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Abstract
Let A ∈ Rn×n be a matrix with diagonal diag(A) ∈ Rn. We show that the simple and practically popular

Hutchinson’s estimator, run for m trials, returns a diagonal estimate d̃ ∈ Rn such that with probability 1− δ,

∥d̃− diag(A)∥2 ≤ c

√
log(2/δ)

m
∥Ā∥F .

Above c is a fixed constant and Ā equals A with its diagonal set to zero. This result improves on recent work
in [4] by a log(n) factor, yielding a bound that is independent of the matrix dimension, n. We show a similar
bound for variants of Hutchinson’s estimator that use non-Rademacher random vectors.

1 Introduction

We give a short and tight analysis of the popular Hutchinson’s estimator for approximating the diagonal of a
square matrix, A, given only implicit matrix-vector multiplication access to the matrix [13, 5].

Definition 1.1. (Hutchinson’s Diagonal Estimator) Let g1, . . . ,gm ∈ {−1,+1}n be independent random
vectors, each with i.i.d. Rademacher (random ±1) entries. Hutchinson’s diagonal estimator rm(A) ∈ Rn is:

rm(A) =
1

m

m∑
z=1

gz ⊙Agz,

where a⊙ b ∈ Rn denotes the Hadamard product (entrywise product) between vectors a ∈ Rn and b ∈ Rn.

Computing rm(A) requires m matrix-vector multiplications with A, and it is not hard to check that it is an
unbiased estimator for the diagonal, i.e., E[rm(A)] = diag(A), where diag(A) is a vector containing A’s diagonal
elements. Hutchinson’s diagonal estimator is simple to implement and is widely applied across applications in
computational science [2, 15], machine learning [17, 8], and optimization [24, 7]. In these applications, it is used to
estimate the diagonals of large Hessian matrices, matrix inverses, and other matrices that are expensive to construct
explicitly, but for which matrix-vector multiplications can be implemented quickly (e.g. using backpropagation or
an iterative linear system solver).

However, despite its popularity, there has been a lack of theoretical work on Hutchinson’s diagonal estimator,
and in particular on the question of how large m should be so that rm(A) concentrates around its expectation.
This is in contrast to the closely related Hutchinson’s trace estimator, which has been heavily studied and for
which a tight analysis is known [18, 6, 16, 23].

Two recent papers do provide bounds for the diagonal estimation problem [12, 4]. The second proves that if
m = O(log(n/δ)/ϵ2), then with probability 1−δ, ∥rm(A)−diag(A)∥2 ≤ ϵ∥Ā∥F , where ∥Ā∥2F = ∥A∥2F−∥ diag(A)∥22
denotes the squared Frobenius norm of A with its diagonal entries set to 0. Our goal is to tighten the analysis
of [4] by removing the log(n), i.e., to prove that to achieve error ϵ∥Ā∥F , just m = O

(
log(1/δ)/ϵ2

)
matrix-vector

products are necessary. Formally, we prove:

Theorem 1.1. (Main Theorm) For any δ ∈ (0, 1] and m ≥ 1, with probability 1− δ:

∥rm(A)− diag(A)∥2 ≤ c

√
log(2/δ)

m
∥Ā∥F ,

where c is an absolute constant independent of A and all other problem parameters.
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The dependence on log(n) in the analysis of [4] arises through the use of a union bound argument: they show
that Hutchinson’s estimator separately obtains an accurate estimate for each entry of A’s diagonal, and thus
∥rm(A)−diag(A)∥2 can be bounded1. A similar log(n) appeared in early analysis for the trace estimation problem
[3] and was later removed [18]. We obtain a comparable improvement through a refined analysis of the stochastic
diagonal estimator that relies on a symmetrization argument and techniques for proving vector-valued Bernstein
inequalities [25].

We do note that it is possible to obtain a low probability result for Hutchinson’s estimator which almost
matches the bound of Theorem 1.1, but with a costly linear dependence on 1/δ. We discuss this result in Section
2.1. Additionally, using this low probability result, the same asymptotic complexity as Theorem 1.1 (with no
n dependence, and just a log(1/δ) dependence) can be obtained by combining Hutchinson’s estimator with a
multi-dimensional variant of the “median trick”. We discuss this approach in Section 4.1. However, we are mostly
interested in analyzing Hutchinson’s estimator itself as the method is 1) simpler to implement 2) essentially
parameter free (only requires specifying m) and 3) the most widely used diagonal estimator in practice.

We also note that Theorem 1.1 is tight, and the bound cannot be further improved for Hutchinson’s estimator.

To see that this is the case, consider the matrix A =

[
0 1
0 0

]
. We can check that rm(A) =

[
S/m
0

]
where S is a

sum of m independent ±1 random variables. By the well-known tightness of the Chernoff bound (see e.g. [14]) we
will only have that S/m ≤ ϵ with probability 1− δ if m = O(log(1/δ)/ϵ2), which matches the upper bound implied
by Theorem 1.1. It is possible that a different estimator could improve on Theorem 1.1, either in general or for
some classes of matrices. Proving a strong lower bound showing the result is optimal in e.g. the matrix-vector
product model of computation is a nice open question [21, 16].

2 Preliminaries

Notation. For a vector y ∈ Rn, ∥y∥2 = (
∑n

i=1 y
2
i )

1/2 denotes the Euclidean norm. For a matrix A ∈ Rn×m,
∥A∥F = (

∑n
i=1

∑m
j=1 A

2
ij)

1/2 denotes the Frobenius norm and ∥A∥2 = maxx∈Rm ∥Ax∥2/∥x∥2 denotes the spectral

norm. When A is square, tr(A) =
∑n

i=1 Aii denotes the trace. We use c, c′, C, etc. to denote absolute constants
that are independent of the problem input and all other parameters. The exact value of these constants changes
depending on context.

Random Variables. When analyzing random variables, we will make use of the properties of sub-Gaussian and
sub-exponential random variables, using the notation of [22]. Formally we define:

Definition 2.1. (Sub-Gaussian Random Variable) A random variable X is sub-Gaussian with parameter

K if we have E
[
eX

2/K2
]
≤ 2.

Definition 2.2. (Sub-exponential Random Variable) A random variable X is sub-exponential with param-
eter K if we have E

[
e|X|/K] ≤ 2.

Trace Estimation. To prove Theorem 1.1 we will relate Hutchinson’s diagonal estimator (Definition 1.1) to the
well-known Hutchinson’s trace estimator, which we define below:

Definition 2.3. (Hutchinson’s Trace Estimator) Let g ∈ {−1,+1}n be a vectors with i.i.d. Rademacher
entries. Hutchinson’s trace estimator T for a matrix B ∈ Rn×n is:

T (B) = gTBg.

It is not hard to show that E[T (B)] = tr(B) and Var[T (B)] = 2∥B̄∥2F , where B̄ denotes B with its diagonal entries
set to 0. By averaging repeated copies of the estimator we can obtain a lower variance estimate. To prove high
probability error bounds, a tight analysis can be obtained via the Hanson-Wright inequality, which implies that
T (B) exhibits exponential concentration [6]. We will use an intermediate result stated in Section 6.2 of [22] as a
step towards proving Hanson-Wright2:

1It is possible to replace n with a natural “intrinsic dimension” parameter that is smaller for some problem instances [11].
2Note that when g contains Rademacher random variables, Z(B) = tr(B)− T (B) exactly equals

∑
i̸=j gigjBij , which is precisely

the “off-diagonal sum” random variable bounded in [22].
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Lemma 2.1. ([22]) Let Z(B) = T (B)− tr(B) be the error of Hutchinson’s trace estimator as in Definition 2.3.
For absolute constants c, C, we have:

E
[
eλZ(B)

]
≤ eCλ2∥B∥2

F for all |λ| ≤ c/∥B∥2.

2.1 Relation Between Diagonal Estimator and Trace Estimator Consider rm(A) and as before let
diag(A) denote the diagonal of A. Let g1, . . . ,gm be the m random ±1 vectors used to obtain rm(A). We can
rewrite the mean zero random vector rm(A)− diag(A) as:

rm(A)− diag(A) =
1

m

m∑
z=1

ez where for z = 1, . . . ,m ez = gz ⊙Agz − diag(A).

Note that the ith entry in ez equals
∑

j ̸=i Aijg
z
i g

z
j . Using that (gzi )

2 = 1 for all i, z and recalling that Ā denotes
A with its diagonal set to zero, we have:

∥ez∥22 =
d∑

i=1

∑
j ̸=i

Aijg
z
i g

z
j

2

=
d∑

i=1

∑
j≠i

∑
k ̸=i

AijAikg
z
i g

z
i g

z
j g

z
k =

d∑
i=1

d∑
j=1

d∑
k=1

ĀijĀikg
z
j g

z
k =

d∑
j=1

d∑
k=1

gzj g
z
k

d∑
i=1

ĀijĀik.

Let B = ĀT Ā. We have that Bjk =
∑d

i=1 ĀijĀik, so we can rewrite the above as:

∥ez∥22 =
d∑

j=1

d∑
k=1

gzj g
z
kBjk = gzTBgz.(2.1)

In other words, ∥ez∥22 is identically distributed to Hutchinson’s trace estimator applied to the positive semi-definite
matrix B. An immediate consequence of Eq. (2.1) is that E ∥ez∥22 = tr(B) = ∥Ā∥2F . This in turn yields the
following:

Lemma 2.2. (Expected Squared Error of Hutchinson’s Diagonal Estimator) Let rm(A) as in Defi-
nition 1.1. We have:

E
[
∥rm(A)− diag(A)∥22

]
=

1

m
∥Ā∥2F .

Proof.

E
[
∥rm(A)− diag(A)∥22

]
= E

∥∥∥∥∥ 1

m

m∑
z=1

ez

∥∥∥∥∥
2

2

 =
1

m2
E

 m∑
z=1

∥ez∥22 +
m∑

z=1

∑
w ̸=z

ez
T ew

 =
1

m2

[
m∑

z=1

∥Ā∥2F + 0

]

In the last inequality we used that ez
T ew = 0 because the random vectors are mean zero and independent.

Applying Markov’s inequality, an immediate consequence of Lemma 2.2 is that ∥rm(A)− diag(A)∥22 ≤ 1
mδ∥Ā∥2F

with probability 1− δ. Setting m = 1
ϵ2δ we thus have that with probability 1 − δ, ∥rm(A)− diag(A)∥2 ≤ ϵ∥Ā∥F .

Notably this simple bound already avoids the log(n) dependence from [4], but it incurs a suboptimal 1/δ dependence
in comparison to that result and Theorem 1.1, which depend on log(1/δ).

3 Proof of Main Theorem

In this section we prove Theorem 1.1, which requires bounding the norm of rm(A) − diag(A). This random
vector can be written as the average of m mean-zero random vectors rm(A) − diag(A) = 1

m

∑m
z=1 ez. Via the

connection to Hutchinson’s trace estimator, we know the expected norm of each ez is equal to ∥Ā∥F . Moreover,
each norm should not be much larger than ∥Ā∥F with high probability due to the concentration of Hutchinson’s
trace estimator. Thus a natural approach might be to apply a “vector valued Bernstein” inequality for sums of
norm-bounded random vectors [25]. However a direct application of prior work yields a suboptimal polynomial
dependence on log(1/δ).
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Alternatively, since ∥rm(A)−diag(A)∥22 is a low-degree (degree 4) polynomial in Rademacher random variables,
we might hope to prove concentration by applying techniques based on hypercontractivity to bound the random
variable’s higher moments, as done e.g. in [20] for Hutchinson’s trace estimator. However, doing so would require
establishing a bound on the second moment E[∥rm(A)− diag(A)∥42], which is already challenging. Relying directly
on hypercontractivity also seems to be limited to yielding a suboptimal dependence on log(1/δ).

We take another approach, providing an analysis that loosely follows the same approach used for Lemma 2 in
Yurinskii’s proof of the vector-valued Bernstein inequality and does not require e1, . . . , em to be strictly bounded.

3.1 Symmetrization and Scalar Comparison Let e =
∑m

z=1 ez and note that e = m · (rm(A)− diag(A)).
Our goal will be to upper bound the moments of e’s squared norm by the moments of an easier to analyze scalar
random variable. To do so, we start with a symmetrization argument. First, consider the alternative random
vector ẽ = e1 − e2 where e1 and e2 are i.i.d. copies of e. Using that f(x) = ∥x∥2k2 is a convex function and that
E[e1] = E[e2] = 0, we can apply Jensen’s inequality to show that:

E
[
∥e∥2k2

]
≤ E

[
∥e1 − e2∥2k2

]
= E

[
∥ẽ∥2k2

]
.(3.2)

See Lemma 6.1.2 in [22] for a detailed derivation of the above inequality. Next, we can turn our attention to
bounding E

[
∥ẽ∥2k2

]
. Letting ez,1 and ez,2 be i.i.d. copies of ez (i.e. error vectors of Hutchinson’s diagonal estimator

applied with a single random vector), we have that ẽ =
∑m

z=1 ez,1 − ez,2. Let wz denote wz = ez,1 − ez,2 and
note that ẽ =

∑m
z=1 wz. Let Wz be a scalar random variable equal to rz · ∥wz∥2, where rz is a ±1 Rademacher

random variable. For all k = 1, 2, . . . we have that:

E[Wz] = 0 and E[W 2k
z ] = E[∥wz∥2k2 ].

Let Ẽ =
∑m

z=1 Wz. We will bound the moments of ∥ẽ∥22 by comparing to Ẽ. In particular, we will show that for
all k,

E
[
∥ẽ∥2k2

]
≤ E

[
Ẽ2k

]
.(3.3)

To do so, we compare the expansions:

E
[
∥ẽ∥2k2

]
= E

[(
∥w1∥22 + . . .+ ∥wm∥22 + 2wT

1 w2 + . . .+ 2wT
m−1wm

)k]
E
[
Ẽ2k

]
= E

[(
W 2

1 + . . .+W 2
m + 2W1W2 + . . .+ 2Wm−1Wm

)k]
Consider each term obtained when expanding out the kth powers above and apply linearity of expectation. Because
each wz is a symmetric random variable – i.e. Pr(wz = X) = Pr(wz = −X) – we can verify that the expectation
of any term where wT

z wj appears an odd number of times (for any fixed j) is equal to zero. Similarly, the
corresponding term in the second sum has expectation zero because some Wz must appear an odd number of times.
For all other terms, we can use that wT

z wj ≤ ∥wz∥2∥wj∥2 (Cauchy–Schwarz) and that E[∥wz∥2k2 ] = E[W 2k
z ] to see

that each term in the bottom expansion upper bounds the corresponding term in the top. We conclude Eq. (3.3).
A Taylor expansion of ex combined with Eq. (3.2) and Eq. (3.3) implies a bound on the moment generating

function (MGF) of ∥e∥22, which we will use to obtain a final concentration result. Specifically, we have that for any
λ ≥ 0:

E
[
eλ∥e∥

2
2

]
≤ E

[
eλ∥ẽ∥

2
2

]
≤ E

[
eλẼ

2
]
.(3.4)

3.2 Moment Bound With Eq. (3.4) in place, we prove our main result by bounding the exponential E
[
eλẼ

2
]

for our scalar random variable Ẽ. Specifically, we will show that Ẽ is a sub-exponential random variable (Definition
2.2), and thus ∥e∥22 is as well by Eq. (3.4). We can then apply a standard tail bound for sub-exponential random
variables.

Proof. [Proof of Theorem 1.1] Recall that Ẽ =
∑m

z=1 Wz is the sum of i.i.d. random variables. Recall that
Wz = rz · ∥wz∥2, where rz is a random ±1 and wz = ez,1 − ez,2. We have that ∥wz∥22 ≤ 2∥ez,1∥22 + 2∥ez,2∥22 and
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since ez,1 and ez,2 are just i.i.d. copies of ez, we have that for all λ ≥ 0:

E
[
eλ∥wz∥2

2

]
≤ E

[
e4λ∥ez∥2

2

]
.(3.5)

As discussed before, ∥ez∥22 is exactly equal to Hutchinson’s estimator applied to the matrix B = ĀT Ā. Under
the notation of Lemma 2.1, ∥ez∥22 = T (B) = Z(B) + tr(B). We can thus apply Lemma 2.1 to obtain that for
0 ≤ 4λ ≤ c/∥B∥2,

E
[
e4λ∥ez∥2

2

]
= e4λ tr(B)E

[
e4λZ(B)

]
≤ e4λ tr(B)e16Cλ2∥B∥2

F .

Since B = ĀT Ā is a positive semidefinite matrix, ∥B∥2F /∥B∥2 ≤ tr(B) and thus 4λ∥B∥2F ≤ c tr(B). Continuing
we have:

E
[
e4λ∥ez∥2

2

]
≤ e4λ tr(B)+4Ccλ tr(B)(3.6)

We conclude from Eq. (3.5) and Eq. (3.6) that for all λ ≤ c
4∥B∥2

≤ c
4 tr(B) ,

E
[
eλ∥wz∥2

2

]
≤ ec

′λ tr(B),(3.7)

where c′ = 4 + 4Cc is a constant.

3.3 Completing the Proof Applying Definition 2.2, we can check that Equation (3.7) implies that ∥wz∥22 is
a sub-exponential random variable with parameter C ′ · tr(B), where C ′ = max(2c′, 4/c). Equivalently, ∥wz∥2 is
sub-Gaussian with parameter K =

√
C ′
√
tr(B). Since it has the same moments as ∥wz∥2, Wz = rz · ∥wz∥2 is also

sub-Gaussian with the same parameter.
Proposition 2.6.1 from [22] states that the sum of m mean 0, independent, sub-Gaussian random variables,

each with parameter K, is itself sub-Gaussian with parameter C ·
√
mK for a fixed constant C. We conclude that

Ẽ =
∑m

i=1 Wz is sub-Gaussian with parameter C
√
C ′ ·

√
m
√

tr(B). Finally, it follows that Ẽ2 is sub-exponential
with parameter c′′ ·m tr(B), where c′′ = C2C ′. From Eq. (3.4), we know that ∥e∥22 is sub-exponential with the

same parameter. Finally, from Proposition 2.7.1 in [22] we have that Pr
[
∥e∥22 ≥ t

]
≤ 2e

− t
c′′·m tr(B) and thus:

Pr

[
1

m2
∥e∥22 ≥ tr(B) · c

′′ log(2/δ)

m

]
≤ δ.

Recalling that [∥rm(A)− diag(A)∥22 = 1
m2 ∥e∥22 and tr(B) = ∥Ā∥2F , Theorem 1.1 follows.

4 General Stochastic Diagonal Estimators

In addition to the standard Hutchinson’s estimator, prior work on stochastic diagonal and trace estimation also
considers estimators involving Gaussian random vectors, or more generally, vectors filled with arbitrary mean 0,
variance 1 random variables [9, 4].

Definition 4.1. (Generalized Diagonal Estimator3) Let g1, . . . ,gm ∈ Rn be independent random vectors,
each with i.i.d. entries that have mean 0 and variance 1. The generalized stochastic diagonal estimator dm(A) has
the form:

dm(A) =
1

m

m∑
z=1

gz ⊙Agz.

When each gzi has bounded 4th moment, we can prove a statement comparable to Lemma 2.2.

Lemma 4.1. (Expected Squared Error of Generalized Diagonal Estimator) Let dm(A) be as in Def-
inition 1.1 and suppose each gzi has 4th moment bounded by some constant c4. I.e. E[(gzi )4] ≤ c4. Then we
have:

E
[
∥dm(A)− diag(A)∥22

]
=

1

m

(
∥Ā∥2F + (1 + c4 − 2)

d∑
i=1

A2
ii

)
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Proof. As before, fix z and let ez = gz ⊙Agz − diag(A). Let hi = Aii −Aii(g
z
i )

2 and note that, since E(gzi )2 = 1,
we have that Ehi = 0. More over, we have:

E
[
h2
i

]
= E

[
A2

ii +A2
ii(g

z
i )

4 − 2A2
ii(g

z
i )

2
]
= (c4 + 1− 2)A2

ii.

We then have that:

∥ez∥22 =
d∑

i=1

hi +
∑
j ̸=i

Aijg
z
i g

z
j

2

=
d∑

i=1

h2
i +

d∑
i=1

hi

∑
j ̸=i

Aijg
z
i g

z
j +

d∑
i=1

∑
j ̸=i

Aijg
z
i g

z
j

2

=
d∑

i=1

h2
i +

d∑
i=1

hi

∑
j ̸=i

Aijg
z
i g

z
j +

d∑
i=1

∑
j ̸=i

∑
k ̸=i

AijAikg
z
i g

z
i g

z
j g

z
k

Considering each term separately, we can bound the expectation of ∥ez∥22. Noting that E[gzi gzi gzj gzk] = 0 if j ̸= k
and 1 otherwise since j ̸= i, we have:

E ∥ez∥22 =
d∑

i=1

(1 + c4 − 2)A2
ii + 0 +

d∑
i=1

∑
j ̸=i

A2
ij = (1 + c4 − 2)∥ diag(A)∥22 + ∥Ā∥2F .

Combining Lemma 4.1 with Markov’s inequality yields a simple dimension independent bound:

Corollary 4.1. Let dm be implemented with any mean 0 variance 1 random variable with 4th moment upper

bounded by c4 and let E =
√

(1 + c4 − 2)∥ diag(A)∥22 + ∥Ā∥2F . For any δ ∈ (0, 1) and m ≥ 1, with probability

1− δ:

∥dm(A)− diag(A)∥2 ≤
√

1

mδ
· E.

When dm is implemented with Gaussian random vectors, we have fourth moment c4 = 3, so obtain the upper
bound:

∥dm(A)− diag(A)∥2 ≤
√

2

mδ
· ∥A∥F .

4.1 High Probability Bounds To obtain an error bound of ϵ ·E with probability 1− δ, Corollary 4.1 requires
m = O

(
1/ϵ2δ

)
matrix-vector products with A. The linear dependence on 1/δ is worse than the logarithmic

dependence in Theorem 1.1, which requires m = O
(
log(1/δ)/ϵ2

)
matrix-vector products for a comparable guarantee.

It is possible to improve the dependence on δ using a high-dimensional analog of the standard “median trick”.
Specifically, we have:

Corollary 4.2. Consider the following estimation procedure that computes multiple independent generalized
stochastic diagonal estimators (Definition 4.1), all implemented with mean 0 variance 1 random variables with 4th
moment ≤ c4.

• Compute r = ⌈10 log(1/δ)⌉ independent generalized diagonal estimators dm
1 (A), . . . ,dm

q (A).

• For all i ∈ 1, . . . , r, compute the distance ∥dm
i (A) − dm

j (A)∥2 for all j ̸= i. Let Bi be the ⌊ r
2⌋ smallest

distance.

• Return dm
i∗(A), where i∗ = argmini∈1,...,r Bi.

There is an absolute constant c so that, for any δ ∈ (0, 1) and m ≥ 1, with probability 1− δ:

∥dm
i∗(A)− diag(A)∥2 ≤

√
c

m
· E,

where E =
√
(1 + c4 − 2)∥ diag(A)∥22 + ∥Ā∥2F , as before.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited358

D
ow

nl
oa

de
d 

03
/2

9/
23

 to
 1

08
.2

7.
53

.6
8 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



As desired, Corollary 4.2 implies that m = O
(
log(1/δ)/ϵ2

)
matrix-vector multiplies are required to obtain error

ϵ · E with probability (1− δ).

Proof. By Corollary 4.1, for each i ∈ 1, . . . , r and a constant c, we have that ∥dm
i (A)− diag(A)∥2 ≤ c

√
1/m · E

with probability 19/20. By a standard Chernoff bound argument, it follows that, with probability greater than
1− e−r/10 = 1− δ, ∥dm

i (A)− diag(A)∥2 ≤ c
√
1/m · E for at least half of all values of i (see e.g. Proposition 2.4

in [1]). Accordingly, by triangle inequality, we have that:

there is at least one i ∈ 1, . . . , r for which Bi ≤ 2c
√
1/m · E.(4.8)

Also by pigeonhole principal, there must be at least one value of j which is both one of the ⌊r/2⌋ closest points to dm
i∗

and for which ∥dm
j (A)−diag(A)∥2 ≤ c

√
1/m ·E. I.e., there is some j such that ∥dm

j (A)−diag(A)∥2 ≤ c
√
1/m ·E

and ∥dm
j (A)− dm

i∗(A) ≤ Bi∗ . By triangle inequality we thus have:

∥dm
i∗(A)− diag(A)∥2 ≤ c

√
1/m · E +Bi∗ ≤ 3c

√
1/m · E.

The last inequality follows from Eq. (4.8) since Bi∗ ≤ Bi for all i ∈ 1, . . . , r. This completes the proof.

If instead of just assuming that g1, . . . , gm contain entries with bounded 4th moment, if we make the stronger
assumption that they contain i.i.d. sub-Gaussian entries, then we can obtain a bound for the generalized diagonal
estimator that is more comparable to Theorem 1.1 and does not require the median trick to obtain a dependence
the ideal dependence on log(1/δ). Specifically, in Appendix A, we prove the following result:

Theorem 4.1. Let dm be a generalized stochastic diagonal estimator (Definition 4.1) for A ∈ Rn×n implemented
with any symmetric, mean 0, and variance 1 random variable that is sub-Gaussian with parameter K. Then with
probability 1− δ:

∥dm(A)− diag(A)∥2 ≤ cK2 ·

√
log(2/δ)

m
+

log4(2/δ)

m2
∥A∥F .

Typically K2 is a small constant (e.g. for the previously studied case of Gaussian random variables [4]), so Theorem
4.1 nearly matches Theorem 1.1, except in two ways. First, as in Corollary 4.1, it has a dependence on ∥A∥2F
instead of ∥Ā∥2F . In general, ∥Ā∥2F is always smaller. This is inherent: as shown in Lemma 4.1, the expected
error of dm(A) has a dependence on ∥A∥2F unless the fourth moment equals 1, but this is only the case for ±1
Rademacher random variables. All other random variables with variance 1 have higher 4th moment.

Second, Theorem 4.1 has an extra dependence on log4(2/δ)
m2 that does not appear in Theorem 1.1. While this is

a lower order term for large m – specifically, the bound matches Theorem 1.1 when m ≥ log1.5(1/δ) – we believe it
can likely be improved or removed entirely, possibly by following a different proof technique.
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A General Sub-Gaussian Analysis

In this section, we focus on proving Theorem 4.1 for general sub-Gaussian stochastic diagonal estimators. The
proof follows a different approach and is more involved than our proof for Hutchinson’s estimator in Section 3,
which strongly relies on the fact that the estimator uses Rademacher random variables.

A.1 Initial Symmetrization We first show how Theorem 4.1 can be reduced to an equivalent statement
involving a symmetric random vector:

Lemma A.1. Let dm
1 ,dm

2 be independent generalized stochastic diagonal estimators (Definition 4.1) for A
implemented with any symmetric, mean 0, and variance 1 random variable that is sub-Gaussian with parameter K.
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For any δ ∈ (0, 1) and m ≥ 1, let m = O(log(1/δ)/ϵ2). Then with probability 1− δ:

∥dm
1 (A)− dm

2 (A)∥2 ≤ cK2 ·

√
log(2/δ)

m
+

log4(2/δ)

m2
∥A∥F .

Before proving Lemma A.1, we show how it can be used to prove Theorem 4.1.

Proof. [Proof of Theorem 4.1] Let ℓ = log2(1/δ
′) for some δ′ < δ to be chosen later and consider independent

diagonal estimators dm
2 , . . . ,dm

ℓ+1. We will not actually compute these estimators – they are hypothetical and
introduced for the purpose of analysis. Any random variable with sub-Gaussian parameter K has fourth moment
bounded by O(K4) (see [22], Proposition 2.5.2). Accordingly, by Corollary 4.1, for some constant c, we have
that, with probability 1/2, ∥dm

i (A) − diag(A)∥2 ≤ cK2∥A∥F for each i ∈ 2, . . . , ℓ + 1. It follows that, with

probability δ′, ∥dm
j (A) − diag(A)∥2 ≤ cK2

√
m
∥A∥F for at least one value of j. At the same time, combining

Lemma A.1 with a union bound, we know that for all i simultaneously, with probability 1 − δ′ log2(1/δ
′),

∥dm
1 (A)−dm

i (A)∥2 ≤ cK2 ·
√

log(2/δ′)
m + log4(2/δ′)

m2 ∥A∥F . It follows by triangle inequality and another union bound

that with probability 1 − δ′ log2(1/δ
′)− δ′,

∥dm
1 (A)− diag(A)∥2 ≤ ∥dm

1 (A)− dm
i (A)∥2 + ∥dm

i (A)− diag(A)∥2 ≤ 2cK2 ·

√
log(2/δ)

m
+

log4(2/δ)

m2
∥A∥F .

Setting δ′ = c′δ2 for sufficiently small constant c′ yields Theorem 4.1.

A.2 Single Sample Norm Bound In order to prove Lemma A.1, we first prove a tail bound on the norm of a
single-sample sub-Gaussian stochastic diagonal estimator. This intermediate result is the crux of our analysis, and
from it Lemma A.1 follows relatively directly.

Lemma A.2. Let e = g ⊙ Ag − diag(A), where g ∈ Rn contains i.i.d. symmetric, mean 0, and variance 1
sub-Gaussian random variables with parameter K. For any γ ≥ 0 and a fixed constant c we have that

Pr
[
∥e∥22 ≥ γK4∥A∥2F

]
≤ 2e−cγ1/3

.

Proof. In what follows, we will assume that γ ≥ C for some sufficiently large constant C. If we can
prove the result with some constant c′ in the exponent under this assumption, than we immediately have

that Pr
[
∥e∥22 ≥ γK4∥A∥F

]
≤ 2e−cγ1/3

for all γ ≥ 0, where c = min(c′, 1/2C1/3). This follows because

2e−min(c′,1/2C1/3)γ1/3

> 1 for any γ ≤ C, so the bound is vacuously true for small values of γ.
We start by applying triangle inequality and AM-GM inequality to give:

∥e∥22 ≤ 2∥g ⊙Ag∥22 + 2∥ diag(A)∥22 ≤ 2∥g ⊙Ag∥22 + 2∥A∥2F ,(A.1)

so we focus on bounding ∥g ⊙Ag∥22. Following the proof of Lemma 4.1, we have that:

∥g ⊙Ag∥22 =
d∑

i=1

 d∑
j=1

Aijgigj

2

=
d∑

i=1

d∑
j=1

Aijgigj

d∑
k=1

Aikgigk =
d∑

i=1

d∑
j=1

d∑
k=1

AijAikgigigjgk

Let G be a diagonal matrix containing g on its diagonal and let Ã = GAG. The matrix Ã has entries equal to
Ãij = Aijgigj . Morever, note that, since each gi is assumed to by symmetric, it is identically distributed to giri
where r1, . . . rn are independent Rademacher random variables. So we equivalently have that:

∥g ⊙Ag∥22 =
d∑

i=1

d∑
j=1

d∑
k=1

AijAikgigigjgkrjrkr
2
i =

d∑
i=1

d∑
j=1

d∑
k=1

ÃijÃikrjrk = rT ÃT Ãr.(A.2)

We conclude that the quantity ∥g⊙Ag∥22 is exactly equal to Hutchinson’s estimator (implemented with Rademacher
random variables) applied to the matrix B = ÃT Ã. As such, we expect that ∥g ⊙Ag∥22 will tightly concentrate
around tr(B) = ∥Ã∥2F . So the main challenge becomes to bound ∥Ã∥2F , which itself is a random variable.
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Fortunately, we can bound this quantity by again making a connection to trace estimation. We have that:

∥Ã∥2F =
d∑

i=1

d∑
j=1

A2
ij(gi)

2(gj)
2 = g2T (A ◦A)g2,

where g2 denotes the vector obtained by squaring each entry of g. Then, let ḡ = g2 − 1 where 1 is an all ones
vector. Note that E[ḡ] = 0 and since g is sub-Gaussian, g2 is a sub-exponential random variable with parameter
K2, and thus ḡ is sub-exponential with parameter c′K2 for fixed constant c′ (see [22], Exercise 2.7.10). We have
that:

g2T (A ◦A)g2 = (ḡ + 1)T (A ◦A)(ḡ + 1) = ḡT (A ◦A)ḡ + 2ḡT (A ◦A)1+ 1T (A ◦A)1

= ḡT (A ◦A)ḡ + 2ḡT (A ◦A)1+ ∥A∥2F .(A.3)

We bound ḡT (A ◦A)ḡ and 2ḡT (A ◦A)1 separately, starting with the second. Let ai denote the ith row of A
and note that (A ◦A)1 has ith entry equal to ∥ai∥22. Since ḡ is mean 0, we can apply a Bernstein inequality for
sub-exponential random variables ([22], Theorem 2.8.1) to the sum ḡT (A ◦A)1 =

∑n
i=1 ḡi∥ai∥22. We have that:

Pr
[
|ḡT (A ◦A)1| ≥ tK2

]
≤ 2 exp

(
−c′′ min

(
t2∑n

i=1 ∥ai∥42
,

t

maxi ∥ai∥22

))
,

where c′′ is a fixed constant. Plugging in t = γ∥A∥2F and using that ∥A∥4F =
(∑n

i=1 ∥ai∥22
)2 ≥

∑n
i=1 ∥ai∥42 and

∥A∥2F ≥ maxi ∥ai∥22, we obtain the following bound fo any γ ≥ C for fixed constant C:

Pr
[
|ḡT (A ◦A)1| ≥ γK2∥A∥2F

]
≤ 2e−cγ(A.4)

Next we bound the ḡT (A◦A)ḡ term from Eq. (A.3) using a Hanson-Wright type inequality for sub-exponential
random variables due to [10].4 A similar bound is proven in [19].

Lemma A.3. (Proposition 1.1 from [10]) Let x be a random vector with i.i.d. mean 0, variance σ2 random entries
that are sub-exponential with parameter E and let M be any n× n matrix. For any t > 0 we have,

P

(∣∣∣∣∣xTMx−
n∑

i=1

σ2Mii

∣∣∣∣∣ ≥ tE2

)
≤ 2 exp

(
−c′′ min

(
t2

∥M∥2F
,

(
t

∥M∥2

)1/2
))

.

To apply Lemma A.3 to ḡT (A ◦A)ḡ, first note that ḡ’s entries have variance σ2 ≤ CK4 for some fixed constant
C because they are sub-exponential with parameter c′K2. So we have that

∑n
i=1 σ

2Mii ≤ CK4
∑n

i=1 A
2
ii ≤

CK4∥A∥2F . Then plugging in t = 1
c′2 γ∥A∥2F and using that ∥A∥4F = (

∑
i,j A

2
ij)

2 ≥
∑

i,j A
4
ij = ∥A◦A∥2F ≥ ∥A◦A∥22,

we have that:

P
(∣∣ḡT (A ◦A)ḡ

∣∣ ≥ (γK4 + CK4)∥A∥2F
)
≤ 2e−cγ1/2

,

for some fixed constant c and any γ ≥ 0. Under our assumption that γ is larger than a fixed constant, we have
that CK4 = O(γK4), so we can adjust the constant c to simplify the expression to

P
(∣∣ḡT (A ◦A)ḡ

∣∣ ≥ γK4∥A∥2F
)
≤ 2e−cγ1/2

.(A.5)

Plugging in Eq. (A.4) and Eq. (A.5) to Eq. (A.3) an applying a union bound, we conclude that:

Pr[|g2T (A ◦A)g2| ≥ γK4∥A∥2F + 2γK2∥A∥2F + ∥A∥2F ] ≤ 4e−cγ1/2

.

4The bound in [10] is stated for symmetric matrices, but it holds for all matrices without modification. In particular, for any M,

xTAx = xT
(

M+MT

2

)
x, and by triangle inequality the symmetric matrix M+MT

2
has Frobenius and spectral norm upper bounded

by those of A.
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Since each entry of g has variance 1, K is greater than a fixed constant, so γK4∥A∥2F + 2γK2∥A∥2F + ∥A∥2F =
O(γK4∥A∥2F ). So again adjusting constants, we can simplify the above expression to claim that for any γ ≥ 0,

Pr[∥Ã∥2F ≥ γK4∥A∥2F ] ≤ 2e−cγ1/2

,(A.6)

where we recall that ∥Ã∥2F = g2T (A ◦A)g2.
We are now close to proving Lemma A.2. To do so, we need to bound ∥g⊙Ag∥22, which as discussed, is exactly

equal to Hutchinson’s estimator applied to the positive semi-definite matrix ÃT Ã – i.e., ∥g ⊙Ag∥22 = rT ÃT Ãr
where r is a Rademacher random vector. Let B denote B = ÃT Ã. It follows from the Hanson-Wright inequality
(see [22], Theorem 6.2.1) that:

Pr
[∣∣rTBr− tr(B)

∣∣ ≥ γ∥B∥F
]
≤ 2e−cγ .

Since B is PSD, we have that ∥B∥F ≤ tr(B) and further we have that tr(B) = ∥Ã∥2F . So we can apply triangle

inequality to conclude that Pr
[
rTBr ≥ (γ + 1)∥Ã∥2F

]
≤ 2e−cγ . Adjusting constants, it follows that for any γ,

Pr
[
∥g ⊙Ag∥22 ≥ γ∥Ã∥2F

]
≤ 2e−cγ .(A.7)

We combine this bound with Eq. (A.6) to conclude that:

Pr
[
∥g ⊙Ag∥22 ≥ γK4∥A∥2F

]
≤ 2e−cγ1/3

.(A.8)

To obtain Eq. (A.8), observe that to have ∥g ⊙Ag∥22 ≥ γK4∥A∥2F it must be that either ∥Ã∥2F ≥ γ2/3K4∥A∥2F
or that ∥g ⊙Ag∥22 ≥ γ1/3∥Ã∥2F . By Eq. (A.6), the first event only happens with probability ≤ 2e−cγ1/3

and by

Eq. (A.7) the second only happens with probability ≤ 2e−cγ1/3

. Adjusting constants gives the equation.
Finally, we return to equation Eq. (A.1), combining it with Eq. (A.8) to conclude that:

Pr
[
∥e∥22 ≥ (2γK4 + 1)∥A∥2F

]
≤ 2e−cγ1/3

.

Again, since K is greater than a fixed constant, we have that γK4 = Ω(1) and adjusting constants yields Lemma A.2.

A.3 Completing the Proof We are finally ready to prove Lemma A.1, which we do by taking advantage
of the symmetry of dm

1 (A) − dm
2 . Our proof uses a standard version of McDiamard’s inequality (see e.g. [22],

Theorem 2.9.1), which we state below:

Fact A.1. (McDiarmid’s Inequality) Let x1, . . . , xm ∈ X1 × . . .×Xm be independent random variables from
domains X1, . . . ,Xm. Let f : X1× . . .×Xm → R be any function such that for each coordinate i and all realizations
of x1, . . . , xm, we have a difference bound of maxx̃i∈Xi |f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x̃i, . . . , xm)| ≤ ci. Then
for any t > 0,

Pr [|f(x1, . . . ,xm)− E f(x1, . . . ,xm)| ≥ t] ≤ 2e
− 2t2∑m

i=1
c2
i .

Proof. [Proof of Lemma A.1] For z ∈ 1, . . . , n and i ∈ 1, 2, let ez,i be a random variable distributed as
g ⊙ Ag − diag(A). Let wz = ez,1 − ez,2 and let r1, . . . , rm be i.i.d Rademacher random variables. By the
symmetry of each wz, we can write:

dm
1 − dm

2 =
1

m

m∑
z=1

rzwz.

We condition on the random choice of w1, . . . ,wz and apply McDiamard’s inequality. Specifically, by triangle
inequality, the function f(r1, . . . , rm) =

∥∥ 1
m

∑m
z=1 rzwz

∥∥
2
= ∥dm

1 (A)− dm
2 ∥2 can change by at most 2∥wz∥2/m if

we change the input rz. So by Fact A.1, we have that:

Pr [|∥dm
1 − dm

2 ∥2 − E [∥dm
1 − dm

2 ∥2]| ≥ t] ≤ 2e
− m2t2

2
∑m

z=1 ∥wz∥22 .
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By triangle inequality, we have that E [∥dm
1 − dm

2 ∥2] ≤ E [∥dm
1 ∥2] + E [∥dm

2 ∥2]. Moreover, by Lemma 4.1, and the
fact that E[X]2 ≤ E[X2] for any random variable X, we have that E [∥dm

1 ∥2] ≤ cK2∥A∥F /
√
m for a fixed constant

c. So plugging in t = 1
m

√
2γ
∑m

z=1 ∥wz∥22, overall we conclude that for any γ ≥ 0,

Pr

∥dm
1 − dm

2 ∥2 ≥
√

1

m

K2∥A∥F +

√√√√2γ
m∑

z=1

∥wz∥22/m

 ≤ 2e−γ .(A.9)

With Eq. (A.9) in place, we are left to bound
∑m

z=1 ∥wz∥22. By triangle inequality, this sum can be upper

bounded 2
∑m

z=1 ∥ez,1∥22 + ∥ez,2∥22. By Lemma A.2, each ez,i satisfies Pr
[
∥ez,i∥22 ≥ γK4∥A∥2F

]
≤ 2e−cγ1/3

. So,
following the characterization of generalized subexponential random variables from [19] (see Proposition 5.1 in
that work), we conclude that for a constant c, ∥ez,i∥22 is an α-subexponential random variable5 for α = 1/3, with
parameter cK4∥A∥2F . Applying Lemma A.3 from [10], we have that ∥ez,i∥22 − E[∥ez,i∥22] is also 1

3 subexponential
with parameter c′K4∥A∥F . We can then apply Corollary 1.4 from [10] to conclude that for all β ≥ 0,

Pr

∣∣∣∣∣∣
m∑

z=1

∑
i=1,2

∥ez,i∥22 − E
[
∥ez,i∥22

]∣∣∣∣∣∣ ≥ m · βK4∥A∥2F

 ≤ 2e−cmin(βm,β1/3m1/3).

By Lemma 4.1 we have that E
[
∥ez,i∥22

]
≤ C

2 K
4∥A∥2F for all i, z and a constant C. So, applying triangle inequality,

adjusting constants, and recalling that
∑m

z=1 ∥wz∥22 ≤ 2
∑m

z=1

∑
i=1,2 ∥ez,i∥22, we conclude that:

Pr

(
m∑

z=1

∥wz∥22 ≥ m · (1 + β)K4∥A∥2F

)
≤ 2e−cβ1/3m1/3

.(A.10)

Combining Eq. (A.10) with Eq. (A.9) and again adjusting constants we have that for constants C, c,

Pr

[
∥dm

1 − dm
2 ∥2 ≥

√
1

m

(
1 +

√
γ(1 + β)

)
K2∥A∥F

]
≤ 2e−γ + 2e−cβ1/3m1/3

.

The right hand side of the inequality is ≤ δ as long as γ ≥ log(4/δ) and β ≥ log3(4/δ)/c3

m . Plugging in and adjusting
constants proves Lemma A.1.

5Note that this is different from a subexponential random variable with parameter α, as in Definition 2.2. An α-subexponential
random variable as defined by [10, 19] has slower asymptotic tail decay than a standard subexponential random variable when α < 1.
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