,𝑤 is an unbiased estimator for 𝑏. I.e., E[𝑤] = 𝑏. Of course,

this also implies that E[𝑧] = 𝑏.

Our goal is to show that E[∥𝑏 − 𝑧∥2] = 𝑛
𝑡 ∥𝑦∥

2

2
− 1

𝑡 ∥𝑏∥
2

2
. Since

the random vector 𝑏 − 𝑧 has mean zero and is the average of 𝑡 i.i.d.

copies of the mean zero random vector 𝑏 −𝑤 , it suffices that show:

E[∥𝑏 −𝑤 ∥2
2
] = 𝑛∥𝑦∥2

2
− ∥𝑏∥2

2
. (9)

By linearity of expectation and the fact that E[𝑤] = 𝑏, we have

E[∥𝑏 −𝑤 ∥2
2
] = ∥𝑏∥2

2
+ E[∥𝑤 ∥2

2
] − 2⟨E[𝑤], 𝑏⟩ = E[∥𝑤 ∥2

2
] − ∥𝑏∥2

2
.

So to prove (9), we need to show that E[∥𝑤 ∥2
2
] = 𝑛∥𝑦∥2

2
. We expand

𝑤 in terms of the indicator random variables𝑋1, . . . , 𝑋𝑛 . Notice that

since we only sample one column in each iteration, the random

variable 𝑋𝑖𝑋 𝑗 = 0 for all 𝑖 ≠ 𝑗 . Thus we have

E[∥𝑤 ∥2
2
] =

𝑛∑
𝑘=1

E

∑

𝑖, 𝑗 ∈[𝑛]

𝑋𝑖𝑋 𝑗

𝑝𝑖𝑝 𝑗
(𝐴𝑖𝑦𝑖)𝑘 (𝐴 𝑗𝑦 𝑗)𝑘


=

𝑛∑
𝑘=1

E

𝑛∑
𝑖=1

𝑋 2

𝑖

𝑝2
𝑖

(𝐴𝑖𝑦𝑖)2𝑘

 =
𝑛∑
𝑖=1

1

𝑝𝑖
· ∥𝐴𝑖𝑦𝑖 ∥22 =

𝑛∑
𝑖=1

𝑛𝑦2𝑖 .

In the last equalities we used the fact that E[𝑋 2

𝑖
] = 𝑝𝑖 and that, for

a normalized graph adjacency matrix, ∥𝐴𝑖 ∥2
2
=
∑

𝑗 ∈N(𝑖)
1

𝑑𝑖𝑑 𝑗
= 𝑛𝑝𝑖 .

This proves (9), from which we conclude the lemma. □

Using Lemma 5.2, we show that there is an 𝜖MV-approximate

matrix-vector oracle for 𝐴 based on Algorithm 4 with success prob-

ability at least 1 − 𝛿 that runs in 𝑂 (𝑛 𝜖MV
−2

log
2 (1

𝛿
)) time.

Proposition 5.3. Let 𝐴 ∈ R𝑛×𝑛 be the symmetric normalized adja-
cency matrix of an 𝑛-vertex graph 𝐺 and let 𝜖MV, 𝛿 ∈ (0, 1) be fixed
constants. There is an algorithm that, given a vector 𝑦 ∈ R𝑛 , and
access to 𝐺 as described above, takes 𝑂 (𝑛 𝜖MV

−2
log(1

𝛿
)) expected

time and outputs a vector 𝑧 ∈ R𝑛 such that ∥𝑧 − 𝐴𝑦∥2 ≤ 𝜖MV ∥𝑦∥2
with probability at least 1 − 𝛿 .

Proof. By Lemma 5.2, we have that E[∥𝐴𝑦 − 𝑧∥2
2
] ≤ 𝑛

𝑡 ∥𝑦∥
2

2
. Fix

𝑡 = 48𝑛 𝜖MV
−2
. Then, by Lemma 5.2 and Markov’s inequality, we

have that when Algorithm 4 is called on 𝐴 with parameter 𝑡 ,

Pr[∥𝐴𝑦 − 𝑧∥2 >
𝜖MV

4

∥𝑦∥2] ≤
16𝑛∥𝑦∥2

2

𝑡 𝜖MV2 ∥𝑦∥2
2

≤ 1

4

. (10)

1153

Sublinear Time Spectral Density Estimation STOC ’22, June 20–24, 2022, Rome, Italy

In order improve our success probability from 3/4 to 1 − 𝛿 , we use
the standard trick of repeating the above process 𝑟 = 𝑐 log(1

𝛿
) times

for a constant 𝑐 to be fixed later. Let 𝑧1, . . . , 𝑧𝑟 ∈ R𝑛 be the output

of running Algorithm 4 𝑟 times with parameter 𝑡 . We can return as

our estimate for 𝐴𝑦 the first 𝑧𝑖 such that ∥𝑧𝑖 − 𝑧 𝑗 ∥2 ≤ 𝜖MV
2
∥𝑦∥2 for

at least 𝑟/2 + 1 vectors 𝑧 𝑗 from 𝑧1, . . . , 𝑧𝑛 .

To see why this works, note that a Chernoff bound can be used

to claim that with probability > 1 − 𝛿 , at least 𝑟/2 + 1 vectors 𝑧 𝑗
from 𝑧1, . . . , 𝑧𝑟 have that ∥𝑧 𝑗 −𝐴𝑦∥2 ≤ 𝜖MV

4
∥𝑦∥2.

By a triangle inequality we have that for all such 𝑧 𝑗 and 𝑧𝑘 ,

∥𝑧 𝑗 − 𝑧𝑘 ∥2 ≤ ∥𝑧 𝑗 −𝐴𝑦∥2 + ∥𝑧𝑘 −𝐴𝑦∥2 ≤
𝜖MV

2

∥𝑦∥2 .

Thus, the 𝑧𝑖 we picked must satisfy that ∥𝑧𝑖 −𝐴𝑦∥ ≤ 3𝜖MV
4
∥𝑦∥2 by

the triangle inequality.

All that remains is to bound the expected runtime of Algorithm

4, which we will run 𝑟 separate times. To do so, note that all index

sampling can be done in just 𝑂 (𝑡) time, since sampling a random

vertex and a random neighbor of the vertex are assumed to be𝑂 (1)
time operations. The costly part of the algorithm is computing the

sampled column𝑤 at each iteration. In the case that𝑤 = ®0, this cost
is of course zero. However, when𝑤 = 1

𝑝𝑖
𝐴𝑖𝑦𝑖 for some 𝑖 , computing

the column and adding it to 𝑧 takes𝑂 (𝑑𝑖) time, which can be large in

the worst case. Nevertheless, we show that it is small in expectation.

This may seem a bit surprising: while nodes with high degree

are more likely to be sampled by Line 4 in Algorithm 4, they are

rejected with higher probability in Line 6. Formally, let nnz(𝑤)
denote the number of non-zero entries in𝑤 . We have: E

[
nnz(𝑤)

]
=∑𝑛

𝑖=1 nnz(𝐴𝑖) · 𝑝𝑖 =
∑𝑛
𝑖=1

∑
𝑗 ∈N(𝑖)

𝑑𝑖
𝑛 ·𝑑𝑖𝑑 𝑗

= 1

𝑛

∑𝑛
𝑖=1

∑
𝑗 ∈N(𝑖)

1

𝑑 𝑗
=

1.

The final equality follows from expanding the double sum: since

node 𝑗 has exactly 𝑑 𝑗 neighbors,
1

𝑑 𝑗
appears exactly 𝑑 𝑗 times in the

sum. So

∑𝑛
𝑖=1

∑
𝑗 ∈N(𝑖)

1

𝑑 𝑗
= 𝑛.

We run Algorithm 4 with 𝑡 = 𝑂 (𝑛/𝜖MV
2) iterations, so it fol-

lows that the expected total sparsity of all𝑤 ’s constructed equals

𝑂 (𝑛/𝜖MV
2), which dominates the expected running time of our

method. □

Proof of Theorem 1.1. The accuracy and running time claim

follows from combining the 𝜖MV-approximate vector multiplication

oracle described in Proposition 5.3 with Algorithm 1, which is

analyzed in Theorem 1.3. □

As discussed in the introduction, Cohen et al. [8] prove a result

which matches the guarantee of Theorem 1.1, but with runtime of

2
𝑂 (1/𝜖)

– i.e., with no dependence on 𝑛. In comparison, our result

depends linearly on 𝑛, but only polynomially on 1/𝜖 . In either case,

the result is quite surprising, as the runtime is sublinear in the input

size: 𝐴 could have up to 𝑂 (𝑛2) non-zero entries.

6 EXPERIMENTS
We support our theoretical results by implementing our Cheby-

shev moment matching method (Algorithm 1). When using exact

matrix-vector multiplications, the kernel polynomial method (KPM)

of Algorithm 6 [5] and the stochastic Lanczos quadrature method

(SLQ) studied in [6] have both been confirmed to work well em-

pirically. So, one set of experiments is aimed at comparing these

10 20 30 40 50
N

10−3

10−2

10−1

100

E
rr
or

cliquePlusRandBipartite
SLQ

Moment Matching

KPM

10 20 30 40 50
N

10−3

10−2

10−1

100
Erdos992

SLQ

Moment Matching

KPM

10 20 30 40 50
N

10−3

10−2

10−1

100

E
rr

or

uniform
SLQ

Moment Matching

KPM

10 20 30 40 50
N

10−3

10−2

10−1

100
gaussian

SLQ

Moment Matching

KPM

10 20 30 40 50
N

10−3

10−2

10−1

100
resnet20

SLQ

Moment Matching

KPM

10 20 30 40 50
N

10−3

10−2

10−1

100
hypercube

SLQ

Moment Matching

KPM

Figure 2: Wasserstein error of density estimate resulting
from approximate Chebyshev moment matching method
(MM), the Jackson damped kernel polynomial method
(KPM) and Stochastic LanczosQuadrature (SLQ)method. For
MM and KPM, Hutchinson’s estimator is used to estimate
the Chebyshev moments. The x-axis corresponds to the
number of moments computed for MM and KPM, and the
number of Lanczos iterations used for SLQ. All methods use
5 (random) starting vectors except for resnet20 and hyper-
cube that use 1 starting vector, so the 𝑥-axis is directly pro-
portional to the number of matrix-vector multiplications
used by each method. Each experiment is repeated 10 times;
the solid line represents themedian error of the 10 trials and
the shaded regions represent the first and third quartiles.

methods to the moment matching method (MM) implemented with

exact matrix-vector multiplications. A second set of experiments

evaluates the performance of the MM and KPM methods when im-

plemented with approximate matrix-vector multiplies. Specifically,

we use our sublinear time randomized method for multiplication

by graph adjacency matrices from Section 5.

We consider the normalized adjacency matrix of three graphs,

two of which we construct and one which we obtain from a publicly

available dataset for sparse matrices:

• cliquePlusRandBipartite is a graph with 10000 vertices,

partitioned into two disconnected components. The first

component is a clique with 5000 nodes and the second is

1154

STOC ’22, June 20–24, 2022, Rome, Italy Vladimir Braverman, Aditya Krishnan, and Christopher Musco

−1.0 −0.5 0.0 0.5 1.0

100

101

102

cliquePlusRandBipartite

−1.0 −0.5 0.0 0.5 1.0

100

101

102

103

Erdos992

−1.0 −0.5 0.0 0.5 1.0

100

101

gaussian

−1.0 −0.5 0.0 0.5 1.0

101

2× 101

3× 101

uniform

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

103

resnet20

−1.0 −0.5 0.0 0.5 1.0

100

101

102

103

hypercube

Figure 3: Histograms of the eigenvalues of
cliquePlusRandBipartite, Erdos992, gaussian, uniform,
resnet20 and hypercube using 50 equally spaced buckets.

a bipartite graph with 2500 vertices in each partition, con-

structed by sampling each of the 2500
2
possible edges inde-

pendently with probability 0.05. This graph has a normalized

adjacency matrix with ∼ 5000 eigenvalues at 0, two eigenval-

ues at 1, one at −1 and the rest of its eigenvalues are roughly
evenly spread out between −0.5 and 0.5.

• hypercube is a 16384 vertex boolean hypercube graph on

14 bit strings.
9
Its normalized adjacency matrix has eigen-

values at −1,− 6

7
, −5
7
, . . . , 0, . . . , 6

7
, 1. The multiplicity of the

0 eigenvalue is largest, with eigenvalues closer to −1 and 1

having lower multiplicity.

• Erdos992 is an undirected graph with 6100 vertices, con-

taining 15030 edges from the sparse matrix suite of [9]. Its

normalized adjacency matrix has ∼ 5000 eigenvalues at 0,

one at 1 and the rest evenly spread out between −0.5 and
0.5.

We consider three additional matrices to evaluate the performance

of MM against KPM and SLQ when exact matrix-vector multiplies

are used to estimate the Chebyshev moments:

• gaussian is a 1000 × 1000 matrix constructed by drawing

𝑛 = 1000 Gaussian random variables 𝜆1, · · · , 𝜆𝑛 ∼ N(0, 1)
and a random orthogonal matrix 𝑈 ∈ R𝑛×𝑛 , and outputting

𝑈Λ𝑈⊤ where Λ is a 𝑛 × 𝑛 diagonal matrix with entries

𝜆1
max𝑖 𝜆𝑖

, . . . ,
𝜆𝑛

max𝑖 𝜆𝑖
.

9
A boolean hypercube contains a vertex for each distinct 𝑏 bit string, and an edge

between two vertices if the corresponding strings differ on exactly 1 bit.

• uniform is a 1000 × 1000 matrix constructed identically to

gaussian except with 𝜆1, . . . , 𝜆𝑛 drawn independently and

uniformly from the interval [−1, 1].
• resnet20 is a Hessian for the ResNet20 network [14] trained
on the Cifar-10 dataset. The matrix is 3000 × 3000 and its

eigenvalues have been normalized to lie between [−1, 1] for
our experiments.

For reference, the histogram of the eigenvalues for each matrix are

shown in Figure 3 by breaking the range of the eigenvalues into 50

equally spaced intervals for each matrix.

In the first set of experiments, we compute the normalized Cheby-

shev moments 𝜏1, . . . , 𝜏𝑁 of each of the six aforementioned matri-

ces using Hutchinson’s moment estimator as in Algorithm 2, and,

compute a spectral density estimate by passing these moments

into Algorithm 1 for approximate Chebyshev moment matching

method (MM)
10

and into Algorithm 6 [5] for the Jackson damped

kernel polynomial method (KPM). For KPM we compute the den-

sity with 𝑁 = 4, 6, 8, 10, . . . , 52 and for MM we compute it with

𝑁 = 4, 5, 6, 7, . . . , 52. We also compute the density estimate result-

ing from the stochastic Lanczos quadrature (SLQ) method of [6]

with 𝑁 = 4, 5, 6, 7, . . . , 52 Lanczos iterations. We use ℓ = 5 starting

vectors (i.e., random vectors in Hutchinson’s method, or random

restarts of the SLQ method) for each method, except for the large

resnet20 and hypercube matrices, for which ℓ = 1 random vector

is used. Each experiment is repeated 10 times and the Wasserstein-

error between the true density and the density estimate are shown

in Figure 2. The results show that MM is more than 10x more accu-

rate than KPM in almost all cases. The error of MM and SLQ are

more comparable, except for hypercube, on which the errors are

comparable for larger values of 𝑁 . Both methods show an unusual

convergence curve for this matrix, which we believe is related to

the sparsify of its spectrum (a small number of distinct eigenvalues).

In our second set of experiments, we test the performance of

our randomized sublinear time algorithm (Algorithm 4) for approx-

imate matrix-vector multiplies with normalized graph adjacency

matrices. This method is used to estimate Chebyshev moments in

Algorithm 1 (MM) and in Algorithm 6 (KPM) of [5]. We compute

the normalized Chebyshev moments 𝜏1, . . . , 𝜏𝑁 for 𝑁 = 12 using

various values of the oversampling parameter 𝑡 in the approximate

matrix-vector multiplication method. We then compute, for each

value of 𝑡 , the average number of non-zero elements of 𝐴 accessed

by the method for each matrix-vector product, which reflects the

runtime improvement over a full matrix-vector product. Figure 4

plots the Wasserstein error of the density estimate (y-axis) and the

average fraction of non-zeros used in each matrix-vector multipli-

cation (x-axis) to estimate the Chebyshev moments used by MM

and KPM respectively.

The results show that the KPM method can achieve error nearly

identical to that obtained when using exact matrix-vector multi-

plications, while only using a small fraction of non-zero entries

for each approximate matrix-vector multiplication. Specifically,

on the dense cliquePlusRandBipartite graph and even the rel-

atively sparse hypercube graph, KPM uses less than 15% of the

non-zero entries on average to achieve nearly the same error as

10
We solve the optimization problem from Line 3 by formulating it as a linear

program and using an off-the-shelf solver from scipy.

1155

Sublinear Time Spectral Density Estimation STOC ’22, June 20–24, 2022, Rome, Italy

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of non-zeros sampled

10−2

10−1

100

E
rr

or

cliquePlusRandBipartite
Moment Matching

KPM

0.2 0.4 0.6 0.8 1.0
Fraction of non-zeros sampled

10−3

10−2

10−1

100

E
rr

or

Erdos992
Moment Matching

KPM

0.2 0.4 0.6 0.8 1.0
Fraction of non-zeros sampled

10−2

10−1

100

E
rr

or

hypercube
Moment Matching

KPM

Figure 4: Wasserstein error of density estimate returned by
MM and KPM on the hypercube, cliquePlusRandBipartite
and Erdos992 graphs using approximate matrix-vector mul-
tiplications (Algorithm 4) to estimate the Chebyshev mo-
ments. For both methods, 𝑁 = 32moments are computed us-
ing 5 random starting vectors for cliquePlusRandBipartite
and Erdos992 and 1 for hypercube. The x-axis corresponds to
the average fraction of non-zeros sampled from the matrix
and the y-axis is the Wasserstein error from the resulting
density estimate. Each experiment is repeated for 10 trials:
the solid line correponds to the median error of the 10 tri-
als and the shaded region corresponds to the first and third
quartiles.

when using exact multiplies. On cliquePlusRandBipartite, the
MM method achieves error close to that of the exact method while

using ∼ 20% of the non-zero entries on average. On the sparse

Erdos992 and hypercube graphs, the MM method requires ∼ 80%

of the non-zero entries on average to achieve error comparable to

exact matrix-vector multiplications. However, it still obtains a good

approximation (consistently better than the KPM method) when

coarse matrix-vector multiplications are used (i.e., fewer non-zeros

are sampled).

ACKNOWLEDGMENTS
We thank Cameron Musco, Raphael Meyer, and Tyler Chen for

helpful discussions and suggestions. This research was supported

in part by NSF CAREER grants 2045590 and 1652257, ONR Award

N00014-18-1-2364, and the Lifelong Learning Machines program

from DARPA/MTO.

A PROOF OF FACT 3.3
Proof. We start by doing a change of variables; set 𝑥 = cos𝜃

and note that 𝑑𝑥 = − sin𝜃𝑑𝜃 . Substituting this into the expression

for ⟨𝑓 ,𝑤 ·𝑇𝑘 ⟩ and noting that 𝑇𝑘 (cos𝜃) = cos𝑘𝜃 gives us that√
2

𝜋

∫
1

−1
𝑓 (𝑥) 𝑇𝑘 (𝑥)√

1 − 𝑥2
𝑑𝑥 =

√
2

𝜋

∫
0

−𝜋
−𝑓 (cos𝜃) (cos𝑘𝜃)𝑑𝜃

since

√
1 − cos2 𝜃 = sin𝜃 and 𝑑𝑥 = − sin𝜃𝑑𝜃 . Integrating by parts

and noting that (𝑓 (cos𝜃)
∫
− cos𝑘𝜃𝑑𝜃) |0−𝜋 = −𝑓 (cos𝜃) sin𝑘𝜃

𝑘
|0−𝜋 =

0 gives us that ⟨𝑓 ,𝑤 ·𝑇𝑘 ⟩ =
√

2

𝜋

∫
0

−𝜋
sin𝑘𝜃
𝑘

𝑑 𝑓 (cos𝜃).
We use the definition of the Riemann-Stieltjes integral and let

𝑀 ∈ N+ be a parameter and P𝑀 = {−𝜋 = 𝑥0 ≤ · · · ≤ 𝑥𝑀 = 0} be
the set of all𝑀 intervals partitioning the interval [−𝜋, 0]. Then for a
partition 𝑃 ∈ P𝑀 we denote norm(𝑃) to be the length of its longest

sub-interval. The Riemann-Stieltjes integral

∫
0

−𝜋 sin(𝑘𝜃) 𝑑 𝑓 (cos𝜃)
can be written as

lim

𝜖→0

sup

𝑀, 𝑃 ∈P𝑀
s.t.norm(𝑃) ≤𝜖

𝑚−1∑
𝑖=0

(𝑓 (cos𝑥𝑖+1) − 𝑓 (cos𝑥𝑖)) sin𝑘𝑥𝑖 .

Since 𝑓 (𝑥) ∈ lip
1
and | sin𝑘𝜃 | ≤ 1 we can bound the magnitude

of the above summation as

���∑𝑚−1
𝑖=0 (𝑓 (cos𝑥𝑖+1) − 𝑓 (cos𝑥𝑖)) sin𝑘𝑥𝑖

���
≤ ∑𝑚−1

𝑖=0 𝜆 | cos𝑥𝑖+1 − cos𝑥𝑖 | ≤ 2.

The last inequality follows from the fact that cos(𝜃) is 1-Lipschitz.
Putting these bounds together gives us that |⟨𝑓 ,𝑤 ·𝑇𝑘 ⟩| ≤ 2𝜆/𝑘 . □

REFERENCES
[1] Jared L. Aurentz, Vassilis Kalantzis, and Yousef Saad. 2017. Cucheb: A GPU imple-

mentation of the filtered Lanczos procedure. Computer Physics Communications
220 (2017), 332 – 340.

[2] Haim Avron and Sivan Toledo. 2011. Randomized Algorithms for Estimating

the Trace of an Implicit Symmetric Positive Semi-Definite Matrix. J. ACM 58, 2,

Article 8 (2011).

[3] Jess Banks, Jorge Vargas, Archit Kulkarni, and Nikhil Srivastava. 2019. Pseu-

dospectral Shattering, the Sign Function, and Diagonalization in Nearly Matrix

Multiplication Time. In Proceedings of the 61st Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS).

[4] Mark Braverman, Elad Hazan, Max Simchowitz, and Blake Woodworth. 2020.

The Gradient Complexity of Linear Regression. In Proceedings of the 33rd Annual
Conference on Computational Learning Theory (COLT), Vol. 125. 627–647.

[5] Vladimir Braverman, Aditya Krishnan, and Christopher Musco. 2021. Linear

and sublinear time spectral density estimation. arXiv preprint arXiv:2104.03461
(2021).

[6] Tyler Chen, Thomas Trogdon, and Shashanka Ubaru. 2021. Analysis of sto-

chastic Lanczos quadrature for spectrum approximation. In Proceedings of the
International Congress of Mathematicians 2021 (ICM).

[7] C. W. Clenshaw. 1955. A note on the summation of Chebyshev series. Math.
Comp. 9, 51 (1955), 118.

[8] David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant. 2018.

Approximating the Spectrum of a Graph. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD). 1263–
1271.

[9] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix

collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),

1–25.

[10] Prathamesh Dharangutte and Christopher Musco. 2021. Dynamic Trace Estima-

tion. Preprint (2021).
[11] Kun Dong, Austin R Benson, and David Bindel. 2019. Network density of states.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). 1152–1161.

[12] Petros Drineas, Ravi Kannan, and Michael W Mahoney. 2006. Fast Monte Carlo

algorithms for matrices I: Approximating matrix multiplication. SIAM J. Comput.
36, 1 (2006), 132–157.

[13] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. 2019. An Investigation into

Neural Net Optimization via Hessian Eigenvalue Density. In Proceedings of the
36th International Conference on Machine Learning (ICML), Vol. 97. 2232–2241.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[15] Michael F. Hutchinson. 1990. A stochastic estimator of the trace of the influence

matrix for Laplacian smoothing splines. Communications in Statistics-Simulation
and Computation 19, 2 (1990), 433–450.

[16] Dunham Jackson. 1912. On approximation by trigonometric sums and polynomi-

als. Transactions of the American Mathematical society 13, 4 (1912), 491–515.

[17] Dunham Jackson. 1930. The Theory of Approximation. Colloquium Publications,

Vol. 11. American Mathematical Society.

1156

STOC ’22, June 20–24, 2022, Rome, Italy Vladimir Braverman, Aditya Krishnan, and Christopher Musco

[18] Leonid Vital’evich Kantorovich and Gennadii Shlemovich Rubinshtein. 1957. On

a functional space and certain extremum problems. In Doklady Akademii Nauk,
Vol. 115. Russian Academy of Sciences, 1058–1061.

[19] Liran Katzir, Edo Liberty, and Oren Somekh. 2011. Estimating Sizes of Social

Networks via Biased Sampling. In Proceedings of the 20th International World
Wide Web Conference (WWW). 597–606.

[20] Weihao Kong and Gregory Valiant. 2017. Spectrum estimation from samples.

Ann. Statist. 45, 5 (10 2017), 2218–2247.
[21] Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. 2019. The Eigenvalues

Slicing Library (EVSL): Algorithms, Implementation, and Software. SIAM Journal
on Scientific Computing 41, 4 (2019), C393–C415.

[22] Lin Lin, Yousef Saad, and Chao Yang. 2016. Approximating Spectral Densities of

Large Matrices. SIAM Rev. 58, 1 (2016), 34–65.
[23] Michael Mahoney and Charles Martin. 2019. Traditional and Heavy Tailed Self

Regularization in Neural Network Models. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML), Kamalika Chaudhuri and Ruslan

Salakhutdinov (Eds.), Vol. 97. 4284–4293.

[24] Raphael A. Meyer, Cameron Musco, Christopher Musco, and David Woodruff.

2020. Hutch++: Optimal Stochastic Trace Estimation. Proceedings of the 4th
Symposium on Simplicity in Algorithms (SOSA) (2020).

[25] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cam-

bridge University Press. https://doi.org/10.1017/CBO9780511814075

[26] Cameron Musco and Christopher Musco. 2015. Randomized Block Krylov Meth-

ods for Stronger and Faster Approximate Singular Value Decomposition. In

Advances in Neural Information Processing Systems 28 (NeurIPS). 1396–1404.
[27] Cameron Musco, Christopher Musco, and Aaron Sidford. 2018. Stability of the

Lanczos Method for Matrix Function Approximation. In Proceedings of the 29th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1605–1624.

[28] Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru, and

David P. Woodruff. 2018. Spectrum Approximation Beyond Fast Matrix Multipli-

cation: Algorithms and Hardness. Proceedings of the 9th Conference on Innovations
in Theoretical Computer Science (ITCS) (2018).

[29] Beresford N. Parlett. 1998. The symmetric eigenvalue problem. SIAM.

[30] Barak A. Pearlmutter. 1994. Fast exact multiplication by the Hessian. Neural
computation 6, 1 (1994), 147–160.

[31] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. 2018. The emergence

of spectral universality in deep networks. In Proceedings of the 21st International
Conference on Artificial Intelligence and Statistics (AISTATS). 1924–1932.

[32] Farbod Roosta-Khorasani and Uri M. Ascher. 2015. Improved Bounds on Sam-

ple Size for Implicit Matrix Trace Estimators. Foundations of Computational
Mathematics 15, 5 (2015), 1187–1212.

[33] Mark Rudelson and Roman Vershynin. 2013. Hanson-Wright inequality and

sub-Gaussian concentration. Electronic Communications in Probability 18 (2013).

[34] R.N. Silver and H. R oder. 1994. Densities of States of Mega-Dimensional Hamil-

tonian Matrices. International Journal of Modern Physics C 5, 4 (1994), 735–753.

[35] Max Simchowitz, Ahmed El Alaoui, and Benjamin Recht. 2018. Tight query

complexity lower bounds for PCA via finite sample deformed wigner law. In

Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC).
1249–1259.

[36] John Skilling. 1989. The Eigenvalues of Mega-dimensional Matrices. Springer

Netherlands, 455–466.

[37] Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang. 2019. Querying

a Matrix Through Matrix-Vector Products. In Proceedings of the 46th International
Colloquium on Automata, Languages and Programming (ICALP), Vol. 132. 94:1–
94:16.

[38] Lloyd N Trefethen. 2008. Is Gauss quadrature better than Clenshaw–Curtis?

SIAM review 50, 1 (2008), 67–87.

[39] Lin-Wang Wang. 1994. Calculating the density of states and optical-absorption

spectra of large quantum systems by the plane-wave moments method. Phys.
Rev. B 49 (1994), 10154–10158. Issue 15.

[40] Weiran Wang and Miguel A Carreira-Perpinán. 2013. Projection onto the prob-

ability simplex: An efficient algorithm with a simple proof, and an application.

arXiv preprint arXiv:1309.1541 (2013).
[41] Alexander Weiße, Gerhard Wellein, Andreas Alvermann, and Holger Fehske.

2006. The kernel polynomial method. Reviews of modern physics 78, 1 (2006),
275.

[42] David P. Woodruff. 2014. Sketching as a Tool for Numerical Linear Algebra.

Foundations and Trends in Theoretical Computer Science 10, 1–2 (2014), 1–157.
[43] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. 2020. Py-

Hessian: Neural Networks Through the Lens of the Hessian. In IEEE BigData.

1157

https://doi.org/10.1017/CBO9780511814075

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Paper Roadmap

	2 Preliminaries
	3 Approximate Chebyshev Moment Matching
	4 Efficient Chebyshev Moment Approximation
	4.1 Exact Matrix-Vector Multiplications
	4.2 Approximate Matrix-Vector Multiplications

	5 Sublinear Time Methods for Graphs
	6 Experiments
	Acknowledgments
	A Proof of Fact 3.3
	References

