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ABSTRACT

We present a new sublinear time algorithm for approximating
the spectral density (eigenvalue distribution) of an n X n normal-
ized graph adjacency or Laplacian matrix. The algorithm recovers
the spectrum up to € accuracy in the Wasserstein-1 distance in
O(n - poly(1/e)) time given sample access to the graph. This result
compliments recent work by David Cohen-Steiner, Weihao Kong,
Christian Sohler, and Gregory Valiant (2018), which obtains a so-
lution with runtime independent of n, but exponential in 1/e. We
conjecture that the trade-off between dimension dependence and
accuracy is inherent.

Our method is simple and works well experimentally. It is based
on a Chebyshev polynomial moment matching method that em-
ployees randomized estimators for the matrix trace. We prove that,
for any Hermitian A, this moment matching method returns an € ap-
proximation to the spectral density using just O(1/€) matrix-vector
products with A. By leveraging stability properties of the Chebyshev
polynomial three-term recurrence, we then prove that the method is
amenable to the use of coarse approximate matrix-vector products.
Our sublinear time algorithm follows from combining this result
with a novel sampling algorithm for approximating matrix-vector
products with a normalized graph adjacency matrix.

Of independent interest, we show a similar result for the widely
used kernel polynomial method (KPM), proving that this practical
algorithm nearly matches the theoretical guarantees of our moment
matching method. Our analysis uses tools from Jackson’s seminal
work on approximation with positive polynomial kernels.
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1 INTRODUCTION

A ubiquitous task in computational science, engineering, and data
science is to extract information about the eigenvalue spectrum of
a matrix A € R™". A full eigendecomposition takes at least O(n“)
time!, which is prohibitively expensive for large matrices [3, 29]. So,
we are typically interested in extracting partial information about
the spectrum. This can be done using iterative methods like the
power or Lanczos methods, which access A via a small number of
matrix-vector multiplications. Each multiplication takes at most
O(n?) time to compute, and can be accelerated when A is sparse or
structured, leading to fast algorithms.

However, the partial spectral information computed by most iter-
ative methods is limited. Algorithms typically only obtain accurate
approximations to the outlying, or largest magnitude eigenvalues of
A, missing information about the interior of A’s spectrum that may
be critical in applications. For example, in network science, clusters
of interior eigenvalues can indicate graph structures like repeated
motifs [11]. In deep learning, information on how the spectrum of
a weight matrix differs from its random initialization can give hints
about model convergence and generalization [23, 31], and Hessian
eigenvalues are useful in optimization [13]. Coarse information
about interior eigenvalues is also used to initialize parallel GPU
based methods for full eigendecomposition [1, 21].

To address these needs and many other applications, there has
been substantial interest in methods for estimating the full spectral
density of a matrix A [41]. Concretely, assume that A is Hermit-
ian with real eigenvalues Ay, ..., A,. We view its spectrum as a
probability density s:

1 n
Spectral density: s(x) = - Z O(x = Ap). (1)
i=1
Here § is the Dirac delta function. The goal is to find a probabil-
ity density g that approximates s in some natural metric, like the
Wasserstein distance. The density g can either be continuous (rep-
resented in some closed form) or discrete (represented as a list of
approximate eigenvalues Moo An). See Figure 1 for an illustration.
Both sorts of approximation are useful in applications.

Methods for spectral density estimation that run in o(n®) time
were first introduced for applications in condensed matter physics
and quantum chemistry [34, 36, 39]. Many are based on the combina-
tion of two important tools: 1) moment matching, and 2) stochastic
trace estimation. Specifically, if we had access to moments of the

L yn L s )Ll?, 1yn )Ll.3, etc., then we

distribution s, ie. XL, A, 5 2 1

could find a good approximation ¢ by finding a distribution that

Here w < 2.373 is the fast matrix multiplication exponent.


https://doi.org/10.1145/3519935.3520009
https://doi.org/10.1145/3519935.3520009
https://doi.org/10.1145/3519935.3520009
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519935.3520009&domain=pdf&date_stamp=2022-06-10

STOC ’22, June 20-24, 2022, Rome, Italy

o Spectrum of A
—o Low-rank Approximation

Spectrum of A
— Spectral Density Approximation

Vladimir Braverman, Aditya Krishnan, and Christopher Musco

Spectrum of A
-0 Discretized Spectral Density Approximation

. 4 LBt (LR

b

LB

1 1
0.5+ ‘ ‘ ‘ 0.5+
0 0
- 0 0.5 1 -

A

Figure 1: Different approximations for the spectrum of a matrix A with eigenvalues in [-1, 1]. A typical approximation com-
puted using an iterative eigenvalue algorithm mostly preserves information about the largest magnitude eigenvalues. In con-
trast, the spectral density estimates in the two right figures coarsely approximate the entire distribution of A’s eigenvalues,
the first with a low-degree polynomial, and the second with a discrete distribution.

agrees with s on these moments. Moreover, these spectral moments
can be computed via the matrix trace: note that tr(A) = X7, 4;,
tr(A?) = P /1?, tr(A3) = o /1?, etc. While we cannot hope to
compute tr(Ak) exactly in o(n®) time, thanks to stochastic trace
estimators like Hutchinson’s method, this trace can be approxi-
mated much more quickly [2, 15]. Such estimators are based on
the observation that, for any matrix B € R™", tr(B) can be well
approximated by tr(GTBG) where G € R™™ contains random
sub-Gaussian entries and m < n. For any k degree polynomial g,
GTg(A)G can be computed with just O(km) matrix-vector multi-
plications, so we can quickly approximate any low-degree moment
of A’s spectral density.

While this high-level approach and related techniques have been
applied successfully to estimating the spectra of a wide variety of
matrices [22, 41], theoretical guarantees have only appeared rela-
tively recently. Perhaps surprisingly, it can be shown that many
common methods provably run in linear time for any Hermitian
matrix A. For instance, in work concurrent to ours, Chen, Trog-
dan, and Ubaru [6] show that for any n X n Hermitian matrix A
with spectral density s, the popular Stochastic Lanczos Quadrature
(SLQ) method provably computes an approximate spectral density
q satisfying:

Wi(s,q) < e @)

using just poly(1/€) matrix-vector multiplications with A. Above
Wi denotes the Wasserstein-1 distance, aka the “earth-movers dis-
tance”.? We defer a formal definition of W to Section 2. The measure
is convenient because, unlike many other measures of statistical
distance, it allows a discrete distribution like the spectral density
to be meaningfully compared to a possibly continuous approxi-
mation. For discrete approximations, the Wasserstein distance is
related to a simple #; metric. If we let A = [A4,...,A4,] be a vector
of A’s eigenvalues and A= [il, el in] be a vector of approximate
eigenvalues, then ||A — Al < neifand only if Wi (s, q) < e for the
discrete spectral density q with eigenvalues in A.

As a step towards our main sublinear time result, in this work we
show that similar bounds to [6] can also be proven for the popular
kernel polynomial method (KPM) [41] and for a natural moment
matching algorithm based on Chebyshev polynomials.

2We assume ||A||, < 1 for simplicity of stating errror guarantees, noting that
Wasserstein distance is not scale invariant. This assumption is without loss of generality
since ||A]|2 can always be scaled after computing the top eigenvector up to constant
fact accuracy, which takes just O (log n) matrix-vector multiplications [26].
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1.1 Our Contributions

With linear time spectral density estimation algorithms in hand for
all Hermitian matrices, a natural question is if we can go faster for
specific classes of matrices. In particular, there has been growing
interest in SDE algorithms for graph structured matrices like ad-
jacency matrices and Laplacians [11]. A remarkable recent result
by Cohen et al. [8] shows that, for normalized graph adajeceny
matrices, it is possible to achieve guarantee (2) in 2001/€) time,
given appropriate query access to the target graph. Importantly,
this runtime does not depend on n. However, given the exponen-
tial dependence on ¢, the algorithm is impractical even for coarse
spectral approximations.

Our main contribution is a method that obtains a polynomial
dependence on ¢, at the cost of a linear dependence on the matrix
dimension n. Since A can have n? non-zero entries, the runtime is
still sublinear in the problem size, but with a much more acceptable
dependence on accuracy.

THEOREM 1.1 (SUBLINEAR TIME SPECTRAL DENSITY ESTIMATION
FOR GRAPHS.). Let G = (V, E) be an unweighted, undirected n-vertex
graph and let A € R™" be the normalized adjacency of G with
spectral densitys. Lete,d € (0,1) be fixed values. Assume that we can
1) uniformly sample a random vertex in constant time, 2) uniformly
sample a random neighbor of any vertex i € V in constant time,
and 3) for a vertex i with degree d;, read off all neighbors in O(d;)
time.3 Then there is a randomized algorithm with expected running
time O(npoly(log(1/6)/€)) which outputs a density function q :
[-1,1] — R* such that W (q, s) < € with probability at least 1 — §.

Note that the normalized graph Laplacian L = I — A has the
same eigenvalues as A up to a shift and reflection, so Theorem 1.1
also yields a sublinear time result for normalized Laplacians, whose
spectral densities are of interest in network science [11].

1.1.1  Robust spectral density estimation. Theorem 1.1 is proven
in Section 5. A key component of the result is a sublinear time
routine for computing coarse approximate matrix-vector products
with any normalized graph adjacency matrix. To make use of such
a routine, we need to develop an SDE algorithm that is robust to
the use of an approximate matrix-vector oracle. This is one of the

3 A standard adjacency list representation of the graph would support these oper-
ations. As discussed in Section 5, assumption (3) can be eliminated at the cost of an
extra log n in the runtime as long as we know vertex degrees.
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main contributions of our work, as previous methods assume exact
matrix-vector products. Formally, we assume access to the oracle:

Definition 1.2. An epqy-approximate matrix-vector multiplication
oracle for A € R™" and error parameter epyy € (0,1) is an algo-
rithm that, given any vector y € R”, outputs a vector z such that
llz—Ayll2 < emv ||A]l2]lyll2. We will denote a call to such an oracle
for by AMV(A, y, emv)-

In Section 4.2 we prove the following for any Hermitian matrix
A (e.g., real symmetric) under the assumption that [|Alj2 < 1, ie.,
that A’s eigenvalues lie in [-1, 1]:

THEOREM 1.3 (ROBUST SPECTRAL DENSITY ESTIMATION). Let A €
R™" be a Hermitian matrix with spectral densitys and ||A||z < 1. Let
C,C’,C" be fixed positive constants. For any €,8 € (0,1) and epy =
C"”e731n(1/e), there is an algorithm (Algorithm 1, with Algorithm
3 used as a subroutine to approximate moments) which makes T =
Ct /e calls to an epqy-approximate matrix-vector oracle for A, where

c

£ = max (1, 76_2 logz(ﬁ) logz(%)), and in poly(1/e€) additional

runtime, outputs a probability density function q : [-1,1] — R=0
such that Wi (s, q) < € with probability 1 — 6.

The requirement for the approximate matrix-vector oracle in
Theorem 1.3 is relatively weak: we only need accuracy epy that
is polynomial in the final accuracy e. Importantly, there is no de-
pendence on 1/n, which allows for the theorem to be combined
with coarse AMV methods, including the one developed in Section
5 for normalized adjacency matrices. Based on random sampling,
that method returns an e-approximate matrix-vector multiply in
O(n/e?) time. This immediately yields our result for graphs given
by Theorem 1.1. We hope that Theorem 1.3 will find broader applica-
tions, since spectral density estimation is often applied to matrices
where we only have inexact access to A. For example, A might be a
Hessian matrix that we can multiply by approximately using sto-
chastic approximation [30, 43], or the inverse of some other matrix,
which we can multiply by approximately using an iterative solver.

We note that the result in Theorem 1.3 actually improves as n
increases. Intuitively, when A is larger, each matrix-vector product
returns more information about the spectral density s, so we can
estimate it more easily. We also remark that the density function ¢
returned by Algorithm 1 is in the form of an O(1/€%) dimensional
vector, with the i-th entry corresponding to probability mass placed
on the i-th point of an evenly spaced grid on [—1, 1]. Alternatively,
a simple rounding scheme that runs in O(n + poly(1/¢)) time can
€ s An]
satisfying ||A — A|l1 < ne, which, as discussed, is € close to the
spectral density s in Wasserstein distance (see Theorem B.1 [5]).

Our approach for density estimation is based on a moment match-
ing method that approximates Chebyshev polynomial moments in-
stead of the standard moments. Le. we approximate tr(Tp(A)), ...,
tr(Tiy (A)) where Ty, . . ., Ty are the Chebyshev polynomials of the
first kind and then return a distribution whose Chebyshev moments
closely match our approximations. By leveraging Jackson’s theo-
rem on polynomial approximation of Lipschitz functions [17], we
show how to bound the Wasserstein distance between two distri-
butions in terms of the magnitude of the differences between their
first N = O(1/e) Chebyshev moments (see Lemma 3.1). Unlike

extract from q a vector of approximate eigenvalues A = [Ay, ..
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results for standard moments [20], the bound shows a near-linear
relationship between Wasserstein distance and difference in the
Chebyshev moments. Ultimately this allows us to obtain a polyno-
mial dependence on € in the number of approximate matrix-vector
multiplications needed in Theorem 1.3.

Along the way to proving that theorem, in Section 4.1 we first
establish the follow result that is compatible with exact matrix-
vector multiplications:

THEOREM 1.4 (LINEAR TIME SPECTRAL DENSITY ESTIMATION). Let
A € R™" be a Hermitian matrix with spectral density s and ||A||2 <
1. Let C,C’ be fixed positive constants. For any €, 8 € (0, 1), there is
an algorithm (Algorithm 1, with Algorithm 2 used as a subroutine
to approximate moments) which computes T = Cf/e matrix-vector

multiplications with A where { = max (1, %e‘z logz(é) logz(%)),
and in poly(1/€) additional runtime, outputs a probability density
function q : [-1,1] — RZ such that Wy (s, q) < € with probability
1-4.

As in Theorem 1.3, the theorem improves as n increases, requir-
ing just T = O(1/e€) matrix vector multiplies when n = Q(1/€?).
The runtime of Theorem 1.4 is dominated by the cost of the matrix-
vector multiplications, which take O(T - n?) time to compute for
a dense matrix, and O(T - nnz(A)) time for a sparse matrix with
nnz(A) non-zero entries, so the algorithm runs in linear time when
€, 0 are considered constant.

Given Theorem 1.4, we prove Theorem 1.3 by showing that
the error introduced by approximate matrix-vector multiplications
does not hinder our ability to estimate the Chebyshev polynomial
moments. We do so by drawing on stability results for the three-
term recurrence relation defining these polynomials [7, 27].

Remark. The number of matrix-vector multiplies in Theorems 1.3
and 1.4, Nf = N -max(1, %e’z log?( %) log? (%)), can be improved
by up to alog?(1/e) factor in the regime when 7 is small, specifically
n < C’e %log?(1/(ed)). This is discussed further in Section 4.

1.1.2  Spectral density estimation via the kernel polynomial method.
In addition to the Chebyshev moment matching method used to
give Theorem 1.4 and Theorem 1.3, we prove that a version of
the popular kernel polynomial method (KPM) can be used to ob-
tain a spectral density estimate with similar running times, albeit
with slightly worse dependence on the accuracy parameter e.*
Along with the Stochastic Lanczos Quadrature method, the kernel
polynomial method is one of two dominant spectrum estimation
algorithms used in practice.

Given sufficiently accurate approximations to the Chebyshev
polynomial moments, the KPM method outputs a density function
q in the form of a O(1/¢€) degree polynomial multiplied by a simple
closed form function. This is described in Algorithm 6 in Section
A.2 of the full version [5] and should be thought of as analagous to
Algorithm 1. Specifically, we can obtain Theorem 1.4 and Theorem
1.3 with £ = max(1, %6_4 logz(é)) and emy = C”’e™# (in the ro-
bust setting), by using Algorithm 6 in Braverman et al. [5] instead of

“We believe that the extra O(e~2) factor in the number of matrix-vector multi-
plications (or calls to an approximate matrix-vector oracle in the robust setting) may
be an artifact of our analysis and can be further improved to match the approximate
Chebyshev moment matching bounds.
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Algorithm 1. Our proof in the KPM case is again based on Jackson’s
work on polynomial approximations for Lipschitz functions: we
take advantage of the fact that Jackson constructs approximations
that are both linear and preserve positivity [16].

1.2 Related Work

As mentioned, most closely related to our sublinear time result
on graphs is the result of Cohen et al. [8]. They prove a result
which matches the guarantee of Theorem 1.1, but with runtime of
2001/€) _j e with no dependence on n. In comparison, our result
depends linearly on n, but only polynomially on 1/e. An interesting
open question is if a poly(1/€) time algorithm is possible but we
conjecture that the trade-off between the dependence on n and the
accuracy € is inherent. Our bound in Lemma 3.1 on the Wasserstein-
1 distance between two distributions can be seen as analagous to
Proposition 1 from [20], which is the basis of the result in [8]. They
bound the Wasserstein-1 distance between two distributions in
terms of the differences in the standard moments of the distributions.
The bound requires an exponentially small dependence on 1/¢, i.e.
2-0/ e), in the difference between the standard moments while the
bound from Lemma 3.1 only requires an O(e/In(1/¢)) difference
in the Chebyshev moments.

As discussed, algorithms for spectral density estimation have
been studied since the early 90s [34, 36, 39] but only analyzed
recently. In addition to the work of Chen, Trogdon, and Ubaru that
was discussed [6], [28] provides an algorithm for computing an
approximate histogram for the spectrum of matrix. That result can
be shown to yield an € error approximation to the spectral density
in the Wasserstein-1 distance with roughly O(1/€®) matrix-vector
multiplications. This compares to the improved O(1/€) matrix-
vector multiplications required by our Theorem 1.4.

Matrix-vector query algorithms. Our work fits into a broader
line of work on proving upper and lower bounds on the matrix-
vector query complexity of linear algebraic problems, from top eigen-
vector, to matrix inversion, to rank estimation [4, 10, 24, 35, 37]. The
goal in this model is to minimize the total number of matrix-vector
multiplications with A, recognizing that such multiplications either
1) dominate runtime cost or 2) are the only way to access A when
it is an implicit matrix. The matrix-vector query model generalizes
both classical Krylov subspace methods, as well as randomized
sketching methods [42]. Studying other basic linear algebra prob-
lem when matrix-vector multiplication queries are only assumed
to be approximate (as in Definition 1.2) is an interesting future
direction.

1.3 Paper Roadmap

We describe notation and preliminaries on polynomial approxi-
mation in Section 2. We use these tools in Section 3 to prove that
a good approximation to the first O(1/€) Chebyshev polynomial
moments of the spectral density can be used to extract a good ap-
proximation in Wasserstein-1 distance. This result is the basis for
our result on robust spectral density estimation stated in Theorem
1.4 and linear time spectral density estimation stated in Theorem
1.3, which are proven in Section 4. Finally, we give a randomized
algorithm to implement an approximate matrix-vector multplica-
tion oracle for adjacency matrices in Section 5 and prove our main
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result, Theorem 1.1. In Section 6, we empirically investigate the
potential of combining approximate matrix-vector multiplications
with our moment matching method, the kernel polynomial method,
and the stochastic Lanczos quadrature method studied in [6]. We
show that all three can achieve accurate SDE estimates in sublinear
time for a variety of graph Laplacians.

2 PRELIMINARIES

Throughout we assume that A € R™" is Hermitian with eigen-
decomposition A = UAU*, where UU* = U*U = Ixn. We as-
sume that A’s eigenvalues satisfy -1 < 1, < --- <41 < 1.In
many applications A is real symmetric. We denote A’s spectral den-
sity by s, which is defined in (1). Our goal is to approximate s in
the Wasserstein-1 metric with another distribution g supported

n [—1,1]. Specifically, as per the dual formulation given by the
Kantorovich-Rubinstein theorem [18], for s, g supported on [—1, 1]
the metric is equal to:

Wi(s,q) = sup

fR-R

If)=f(y)]<lx-yl
In words, s and q are close in Wasserstein-1 distance if their dif-
ference has small inner product with all 1-Lipschitz functions f.
Alternatively, Wi (s, q) is equal to the cost of “changing” one distri-
bution to another, where the cost of moving one unit of mass from
x to y is |x — y|: this is the “earthmover’s” formulation common in
computer science. Note that (3) can be applied to arbitrary functions
s, g, even if they are not distributions, and we will occasionally do
so.

1
{/_1 fx) (s(x) —q(x))dx}_ 3)

Functions and inner products. We introduce notation for func-
tions used throughout the paper. Let ¥ ([—1, 1], R) denote the space
of real-valued functions on [-1,1]. For g,h € F([-1,1],R), let
(9.h) denote (g, h) = [ g(x)h(x)dx. For f € F([-1 1], R), we
define || f|l2 == V/{f, f) and let || f]|co denote the max-norm ||f||co =

maxee(_11] [f(0l. We let [[fll denote [I£ll; = [, £ (x)ldx.

Let #(Z, R) be the space of real-valued functions on the integers,
Z.For f,g € F(Z,R) let (f * g) denote the discrete convolution:
(f *g)[n] = Xm=—oo fImlgln — m]. Let ¥ (N, R) be the space of
real-valued functions on the natural numbers, N. For functions in
F(Z,R) or ¥ (N,R) we typically used square brackets instead of
parentheses.

For two functions f,gleth = fg(or h = f-g)and j = f/g
denote the pointwise product and quotient respectively. Le. h(x) =

f(x)g(x) and j(x) = f(x)/g(x) for all x.

Chebyshev polynomials. Our approach is based on approximating
Chebyshev polynomial moments of A’s spectral density, and we
will use basic properties of these polynomials, the k of which
we denote Tg. The Chebyshev polynomial of the first kind can be
defined via the recurrence:

To(x) =1 Ti(x)=x
Tje(x) = 2x - Tp—q (x) = T—2(x)

We will use the well known fact that the Chebyshev polynomials of
the first kind are bounded between [~1, 1], i.e. max,e[—1,1] [T (¥)] <
1.

for k > 2.
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Let w(x) = 11 = It is well known that (To, w - To) = 7, (Tp, w+
—-X
Ti.) = /2 for k > 0, and
(Ti,w-Tj) =0 fori # j.

In other words, the Chebyshev polynomials are orthogonal on
[-1, 1] under the weight function w. The first k Chebyshev polyno-
mials form an orthogonal basis for the degree k polynomials under
this weight function. We let Tj. denote the normalized Chebyshev

polynomial Ty = Ty //{Tj., w - Ti.).

Definition 2.1 (Chebyshev Series). The Chebyshev expansion or
series for a function f € £ ([-1,1],R) is given by

D fow-To) - T
k=0

We call ZkN: o fow- Ti) - T the truncated Chebyshev expansion or
series of degree N.

Other notation. Let [n] denote 1,...,n. For a scalar function
f R — Rand n X n matrix A with eigendecomposition UAU*
, we let f(A) denote the matrix function Uf(A)U*. Here f(A) is
understood to mean f applied entrywise to the diagonal matrix
A containing A’s eigenvalues. Note that tr(f(A)) = X7, f(4:).
When f(x) is a degree g polynomial, ¢g + c1x + ..., cgx9?, then we
can check that f(A) exactly equals col + c1A +...,cqA?, where I
is then n X n identity matrix. So f(A)y can be computed for any
vector y using g matrix-vector multiplications with A.

3 APPROXIMATE CHEBYSHEV MOMENT
MATCHING

In this section we show that the spectral density s of a Hermitian
matrix A with eigenvalues in [—1,1] can be well approximated
given access to approximations of the first N = O(1/¢€) normalized
Chebyshev polynomial moments of s, i.e., to approximations of
tr(T1(A)), ..., tr(Ty (A)). We state our result in Algorithm 1. We
show later, in Section 4, a method to approximate these moments
using a stochastic trace estimator, implemented with either exact
or approximate matrix vector multiplications with A.

Given approximations 71, . . ., 7 to the first N normalized Cheby-
shev moments of A, a natural approach is to find a probability
density g : [-1,1] — RY such that the first N normalized Cheby-
shev moments of g, i.e., (T3, Q- (In, q), closely approximate
q,...,7N. In order for this approximate moment matching ap-
proach to return a good spectral density estimate, it requires that:
for any density function q, if the first N Chebyshev moments of q
closely approximate those of s, then q must be close to s in Wasserstein
distance. To that end, we prove the following lemma:

Lemma 3.1. Let N € 4N" be a degree parameter and p, q be distri-
butions on [-1,1].

N - -
36 [T, ) = (T D)
ipg = g+, (P el

Lemma 3.1 shows that if the first N normalized Chebyshev mo-
ments of two distributions are identical, then the Wasserstein dis-
tance between the distributions is at most O(1/N). When the mo-
ments between the distributions differ, the contribution of the dif-
ference between the k-th moments to the Wasserstein distance is
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scaled by O(1/k). In particular, the lemma shows that deviation in
the lower moments between distributions contributes more to the
Wasserstein distance.

To prove Lemma 3.1, we will use two well-known results on ap-
proximating Lipschitz functions by polynomials. The first is proven
in [17]. and concerns uniform approximation of Lipschitz continu-
ous functions by a Chebyshev series:

Fact 3.2. Let f € F([-1,1],R) be a Lipschitz continuous function
with Lipschitz constant A > 0. Then, for every N € 4N*, there
exists N + 1 constants by [0] > --- > bN[N] > 0 such that the

polynomial fi kN=0 Zz %];]] (f,w - Ty)Tx has the property that

maxye[_11] |f(x) — fu (x)| < 181/N.

The coefficients of the polynomial in Fact 3.2 are not explicitly
stated since we only require the existence of such a polynomial in
order to prove Lemma 3.1. We defer the reader to Appendix A.1 in
[5] for an explicit construction of the polynomial® and Appendix
C.6 in the same for a proof of Fact 3.2.

Next, we state a well-known fact that the magnitude of the
inner-product of a Lipschitz function f with the k-th Chebyshev
polynomial (for k > 1) under the Chebyshev weight function w =
1/V1 - x2 is bounded by O(1/k), i.e., [{f,w - T)| < O(1/k). Our
proof is given in Appendix and is a simple adaptation of the proof
of Theorem 4.2 in [38].

Fact 3.3. Let f € ¥([—1,1],R) be a Lipschitz continuous function
with Lipschitz constant A > 0. Then, for any k > 1, we have that

[(fow - Tl = | [ F)Te (0w (x)dx]| < 2A/k.

With Fact 3.2 and 3.3 in place, we are now ready to prove Lemma
3.1

ProoF oF LEMMA 3.1. Recall that the dual formulation of the
Wasserstein-1 distance due to Kantorovich-Rubinstein gives us
that Wi (p.q) = supsepp, [ F(x)(p(x) = q(x))dx where lip; de-
notes the set of 1-Lipschitz functions on [—1,1]. Let f € lip; be an
arbitrary 1-Lipschitz function and let {l; N k] }Jk\]: 0 and fy be the
coeflicients and polynomial respectively from Fact 3.2 for function
f. We can then bound W = Wj (p, q) using the triangle inquality
as

1 _ 1 _
W< / F) — () (p(x) — g(x))dx + / Fu(p() - q())dx
-1 -1

31

Using the fact that f is Lipschitz and the bound from Fact 3.2, along

with the fact that p and q are distributions, we have that #; < 36/N.

It is left to bound tz. We expand fz using the Chebyshev series ex-

pansion of fy and note that {g/w, w - Ti.) = (g, Ti.) for any function
g € F([-1,1],R), giving us

t2=/1f_N(X)W(X)de
-1

w(x)

ty

1 (o)
= [ w0 Y- g T Tds
- k=0

5The construction of the polynomial fiy in Fact 3.2 and its uniform approximation
to f forms the basis of our alternate approach, the Kernel Polynomial Method, which
is discussed in-depth in Appendix A.1.
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1 N ¢
- [ v Z’bi '; (fowT) T(x) Z<p 0. T T (x) | dx.
L 2

By the orthogonality of the Chebyshev polynomials under the
weight function w and the fact that (Ty, Ty.) = 1 for all k € [N], we
can bound the magnitude of t; as

N
ltal < D 1w Tl [T p) = (T )]
k=1

since we have that 0 < bN[k]/I;N[O] < 1and |/_l1 T (p(x) —
q(x))dx| = |{Tx, p) — {Tx, q)| for each k € [N]. Additionally, since
p and q are distributions we have that (Ty, s) = (Ty, z) = 1/~+/m. We
then use the bound from Fact 3.3 on |{f, w - Ti.}| for each k € [N].
Putting this together gives us that |t;| < Zi\’:l 2T, p) — (Tie> @1 / k.

Putting together the bound on t; and t; gives us the bound on
Wi(p. q). o

Moment matching algorithm. With Lemma 3.1 in place, our
next step is develop a method to find a distribution g with Cheby-
shev moments closely matching a given set of target moments. In
order to search for a distribution, we consider an evenly-spaced grid
of the interval [-1,1]. Specifically, let d € N* be a discretization
parameter and let X; = [-1,-1 + Z 1= L 1] be a (d + 1)-
length evenly-spaced grid of the interval [-1,1]. Our goal is to
output a distribution supported on X, for an appropriately chosen
value of d. Any such distribution can be described by a vector in
R‘io such that the i-th entry corresponds to the probability mass
placed at point —1 + 2i/d on the grid. Where it is clear from the
context, we will denote the distribution and its probability mass
vector interchangeably.

In order to compute the first N normalized Chebyshev moments
of functions on the grid X, we define two matrices 7}’\‘]71 ’7]“\‘,1 € RNxd
such that for k € [N] and i € [d],

T (-1 + 2id)
— %
The matrix ‘71'\‘]1 corresponds to a “discretization” of the continuous
operator that computes the first N normalized Chebyshev moments
of a continuous function on [—1, 1]. In particular, for a distribution
q supported on Xy, we have that (g, T) = Zlfdzo qiTe (-1 +2i/d) =

(‘7;\?q)k. Notice that the matrix 7;\‘,1 does not contain the row for
To; since we are working with distributions we know that Ty(q) =
1/ f_ll qdx = 1/+/x for any distribution q on [—
‘7}'\}1 is the matrix ‘71'\? with the k-th row scaled by 1/k. With this
notation in place, we state the approximate moment matching
algorithm in full in Algorithm 1.

Note that the optimization problem in Line 3 of Algorithm 1
can easily be written as a linear program in O(d + N) variables
and constraints and hence can be solved efficiently in poly(N, d) =
poly(1/e) time®. Since this method is independent of the matrix

(T =T(-1+2i/d)  and (T, =

1,1]. The matrix

® Additionally, note that the optimization problem has a convex objective and
constraints — in partlcular the set of distributions supported on Xy is a convex set.
The objective function || 7} q — z||; is not differentiable, but has subgradients. Hence,
this program can be solved efficiently in poly(1/€) time using a projected subgradient
method. This requires an oracle that projects onto the the probability simplex supported
on the grid Xz - an algorithm that runs in O(d log d) time has been given in multiple
papers, see [40] for more details.
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Algorithm 1 Approximate Chebyshev Moment Matching

Input: Symmetric A € R™", degree parameter N € 4N*, algo-
rithm M(A) that computes moment approximations 71, ..., IN
with the guarantee that |7 — Ltr(Ti.(A))] < (N1n(eN))™ for

all k.
Output: A vector g corresponding to a discrete density function
n [-1,1].
1: For k = ., N use M to compute 71,...,7y and set z =
[T1/1,%2/2,...,TN/N].
2: Setd = [N®/2] and compute matrix ‘7;\? € RNXd, >

(T =T(-1+ D/
: Minimize ||
: Return q.

q —z||1 subjectto gT1=1and g > 0.

dimension n, it is a lower order term in the running time stated in
Theorems 1.4 and 1.3, as we will discuss in Section 4.

We show that when N = O(1/¢), Algorithm 1 returns a distribu-
tion satisfying W (s, q) < e.

Lemma 3.4. Lete € [0,1] and let N > 18/¢. Then the distribution
q: [-1,1] — R* returned by Algorithm 1 satisfies W1(q, s) < 3e.

Proor. We start by giving some notation — for a distribution
y: [-1,1] - R*, we denote 7y := [(T,y),..., (TN, y)] to be the
vector of the first N normalized Chebyshev moments of y. For
an integer k € N*, we denote k to be the vector in RF given by

k= [1,...,k] and for a vector y € RF write y/lz to denote the
vector y/k := [y1/1,. ..,y /k]. Notice then that we have 7, = ‘7;\‘[1q

and 74 /N = ﬁ?q.

We start by bounding the scaled differences in the first N nor-
malized Chebyshev moments of g and s in order to use Lemma
3.1 on g and st /N ~ &/Nlh < 17g/N ~ 2l + 2 = %/Nh <
174/ N - z|l1 + 77 - The first inequality follows by applying the tri-
angle 1nequahty and in the second inequality we used the fact that
lz = 7/l = S, 17 = @)kl /k < Ha - (NIn(eN)™ < 1/N.

Next we show that there exists a distribution g” supported on X
such that ||?q//ﬁ —z|| £ 1/N. To this end, consider the following
distribution ¢* on X :

q"(x) = Zé(x—argmm lp — Ail)-
i=1 PeXa

In words, g* is the distribution corresponding to moving the mass
from each A; to its nearest point on the grid X;. Notice that we
have Wi (s, ¢*) < 1/d due to the earthmover distance interpretation
of the Wasserstein-1 distance.

Applying the triangle inequality and the guarantee from the mo-
ment approximations, we get that || 74+ /N-z|; <1/N+ ||?q*/ﬁ -
Z;/N||1. It is left then to bound 174 /N = Z;/N||1. To this end, we
state the following well-known fact about the derivatives of Cheby-
shev polynomials.

di (x)

Fact 3.5. Fork > 1, = kUg_1(x).
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We then have using the definition of ¢* that, forany 1 < k < N,

(T 8) = (Tien )] = Zw ) = T (argmin |p - 2i))

PeXa

1 = - .
< = 3 T () - T (argmin|p - 44))
i PeXa
V2 dTy 2k?
S—Z max k() - |A; —argmin [p — A;|| < V2
n\mr i xe[-11] dx peXy d\m

where in the last inequality we used the fact that max,¢|_q 1)
|Ug_1(x)| < k. It follows then that

N - -
2 e o= [(Tg )k = (Ts)k|
74 /N = Z/Nlls = ) - <

k=1

N(N +1) 1L

dvar = N
by taking the sum over all k and noting Ehat d > N3/2. Putting
these bounds together gives us that |74+ /N — z||; < 2/N.

Since ||?q/Kf —zll1 < II?q*/ﬁ — z||; from Line 3 of Algorithm 1,
we plug this into the bound on ||?q/ﬁ— Z/N||1 to get that ||‘?q/1§}—
T’S/ﬁﬂl < 3/N. We can then use Lemma 3.1 with distributions ¢
and s along with the fact that ||7y/N - %/N|l1 = N |(F)x -
(Tg)k|/k < 3/N to give us the result since N > 18/e. O

Remark. Note that Algorithm 1 can easily be adapted when the
minimization problem in Line 3 is solved approximately — as is the
case if projected subgradient descent methods are used. In particular,
a constant factor approximation to the minimal loss increases the
Wasserstein distance bound in Lemma 3.4 by an O(1) factor.

4 EFFICIENT CHEBYSHEV MOMENT
APPROXIMATION

With Lemma 3.4 in place, we are ready to prove our main results.
To do so, we need to show how to efficiently approximate the
first N Chebyshev moments of a matrix A’s spectral density s, as
required by Algorithm 1. Recall that the k™ normalized Chebyshev
moment of s is equal to (s, T) = % tr(Ti. (A)). We will prove that
this trace can be approximated using Hutchinson’s stochastic trace
estimator, implemented with either exact or approximate matrix-
vector multiplications with A.

This estimator requires repeatedly computing T} (A)g for a ran-
dom vector g, which is done using the standard three-term (forward)
recurrence for the Chebyshev polynomials and requires a total of
k matrix-vector multiplications with A. We analyze the basic ap-
proach in Section 4.1, which yields Theorem 1.4. Then in Section 4.2,
we argue that the approach is stable even when implemented with
approximate matrix-vector multiplication, which yields Theorem
1.3.

4.1 Exact Matrix-Vector Multiplications

Hutchinson’s estimator is a widely used estimator to efficiently com-
pute accurate estimates of tr(R) for any square matrix R € R™",
Each instance of the estimator computes the quadratic form g Rg
for a random vector g € {-1,1}" whose entries are Rademacher
random variables. This an unbiased estimator for tr(R) with vari-
ance < 2|R |I% and its error has been analyzed in several earlier
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results [2, 32]. We apply a standard high-probability bound from
[24, 33]:

Lemma 4.1 (Lemma 2, [24]).” LetR € R™",§ € (0,1/2],1 € N. Let

g(l), . ..,g([) € {-1,1}"" be ¢ random vectors with i.i.d {—1,+1}
random entries. For a fixed constant C, with probability at least 1 — 9,

Clog(1/9)
Ve

For a polynomial p € ¥([-1,1],R) with degree k, applying
Hutchinson’s estimator to R = p(A) requires computing p(A)g,
which can always be done with k matrix-vector multiplies with A. If
p(x) admits a recursive construction, like the Chebyshev polynomi-
als, then this recurrence can be used. Specifically, for the Chebyshev
polynomials, we have:

To(A)g=g9 Ti(A)g=Ag
T (A)g = 2A - Ty_1(A)g — T2 (A)g 4)

A moment estimation algorithm based on Hutchinson’s estima-
tor is stated as Algorithm 2.

l
1 . .
tr(R) = 5 (9" TRgV| < IR
i=1

for k > 2.

Algorithm 2 Hutchinson Moment Estimator

<

Input: Symmetric A € R™" with ||A]|,
number of repetitions £ € N*.
Output: Approximation 7; to moment %tr(Tk (A)) for all k €

1, degree N € 4N*,

1,...,N.

1: Draw g(l), . ..,g(l) ~ Uniform({-1,1}").

2 Fork=1,...,N, T} « '[2,{” Zi 1(g(i))-'—Tk(A)g(i). >
Computed using recurrence in (4)

3: Return 7q,...,7N.

Remark. In total, Algorithm 2 requires N - ¢ matrix multipli-
cations with A since for each i Ty (A)g(i), oo IN (A)g(i) can but
computed using the same N steps of the (4) recurrence. It requires
O(ntN) additional runtime to compute and sum all inner products
of the form (g(i))TTk (A)g(i).

Our main bound on the accuracy of Algorithm 2 follows:

Lemma 4.2. If Algorithm 2 is run with £ = max(1,C - l°g(,f££/5))

where C is a fixed positive constant, then with probability 1 — § the
approximate moments returned satisfy |7y — % tr(Ti (A))| < A for all
k=1,...,N.

NY}. Note that L) - V2T 4y (7, (p)),

Let C be the constant from Lemma 4.1. If £ = max(1, C2 IOg(n(ii;a) ),

then by that lemma we have that with probability at least 1 — §/N:

Proor. Fixk € {1,...,

o~ YL i ap| < BN
Vi

_ OVeIx [logN/®) _

v Ve ‘

7In [24] the lemma is stated with an assumption that £ > O(1/8). However,
it is easy to see that the same claim holds without this assumption, albeit with a
quadratically worse log(1/5) dependence. The proof follows from same application
of the Hanson-Wright inequality used in that work.
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The second to last inequality follows from the fact that || T (A)||2 <
1 and thus ||Ti(A)||r < v/n. Applying a union bound over all k €
1,..., N gives the claim. O

Theorem 1.4 immediately follows as a corollary of Lemma 4.2
and Lemma 3.4.

PrOOF OF THEOREM 1.4. We implement Algorithm 1 with Algo-
rithm 2 as a subroutine to approximate the Chebyshev polynomial

. . . 1
moments, which requires setting A = NTn(eN) - By Lemma 4.2, we

conclude that we need to set £ = max(1, C]r:]z logz(%) log?(eN)).
Then, by Lemma 3.4, setting N = O(1/¢€) ensures that Algorithm 1
returns a distribution g which is € close to A’s spectral density s in

Wasserstein distance. m]

4.2 Approximate Matrix-Vector Multiplications

Algorithm 2 assumes access to an oracle for computing exact matrix-
vector multiplies with A. In this section, we show that the method
continues to work well even when each term in Hutchinson’s esti-
mator, ' Ty (A)g, is computed using an approximate matrix-vector
multiplication oracle for A (see Definition 1.2). As discussed in Sec-
tion 1.1, the robustness of the estimator allows the approximate
moment matching method to be applied in many settings where A
can only be access implicitly. It also forms the basis of our sublinear
time algorithm for computing the spectral density of a normalized
graph adjacency or Laplacian matrix, which are presented in the
Section 5.

To show that approximate matrix-vector multiplications suffice,
we leverage well understood stability properties of the three-term
forward recurrence for Chebyshev polynomials of the first kind
[7, 27]. These properties allows us to analyze the cumulative er-
ror when T (A)g is computed via this recurrence. Specifically, we
analyze the following algorithm:

Algorithm 3 Hutchinson Moment Estimator w/ Approximate Mul-
tiplications

Input: Symmetric A € R™" with ||A]l; < 1, degree N € 4N*,
number of repetitions ¢ € N*, eyyy-approximate matrix vector
multiplication oracle AMV for A (see Definition 1.2).

Output: Approximation 7} to moment %tr(Tk (A)) for all k €
1,...,N.

1: fori=1,...,¢ iterations do

2 Draw g ~ Uniform({-1,1}").

3 50 — 9, 51 — AMV(A, g, EMv).

4: fl,i “— gT51

5 for k =2to N do

6 O < 2 - AMV(A, 0g_1, eMv) — Og_a.

7 Ti — 9" O

8 Fork=1,...,N, T} « %Zle Thir

9: Return 7y, ..., 7N.

Algorithm 3 assumes access to an approximate matrix-vector
multiplication oracle for A with error epy (recall Definition 1.2).
Since ||All2 < 1, for any vector y, we have that:

IAMV (A, y, emv) — Ayllz < emv llyll2- ®)
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The algorithm uses this oracle to apply the recurrence from (4),
approximately computing each Ty (A)g for k = 1,...,N, which
in turn allows us to approximately compute g' T (A)g. Note that
when epmy = 0, Algorithm 3 is exactly equivalent to Algorithm 2.

Notation. Analyzing this approach requires accounting for error
accumulates across iterations. To do so, we introduce some basic no-
tation. Let v;. denote the true value of T. (A)g, and let 93 denote our
computed approximation. We initialize the recurrence with o_1 = 0
anddp =vg =g.Fork =0,...,N—1,let wp = AMV(A, i, emv) and
note that ||wi —Adg|l2 < emv |0k ||2- In iteration k of the recurrence,
we compute 0y, by applying the recurrence:

D1 = 2Wk — Uf_1.
For eachi € 0,..., N we denote:

® O = v — O, with §y = 0. This is the accumulated error up
to iteration k.

o &y = Al — wi, with & = 0. 2&, is the new error in-
troduced in iteration k due to approximate matrix-vector
multiplication.

As in Clenshaw’s classic work [7], it can be shown that & itself
evolves according to a simple recurrence, which ultimately lets us
show that it can be expressed as a summation involving Cheby-
shev polynomials of the second kind, which are easily bounded.
Specifically, we have:

Fact 4.3. 61 = & and for2 < k < N, 8 = 2A0k_1 — Sp_p + 2&.

Proor. The claim for §1 is direct since vy = 9y: we have §;
v1 — 01 = Avg — wy. For 2 < k < N, we prove the claim by writing
the difference &g = vy —0p = vg —2(A0k_1 + &) +0j_o. We can then
replace v = 2Avg_; — vk_o and substitute in (vp_; — Tp_1) = Sp_1
and (0g—z = O—3) = Sg—2- o

The Chebyshev polynomials of the second kind are defined via
the following recurrence:

Definition 4.4 (Chebyshev Polynomials of the Second Kind). For
k € N20 the k-th Chebyshev polynomial of the second kind Uy (x)
is given by

Up(x) =1 Up(x) = 2x

U (x) = 2x - Ug_1(x) — Up_z(x) for k > 2.

We also define U_1(x) = 0, which is consistent with the recurrence.

Using these polynomials, we can characterize the accumulated
error §j in terms of the error introduced in each of the prior itera-
tions.

Lemma4.5. Fork=1,...,N, we have
k

8 = U1 (A1 +2 ) Upi (A)é.
i=2

(6)

Proor. We prove the lemma by induction on j < k. For j =0,
the lemma is trivial since &y = 0 by definition and U_1 (A) = 0. For
Jj=1,81 =& =Uy(A)&. By Fact 4.3, for 2 < j < k, we have:

5j =2& + 2A5j_1 - 5j_2 .

—_
Z1

(7)
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We can apply the inductive hypothesis on z; and recombine terms
using Definition 4.4 to get:
j-1

z1 =2A Uj_g(A)§1 +2 Z Uj—l—i(A)gi
i=2

j-2
- Uj—3(A)& -2 Z Uj—2-i(A)&;
=2

-2
= Uj-1(A)é1 + Ur(A)2-1 + )| (ZAUj—l—i(A) - Uj—Z—i(A)) 28
i=2
-1

= Uj—l (A)§1 + Z Uj—i(A)z_gl'
i=2

Noting that plugging into (7) and noting that 2&; = 2Up(A)¢j com-
pletes the proof. O

Our goal is to use Lemma 4.5 to establish that . is small because
each &; is small. It is well known that the Chebyshev polynomials
of the second kind satisfy the following bounds for any k € N:

[Up(x)] < k+1 e [-1,1]. ®)

This is the upper bound we need to proceed. Specifically, we will
show that each estimator using Algorithm 3, g7 9, well approxi-
mates Hutchinson’s estimator g' Ty (A)g = g vg.

for

Claim 4.6. For quantities vy, 9 and 0 < epgy < 1/2k?, we have
9" Tk (A)g — g d| < 2 epmv-(k +1)%llgll3.

ProoF. By the definition of &, we have |gT T, (A)g — g 0| =
|gT 8k|. By Cauchy-Schwarz we can bound |g" 8| < ||gll2/|5k||2. We
are left to bound || 8¢ ||2. Applying Lemma 4.5 and triangle inequality,
we have

k
I8kllz < 1Uk-1 (A)ll2lIEll2 + D 201Uk (A2 1l
i=2

Then applying (8) and the fact that ||Al|; < 1, wehave ||Up_;(A)||2 <
(k —i+1). Hence,

k k
I8kllz < kllElle + " 20k =i+ Dl&illz < ) 2k = i+ D]l
i=2 i=1

Using that & < emy [|9i-1ll2, and that ||T;(A)||2 < 1 for all i and
thus [|v;]l2 < |lgll2, we have:

I8kllz < TEy2(k =i+ 1) emy 1Giallz < 2emy B, (k- i+
D(llvi-1llz + 16i-1ll2) < emv k(k + 1) (llgllz + max; <k [|8il2). In-
ducting on d; for j < k gives us ||k|l2 < 2emv (k+ 1)2||g||2, which
completes the proof. o

log? log (N/9)

(nA?)
and epry = AJ4N?, where C is a fixed positive constant, then with
probability 1 — § the approximate moments returned satisfy |7 —
Ltr(Ty(A)| < A forallk=1,...,N.

Lemma 4.7. If Algorithm 3 is run with £ = max(1,C—=—5—

g(f) be the random vec-

](Ci)}ie[[] be
5! -

,N}. Let g<1), el
tors drawn in the outer for-loop of Algorithm 3. Let {0

Proor. Fixk € {1,...

the ¢ vectors computed by the inner for-loop and let {51(:) =
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Tr (A)g(i) }ieqe] be the ¢ error vectors. Recalling that % tr(Ti. (A)) =

\/2/71'

tr(Ti.(A)), we have:

ﬁ

2/7r

tr(Ti(A))| <

Tk —

i [ERE

~

Z (9T (4)g" -

tr(Ty.(A))
i=1 n '

Applying Claim 4.6 and Lemma 4.1, with probability at least 1-5/N,

we thus have
- 4
tr(Ty.(A)) v2/m (2
_— A2 < A.
c ~NRAE

| — | <2(k+1)%emy-
The last inequality follows from the fact that || g(i) ||§ = n for all
i € [£], and the choice of epy = A/4N?. Applying a union bound
overallk =1,..., N gives the claim. O

Theorem 1.3 immediately follows.

ProOF oF THEOREM 1.3. We implement Algorithm 1 with Algo-
rithm 3 used as a subroutine to approximate the Chebyshev polyno-

. . . . 1
mial moments, which requires setting A = NTn(eN) - By Lemma 4.7,

we conclude that we need to set £ = max(1, CNTZ log?( %) log?(eN))
and eyy = 1/(4N3In(eN)). Then, by Lemma 3.4, setting N =
O(1/€) ensures that Algorithm 1 returns a distribution g which is
€ close to A’s spectral density s in Wasserstein distance. O

5 SUBLINEAR TIME METHODS FOR GRAPHS

With the proof of Theorem 1.3 in place, we are now ready to state
our sublinear time result for adjacency matrices of graphs. The
significance of Theorem 1.3 is that it allows for the approximate
Chebyshev moment matching method in Algorithm 1 to be com-
bined with any randomized algorithm for approximating matrix-
vector multiplications with A. In this section we prove Theorem
1.1 by showing that for the normalized adjacency matrix of any
undirected, un-weighted graph, such an algorithm can actually be
implemented in sublinear time, leading to a sublinear time spectral
density estimation (SDE) algorithm for computing graph spectra
from these matrices.

Computational Model. Let A € R™" be the adjacency ma-
trix for an unweighted, n-vertex graph G = (V,E) and let A =
D Y2AD"1/2pe the symmetric normalized adjacency matrix, where
D is an nxn diagonal matrix containing the degree of each vertex in
V.Foranodei,let N(i) = {j : (j,i) € E} denote the set of i’s neigh-
boring vertices. We assume a computational model where we can
1) uniformly sample a random vertex in constant time, 2) uniformly
sample a random neighbor of any vertex i in constant time, and
3) for a vertex i with degree d;, read off all neighbors of i in O(d;)
time. A standard adjacency list representation of the graph would
allow us to perform these operations but weaker access models
would also suffice.®

8Eg., random crawl access to a network [19]. We also note that, if desired, as-
sumption 3) can be removed entirely with a small logarithmic runtime overhead, as
long as we know the degree of i. Specifically, 3) can be implemented with O(d; log n)
calls to 2): we simply randomly sample neighbors until all d; are found. A standard
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Using this model for accessing the adjacency matrix, we show
that, for any emy € (0, 1) and failure probability § € (0, 1), an
emv-approximate matrix-vector multiplication oracle for A can be
implemented in O(n epmy % log(1/8)) time. Via Theorem 1.3, this
immediately yields an algorithm for computing an SDE that is €
close in Wasserstein-1 distance to A’s spectral density in roughly
O(n/€’) time for sufficiently large n, and at most O(n/e”) time, for
fixed § where the O(-) hides factors of poly(log(1/€)). Our main
result is stated as Theorem 1.1 in Section 1.1.

The same algorithm can be used to approximate the spectral
density of the normalized Laplacian of G by a simple shift and
scaling. Specifically, A can be obtained from the normalized Lapla-
cian L via A = I — L, and the spectral density of L, s; (x) satisfies
si (1 = x) = sz(x), where s4 is the spectral density of A. So if we
obtain an e-approximate SDE g for A by Theorem 1.1, then the
function p satisfying p(1 — x) = q(x) is an e-approximate SDE for
si. We thus have:

Corollary 5.1. Given the the normalized adjacency matrix of G,

there exists an algorithm that takes O(n poly(w)) expected
time and outputs a density function q that is € close to the spectral
density of the normalized Laplacian of G with probability at least
1-6.

Approximate Matrix-Vector Multiplication for Adjacency
Matrices. We implement an approximate matrix-vector multiplica-
tion oracle for A in Algorithm 4, which is inspired by a randomized
matrix-multiplication method of [12]. Throughout this section, let
Al denote the i column of A. Given a sampling budget ¢ € N, the
algorithm samples ¢ indices from 1, ..., n independently and with
replacement - i.e., the same index might be sample multiple times.
For each index it samples, the algorithm decides to accept or reject
the column corresponding to that index with some probability. To
approximate Ay, the algorithm outputs the multiplication of the
accepted columns, rescaled appropriately, with the corresponding
elements of y.

Algorithm 4 AMV Multiplication Oracle for Normalized Adja-
cency Matrices

Input: Normalized adjacency matrix A € R™",
[d1,...,dn],y € R", and parameter t € N.
Output: A vector z € R" that approximates Ay.
1: Initialize z « 0.
2: for ¢t iterations do

3: Sample a node j uniformly at random from {1, ..., n}.

degrees

4: Sample a neighbor i € N(j) uniformly at random.
5 Sample x uniformly at random from [0, 1].

6: if x < dil then

7: W — pil -yiAl wherepiz nLdiZjEN(i) %

8: else

9: W — 6

10: Z—z+w.

11: return %z

analysis of the coupon collector problem [Section 3.6, 25] shows that that the expected
number of samples will be O(d; logd;) < O(d;logn).
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The following lemma bounds the expected squared error of Al-
gorithm 4’s:

Lemma 5.2. Letz € R" be the output of Algorithm 4 with sampling
budget t. We have:

Ellldy - 211 = Tyl - 7 14yl3

ProOF. Let b denote b = Ay. Consider a single iteration of the
main loop in Algorithm 4, which generates a vector w that is added
to z. Let Xj be an indicator random variable that is 1 if w is set to
a scaling of Al on that iteration, and 0 otherwise. X; = 1 if and
only if 1) a neighbor of i is sampled at Line 3 of the algorithm, 2) i
is sampled at Line 4 of the algorithm, and 3) the uniform random
variable x satisfies x < 1/d;. So, we see that Pr[X; = 1] is exactly
equal to p; = nLd, YieN() % It follows that, by the time we reach
Line 11, w is an unbiased estimator for b. Le., E[w] = b. Of course,
this also implies that E[z] = b.

Our goal is to show that E[||b - z||?] %||y||§ - %||b||§ Since
the random vector b — z has mean zero and is the average of ¢ i.i.d.
copies of the mean zero random vector b — w, it suffices that show:

E[[Ib - wli3] = nllyll - 15113 ©)
By linearity of expectation and the fact that E[w] = b, we have
E[[Ib - wli3] = 115115 + E[llwlI3] - 2¢E[w], b) = E[lIwll3] - [1b1l5-

So to prove (9), we need to show that E[||w||%] = n||y||%. We expand
w in terms of the indicator random variables X3, . . ., Xj,. Notice that
since we only sample one column in each iteration, the random
variable X;X; = 0 for all i # j. Thus we have

n

E[llwli] = > B
k=1
n
= Z E
k=1
In the last equalities we used the fact that E[ X 12] = p; and that, for

a normalized graph adjacency matrix, |A’|| = ZjieN() # = npj.
idj
o

XiX; B
Z L (Aly) (Al ;)
ijeln] £

n n

Do MG =

i=1 i=1

nox: o
— (A'yi);

2

i=1 i

This proves (9), from which we conclude the lemma.

Using Lemma 5.2, we show that there is an epy-approximate
matrix-vector oracle for A based on Algorithm 4 with success prob-
ability at least 1 — § that runs in O(n epy ™2 logz(%)) time.

Proposition 5.3. Let A € R™™ be the symmetric normalized adja-
cency matrix of an n-vertex graph G and let epyy, 8 € (0,1) be fixed
constants. There is an algorithm that, given a vector y € R", and
access to G as described above, takes O(n ey 2 log(%)) expected
time and outputs a vector z € R" such that ||z — Ay|lz < emy Ilyll2
with probability at least 1 — §.

ProoF. By Lemma 5.2, we have that E[||Ay — z||§] <z ||y||%. Fix
t = 48n epy 2. Then, by Lemma 5.2 and Markov’s inequality, we
have that when Algorithm 4 is called on A with parameter ¢,

16n|lyl|

T EMv
Pr[||Ay — ||z > Tllyllz] <—— =5 < (10
temv? llylls

=
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In order improve our success probability from 3/4 to 1 — 8, we use
the standard trick of repeating the above process r = ¢ log( %) times
for a constant ¢ to be fixed later. Let z1, . .., z, € R” be the output
of running Algorithm 4 r times with parameter ¢. We can return as
our estimate for Ay the first z; such that ||z; — zj|l2 < F'MTV [ly]l2 for
at least r/2 + 1 vectors z; from zy, ..

To see why this works, note that a Chernoff bound can be used
to claim that with probability > 1 -6, at least r/2 + 1 vectors z;
from z1, ..., z, have that ||z — Ay||2 < Ef"TVHyHg.

By a triangle inequality we have that for all such z; and z,

.y Zn.

1 1 EMV
llzj = zkll2 < llzj = Ayllz + llzx = Ayllz < == llyll2.

3 emv
4

Thus, the z; we picked must satisfy that ||z; — Ay|| <
the triangle inequality.

All that remains is to bound the expected runtime of Algorithm
4, which we will run r separate times. To do so, note that all index
sampling can be done in just O(t) time, since sampling a random
vertex and a random neighbor of the vertex are assumed to be O(1)
time operations. The costly part of the algorithm is computing the

llyllz by

sampled column w at each iteration. In the case that w = 0, this cost
is of course zero. However, when w = %Aiyi for some i, computing
the column and adding it to z takes O(d;) time, which can be large in
the worst case. Nevertheless, we show that it is small in expectation.
This may seem a bit surprising: while nodes with high degree
are more likely to be sampled by Line 4 in Algorithm 4, they are
rejected with higher probability in Line 6. Formally, let nnz(w)
denote the number of non-zero entries in w. We have: E [nnz(w)] =

Lnnz(A) - pi = B Sjent) mag = % Ziet DieN) 35 =
1.

The final equality follows from expanding the double sum: since
node j has exactly d; neighbors, % appears exactly d; times in the

sum. So i, X ieN(i) % =n.

We run Algorithm 4 with ¢t = O(n/emy?) iterations, so it fol-
lows that the expected total sparsity of all w’s constructed equals
O(n/emv?), which dominates the expected running time of our
method. O

Proor oF THEOREM 1.1. The accuracy and running time claim
follows from combining the epy-approximate vector multiplication
oracle described in Proposition 5.3 with Algorithm 1, which is
analyzed in Theorem 1.3. O

As discussed in the introduction, Cohen et al. [8] prove a result
which matches the guarantee of Theorem 1.1, but with runtime of
20(1/e) _ i.e., with no dependence on n. In comparison, our result
depends linearly on n, but only polynomially on 1/e. In either case,
the result is quite surprising, as the runtime is sublinear in the input
size: A could have up to O(n?) non-zero entries.

6 EXPERIMENTS

We support our theoretical results by implementing our Cheby-
shev moment matching method (Algorithm 1). When using exact
matrix-vector multiplications, the kernel polynomial method (KPM)
of Algorithm 6 [5] and the stochastic Lanczos quadrature method
(SLQ) studied in [6] have both been confirmed to work well em-
pirically. So, one set of experiments is aimed at comparing these
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Figure 2: Wasserstein error of density estimate resulting
from approximate Chebyshev moment matching method
(MM), the Jackson damped kernel polynomial method
(KPM) and Stochastic Lanczos Quadrature (SLQ) method. For
MM and KPM, Hutchinson’s estimator is used to estimate
the Chebyshev moments. The x-axis corresponds to the
number of moments computed for MM and KPM, and the
number of Lanczos iterations used for SLQ. All methods use
5 (random) starting vectors except for resnet20 and hyper-
cube that use 1 starting vector, so the x-axis is directly pro-
portional to the number of matrix-vector multiplications
used by each method. Each experiment is repeated 10 times;
the solid line represents the median error of the 10 trials and
the shaded regions represent the first and third quartiles.

methods to the moment matching method (MM) implemented with
exact matrix-vector multiplications. A second set of experiments
evaluates the performance of the MM and KPM methods when im-
plemented with approximate matrix-vector multiplies. Specifically,
we use our sublinear time randomized method for multiplication
by graph adjacency matrices from Section 5.

We consider the normalized adjacency matrix of three graphs,
two of which we construct and one which we obtain from a publicly
available dataset for sparse matrices:

e cliquePlusRandBipartite is a graph with 10000 vertices,
partitioned into two disconnected components. The first
component is a clique with 5000 nodes and the second is
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10°
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Figure 3: Histograms of the eigenvalues of
cliquePlusRandBipartite, Erdos992, gaussian, uniform,
resnet20 and hypercube using 50 equally spaced buckets.

a bipartite graph with 2500 vertices in each partition, con-
structed by sampling each of the 2500? possible edges inde-
pendently with probability 0.05. This graph has a normalized
adjacency matrix with ~ 5000 eigenvalues at 0, two eigenval-
ues at 1, one at —1 and the rest of its eigenvalues are roughly
evenly spread out between —0.5 and 0.5.

hypercube is a 16384 vertex boolean hypercube graph on
14 bit strings.” Its normalized adjacency matrix has eigen-
values at —1, —%, _75 .50, %, 1. The multiplicity of the
0 eigenvalue is largest, with eigenvalues closer to —1 and 1
having lower multiplicity.

Erdos992 is an undirected graph with 6100 vertices, con-
taining 15030 edges from the sparse matrix suite of [9]. Its
normalized adjacency matrix has ~ 5000 eigenvalues at 0,
one at 1 and the rest evenly spread out between —0.5 and
0.5.

We consider three additional matrices to evaluate the performance
of MM against KPM and SLQ when exact matrix-vector multiplies
are used to estimate the Chebyshev moments:

e gaussian is a 1000 X 1000 matrix constructed by drawing
n = 1000 Gaussian random variables Ay, -+, 4, ~ N (0, 1)
and a random orthogonal matrix U € R™", and outputting

UAUT where A is a n x n diagonal matrix with entries
Al An
max; A;’ """ max; A;

% A boolean hypercube contains a vertex for each distinct b bit string, and an edge
between two vertices if the corresponding strings differ on exactly 1 bit.
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e uniformis a 1000 X 1000 matrix constructed identically to
gaussian except with Ay, ..., A, drawn independently and
uniformly from the interval [-1, 1].

e resnet20 is a Hessian for the ResNet20 network [14] trained
on the Cifar-10 dataset. The matrix is 3000 X 3000 and its
eigenvalues have been normalized to lie between [—1, 1] for
our experiments.

For reference, the histogram of the eigenvalues for each matrix are
shown in Figure 3 by breaking the range of the eigenvalues into 50
equally spaced intervals for each matrix.

In the first set of experiments, we compute the normalized Cheby-
shev moments 71, ..., 7y of each of the six aforementioned matri-
ces using Hutchinson’s moment estimator as in Algorithm 2, and,
compute a spectral density estimate by passing these moments
into Algorithm 1 for approximate Chebyshev moment matching
method (MM)'? and into Algorithm 6 [5] for the Jackson damped
kernel polynomial method (KPM). For KPM we compute the den-
sity with N = 4,6,8,10,...,52 and for MM we compute it with
N =4,56,7,...,52. We also compute the density estimate result-
ing from the stochastic Lanczos quadrature (SLQ) method of [6]
with N =4,5,6,7,...,52 Lanczos iterations. We use ¢ = 5 starting
vectors (i.e., random vectors in Hutchinson’s method, or random
restarts of the SLQ method) for each method, except for the large
resnet20 and hypercube matrices, for which ¢ = 1 random vector
is used. Each experiment is repeated 10 times and the Wasserstein-
error between the true density and the density estimate are shown
in Figure 2. The results show that MM is more than 10x more accu-
rate than KPM in almost all cases. The error of MM and SLQ are
more comparable, except for hypercube, on which the errors are
comparable for larger values of N. Both methods show an unusual
convergence curve for this matrix, which we believe is related to
the sparsify of its spectrum (a small number of distinct eigenvalues).

In our second set of experiments, we test the performance of
our randomized sublinear time algorithm (Algorithm 4) for approx-
imate matrix-vector multiplies with normalized graph adjacency
matrices. This method is used to estimate Chebyshev moments in
Algorithm 1 (MM) and in Algorithm 6 (KPM) of [5]. We compute
the normalized Chebyshev moments 7;, ..., 7y for N = 12 using
various values of the oversampling parameter t in the approximate
matrix-vector multiplication method. We then compute, for each
value of ¢, the average number of non-zero elements of A accessed
by the method for each matrix-vector product, which reflects the
runtime improvement over a full matrix-vector product. Figure 4
plots the Wasserstein error of the density estimate (y-axis) and the
average fraction of non-zeros used in each matrix-vector multipli-
cation (x-axis) to estimate the Chebyshev moments used by MM
and KPM respectively.

The results show that the KPM method can achieve error nearly
identical to that obtained when using exact matrix-vector multi-
plications, while only using a small fraction of non-zero entries
for each approximate matrix-vector multiplication. Specifically,
on the dense cliquePlusRandBipartite graph and even the rel-
atively sparse hypercube graph, KPM uses less than 15% of the
non-zero entries on average to achieve nearly the same error as

19We solve the optimization problem from Line 3 by formulating it as a linear
program and using an off-the-shelf solver from scipy.
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Figure 4: Wasserstein error of density estimate returned by
MM and KPM on the hypercube, cliquePlusRandBipartite
and Erdos992 graphs using approximate matrix-vector mul-
tiplications (Algorithm 4) to estimate the Chebyshev mo-
ments. For both methods, N = 32 moments are computed us-
ing 5 random starting vectors for cliquePlusRandBipartite
and Erdos992 and 1 for hypercube. The x-axis corresponds to
the average fraction of non-zeros sampled from the matrix
and the y-axis is the Wasserstein error from the resulting
density estimate. Each experiment is repeated for 10 trials:
the solid line correponds to the median error of the 10 tri-
als and the shaded region corresponds to the first and third
quartiles.

when using exact multiplies. On cliquePlusRandBipartite, the
MM method achieves error close to that of the exact method while
using ~ 20% of the non-zero entries on average. On the sparse
Erdos992 and hypercube graphs, the MM method requires ~ 80%
of the non-zero entries on average to achieve error comparable to
exact matrix-vector multiplications. However, it still obtains a good
approximation (consistently better than the KPM method) when
coarse matrix-vector multiplications are used (i.e., fewer non-zeros
are sampled).
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A PROOF OF FACT 3.3

Proor. We start by doing a change of variables; set x = cos 6
and note that dx = — sin 8d6. Substituting this into the expression
for (f,w - Tx.) and noting that Ty (cos ) = cos k@ gives us that

! 0
\/%/71 f(x) dx = \/g‘/,,, —f(cos 0)(cos k8)do

Ti (%)

V1 — x2
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since V1 — cos? 0 = sin 0 and dx = — sin 0d0. Integrating by parts
and noting that (f(cos 6) f —cosk0d6)|°,, = —f(cos 0) % [0, =

0 gives us that (f,w - Ty) = \/gf_oﬂ % df(cos0).

We use the definition of the Riemann-Stieltjes integral and let
M € N* be a parameter and Py = {-71 =x9 < --- < xp7 = 0} be
the set of all M intervals partitioning the interval [—s, 0]. Then for a
partition P € s we denote norm(P) to be the length of its longest
sub-interval. The Riemann-Stieltjes integral f_ 0” sin(k0) df (cos 0)
can be written as

m—1
lim sup Z (f(cosxi+1) — f(cosx;)) sin kx;.
€—0 M, PePy 20

s.t.norm(P) <e
Since f(x) € lip; and | sin k6| < 1 we can bound the magnitude
of the above summation as Z;’z’gl (f(cosxit1) — f(cosx;)) sinkx;

< Z:ﬁal A| cos xj41 — cos xj| < 2.
The last inequality follows from the fact that cos(6) is 1-Lipschitz.
Putting these bounds together gives us that |(f, w-T;.)| < 2A4/k. O
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