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Abstract. We analyze the Lanczos method for matrix function approximation (Lanczos-FA),
an iterative algorithm for computing f(A)b when A is a Hermitian matrix and b is a given vector.
Assuming that f : C — C is piecewise analytic, we give a framework, based on the Cauchy integral
formula, which can be used to derive a priori and a posteriori error bounds for Lanczos-FA in terms
of the error of Lanczos used to solve linear systems. Unlike many error bounds for Lanczos-FA,
these bounds account for fine-grained properties of the spectrum of A, such as clustered or isolated
eigenvalues. Our results are derived assuming exact arithmetic, but we show that they are easily
extended to finite precision computations using existing theory about the Lanczos algorithm in finite
precision. We also provide generalized bounds for the Lanczos method used to approximate quadratic
forms bH f(A)b and demonstrate the effectiveness of our bounds with numerical experiments.
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1. Introduction. Computing the product of a matrix function f(A) with a
vector b, where A is a Hermitian matrix and f : C — C is a scalar function, is a
fundamental task in numerical linear algebra. Perhaps the most well known example
is f(x) = 1/x, in which case f(A)b = A~1b is the solution to the linear system
of equations Ax = b. Other common functions include the exponential, logarithm,
square root, inverse square root, and sign function, which have applications in solving
differential equations [12, 52], Gaussian process sampling [51], principal component
projection and regression [2, 22, 39], lattice quantum chromodynamics [9, 57], eigen-
value counting/spectrum approximation [6, 7, 10], and beyond [32].

A common approach to approximating f(A)b is based on the Lanczos algorithm.
The Lanczos algorithm, shown in Algorithm 1.1, iteratively constructs an orthonormal
basis Qx = [q1,. .., qx] for a nested sequence of Krylov subspaces,

Ki(A,b) = span(b, Ab, ..., A¥"b) = {p(A)b : deg(p) < k},

such that span(qs,...,q;) = K;j(A,b) for all j < k. The basis Qy, satisfies a three-
term recurrence

(1.1) AQ;. = Qi Ty, + Brarr1er,

where T}, is a real symmetric tridiagonal matrix with entries
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The Lanczos method for matrix function approximation, which we refer to as
Lanczos-FA, approximates f(A)b using Qg and Ty as follows.
DEFINITION 1.1. The kth Lanczos-FA approximation to f(A)b is defined as

|ank:<f7A7 b) = Qkf(Tk?)QlI:ba

where Qi and Ty, are produced by the Lanczos method run for k steps on (A,b).
For simplicity, we often write lang(f) since A and b remain fized for most of this
manuscript. If we are considering the Lanczos algorithm run on a matriz or right-
hand side different from the given A or b, we will use the full notation.

Algorithm 1.1 Lanczos

1: procedure LANCZOS(A, b, k)

2 qo = 07 60 = 07 q1 = b/Hb”
3 for 7=1,2,...,k do

4: Qj+1 = Aq; — fj-1q5-1
5: aj = (qj+1,49;)

6: j+1 = 9dj+1 — @;9q;

7
8

optionally, reorthogonalize! q;;; against {ql}fgl1
B = gl

9: Qj+1 = Qj+1/5;

10: end for

11: return Qy, Ty

12: end procedure

We would like to understand the convergence behavior of Lanczos-FA through a
priori and a posteriori error bounds. In the context of Krylov subspace methods for
symmetric matrices, a priori bounds depend on the spectrum of A but not on the
choice of right-hand side b [27]. As such, a priori bounds are used to provide intuition
about how an algorithm depends on the spectrum of the input. On the other hand, a
posteriori bounds typically depend on quantities which are accessible to the user but
not on quantities which are unknown in practice. This means a posteriori bounds for
Lanczos-FA can depend on quantities such as the output of the Lanczos algorithm
Qi and Tj, but not on the spectrum of A.

1.1. Polynomial error bounds for Lanczos-FA. It is easy to show that
lang(p) = p(A)b for any polynomial p with degp < k; see, for example, [12, 52].
This implies that lang(f) = px(A)b, where py is the degree k — 1 polynomial interpo-
lating f at the eigenvalues of Tj. Since eigenvalues of A are often approximated by
eigenvalues of T}, this interpolating polynomial is a sensible approximation.

More formally, let || - || be any norm induced by a positive definite matrix which
commutes with A, i.e., with the same eigenvectors as A. Such norms include the

INote that reorthogonalization has no effect on the algorithm in exact arithmetic but can in
finite precision. We discuss finite precision considerations in section 5.
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2-norm, the A%-norm, and the A-norm (if A is positive definite). Then ||g(A)v]| <
lg(A)|l2-||v]| for any g : R — R, so by the triangle inequality, for any p with degp < k,

1 (A)b —lang (f)I| < |[f(A)b = p(A)b| + [[p(A)b — lan(p)[| + [[lank(p) — lank(f)]]
= I(f(A) = p(A))b] + 0 + [Qr(p(Tr) — f(T1))QLbll
< |F(A) = p(A)l2 - [b]| + Qx(p(Tx) — £(Tx))QJl2 - [[bll
< (If(A) = p(A)l2 + [Ip(Tx) = £(Tk)]l2) - b

Denote the infinity norm of a scalar function h : R — R over S C R by ||A|s :=
sup,cg |h(x)|. Then, writing the set of eigenvalues of a Hermitian matrix B as A(B),
(1.2) IF(A) —lani (/)] < min, (If = pllaca) +I1f = pllacey) I0]-

Finally, introducing the notation Z(B) := [Apin(B), Amax(B)] and using the fact that
A(Ty) C Z(A), we obtain the classic bound

(1.3 7D = lane(D)lls <2 min (1f ~ plizca)) ]z

That is, except for a possible factor of 2, the error of the Lanczos-FA approximation
to f(A)b is at least as good as the best uniform polynomial approximation to f on the
interval containing the eigenvalues of A. For arbitrary f, (1.3) remains the standard
bound for Lanczos-FA. It has been studied carefully and is known to hold to a close
degree in finite precision arithmetic [45].

However, the uniform error bound of (1.3) is often too loose to accurately predict
the performance of Lanczos-FA. Notably, it depends only on the range of eigenvalues
Z(A) and not on more fine-grained information like the presence of eigenvalue clusters
or isolated eigenvalues, which are known to lead to faster convergence. The expression
in (1.2) is more accurate, but it cannot be used as an a priori bound since it involves
the eigenvalues of the tridiagonal matrix T, which depend on b. It also cannot be
used as a practical a posteriori bound since it involves all eigenvalues of A.

The goal of this paper is to address these limitations. Before doing so, we discuss
an example to better illustrate why (1.3) can be loose as an a priori bound. It is well
known that the eigenvalues of T}, are interlaced by those of A, that is, A(Ty) C Z(A),
and between each pair of eigenvalues of T}, is at least one eigenvalue of A. With this
property in mind, define J3(A) as the set of all k-tuples g = (p1, ..., ux) € R¥ that
are interlaced by the eigenvalues of A. Then we can use (1.2) to write

1.4 A)b —| < i — — b|l.
(14) A (D < max min (1f = placa) + 1 = pll) B

The bound (1.4) is an a priori error bound and, at least in some special cases, provides
more insight than (1.3) in situations where the eigenvalues of A are clustered.

Ezxample 1.2. Consider A with many eigenvalues uniformly spaced through the
interval [0, 1] and a single isolated eigenvalue at x > 1. Since the eigenvalues of T},
are interlaced by those of A, there is at most one eigenvalue of T}, between 1 and k;
that is, A(A)UA(T}) is contained in [0, 1)U {y, s} for some p € [1,x]. We then have

(1.5) [/ (A)b —lan.(f)[| < 2;%1[%?;] qihin (I = pllo,yugansy) oI

For k =5, f(x) = exp(—=x), and k = 6, we use a numerical optimizer to determine that
the value maximizing the right-hand side of (1.5) is p* ~ 4.96. In Figure 1, we show
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Fi1Gc. 1. Comparison of errors of degree 5 polynomial approzimations to f(z) = exp(—z).
Legend: Lanczos-FA approzimation for b with equal projection onto all eigenvectors of A (- ),
optimal uniform approzimation on [0,5] (== ), optimal uniform approzimation on [0,1] U {u*,5}
(== ). The light vertical lines are the eigenvalues of A, while the darker vertical lines are the
eigenvalues of T (the Ritz values). Remarks: Note that the Lanczos-FA approzimation becomes very
tnaccurate on (1,5), which allows a smaller error on the eigenvalues of A, which is the only error
that impacts our approzimation to f(A)b. As a result, the uniform approzimation on [0,1|U{u*,5}
is a much better bound for the Lanczos-FA error than the uniform approzimation on [0, 5], which
remains equally accurate over the entire interval [0, 5].

the error of the Lanczos-FA polynomial along with the optimal uniform polynomial
approximations to f on [0, 5], which contains [0, 1]U{pu*,5}. Here the optimal uniform
polynomial approximation is computed by the Remez algorithm. As expected, the
bound from (1.5) is significantly better than that from the uniform approximation.

1.2. Our approach and road map. Given the potential looseness of the clas-
sic uniform error bound on Lanczos-FA (1.3), our goal is to derive tighter but still
practically computable error bounds. Ideally, we want bounds that are both generally
applicable and easier to apply than, e.g., the bound of (1.4) based on interlacing.

One important case where such bounds already exist is when f(z) = 1/z and
A is positive definite. In this setting, tight a posteriori error bounds are easily ob-
tained by computing the residual ||Alang(f) — b||, and, moreover, much stronger a
priori error bounds are known than (1.3). In particular, ||f(A)b — lang(f)] is equal
to the error of the conjugate gradient algorithm (CG) used to solve Ax = b and
therefore optimal over the Krylov subspace in the A-norm. This immediately im-
plies a priori bounds depending only on mingegp< || f — pl|a(a) and so can be much
tighter than (1.3) for matrices with clustered or isolated eigenvalues (see Appendix A
for details).

Our approach is inspired by these sharper a posteriori and a priori error bounds for
Lanczos-FA in the case of linear systems, i.e., for f(z) = 1/x. We exploit the existence
of these bounds to address a more general class of functions by using the Cauchy
integral formula to write the Lanczos-FA error f(A)b — lang(f) for any analytic f
in terms of the Lanczos error for solving a continuum of shifted linear systems in
A. We then bound this error in terms of the error in computing the solution to a
single shifted system, (A — wI)~'b. This reduction is presented in section 2 along
with a discussion of related work. We proceed in section 3 to show how this reduction
can be used to obtain useful a priori and a posteriori error bounds. One highlight
result is a proof that, for any analytic function f, the relative error of Lanczos-FA
in approximating f(A)b can be bounded by a fixed constant times the relative error
in solving a slightly shifted linear system in A. We provide examples and numerical
experiments that illustrate the quality of our bounds in section 4. In section 5, we
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give an analysis of our bounds in finite precision. Finally, in section 6, we discuss
generalizations to quadratic forms bH f(A)b.

2. Lanczos-FA error and the Cauchy integral formula. Assuming f: C —
C is analytic in a neighborhood of the eigenvalues of A and I' is a simple closed curve or
union of simple closed curves inside that neighborhood and enclosing the eigenvalues
of A, the Cauchy integral formula states that

(2.1) f(A) 2m?{f A —2I)"'bdz.

If T also encloses the eigenvalues of Ty, we can similarly write the Lanczos-FA ap-
proximation as

(2.2) Qi f(Tr)Q}b = ~5 7{ f(2)Qi(Ty, — 2I)"'Qfbd-.

Observing that the integrand of (2.1) contains the solution to the shifted linear system
(A —2I)x = b while (2.2) contains the Lanczos-FA approximation to the solution, we
make the following definition.

DEFINITION 2.1. For z € C, define the kth Lanczos-FA error and residual for the
linear system (A — zI)x = b as
errp(z, A,b) := (A — 2I)7'b — Qi (Tx — 2I)!QlDb
resp(z,A,b) :=b — (A — 2I)Qi(Tx — 2I)'QYb
As with the Lanczos-FA approximation, we will typically omit the arguments A and
b, and in the case z = 0, we will often write erry and resy.

With Definition 2.1 in place, the error of the Lanczos-FA approximation to f(A)b
can be written as

(2.3) F(A)b — QuA(TQb = — - f F(2) ez

Therefore, if for every z € I' we are able to understand the convergence of Lanczos-
FA on the linear system (A — zI)x = b, then this formula lets us understand the
convergence of Lanczos-FA for f(A)b. To simplify bounding (2.3), we will write
erri(2) for all z € T" in terms of the error in solving a single shifted linear system.

To do this, we use the fact that the Lanczos factorization (1.1) can be shifted,
even for complex z, to obtain

(2.4) (A — 21)Q), = Q1(Ty — 21) + Brarr1e;.

That is, Lanczos applied to (A, b) for k steps produces output Qi and Ty, satisfying
(1.1), while Lanczos applied to (A — 21, b) for k steps produces output Qj and Ty, — 21
satisfying (2.4). Using this fact, we have the following well-known lemma.

LEMMA 2.2. For all z, where Ty — zI is invertible,

k

k
resy(z) = det H IIbll2 dit1-
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Proof. From (2.4) and the fact that Qy’s first column is b/||b||2, it is clear that

(A = 2D)Qi(Tr — 2I)1QHb = (A — 2T)Qu(Tx — 21) 7! |b||2e;
= Qy|/bll2e1 + Brar+ier (Ti — 2I)~*||b|l2e1
=b + Bedrs1e (Ti — 2I) 7! [|b]|2e;.

Using the formula (Tj — 2I)~! = (1/ det(Tx — 2I)) adj(Ty — 2I), we see that

DT
~ det(Ty, — 21) I15 ¥

j=1

eZ(Tk - zI)*lel

We use Lemma 2.2 to relate erri(z) to erri(w) for any z,w € C.
DEFINITION 2.3. For w,z € C, define hy,. : R — C and h, : R = C by
r—w 1

hw,z($> = hz({E) =

)
r—z

x—2z
COROLLARY 2.4. For all z,w € C, where A — zI and A —wI are both invertible,

erri(z) = det(hy o (Tk)) b, - (A) errg(w)

s )

res(z) = det(hy . (Tk)) resp(w).
Proof. By Lemma 2.2,
det(Ty, — 2I) resi(z) = det(Ty — wl) resy (w).
Thus,

det(Ty — wl)

resk(2) = Got (T, —2T)

resi(w) = det(hy . (Tk)) resg(w).

Noting that resi(z) = (A — zI) erri(2) and resi(w) = (A — wl)erry(w), we obtain the
relation between the errors:

erry(z) = det(huy . (Tr)) (A — 2I) 1A — wl) erry,(w)

s

= det(hy,>(Tk))hw,(A) errg(w). O

In summary, combining (2.3) and Corollary 2.4, we have the following corollary.
This result is by no means new and appears throughout the literature; see, for instance,
[21] and [17, Theorem 3.4].

COROLLARY 2.5. Suppose A is a Hermitian matriz and f : C — C is a function
analytic in a neighborhood of the eigenvalues of A and T, where T}, is the tridiagonal
matriz output by Lanczos run on A, b for k steps. Then, if T' is a simple closed curve

or union of simple closed curves inside this neighborhood and enclosing the eigenvalues
of A and Ty and w € C is such that w & A(Ty) UA(A),

1

2w

F(AD ~tan(f) = (=515 )t (T (A2 ) et

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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2.1. Bound on Lanczos-FA error in terms of linear system error. Our
main result is a flexible bound for the Lanczos-FA error, obtained by bounding the
integral in the right-hand side of Corollary 2.5. As we will see in section 3, we can
instantiate this theorem to obtain effective a priori and a posteriori error bounds in
many settings.

THEOREM 2.6. Consider the setting of Corollary 2.5. If, additionally, for some
So,51,...,5 CR we have A(A) C Sy and \;(Ty) € S; fori=1,...,k, then

k
1 (A)b —lang(f)]| < ( j{lf <H llhw,zllsi> -Ihw,zllso~|dz> lerr (w)]].
=1

integral term linear system error

The above bound depends on our choices of I'; w, and the sets Sp, S1,..., Sk,
which must contain the eigenvalues of A and Tj. The sets Sy, Sq,..., Sk should be
chosen based on the information we have about A and Tj. For example, we could
take all these sets to be the eigenvalue range Z(A). If we have more information a
priori about the eigenvalues of A, we can obtain a tighter bound by choosing smaller
So, with correspondingly lower ||k, .||s,. For an a posteriori bound, we can simply
set S; = {Ni(Tg)} for i = 1,..., k. This gives an optimal value for ||hy .||s,. Both
approaches are detailed in section 3.

We emphasize that the integral term and linear system error term in the theorem
are entirely decoupled. Thus, once the integral term is computed, bounding the error
of Lanczos-FA for f(A)b is reduced to bounding |lerry(w)]|, and if the integral term
can be bounded independently of k, Theorem 2.6 implies that, up to a constant factor,
the Lanczos-FA approximation to f(A)b converges at least as fast as ||erri(w)]|.

Proof of Theorem 2.6. Applying the triangle inequality for integrals and the sub-
multiplicativity of matrix norms to Corollary 2.5, we have

(2.5)
1F(A)b — lany(f ||<( Flr- e wzmm-|hw,z<A>||2~|dz|)errk<w>||.

Next, since A(A) C Sp, then

”hw,Z(A)H2 = i:IrllaXn ‘hw’Z()‘i(A)” < th’ZHSm

yerey

and similarly, if \;(Tg) € S; fori=1,...,k, then

k k
(2.6) |det(hw,-(Tk))| = th, IS H 17, |5
i=1 i=1
Combining these inequalities yields the result. 0

2.2. Comparison with previous work. Our framework for analyzing Lanczos-
FA has four properties which differentiate it from past work: (i) it is applicable to
a wide range of functions, (ii) it yields a priori bounds dependent on fine-grained
properties of the spectrum of A such as clustered or isolated eigenvalues, (iii) it can
be used a posteriori as a practical stopping criterion, and (iv) it is applicable when
computations are carried out in finite precision arithmetic. To the best of our knowl-
edge, no existing analysis satisfies more than two of these properties simultaneously.
In this section, we provide a brief overview of the most relevant past work.
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Most directly related to our framework is a series of works which also make use
of the shift invariance of Krylov subspaces when f is a Stieltjes function? [16, 19, 35]
or a certain type of rational function [18, 20, 21]. These analyses are applicable a
priori and a posteriori and in fact allow for corresponding error lower bounds as well.
However, these bounds cannot be applied to more general functions, and the impact
of a perturbed Lanczos recurrence in finite precision is not considered.

The most detailed generally applicable analysis is [45], which extends [13, 14]
and studies (1.3) when Lanczos is run in finite precision. However, as discussed in
subsection 1.1, (1.3) is often too pessimistic in practice, as it does not depend on
the fine-grained properties about the distribution of eigenvalues. Another generally
applicable analysis is [34], which suggests replacing erri(z) with resi(z) in (2.3). Since
resi(z) can be computed once the outputs of Lanczos have been obtained, the resulting
integral can be computed (or at least approximated by a quadrature rule). However,
this approach does not take into account the actual relationship between resy(z) and
erri(z) and therefore gives only an estimate of the error, not a true bound. Another
Cauchy integral formula—based approach is [33], which shows that Lanczos-FA exhibits
superlinear convergence for the matrix exponential and certain other specific analytic
functions.

There are a variety of other bounds specialized to individual functions. For ex-
ample, it is known that if A is nonnegative definite and ¢ > 0, then the error in the
Lanczos-FA approximation for the matrix exponential exp(tA)b can be related to
the maximum over s € [0,t] of the error in the optimal approximation to exp(sA)b
over a Krylov space of slightly lower dimension [11]. More recent works involving the
matrix exponential are [38, 37, 36]. There is also a range of work which analyzes the
convergence of Lanczos-FA and related methods for computing the square root and
sign functions [4, 5, 57].

3. Applying our framework. We proceed to show how to effectively bound
the integral term of Theorem 2.6 to give a priori and a posteriori bounds on the
Lanczos-FA error, assuming accurate bounds on ||errg(w)|| are available. Throughout,
we assume w € R, and we do not discuss in detail how to bound this linear system
error—there are many known approaches, both a priori and a posteriori, and the best
bounds to use are often context dependent. For a more detailed discussion, we refer
the reader to Appendix A.

To use Theorem 2.6, we must evaluate or bound ||h, ;||s,. Toward this end, we
introduce the following lemmas, which apply when S; is an interval. These lemmas
are also useful when S; is a union of intervals—in that case, ||y .|ls, is bounded by
the maximum bound on any of these intervals.

LEMMA 3.1. For any interval [a,b] C R, if z € C\ [a,b] and w € R, we have

_ Re(2)? + Im(z)? — Re(z)w.

b—w
b—=z

a—w Z—w

Im(z)‘ if % € [a,b] else O> },

)

|Pw, 2 | a,5) = max {

a—=z

where

Re(z) —w
2A function f defined on the positive real axis is a Stieltjes function if and only if f(x) > 0 for
all z € R and f has an analytic extension to the cut plane C\ (—o0,0] satisfying Im(f(z)) < 0 for

all z in the upper half plane [3, Theorem 3.2] [1, p. 127, attributed to Krein].
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Proof. Note that for x € R,

2 (r —w)?

~ (z — Re(2))? + Im(2)?

r—w

|hw,z(5‘7)|2 =

xr—z

and

d
dz (|hw72(517)|2) =

[(z — Re(2))? +Im(2)?)2(z — w) — (z — w)?2(x — Re(2))
[(z = Re(2))? + Tm(2)?}? '

Aside from x = w, where h,, . (x) = 0, the only value z € R for which 3 4 L (|hw,=(2)]?) =

0 is z*. This implies that the only possible local extrema of |k (2 )\ n [a, b are a,
b, and z* if 2* € [a,b]. Substituting the expression for * into that for |hw,z(ac*)|, one
finds, after some algebra, that |hy, . (2*)] = |z — w|/| Im(z)]. 0

LEMMA 3.2. Fiz r > 0, let D(c,t) be the disk in the complex plane centered at ¢
with radius t > 0, and define
U D < |z — w|) .

z€(a,b]

Then for z € C\ X,., we have
th,zn[mb] <

In particular, if z is on the boundary of X, then ||hy. |05 = 7

Proof. Let z € C\ X,., and pick any « € [a,b]. Since z & D(x, |x —w|/r), it follows

that |z — x| > |z — w|/r and therefore |hy, .(x)] = |z — w|/|z — 2| < r. Maximizing
over x yields the result.
If z is on the boundary of X, then for some z € [a,b], |z — 2| = | — w|/r, which

means that for this x, |y, ()] = r.

Note that if r < 1 and w € R\ [a, b], then the region described in Lemma 3.2 is
simply a disk about b if w < a or a disk about a if w > b. If » > 1 and w is real, then
the region described is that in the disks about a and b and between the two external
tangents to these two disks.

3.1. A priori bounds. We can use Theorem 2.6 to give a priori bounds as long
as we choose Sy and S;, i = 1,...,k, independently of b (and in turn T}).

The simplest possibility is to take So = S; = Z(A). In this case, as an immediate
consequence of Theorem 2.6 and Lemma 3.2, we have the following a priori bound.

COROLLARY 3.3. Suppose that for some w < Amin(A), f is analytic in a neigh-
borhood of D(Amax(A), Amax(A) —w). Then, taking T to be the boundary of this disk,

1F(AYb — lany(f ||<( flsc |dz|)|errk< )|
< ((OmA) = 0) a1 fema(w)].

Proof. To obtain the first inequality, observe that Lemma 3.2 with [a,b] = Z(A)
implies ||, [|z(a) = 1 on this contour. The second inequality follows since the length
of T is 27 (Amax(A) — w). d
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Fic. 2. Contour plot of ||hw,z||I(A)/|det(hw,z(Tk))|1/k as a function of z € C for a synthetic
example with Z(A) = [0.5,3] and A(Ty) = {0.5,0.8,1.2,1.5,3} (k =5). Here w is indicated by the
white diamond (& ), and the eigenvalues of Ty are indicated by white z’s (8 ). Larger slackness in
(2.6) corresponds to darker regions.

This bound is closely related to [16, Theorem 6.6], which bounds the error in
Lanczos-FA for Stieltjes functions in terms of the error in the Lanczos approximation
for a certain linear system.

Using that errg(w) = (A — wI)~ b, we can rewrite Corollary 3.3 as

£ —tani(Pllz _ o Oes(A) —0)[(A D)l ferry ()
[FAble = EE [7(A)b] Jerro(w)l2

This can be used to obtain simple relative error bounds for many functions. For
instance, suppose A is positive definite, f(z) = 79 for ¢ > 1, and w = cAmin
for ¢ € (0,1). Then max,er |27 = w9 = ¢ Apin(A)79 [[(A — wl)7!b|ls <
(Amin(A) —w)~Y|b|| and [|A~9b||l2 > Amax(A)~9||b||. We then have the bound?

[A~b — lang(f)ll2
|A=9bl|;

llerri (w)]2
[lerro(w)]]2

< IR(A)Ik(A — wl)

Corollary 3.3 and the above bound provide simple reductions to the error of
solving a positive definite linear system involving A — wl using Lanczos. However,
these bounds may be a significant overestimate in practice. In particular, for any
k > 1, (2.6) cannot be sharp due to the fact that ||hw,:|za) = supez(a) [hw,-(7)]
cannot be attained at every eigenvalue of Tj. In fact, for most values A;(Ty) and
most points z € I', we expect |hy, - (Xi(Tr))| < [[hw,2[lza). Figure 2 shows sample
level curves for ||hy,:||z(a)/| det(hw,-(Tk))|/* which illustrate the slackness in the
bound.

To derive sharper a priori bounds, there are several approaches. If more infor-
mation is known about the eigenvalue distribution of A, then the S; can be chosen
based on this information. For example, similarly to (1.4), it is possible to exploit the
interlacing property of the eigenvalues of T.

Ezample 3.4. Suppose A has eigenvalues in [0, 1] with a single eigenvalue at k > 1.
Assume w < 0. Then there is at most one eigenvalue of T}, in [1, 5], so in Theorem 2.6,
we can pick S; =[0,1] for i =1,...,k — 1 and Sy = [0, k]. We have

3Slightly stronger bounds can be obtained by bounding ||(A —wI)~'b]|2/||A~9b||2 directly rather

than bounding the numerator and denominator separately.
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k

H hw,z()"i (Tk))

i=1

k—1
‘det(hw,Z(Tk))‘ = < (”hw,ZH[O,l]) ||hw,Z||[O,m]-

If z is near to &, then |y ||[0,)) may be much smaller than ||hy, . ||jo,x)-

Second, the contour I' can be chosen to try to reduce the slackness in (2.6).
Intuitively, the slackness is exacerbated when z € T' is close to S; but far from \;(T}g).
For instance, for any k& > 1,

s 1 )

Vo= )
lim ————*— —1 and VYAeZ(A), lim
|z| =00 |det(hw7Z(T;€))| ( )

Z2— A | det(hw7z(Tk))|

This behavior is also observed in Figure 2.

These observations suggest that we should pick I' to be far from the spectrum
of A. Of course, we are constrained by properties of f such as branch cuts and
singularities. Moreover, certain contours may increase the slackness in Theorem 2.6
itself. These considerations are discussed further in Example 4.1.

3.2. A posteriori error bounds. After the Lanczos factorization (1.1) has
been computed, Tk, is known, and A(T}) can be cheaply computed. Thus, in Theo-
rem 2.6, we can take S; = {\;(Ty)} for i = 1,..., k, which is the best possible choice.
In this case, (2.6) is an equality, and det(hy (Tk)) = det(Ty — w)/ det(Ty — 2) can
be computed via tridiagonal determinant formulas rather than using the eigenvalues
of Tk.

If Z(A) is not known, the extreme Ritz values Apin(Tx) and Apax(Tk) can be
used to estimate the extreme eigenvalues of A [40, 50]. Altogether, this means that it
is not difficult to efficiently obtain accurate estimates of the bound from Theorem 2.6.

3.3. Numerical computation of integrals. Typically, to produce an a priori
or a posteriori error bound, the integral term in Theorem 2.6 must be computed
numerically. Consider a discretization of the integral

1
271

F(8) = —5 § FA =D s

using nodes z; and weights w;, ¢ = 1,2, ...,q. This yields a rational matrix function

Tq(A) = _% szf(zz)(A — ZiI)_l.

Using the triangle inequality, we can write

[ (A)b —lan(f)]]
< [If(A)b —rg(A)b|| + [Irg(A)b — lank (ry)) || + [lank(rq) — lank(f)]|

(3.1) <2 ( max  |f(z) - rq<x>|) bl + Ira(A)b — lang(ro)].

zEA(A)UA(Ty)
Now observe that analogous to Theorem 2.6,
s) ’Ilhw,zllso> lerrs(w)]].

(3.2)
q k

[7q(A)b —lang (rq)|| < <;ﬂzw Szl (H (7o, =
i=1

=1
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If we use the same nodes and weights to evaluate the integral term in Theorem 2.6, we
obtain exactly the expression on the right-hand side of (3.2). Thus, this discretization
of Theorem 2.6 is a true upper bound for the Lanczos-FA error to within an additive
error of size equal to twice the approximation error of r(x) to f(x) on A(A)UA(Ty)
times ||b|l. In many cases, we expect exponential convergence of r, to f, which
implies that this term can be made less than any desired value € > 0 using a number
of quadrature nodes that grows only as the logarithm of =t [30, 55].

We note that fast convergence of 7, to f suggests that, instead of applying
Lanczos-FA, we can approximate f(A)b by first finding r, and then solving a small
number of linear systems (A — z;I)x; = b to compute 7,(A)b. Solving these sys-
tems with any fast linear system solver yields an algorithm for approximating f(A)b
inheriting, up to logarithmic factors in the error tolerance, the same convergence
guarantees as the linear system solvers used. A recent example of this approach is
found in [39], which uses a modified version of stochastic variance reduced gradient
to obtain a nearly input sparsity time algorithm for f(A)b when f corresponds to
principal component projection or regression.

A range of work suggests using a Krylov subspace method and the shift invariance
of the Krylov subspace to solve these systems and compute 7,(A)b explicitly. This was
studied in [18, 21] for the Lanczos method and in [51] for MINRES, the latter of which
uses the results of [30] to determine the quadrature nodes and weights. However, as
the above argument demonstrates, the limit of the Lanczos-based approximation as
the discretization becomes finer is simply the Lanczos-FA approximation to f(A)b.
Therefore, there is no clear advantage to such an approach over Lanczos-FA in terms
of the convergence properties, unless preconditioning is used.

On the other hand, there are some advantages to these approaches in terms of
computation. Indeed, Krylov solvers for symmetric/Hermitian linear systems require
just O(n) storage; i.e., they do not require more storage as more iterations are taken.
A naive implementation of Lanczos-FA requires O(kn) storage, and while Lanczos-FA
can be implemented to use O(n) storage by taking two passes, this has the effect of
doubling the number of matrix-vector products required. See [29] for a recent overview
of limited-memory Krylov subspace methods.

4. Examples and numerical verification. We next present examples in which
we apply Theorem 2.6 to give a posteriori and a priori error bounds for approximat-
ing common matrix functions with Lanczos-FA. These examples illustrate the general
approaches to applying Theorem 2.6 described in section 3. All integrals are com-
puted either analytically or using SciPy’s integrate.quad, which is a wrapper for
QUADPACK routines.

In all cases, we exactly compute the ||erry (w)|| term in the bounds. In practice, one
would bound this quantity a priori or a posteriori using existing results on bounding
the Lanczos error for linear system solves. By computing the error exactly, we separate
any looseness due to our bounds from any looseness due to an applied bound on
Jerri(w)]].

Ezample 4.1 (matrix square root). Let A be positive definite and f(z) = /z.
Perhaps the simplest bound is obtained by using Theorem 2.6 with w = 0, S; = Z(A),
and I' chosen as the boundary of the disk D(Amax(A), Amax(A)).We then obtain a
bound via Corollary 3.3. However, this bound may be loose—note that except through
|lerri(w)]|, it does not depend on the number of iterations k. Thus, it cannot establish
convergence at a rate faster than that of solving a linear system with coefficient
matrix A.
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(a) circle contour (b) Pac-Man contour (c) double circle contour

Fic. 3. Circle, Pac-Man, and double-circle contours described in Examples 4.1 and 4.2, respec-
tively. All three figures show Z(A) (= ) and w ().

Keeping w = 0, we can obtain tighter bounds by letting I' be a Pac-Man-like
contour that consists of a large circle about the origin of radius R with a small
circular cutout of radius r that excludes the origin and a small strip cutout to exclude
the negative real axis, that is, as shown in Figure 3b, the boundary of the set

D(0,R)\ ({z: Re(z) <0,|Im(z)| < r}UD(0,r)).

As the outer radius R — oo, the integral over the large circular arc goes to 0
since [|huw,:|lz(ay = O(R™Y), |f(2)| = O(RY/?), and the length of the circular arc is
on the order of R. Thus, the product f(2)([|/hw,-|lz(a))** goes to 0 as R — oo for
all £ > 1. Similarly, as » — 0, the length of the small arc goes to zero. Therefore,
we need only consider the contributions to the integral on [—R + ir, +ir] in the limit
R — oco,7 — 0.

In this case, when S; = Z(A) for all i, we can compute the value of the integral
term in Theorem 2.6 analytically. We have

10 ,
|£(A)b —lank(f)]| < ( [ 1002 il 74 dw) Jerrs

2 J_ o
1 0 . )\m X(A)k+1
(5 [ peoipr 2l o) e
1/2

1 e Y
= f)\mXAkH/ d)err
<7T w(4) 0 (Amax(A) +y)ktt ) ller
Amax(A)32T(k —1/2)
= llerrsll,
2y/m N'(k+1)
where we have made the change of variable y = —z. Note that

. T(k—1/2)
3/2-\v— /<) _
S T

This proves that lang(y/-) converges somewhat faster than the Lanczos algorithm
applied to the corresponding linear system Ax = b.

In Figure 4, we plot the bounds from Theorem 2.6 for the circular and Pac-
Man contours described above. For both contours we consider S; = Z(A) for all
i as well as bounds based on an overestimate of this interval, S; = Z(A), where
Z(A) = [Amin(A)/2, 2Amax(A)]. This provides some sense of how sensitive the bounds
are to the choice of S; when S; is a single interval. For a posteriori bounds, we set .S;
to {\i(Tx)} for i > 0.
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T T T T T T T T T T T T T T T T T T
0 25 50 ke 100 125 150 175 200 0 25 50 k) 100 125 150 175 200
Lanczos iteration k Lanczos iteration k

(a) circular contour (¢ =r = Amaz(A)) (b) Pac-Man contour (r — 0, R — 00)

Fic. 4. A-norm error bounds for f(z) = +/z, where A has n = 1000 eigenvalues spaced
uniformly in [1072,102]. Legend: True Lanczos-FA error |f(A)b — lang(f)|| (—). A priori
bounds obtained by using Theorem 2.6 with So = S; = Z(A) (—-) and So = S; = Z(A) =
Amin(A)/2,2XAmaz(A)] (— ). A posteriori bounds obtained by using Theorem 2.6 with So = Z(A),
Si = {Xi(Tr)} (== ), and So = Z(A), S; = {\i(Ty)} (——). Observe that using the wider interval
ZZ(A) has very little effect on both the a priori and a posteriori bounds. Also observe that the a
posteriori bounds closely match the actual convergence of Lanczos-FA.

We remark that the bounds from Theorem 2.6 are upper bounds for (2.5), which
implies that the slackness of (2.5) is relatively small. This suggests that the roughly
6-order-of-magnitude improvement in Theorem 2.6 when moving from the circular
contour to the Pac-Man contour is primarily due to reducing the slackness in (2.6),
aligning with our intuition.

Our next example illustrates the application of Theorem 2.6 to several com-
mon piecewise analytic functions. Functions of this class have found widespread
use throughout scientific computing and data science but have proven particularly
difficult to analyze using existing approaches [10, 22, 39, 57].

Ezample 4.2 (step and absolute value functions). Let f(z) be one of |z — al,
step(z —a), or step(z —a)/z for a € Z(A), where, for z € C, we define step(z) := 0 for
Re(z) < 0 and step(z) := 1 for Re(z) > 0. Also, for z € C, we replace |z —a| by z—a
if Re(z) > a and by a — z if Re(z) < a. Note that the latter two functions correspond
to principal component projection and principal component regression, respectively.
Moreover, the step function is closely related to the sign function, which is widely
used in quantum chromodynamics to compute the overlap operator [57].

Next, take w = a, and define I'y and I'y as the boundaries of the disks Dy :=
D(Amin(A),w — Apin(A) — €) and Dy := D(Amax(A), Amax(A) — w — €) for some
sufficiently small € > 0. Then f is analytic in a neighborhood of the union of these
two disks, so assuming none of the eigenvalues of A or T} are equal to a, we can
apply Lemma 3.2.

Note that ||l .|z(a) — 1 as z — w from outside [a,b], avoiding a potential
singularity which would occur if the contour I' passed through Z(A) at any other
points. In fact, ignoring the contribution of €, ||hy,.||za)y = 1 for all z € 'y and for
all z € I's. Thus, Corollary 3.3 can be written as

2
(4.1) 1A ~tany ()] < [ 5= ST max £ | ferny(w)].
j=1 !

The values of this bound for all three functions are summarized in Table 1.
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TABLE 1
Values of the factor in parentheses on the right-hand side of (4.1) (ignoring €) for several

common piecewise analytic functions.

f@) f(x),z€ [f(2),2€0 535 T lmaxer, ()]

|t —al a—=z z—a
step(x —a) 0O 1
step(z —a)/z 0O 1/z

2((1 - )\min)Q + 2()\max - a)2
(>\max - a)
(Amax —a)/a

107!

107%

107°

107

1079

101

10718

1071 T T T T T T T T T

0 25 50 75 100 125 150 175 200
Lanczos iteration k

(a) (A — wI)2-norm for f(z) = step(x — a)/x

where A = XXH and the entries of X € R™2"

are independent Gaussians with mean zero and

10-10

10-13

10710 4= T T T T T
0 10 20 30 10 50

Lanczos iteration k
(b) 2-norm for f(z) = step(x — a), where A is
the MNIST training data [41] covariance matriz
and a = 0.15 A maz(A) so that there are 16 eigen-

variance 1/2n with n = 3000. We set a = values above a.
0.99\maz(A) so that there are roughly 5 eigen-
values above a.

Fi1c. 5. Bounds for piecewise analytic functions using the double-circle contour described in
Ezample 4.2. Legend: True Lanczos-FA error (——). A priori bounds obtained by using Theo-
rem 2.6 with So = S; = Z(A) (=+) or (4.1) (——) with So = S; = Z(A). Note that these curves
are on top of one another suggesting there is very little loss going from Theorem 2.6 to the much
easter to evaluate (4.1). An a posteriori bound obtained by using Theorem 2.6 with So = Z(A) and
Si = {\i(T)} (== ). Observe that all bounds, especially the a posteriori ones, closely match the
true convergence of Lanczos-FA.

In Figure 5, we plot the bounds from Theorem 2.6 for the contour described above
with S; = Z(A).

If w € Z(A), we note that ||erry(w)]|| corresponds to the indefinite linear system
(A — wl)x = b, so standard results for the conjugate gradient algorithm are not
applicable. However, the residual of this system can still be computed exactly once
the Lanczos factorization (1.1) has been obtained, and as we prove in Appendix A,
a priori bounds for the convergence of MINRES [8] can be extended to the Lanczos
algorithm for indefinite systems. It is also clear that, at the cost of having to compare
against the error of multiple different linear systems, functions which are piecewise
analytic on more than two regions can be handled.

5. Finite precision. While reorthogonalization in the Lanczos method
(Algorithm 1.1) is unnecessary in exact arithmetic, omitting it may result in
drastically different behavior when using finite precision arithmetic; see, for instance,
[43]. In the context of Lanczos-FA, the two primary effects are (i) a delay of conver-
gence (increase in the number of iterations to reach a given level of accuracy) and (ii)
a reduction in the maximal attainable accuracy. These effects are reasonably well un-
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derstood in the context of linear systems [25, 26], i.e., f(z) = 1/z, and for some other
functions, such as the matrix exponential [11]. However, general theory is limited. A
notable exception is [45], which argues that the uniform error bound for Lanczos-FA
(1.3) holds to a close degree in finite precision arithmetic.

When run without reorthogonalization, Algorithm 1.1 will produce Qj and Ty
satisfying a perturbed three-term recurrence,

(5.1) AQy, = QT + Braxtef, + Fy,

where F is a perturbation term. Moreover, the columns of Qj may no longer be
orthogonal. A priori bounds on the size of Fy and the loss of orthogonality between
successive Lanczos vectors have been established in a series of works by Paige [46,
47, 48, 49]. These quantities can also be computed easily once Qy and T}, have been
obtained, allowing for easy use with our bounds.

5.1. Effects of finite precision on our error bounds for Lanczos-FA. Note
that using the divide-and-conquer algorithm from [28] to compute the eigendecompo-
sition of the tridiagonal matrix T}, we can quickly and stably compute Qy f(Tk)es.
A detailed analysis of this is given in [45, Appendix A].

While the tridiagonal matrix T and the matrix Qj of Lanczos vectors produced
in finite precision arithmetic may be very different from those produced in exact
arithmetic, we now show that our error bounds, based on the T and Qj actually
produced, still hold to a close approximation. First, we argue that Lemma 2.2 holds
to a close degree provided Fy is not too large. Toward this end, note that we have
the shifted perturbed recurrence

(5.2) (A —21)Qi = Qi(Ty, — 2I) + Brqrr1er + Fr.
From (5.2), it is then clear that
(A —2D)Qi(Tk — 2I)'e; = Qrer + Brariief (T — 2I) ey + Fi(Ty — 2I) " leg
This implies that Corollary 2.4 also holds closely. More specifically,

resg(z) = det(hy, - (Tx))resy(w) + fi(w, 2),
err(2) = det(hu - (Tk)) hw,» (A)erry (w) + (A — 2I) "y (w, 2),

where
£y (w, 2) == Fy, ((Tk — 21)! — det(hy.. (T5))(Ts — wI)_l) e
Using this, we have
F(A)Yb —lang(f 9 ]{ f(zerrp(2)dz — — f. f(z — 217y (w, 2)dz,
which we may bound using the triangle inequality as

[f(A)b — lank(f H< A — 21) "'y (w, 2)dz]| .

z)erri(z)dz

This expression differs from Theorem 2.6 only by the presence of the term involving
fi.(w, z) (and, of course, by the fact that erri(z) now denotes the error in the finite
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precision computation). If we take || - || as the (A — wI)?-norm, then this additional
term can be bounded by,

j{ f(2)(A = 2I) 7y (w, 2)dz

1
2T

IN

% jg 1£(2)] - (A = wI)(A — 2I)7|g - || (w, 2) |2 - |d2]

(53 < 5 $ G

|50 |k (w, 2)[2 - |dz].

Note that (5.3) can be viewed as an upper bound of the ultimate obtainable
accuracy of Lanczos-FA in finite precision after convergence. If the inequalities do not
introduce too much slack, this upper bound will also produce a reasonable estimate.
If ||F|| is small, the size of this addition is also hopefully small, in which case one may
simply ignore the contribution of (5.3), provided the Lanczos-FA error is not near the
final accuracy. We have worked in the (A — wI)? norm, as it simplifies some of the
analysis, but in principle, a similar approach could be used with other norms. This
is straightforward but would involve bounding something other than ||h., . ||s,-

Ezxample 5.1. The left panel of Figure 6 shows the convergence of Lanczos-FA
when Algorithm 1.1, without reorthogonalization, is used to generate Qj and T.
Compared with the error of the iterates generated using full orthogonalization, a
delay of convergence and loss of accuracy are clear. This figure also shows the error

1076

10°

102
1077

104
10-¢

1078

10-%

T T T T T T 10-° T T T T T
0 20 10 60 80 100 0 20 10 60 80 100
Lanczos iteration k Lanczos iteration k

10710

(a) (A —wI)2-norm error bounds for f(x) =/  (b) Legend: |Fi|lp (—), right-hand side of
using a Pac-Man contour (r — 0, R — o). (5.3) (=== ). Note that the size of Fy, is small
Legend: True Lanczos-FA error (- ). A pri- relative to the Lanczos-FA error, until the accu-
ori bounds obtained by using Theorem 2.6 with racy is near the final accuracy.

So = S; =I(A) with (=) and without (——)

right-hand side of (5.3). A posteriori bounds ob-

tained by using Theorem 2.6 with So = Z(A)

and S; = {X\i(Tg)} with (== ) and without

(——) right-hand side of (5.3). For reference,

the convergence of Lanczos-FA with reorthog-

onalization in double precision (——) is also

shown.

Fic. 6. A has n = 50 eigenvalues with \1 = 1, A, = 0.001, and X\; = A\p + Z:; (M —
An)p?™1, i = 2,...,n — 1, as described in [53] with parameter p = 0.8. Here Lanczos is rTun
without reorthogonalization in single precision arithmetic, but the integrals are evaluated using double

precision arithmetic.
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bounds derived by bounding ||Fy|| as described above. We note that the contribution
from the integral in (5.3) is almost negligible until the bound is near the final accuracy.

6. Quadratic forms. In many applications, one seeks to compute b"f(A)b
rather than f(A)b. A common approach is Lanczos quadrature, which computes the
approximation b"lan;(f) to b"f(A)b. This approximation is a degree k Gaussian
quadrature approximation to the integral of f against the weighted spectral measure
corresponding to A,b; see, for instance, [7, 23, 56]. However, as with the case of
Lanczos-FA, most existing error bounds for Lanczos quadrature are either pessimistic
or limited to special classes of functions.

Note that the Lanczos-FA approximation satisfies

bank(f) = b"Quf(Tk)Qlb = [[b||3 €l f(T1)er.

Thus, we can compute bHlan, (f) without storing or recomputing Q..
Since A is Hermitian, (A — 2I)" = A — zI. Thus, since

bH(A — 2I)7! = ((A — 2I)7'b)" = (lany(hz) + errp(2))b)M,
we can expand the quadratic form error as
b"erry,(z) = b (A — 2I) " tresy,(2) = (lang(hz)) + errg(2))™ resy (2).

Now, by definition, lany(h=(z)) = Qrh=(T%)Q"b, and by Lemma 2.2, resy(z) is pro-
portional to qg+1. Thus, since at least in exact arithmetic qg1 is orthogonal to Qg,

bHerr(2) = err(2)"resp(2) = ((A — ZI) " 'resi(2))"resp(2).
Next, using Corollary 2.4 and the fact that hy - (2)hy z(2) = |he - (2)]? for w,z € R,
bHerry.(2) = | det(hw, . (Tk))|?resk (w)T (A — 21) " tresy (w).
We then have
[berry(2)] < |det (- (Tw))[* - [|(A = 21) 7|2 - [|resi (w) 3.

Applying the Cauchy integral formula, we therefore obtain a bound for the quadratic
form error analogous to Theorem 2.6:

(6.1)
1 k
b F(A)b — blans(f)] < (% f s <H [P

Comparing the above to the bound of Theorem 2.6 for approximating f(A)b, we see
that |lerry(w)]|| is replaced with |resy(w)||3. Thus, heuristically, we can expect the
quadratic form to converge at a rate twice that of the norm of the error of the matrix
function.

Similar to Lemma 3.1, we have the following bound on |h,|ls, when Sy is an
interval. This allows a bound on (6.1) analogous to (2.5).

) hslsy- |dz|> Iresi(w)].

LEMMA 6.1. For any interval [a,b] C R, if z € C\ [a,b], we have

1/|Im(z)] Re(z) € Z(A),
IPzlljap) = § 1/Ja— 2]  Re(z) <a,
1/|b—2 Re(z) >b.
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In the case that the contour I does not pass through Z(A), the bound of (6.1) is
essentially as easy to compute as that of Theorem 2.6. However, if the contour passes
through Z(A) at w, to ensure that Sy does not contain points in the contour, it must
be chosen as a set other than Z(A). This set must contain all of A’s eigenvalues, and
we must bound its distance to the contour (in particular, to w).

Ezample 6.2. Suppose A is positive definite and f(x) = log(z). We use (6.1)
to obtain a bound for the quadratic form error |b"f(A)b — bMlan,(f)|. A priori
bounds are obtained with Sy, .S; = Z(A), while a posteriori bounds are obtained with
So = Z(A) and S; = {\i(Tx)}. In both cases, we take I as the Pac-Man contour
centered at 0 with 7 = Apin(A)/100 to avoid the singularity log(0) = —oo. The
resulting bounds are shown in the left panel of Figure 7.

As in Example 4.1, we also consider the cases where we use an estimate Z (A) for
Z(A) to study the sensitivity of our bounds to S;. For these tests, we use a Pac-Man
contour with r = Apin (A)/200.

Ezample 6.3. Let f(x) = step(z — a) for a € Z(A), and set w = a. Similarly to
the previous example, we use (6.1) to obtain a bound for the quadratic form error
|bH f(A)b — bHlan,(f)|. However, we must have S; avoid where I' crosses the real
axis.

Suppose AL (A) and A\ (A) are consecutive eigenvalues of A so that A\L% (A) <

max min max

w < A (A). Then we can define

min

T (A) = min(A), Ao (A)] U A (A), Amax (A)].

max min

In this case, ||h.|z,a) = maX{HhZ”[Amin,Ak,Zx]’ [z llfar2 Amax))} can be computed us-
ing Lemma 6.1.

107!

10-1

107

10-10

10713

lil :> llﬂ 1'3 2'0 2'-') 3Il'l 3'3 4'0 o l‘) I‘(l 2‘1] .‘{‘(] 1‘1] 5‘(]
Lanczos iteration k Lanczos iteration k

(a) Error bounds for f(x) = log(z) using a  (b) Error bounds for f(x) = step(x — a) with

Pac-Man contour as described in Example 6.2. double-circle contour as described in FExam-

A = XXT, where the entries of X € R™2" gre ple 6.3. A is the covariance matriz of the

independent Gaussians with mean zero variance
1/2n where n = 3000. Legend: A priori bounds
obtained by using (6.1) with So = S; = Z(A)
(—+) and So = S; = Z(A) (—). A poste-
riori bounds obtained by using (6.1) with So =
Z(A), Si = {Xi(Tg)} (==) and So = I(A),
S ={X(Tx)} (—).

FIG. 7. Lanczos-FA quadratic form errors. Legend: |bHf(A)b — b"lang(f)| (-

erence, we also show || f(A)b — lang ()12 (
Lanczos-FA error.

MNIST training data [{1]. Legend: A pri-
ori bounds obtained by using (6.1) with So =
Si = Zw(A) (=) and So = Si = Zw(A)
(—). A posteriori bounds obtained by using
(6.1) with So = Tw(A), S; = {Xi(Tk)} (-=)
and So = Zw(A), S; = {Ni(Tx)} (—)-

). For ref-

). Note that this is the square of the 2-norm of the
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We can then apply (6.1) to obtain a bound for the quadratic form error |b" f(A)b—
b"lany(f)|. A priori bounds are obtained with Sy, S; = Z,,(A), while a posteriori
bounds are obtained with Sy = Z,,(A) and S; = {\;(Tx)}. This is shown in the right
panel of Figure 7. Of course, in practice, it is unlikely that A" (A) and A% (A)
are known. The distance to w of course can be estimated by estimating the smallest
eigenvalue of (A — wI)?, perhaps via Lanczos. However, it can be expected to be
more difficult than estimating Amin(A) and Apax(A). Thus, we also show the effect of

approximating Ab% (A) and A" (A). Specifically, we compute ||/, .

max min

T (A)> where

Zu(A) = min/2,w = 9] U [0 + 7, 1.5Amax])
for v = minyep(a) |A — w|/100.

7. Conclusion and outlook. In this paper, we give a simple approach to gen-
erate error bounds for Lanczos-FA used to approximate f(A)b when f(z) is piecewise
analytic. Our framework can be used both a priori and a posteriori, and the bounds,
to close degree, hold in finite precision. While outside the scope of this paper, the
same general approach is applicable to non-Hermitian matrices computed using an
Arnoldi factorization.

Appendix A. Error bounds for Lanczos on linear systems. Our analy-
sis reduces understanding the Lanczos-FA error for a function f to understanding
|lerri(w)]|, the error of Lanczos-FA used to solve the system (A — wI)x = b. We
review several bounds for this task. Without loss of generality, we assume w = 0, as
the wI term can be incorperated directly into A.

In the case that A is positive (or negative) definite, Lanczos-FA with f(z) = 1/z is
equivalent to the conjugate gradient algorithm (CG) [31]. Therefore, it inherits CG’s
well-known property of returning an optimal solution in the A-norm (or —A-norm if
A is negative definite). That is,

err = i A 'b— = i A)A b/l A.
llerre||a oin l ylla d{gg}ék p(A) la
p(0)=1

From this optimality, we obtain the following (well known) bounds for positive
definite A:

k

Mg min  max |[p(A)] <2 VAA) -1 <2exp| - 2k )

[[errol|a deg p<k ACA(A) VE(A) +1 r(A)
where the final bound follows from the fact that (x — 1)/(z + 1) < exp(—2/z) for all
x > 1. The minimax bound, based on the eigenvalues of A, is tight in the sense that for
each k, there exists b (dependent on A and k) so that lang(f, A, b) attains the bound
[24]. The final inequality implies that Lanczos-FA requires k < +/k(A)log(2/e)
iterations to ensure ||errg||a/|lerrolla < e

From the result above, it is also straightforward to derive a bound that is more
directly comparable to (1.2) and (1.3). Specifically, for f(z) = 1/x, [45] shows

lerrklla = [[f(A)b —lank(f)][2 < V/K(A)[[bll2 - min [|f —pllrca)-

eg p<k

Beside the leading constant y/k(A), this bound is strictly stronger than (1.2) because
it only depends on the eigenvalues of A and not those of T;. As a result, it is also
strictly stronger than the uniform approximation bound of (1.3).
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If A is indefinite, we can obtain error bounds by relating the Lanczos-FA approx-
imation to MINRES. For these bounds, we need the following theorem from [8], which
compares the 2-norm of the residual in the Lanczos approximation to the solution of
a Hermitian linear system to that of the MINRES algorithm. MINRES, by defini-
tion, minimizes the 2-norm of the residual over all approximations from the Krylov
subspace.

THEOREM A.1. Let A be a nonsingular Hermitian matriz, and define r as the
MINRES residual at step k, i.e.,

M .= b — Ay, ¥y = argmin ||b— Ay|..
yEKL(A,b)

Then, assuming that the initial residuals in the two procedures are the same,

[Iresill2 _ 2" l2/l1xd" 12
res 2
Iresoll /1 — (e 1o/l 1)

Therefore, if MINRES makes good progress at step k (i.e. ||t} |2/|lt} |2 is
small), then Theorem A.1 implies ||resi||2/|[resoll2 =~ |2 [|2/|/r)!||2. Thus, since MIN-
RES converges at a linear rate, there will be iterations in which Lanczos-FA has nearly
as good a residual norm as MINRES. This is made precise by the following result.

COROLLARY A.2. Suppose A(A) C [a,b] U [c,d], where a < b < 0 < ¢ <d, and

define v = +/|ad|/|bc|. Then, for any e < v/4, there exists k < 2vlog(v/2v/€) so that
|[resk]l2/|[resol|2 < €.

Proof. If the eigenvalues of A lie in [a,b] U [¢,d], then as in [27, section 3.1], the
optimality of MINRES implies

Li/2] .
I (adilee =1\ 7, 2Li/2)
g Ml =\ V/Jad]/Tbe] + 1 B Vlad|/be]

For notational convenience, set T = 2¢/7, and define &’ to be the first iteration
where || ||2/[|7oll2 < 7/2 and k" to be the first iteration where |7 ||2/||rol2 < 72/4.
Note that k” < vlog(2/(72/4)) = 2ylog(2v/2/7).

First, suppose ||rg/|l2/|lrollz < 7/4. Then, since ||7w—1|2/l|roll2 > 7/2, using
Theorem A.1,

[resll2 _ i ll2/ 1l 2 < /4

Iresofl2 V1= (e o/ l2)? ~ V= (/07727 N

Next, suppose that ||ri||2/||70ll2 > 7/4. Let £ = k" — k, and note that there must
exist an iteration k € (K, k"] so that

1/¢
[l P [ ol YA Ll P (TQ/4>
Ieelolle leptyll2/ e lle = \ 7/4
Now note that
1 1

S (e T
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and that £ < k" — 1 < 2vlog(2v/2/7), so
1 _ 1 B 1
26 — o T B .
V1—72/C = /1 71/(vloa(2V3/7)) \/1 - (Tl/log(wim)m

If T € [0,1/2], then T1/108(2v2/7) < exp(—2/5) < 3/4, so noting that v > 1, we can
apply Lemma A.3 to obtain

1

\/1 _ (Tl/log(m/i/ﬂ)l/7

Combining this with Theorem A.1 gives

< 27.

e Il i o, g
res 2
ol /1 (el /e 1) \/1 ) <<Tz/4)1/f>
T/4
LEMMA A.3. For all x € [0,3/4] and y € [0,1],
1 2
< -

Vii—xY Ty
Proof. Consider the function

Y

g(x,y) = ﬁ

For any y € [0,1], g(x,y) is nondecreasing in z, so it suffices to set * = 3/4. Thus,
define

F(y) = log(g(3/4,)) = log (21_9(3M)> :

which has derivative

oy L log(4/3)
TW=5 " samp -1
Note that (4/3)Y — 1 > log(4/3)y for all y > 0, so

log(4/3) _ log(4/3) _ 1
20473 —1) ~ 210g(3/3)y 2y’

Therefore, f'(y) > 1/(2y) > 0, so f(y) is nondecreasing. Since log is increasing, this
implies that ¢g(3/4,y) is a nondecreasing function of y on [0, 1] and therefore bounded
above by ¢(3/4,1) = 1. Thus, g(z,y) < 1 for all z € [0,3/4] and y € [0, 1], and the
result follows. d

So far, we have discussed a priori bounds, but there are a range of a posteriori
bounds as well. For instance, a simple a posteriori bound is obtained using the fact
that ||errg||az = ||resk |2, which holds even when A is indefinite. Using the similarity
of matrix norms, bounds for ||errg|| when || - || is any norm induced by a matrix with
the same eigenvectors as A can then be obtained.
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When A is positive (or negative) definite, a range of more refined error bounds

and estimates for the A-norm and 2-norm have been considered. These bounds obtain
error estimates for CG at step k by running Lanczos (or CG) for an extra d iterations.
The information from this larger Krylov subspace Kj14(A, b) is then used to estimate
the error at step k. Typically, d can be taken as a small constant, say, d = 5, so the
extra work required to obtain these bounds is not too large. We refer the reader to
[54, 44, 15, 42] and the references within for more details.
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