1074

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 2, JUNE 2022

Multiuser Scheduling in Centralized Cognitive
Radio Networks: A Multi-Armed Bandit Approach

Amir Alipour-Fanid™, Member, IEEE, Monireh Dabaghchian™, Member, IEEE, Raman Arora,

and Kai Zeng™,

Abstract—In wireless communication networks, the network
provider serves certain licensed primary users who pay for
a dedicated use of the frequency channels. However, not all
the channels are occupied by the primary users at all times.
For efficient spectrum utilization, in centralized cognitive radio
networks (CRNs), a cognitive base station (CBS) dynamically
identifies the spectrum holes and allocates the frequency channels
to the on-demand unlicensed secondary users known as cog-
nitive radios (CRs). Although existing literature has developed
various dynamic spectrum access mechanisms for CBS, there
is still a dearth of studies due to the wide range of assump-
tions made in the solutions. Most of the existing works study
the CBS scheduling problem scheme by adopting optimization-
based methods and rely on the prior knowledge of the network
parameters such as primary users’ activity. Moreover, the impact
of channel switching costs on the network throughput has not
been well studied. In this paper, we aim to maximize the CRNs
total throughput, and we formulate the CBS scheduling problem
as a non-stochastic (i.e., adversarial) combinatorial multi-armed
bandit problem with semi-bandit feedback and arm switching
costs. We propose two novel online learning algorithms for CBS
scheduling with and without channel switching costs, where their
regret performances are proved sublinear order-optimal in time
as T1/2 ana T2/ 3, respectively, offering throughput-optimal
scheduling for CRNs. Experiments on the synthetic and real-
world spectrum measurement data complement and validate our
theoretical findings.

Index Terms—Cognitive radio network, multi-armed ban-
dit, channel switching costs, network throughput, multichannel
wireless communication.

Manuscript received June 21, 2021; revised December 3, 2021; accepted
January 7, 2022. Date of publication February 4, 2022; date of cur-
rent version June 9, 2022. This work was supported in part by the
Commonwealth Cyber Initiative (CCI) and its Northern Virginia (NOVA)
node, US Army Research Office (ARO) under Grant No. W911INF-21-1-
0187, NSF Networking Technology and Systems (NeTS) program under Grant
No. 2131507, NSF Research Initiation Award under Grant No. 2100804, and
Microsoft Research Award. The associate editor coordinating the review of
this article and approving it for publication was T. Chen. (Amir Alipour-Fanid
and Monireh Dabaghchian contributed equally to this work.) (Corresponding
author: Amir Alipour-Fanid.)

Amir Alipour-Fanid is with the Architectures and Security Team, General
Motors Research and Development, Warren, MI 48092 USA (e-mail:
amir.alipour-fanid @ gm.com).

Monireh Dabaghchian is with the Department of Computer Science,
Morgan  State  University, Baltimore, MD 21251 USA (e-mail:
monireh.dabaghchian@morgan.edu).

Raman Arora is with the Department of Computer Science, Johns Hopkins
University, Baltimore, MD 21218 USA (e-mail: arora@cs.jhu.edu).

Kai Zeng is with the Department of Electrical and Computer
Engineering, George Mason University, Fairfax, VA 22030 USA (e-mail:
kzeng2 @gmu.edu).

Digital Object Identifier 10.1109/TCCN.2022.3149113

Member, IEEE

I. INTRODUCTION

FLOURISH in the number of Internet-of-Things (IoT)

and mobile applications in recent years has led to
explosive growth in the demand for spectrum resources. To
address the imminent spectrum shortage problem, Federal
Communications Commission (FCC) has authorized opening
spectrum bands (e.g., 3550-3700 MHz and TV white space)
owned by licensed primary users (PUs) to unlicensed sec-
ondary users (SUs), when the PUs are not active on frequency
bands [1], [2], [3]. This authorization has led to the emergence
of cognitive radio networks (CRNs) as a promising paradigm
to shift the spectrum utilization efficiency and provide ubig-
uitous connections for many growing numbers of applications
such as smart city, smart home, intelligent vehicles, smart grid,
smart farming, healthcare systems, etc. [2], [4], [S].

Spectrum sharing networks are usually categorized into
centralized and decentralized CRNs [6], [7]. In decentral-
ized CRNs, secondary user cognitive radios (CRs) access the
spectrum in an opportunistic fashion by running their own
internal dynamic spectrum access (DSA) policy. In central-
ized CRNs, which is the focus of this paper, a cognitive base
station (CBS) assigns the frequency channels to the CRs by
dynamically searching for the unused portions of the licensed
spectrum (a.k.a. spectrum hole or white space). This type of
spectrum sharing approach in centralized CRNs is called CBS
scheduling [8].

In CRNs, the knowledge about PUs activity (i.e., ON/OFF
or busy/idle on the channels) is a fundamental building block
for designing and implementing efficient spectrum sharing
mechanisms. In fixed spectrum assignment, full knowledge
of PUs spectrum occupancy is queried by the CBS from
an external white space database [9]. However, this method
incurs higher communication overhead between the CBS and
database and assumes that the information stored in the
database is always reliable and has not been breached.

A recurring theme in much of prior work is to model the
PUs activity using a parametric family of probability distri-
butions [10] and to employ statistical methods for parameter
estimation [11], [12]. In particular, the PUs activity is typically
modeled using the classical two-state Markov chain wherein
the maximum likelihood estimation techniques are applied
to estimate the PUs state transition probabilities [13], [14].
More recently, some works have explored supervised learn-
ing approaches by leveraging prior data to predict PUs
activity with a reasonable level of accuracy [15]. However, in
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practical scenarios, PUs channel occupancy model may not be
known a priori and is likely to evolve in an arbitrary manner.
Further, different PUs may not have the same ON/OFF behav-
ior, and they may change their activity patterns depending on
the demands and frequent changes in the regulations. It is,
therefore, unrealistic to model the PUs activity as stochastic.

Another key practical feature of CBS scheduling is that
CRs’ switching from a certain frequency channel to a dif-
ferent channel incurs a cost in terms of lost throughput as the
radio takes time to actuate and settle [16], [17]. Mainly, chan-
nel switching latency in CRs depends on hardware limitations
and imperfections of the front-end frequency synthesizers, and
the type of CRs designed to support a specific application.
Studies show that channel switching latency can range from
0.224 ms in typical CRs [18, Sec. 14.6.12] to 160 ms in indus-
trial CRs [16], [19]. This latency range is significant compared
to the time slot length in communication systems which is
usually between 1 ms to 200 ms, depending on the protocol
specification. Therefore, CRs channel switching introduces a
non-negligible delay resulting in lost throughput and CRNs
performance degradation. As a result, it is of paramount impor-
tance to address the channel switching latency in the CBS
scheduling problem and investigate its impact on the network’s
total achievable throughput.

Most of the existing work has adopted optimization-based
methods and considered the channel switching costs as a con-
straint [16], [17], [19], [20]. However, the solutions of these
approaches are either subject to some constraints or are heuris-
tic (see, e.g., [16]), and the theoretical performance guarantees
of the global solutions are not readily available. Such methods
also require the knowledge of the system model parameters
and rely on the prior knowledge of the PUs activity.

We study the problem in a non-stochastic setting wherein
we assume no knowledge of the PUs channel utilization
behavior. Moreover, we take the impact of channel switching
latency into account and integrate it with the CBS schedul-
ing framework. We model the CBS scheduling problem as
a combinatorial multi-armed bandit problem and propose
two online learning algorithms with and without channel
switching costs. To design the algorithms, we adapt the well-
known non-stochastic EXP3 algorithm — the seminal work
by Auer et al. [21] — where our algorithms achieve order-
optimal performance and enjoy simpler implementation and
analysis.

Based on the proposed scheduling policy, at each time slot
the CBS picks a subset of s channels out of K available chan-
nels, which we refer to as a slate [22], [23], and then assigns
each channel to a CR for data transmission. If in any time slot
the CBS picks a different subset of channels than the previous
time slot, it incurs a switching cost in terms of lost throughput
for each of the CRs. To handle the channel switching costs,
we let the CBS to switch the slate according to a Bernoulli
stochastic process with a time-decaying parameter. We show
that this method avoids excessive throughput loss by optimal
channel switching. Finally, at the end of each time slot, each
CR reports back to the CBS the attained throughput (realized
as an observed reward on the assigned channel) with which
the CBS updates its learning parameters.
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Various types of feedback are possible in combinatorial ban-
dit problems [24], [25]. Our setting fits into the semi-bandit
feedback as the CBS observes feedback for each assigned
channel and their combinations. Hence, we name the proposed
online learning framework as s-set semi-bandit with switching
costs. The goal for the CBS is to minimize the empirical regret,
defined to be the difference of maximal cumulative throughput
of the best slate, in hindsight, and that achieved by the CBS.
Intuitively, this quantity measures how much the CBS regrets
not following a different competing strategy (e.g., a constant
selection of a particular slate). We say that the CBS is learn-
ing (equivalently, has zero regret) if its regret is a sublinear
function of the total number of time slots (equivalently, the
average regret goes to zero asymptotically).

We note that as with any successful online learning algo-
rithm, a multi-armed bandit requires a careful tradeoff between
exploration (i.e., to acquire more information about the
expected throughput of the other channels) and exploitation
(i.e., to utilize the channel that is likely to yield the high-
est throughput). This challenge is further compounded by the
need to account for switching costs which makes exploration
expensive, and the semi-bandit feedback which can potentially
help with exploration. The algorithm(s) we present here strike
an optimal balance and yield order-optimal regret bounds.

Our main contributions in this paper are as follows.

o We formulate the problem of cognitive base station (CBS)
scheduling in centralized CRNs as a non-stochastic com-
binatorial multi-armed bandit problem with semi-bandit
feedback and switching costs. Our setting has no assump-
tion on the primary users’ activity while accounting
for the impact of CRs’ channel switching costs in the
network’s total throughput.

e We propose two novel online learning algorithms for
the CBS scheduling problem described above as fol-
lows: 1) CBS scheduling without channel switch-
ing costs which achieves an order-optimal regret of
O (K—i+1)TIn(K —i+1)), where K is
the number of frequency channels, s is the number
of CRs served by the CBS, and T is the total num-
ber of time slots; 2) CBS scheduling with switching
costs which obtains an order-optimal throughput regret
of O(s(KInK)/312/3),

e Our algorithms follow the principal of exponentially
weighted average method in the popular EXP3 algo-
rithm [21]. Hence, they are computationally efficient,
simpler to implement, and easy to analyze.

o To validate our findings, we conduct experimental evalua-
tions on both the synthetic and real-world spectrum mea-
surement data and demonstrate the consistency between
theoretical analysis and empirical evaluations.

The rest of the paper is organized as follows. In Section II,
we discuss the related work. Section III presents the
system model and problem formulation. The proposed CBS
scheduling algorithms and the main results are presented in
Section IV. We present experimental evaluations and empir-
ical comparisons in Section V. Finally, we briefly discuss
the future work in Section VI, and conclude the paper in
Section VII.
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II. RELATED WORK AND BACKGROUND
A. Motivation: Centralized Versus Decentralized CRNs

Cognitive radio networks are mainly configured in central-
ized or decentralized (i.e., distributed) settings [7], [26], [27],
depending on the application needs, requirements, multiple
trade-off parameters such as network throughput, signaling
overhead, secondary users’ power constraints and their intelli-
gence capabilities [28], etc. In the following, we point out the
main characteristics of each architecture.

1) Centralized CRNs: i) This configuration is suitable for
small-scale networks (e.g., a typical indoor scenario) with
power constrained secondary user devices such as smart home
IoT users where an access point acts as a cognitive base
station (CBS) scheduler. The access point then can manage
the dynamic spectrum sharing between the users in the local
network and the primary users such as TV station signal.
ii) Due to the centralized spectrum management, this con-
figuration yields to a better performance in heterogeneous
cognitive radio networks. iii) Since the spectrum decision
making algorithm is run on the cognitive base station, the
secondary users do not need to consume power for spectrum
availability inference. This structure then reduces the power
consumption significantly, highlighting the cost effectiveness
of the centralized model. iv) The main drawback of such
schemes is that it is necessary to collect all the information at
the access point which may generate overhead for exchanging
the context and control information of the entire network.

2) Decentralized CRNs: i) In this configuration secondary
users run their own spectrum sharing algorithms and each
device can select the best resource without any centralized
management, so the setting is suitable for ad-hoc cognitive
radio networks. ii) Since each node handles the decision-
making algorithms individually the computation overhead and
power consumption in the device is increased significantly.
iii) The devices require additional hardware resources to be
implemented at the node level, which is very costly, in prac-
tice. iv) Decision information sharing and synchronization
among the users are costly as the network requires s(s — 1)/2
communication links among the users (s denotes the number
of secondary users). v) Each node may act selfishly and can
endure various network failures independently.

B. Cognitive Base Station Scheduling in Centralized CRNs

Cognitive base station (CBS) scheduling is a fundamental
building block of efficient spectrum utilization in centralized
CRNs. Previous studies primarily have relied on optimization-
based methods and typically formulated the CBS scheduling
problem as a throughput maximization and energy efficient
resource allocation problem [8], [16], [20], [29]. In these
works, the solution ended up on solving a nonlinear inte-
ger programming problem which yielded to a set of heuristic
CBS scheduling algorithms. The work by [30] assumed that
each CR is allowed to transmit on multiple channels. This
assumption helped to relax the constraints in the optimization
problem and simplify the channel assignment mechanism.
However, the theoretical performance guarantee of the sched-
uler is not available. Despite many advances in developing
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CBS scheduling mechanisms, existing works still lag behind
in designing efficient frameworks to effectively meet the CRs
traffic requirements while considering throughput loss due to
the channel switching latency.

CBS scheduling with channel switching costs has been stud-
ied by the previous work [16], [17], [19], [20], [31]. However,
again the solutions are heuristic algorithms which solve a
set of optimization problems in offline manner. The methods
also rely on prior knowledge of the system model param-
eters. Instead, we propose to use online learning approach
where we provide theoretical performance guarantees for the
proposed algorithms. To address the channel switching costs
which result lower spectrum efficiently, we implement an effi-
cient channel switching algorithm in the CBS which avoids
excessive costs by optimally restricting the channel switching
and reducing the unavoidable overhead.

The knowledge on PUs activity (ON/OFF status) is another
crucial factor in designing effective and efficient CBS schedul-
ing algorithms. Existing work either assume that PUs activity
is fixed and available a priori [9] or aim to model the occu-
pancy state of PUs with known statistical models [13], [14],
[32]. In these works, the PUs activity are typically modeled
using the classical two-state Markov chain (a.k.a. Gilbert-
Elliott Model) wherein the maximum likelihood estimation
techniques are applied to estimate the PUs state transition
probabilities [10], [13], [14]. The work by [10] presents an
alternative, stochastic differential equation based spectrum
utilization model that captures dynamic changes in channel
conditions induced by PUs activity. The recent work by [11]
has also utilized generalized Pareto distributions for long and
short time PUs occupancy sequence estimation. Estimating
the primary user behavior by adaptive length of the sample
sequence is proposed in [14]. The method dynamically esti-
mates the required length of the sample sequence which is
adaptive to the changing of the PUs behavior. However, esti-
mation accuracy determined by the confidence level of this
method still suffers from the low prediction accuracy.

Recently, machine learning approaches have been leveraged
to predict the PUs activity [11], [12]. In [12] the PUs’ sig-
nal feature is extracted using standard energy and cumulant
calculations, while the work by [11] applies neural network
model of long short term memory. The performance guarantees
and computation complexity of these methods are still under
investigation. In this paper, we relax the above assumptions
and assume no prior knowledge nor statistical models on the
PUs activity. In particular, within a family of online learning-
based CBS scheduling algorithms we assume non-stochastic
PUs activity.

Most of the work which develop online learning algorithms
for spectrum sharing in CRNs, mainly assume a specific prob-
ability distribution for the PUs activity and model it as a
stationary stochastic process [33], [34], [35]. The work by [33]
models the PUs activity as an arbitrarily-distributed random
variable with bounded support but unknown mean, i.i.d. over
time. However, after we examined the real-world spectrum
measurement data [36], [37] and extracted the PUs activity
over multiple frequency channels across various frequency
bands (refer to Section V), we found that the PUs activity are
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not behaving well and are not stable over the time to follow
a specific and known stochastic model. Hence, we designed
novel combinatorial algorithms which not only tackles the non-
stochastic PUs activity, but also takes the channel switching
costs into the consideration and provides provable performance
guarantees. Next, we give a brief background and related work
information on multi-armed bandits (MAB) which is the main
tool we leveraged to develop the CBS scheduling algorithms
for centralized CRNS.

C. Multi-Armed Bandit

1) Multi-Armed Bandit Problem: One of the most funda-
mental online learning problems is that of multi-armed bandits,
wherein, at each round a player (or learner) chooses an action
out of K available actions and observes the reward associated
with the chosen arm. The reward at each round can either
be stochastic or non-stochastic (a.k.a., adversarial) [21], [38].
In this paper, we focus on non-stochastic setting as the PUs
activities are assumed to follow no statistical distribution. The
goal of the player in the MAB problems is to minimize empiri-
cal regret, defined to be the difference of maximal cumulative
reward of any arm, in hindsight, and that collected by the
player. We say that the player is learning if its regret is a
sublinear function of the total number of rounds.

The problem of multi-armed bandits was introduced by [39]
in the context of studying medical trials, and popularized fur-
ther by [40]. The problem was first studied in a non-stochastic
setting in the seminal work of [21]. The popular Exponential-
weight algorithm for Exploration and Exploitation (EXP3)
was proposed by [21], and was inspired by prior work on
weighted majority algorithm [41] and Hedge algorithm [42].
EXP3 achieves regret of O(v KT In K) for K-armed bandits
over T rounds. Later on, Audibert and Bubeck [43] consid-
ered a new class of randomized policies and proposed INF
(Implicitly Normalized Forecaster) algorithm which improved
the EXP3 by a factor of vIn K and achieved a minimax regret
of O(VKT).

2) Bandit Learning With Switching Costs: The problem of
multi-armed bandits with switching costs was introduced by
Dekel et al. [44]. They were primarily interested in estab-
lishing a lower bound to match the regret upper bound of
a mini-batching algorithm proposed by Arora et al. [45].
In particular, [44] shows that the mini-batched variant of
EXP3 studied by [45], achieves the minimax regret of
O((K In K)'/3T2/3). This method has also been applied
in the application of mobility management of users in
communication systems by [46]. Learning-wise adopting
mini-batching algorithm of [45] to the semi-bandit feedback
setting of [23], [47] provides semi-bandit with switching costs
wherein its regret results in the same order as of this paper. The
analysis of such setting could be involved which affects the
learning parameters. Application-wise mini-batching forces
the CBS to select the same set of frequency channels for a
fixed period of time. In that case, if an attacker (such as pri-
mary user emulation attacker [48], [49]) finds out the selected
channel set, the attacker can launch the PU signal over the
channel until the end of mini-batch size and degrade the CRN
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throughput significantly. However, since our approach adopts
randomness in deciding to switch or not switching the trans-
mission channels, it adds robustness to the communication
systems and achieves secure CRNs.

Recently, Arora et al. [50] investigated the bandit learn-
ing with feedback graphs and switching cost, and proposed an
adaptive mini-batching strategy to achieve the minimax regret.
In [50] the mini-batch size is proportional to the probability
that the arm is sampled to be played. That means the mini-
batch size could vary over time. Adopting this framework to
the s-semi bandit setting, multiple arm selection with different
mini-batch size for each arm may result in collision in subse-
quent arm selections (i.e., assigning a channel for more than
one user in the CBS scheduling problem). In this paper, we
propose an s-semi bandit algorithm with probabilistic switch-
ing policy which controls the switching of an s-set arm without
arm selection collision with optimized learning parameters and
order-optimal learning regret.

3) Online Learning With Semi-Bandit Feedback: Many of
the real-world problems, especially those that involve sequen-
tial decision making, can be posed by MAB with pulling
multiple arms simultaneously. For example, in an online ads
display problem, a learner can choose multiple ads to display
on a given webpage. The task for learner, therefore, includes
selecting a subset of s arms out of K available arms (s < K).
This online learning problem is called bandit slate [22], [23]
or combinatorial MAB [24], [51] problem which shows up in
many other applications including spectrum sharing in wire-
less communication networks, routing in computer networks,
search engines, personalized matching, etc. The bandit slate
problems were first studied by [23], which studies both the
ordered (permutation problem) and unordered settings. Several
other researchers build on that work to give algorithms that
yield optimal algorithms in both stochastic and non-stochastic
environments simultaneously [52], yield data-dependent regret
bounds [53]. The work by [47] proposed a variant of EXP3
for multiple players with the focus of running time and space
efficiency improvements where they obtained the regret upper
bound as O(\/sKTIn(K/s)).

In other line of research [54], [55], [56], non-stationary is
introduced within the stochastic bandit problem by allowing
the mean rewards to change at some time-step while staying
stationary between those changes. This setting is called switch-
ing bandit [54]. These algorithms hold strong assumptions for
the application of CBS scheduling problem. First, they rely on
abrupt changes in the arms reward distributions while staying
stationary for the time intervals wherein the distribution is not
changing. However, in the experimental evaluations we saw
that the PUs states do not change abruptly and do not stay
fixed over some time intervals. Second, they require a priori
knowledge of number of distribution changes [54], [55] and
the gap variable which depends on the distributions of arm
outcomes [55]. Third, distribution-independent regret in the
dynamic environment of [55] achieves regret order of T2/3
which is worse than T/2 achieved for the non-stochastic
combinatorial s-set semi-bandit setting studied in this paper.

Various types of feedback are possible in combinatorial ban-
dit including full feedback, bandit feedback, and semi-bandit
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feedback [24]. In full-feedback the player observes the reward
on all the K arms at each round. In bandit feedback the
player observes only the summation of the rewards on the
selected s arms, and in the semi-bandit feedback the player
not only observes the summation of the rewards, but also it
observes the reward on each arm in the selected subset. Our
CBS scheduling problem in this paper fits into the bandit slate
with semi-bandit feedback setting. There is a rich literature on
combinatorial multi-armed bandit problem with semi-bandit
feedback [24], [51], [52], [57], [58].

Howeyver, the above works do not consider the arms’ switch-
ing costs in the semi-bandit feedback setting and its impact on
the regret bound. In addition, the algorithms are fairly involved
(see e.g., online stochastic mirror descent method in [24])
and are not easily amenable to account for switching costs.
On the other hand, the algorithms we present to address the
CBS scheduling problem results in a unified framework to
handle both semi-bandit feedback and switching costs. The
proposed approach admits simpler analysis and implemen-
tation as it follows the same fundamental design procedure
which has been proposed by Auer et al. to design the EXP3
algorithm [21]. We prove that our solution provides an order-
optimal regret bound for CBS scheduling problem, offering
throughput-optimal scheduling for CRNs.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a centralized cognitive radio network (CRN)
consisting of a cognitive base station (CBS), multiple pri-
mary users (PUs) and secondary users cognitive radios (CRs).
Centralized CBS scheduling typically targets smaller cogni-
tive networks in terms of limited geographical coverage (e.g.,
a typical indoor scenario such as smart home cognitive IoT
network controlled by a local access point). Hence, in this
paper the location impact of the PUs and CRs are not con-
sidered, so it is assumed that the throughput is the same for
each CR on the same frequency channel. Our objective is to
design a family of online learning algorithms for the CBS
scheduler and achieve optimal network throughput. The appli-
cation scenario is illustrated in Fig. 1. In the following, we
point out the main assumptions and key components in this
scenario, assuming that the communication system operates
in time-synchronized manner with discrete-time units, called
time-slots.

o Spectrum Resource: We consider that the spectrum
resource in the target CRN is partitioned into K non-
overlapping orthogonal frequency channels. The channels
are licensed to the PUs, however, for efficient spectrum
utilization they are shared with unlicensed CRs via the
CBS scheduler.

o CRs Spectrum Utilization Schemes: In cognitive radio
networks the CRs may seek three different approaches
to share the spectrum with PUs: 1) Underlay: in this
approach simultaneous CRs and PUs transmissions are
allowed as long as the interference level at the PUs side
remains acceptable. 2) Overlay: in this approach, PUs
share the knowledge of their signal codebooks with the
CRs, allowing CRs to be aware of spectrum utilization a
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Fig. 1. Application scenario of cognitive base station (CBS) scheduling for
cognitive radios (CRs).

prior. 3) Interweave: in this approach the CRs sense the
frequency channels and access them for data transmis-
sion as long as the PUs remain idle. Our CBS scheduling
problem in this paper targets the interweave spectrum
sharing approach. For further information about these
paradigms interested readers may refer to [59], [60].

o CBS Scheduling: At each time slot, the CBS selects a set
of channels and assigns each channel to a CR. The CRs
then sense the assigned channel and transmit data over
the channel if PUs signal are not present (OFF status)
on that specific time slot and channel. However, if a PU
signal is present (ON status), then the associated CR stays
on sleep mode (no data transmission) without interfering
with the PUs. Then, at the end of the same time slot, all
the CRs report back to the CBS the throughput that each
could achieve as a result of the CBS channel assignment.

e PUs Activity: We assume the PUs activity information
(ON/OFF or busy/idle status) is not known to the CBS
scheduler a priori, nor it follows any statistical distri-
bution. In other words, the PUs spectrum occupancy
is considered to be non-stochastic and unknown. The
CBS then runs its own built-in online learning algorithms
(proposed in this paper) to learn the PUs activity and
opportunistically schedule the transmission channels for
the CRs.
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o Channel Switching Cost: If the target channel sched-
uled by the CBS in the next time slot is different from
the current one, the CRs have to switch the frequency
channel. Reassigning the communication on the new
channel incurs a non-negligible latency which results in
throughput loss and ultimately the CRNs’ performance
degradation [16], [17].

o Time Slot Structure: Fig. 2 illustrates the time slot
structure. A time slot ¢s; is partitioned into four non-
overlapping portions including: control messaging time
tem, channel switching time {5, learning time ¢;, and
data transmission or sleep time t3 — to — tes — 4. If @
CR does not switch the channel, the channel switching
time becomes zero (f.s = 0), and then the CR transmits
or sleeps for a duration of ts — t¢y — t;, depending on
whether PUs signal is ON or OFF on the channel. The
duration of both control messaging and learning time are
assumed to be fixed in the whole communication time.

o Throughput for CRN: The throughput of a CR dur-
ing a time slot depends on data transmission duration
and capacity of the channel. Assuming additive white
Gaussian noise (AWGN) channel with W Hz bandwidth
and a given signal-to-noise ratio (SNR), the channel
capacity denoted by B bps is obtained by Shannon’s
well-known formula as

B = Wlogy(1+ SNR). (1)

The throughput for CRN then is defined as the number
of bits transmitted by all the CRs through the available
channels within a given time frame.

B. Problem Formulation

We formulate the CBS scheduling problem as an online
learning problem posed by a family of non-stochastic combi-
natorial multi-armed bandits with semi-bandits feedback and
arm switching costs. The main notation is summarized in
Table I. Let [K] = {1,2,...,K} denote the set of primary
network’s channels. The set of secondary user cognitive radios
C = {CR1, CRy,..., CR}, of size |C| = s, are registered
in the CBS. At each time slot, t = 1,..., T, the CBS picks a
subset of channels, S(¢) C [K] which we refer to as slate, of
size |S(t)] = s, and assigns each channel to a CR in set C.
The slate is a set of channels with S;(¢) denoting the channel
assigned to the CR; (i.e., the CR which is in the i’ position
on the set C). After channel assignment, the CR; attains the
throughput of Ycp, (¢) at time slot ¢ as follows:

Yer, (1) = 25,1 (1) — ()L, (0)£8:(t—1)}, 2
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TABLE I
SUMMARY OF MAIN NOTATION

Notation Definition
(K] the set of channels [K] :={1,..., K}.
C the set of CRs, C = {CR1,CRa2,...,CRs}.
[s] the set of index for CRs, [s] := {1, ..., s}.
T the given total time slots.
S(¢) the slate: a subset of channels S(t) C [K].
Si(t) the channel in the slate S; (t) € S(t) assigned to the
CR;.
v a given online learning policy.
o(t) the channel switching policy.
p§i) () the probability of channel j selection for the C'R;.
a(t) the channel switching probability.
o1 the exploration rate.
n the learning rate.
Liay Indicator of event A.
E[-] Expectation operator.
f(T)=0(g(T)) | |f| is bounded above by g (up to constant factor)
asymptotically.
f(T)=Q(g(T)) | |f] is bounded below by g asymptotically.
f(T)=06(g(T)) | f is bounded both above and below by g asymptot-
ically.

where

. (1) = 0, If PUs signal is ON on the channel S;(t),
SN T B(ts = tem — 1) 0w,
3)

is the throughput without channel switching costs, and
¢(t) = Bts, ()]

denotes the lost throughput due to the channel switching
latency if PUs signal is OFF and CR; is transmitting on a dif-
ferent channel at time 7 than the one at time 7 — 1, and 1 43
denotes the indicator of event A. For mathematical brevity,
we assume the normalized value of zg,(;)(t) € [0,1] and
¢(t) € [0,1], and define vector X(t) € [0,1]% with the j
channel, z;(t), to denote the throughput for channel j. The
CBS scheduler accumulates the throughput > 5_; Yer, (1),
at time slot t. The objective is to maximize the CRNs total
throughput over time by finding the best slate and assigning
them to the CRs for data transmission.

Let v be the online learning policy which the CBS employs
for s-set channel selection over time. Then, the expected
accumulated throughput in the CRN after T time slots is

s

T s T
Gu(T) =E, Z Z T, (1) () — Z Z (s, y£s0-1)3 |- )
t=1

t=11=1 i=1

where the expectation is taken with respect to the internal
randomness of the policy v.

We evaluate the performance of the proposed policy with
respect to the best slate in hindsight which has the highest
accumulated throughput up to time 7. Assuming a genie with
full prior knowledge, the optimal static policy then is the one
that CBS persistently applies to select the best slate over the
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Algorithm 1 CBS Scheduling Without Channel Switching Costs (s-Set Semi-Bandits Feedback Without Switching Costs)

Parameters: ; € (0,1], 7, € (0,1],s =1,...,s
Initialization: w," (1) = 1, for all i € [s], and j € [K].
1: while ¢ < T do
2. Set M; =0 for all i € [s].

32 fori=1,...,s5 do
(i) w” (1)1 JEM,;
4: Setp:/(t)=(1—7
et p; () = ( )nglwr(),,gMiA
s Sample S;(t) ~ p (1) = (p"(1),...,p{
6: end for

Play the slate S(¢), and receive the reward zg, ;) (t) €

A z;(t)
S =
r J

i)

9:  Update w](
10: t=1t+ 1.
11: end while

(t)), and form M; 1 =

[0,

Lg,()=jLjgm,, for all i € [s], and j € [K].

+ K;Y;H]ljg/\/(i, for all j € [K].

M U{S8i(1)}.

1], for all ¢ € [s].

(t+1) = ') (1) exp(nd; (1)), for all i € [s], and j € [K].

time. Then, the maximum accumulated throughput on the best
slate is defined as follows:

(6)

Gmaz

We measure the performance of the learning policy v with the
notion of regret which is the performance difference between
the proposed policy and the optimal static policy in hind-
sight [21]. In other words, the regret measures the gap between
the accumulated throughput achieved by applying a learning
policy and the maximum accumulated throughput the CBS can
obtain when it keeps playing on the best slate. Our goal is to
minimize the regret of the s-set semi-bandit with switching
costs after T rounds defined as follows:

myin R(T) = Gmaz(T) — G, (T). (7

In the next section, we present a family of multi-armed ban-
dit algorithms that generate the order-optimal policy for CBS
scheduling with switching costs and show they achieve sub-
linear throughput regret upper bound over time. That is, the
proposed solution performs no worse than the optimal static
policy on average, asymptotically.

IV. ONLINE MULTIUSER COGNITIVE BASE
STATION SCHEDULING POLICY

In this section, we design efficient online learning algo-
rithms for CBS scheduling which strikes an optimal balance
between searching for spectrum holes for data transmission
and channel switching costs to maximize the CRNs’ through-
put. We illustrate our algorithm design in three key steps. First,
in Section I'V-A, we focus on the special case with no channel
switching costs ¢(f) = 0 (i.e., no channel switching latency
tes = 0) for all 7 in (5), recovering the multi-armed semi-
bandit problem studied by [57], [58]. Next, in Section IV-B1,
we study the special case of the problem in (7), for a single
CR, i.e., s = 1, thereby recovering the well-studied problem of
multi-armed bandits with switching costs [44], [45]. Finally,
in Section IV-B2, we combine the key algorithmic ideas from
Sections IV-A and IV-B1, to design an order-optimal online

CBS scheduling algorithm for minimizing the regret in (7).
All proofs are deferred to the Appendix.

A. CBS Scheduling Without Channel Switching Costs

We focus on the CBS scheduling problem where we assume
that the CRs’ channel switching latency is negligible. In this
case, considering that the CBS is serving s number of CRs,
the problem of throughput maximization is modeled with s-set
semi-bandit feedback and zero switching costs, i.e., c(f) = O.
The objective of the CBS scheduler is to choose a slate of s
channels out of K and assign them to the CRs such that the
regret in (7) is minimized.

Considering no prior knowledge on the PUs activity, we
propose a non-stochastic online learning algorithm which is a
modified version of EXP3 algorithm [21]. The proposed CBS
scheduling algorithm maintains a distribution over K channels
for each of the CRs in the i position on the set C for i =
1,...,s. Then, at each time slot z, the CBS scheduler fills the
channel slate using the following sequential sampling. Starting
at position i = 1 in the set C, the scheduler first samples the
channel to be assigned to the CR which has first position in the
slate according to Sy (t) ~ p(?)(t). Then for i = 2, we exclude
the channel S () from the support of p(?)(¢) and re-normalize
p@(t) before sampling S5(t) ~ p(2)(t). Proceeding in this
manner, for the CR in the i position in the the set C, we
restrict the support of p()(¢) to [KI\{S1(¢),...,Si_1(t)}
re-normalize, and sample S;(t) ~ p(?)(t). After assigning the
slate S(#), the CBS receives the report from the CRs about
the throughput for each channel assignment, i.e., s-set semi-
bandit feedback, and updates the weight for each p(i)(t). The
pseudocode is presented in Algorithm 1.

We now show that the estimated throughput Z;(t) by the
CBS scheduler (line 8 in Algorithm 1), for any CR; in the set
C is unbiased. Let M; = {S1(t),...,S;—1(¢)}, and M7 = 0.
Let also

Ligm, = {

1, with probability HZ 11_ j(T)(t)
0, with probability 1 — H’ 1y _ p(r)(t)7
(8)
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where 1;¢ 4, indicates a random variable defined for CR; in
the slate on each channel J which takes value 1 with probabil-
ity that this channel is not selected to be assigned to neither
of its preceding CRs. Then we denote E;za4,[%;(t)] as the
expectation that channel S;() is not chosen to be assigned to
neither of the CRs in position 1 to i — 1 at time 7 as follows:

i—1
(T0-0)
r=1

| 5 (1)

p (01241 - ”()

(ﬁ( ©))

r=1

z(t) 4
<>()

Then by taking the expectation w.r.t. to the randomness of
channel 5;(t), we show that the estimated throughput ;(#) is
unbiased:

Ejgm, [3(t)] =

]ls7(t):j

S.(0= ©

K
R i), Ti(t)
Eg,(0epo (0 Bigan [50)] = 3 p(®) (jw(t) N
r=1 i
—5(t), j¢M.  (10)

Our main result is as follows.
Theorem 1: For any K > s > 0, with exploration param-
\/(Kfz#l)ln(KfiJrl)
T
In(K—1i+1)
(K=t DT’
uler without channel switching cost presented in Algorithm 1,
after 7 > K In K time slots, is bounded as

<27Z\/

where expectation is w1th respect to the internal randomization
of the algorithm.

Proof: See the Appendix. |

A few remarks are in order. First, the bound above is order-
optimal due to the lower bound of Q(7'*/2) in [24]. Second,
the bound is only worse by a factor of /s due to [23],
but it slightly improves the regret upon the known result
of O(sVKTInK) in [58]. The key for achieving this is in
restricting the exploration set to the size of K — i 4+ 1 for each
position ¢ € [s] using sequential sampling. Third, the proposed
algorithm fares favorably in terms of the computational com-
plexity, requiring O(sK) computation per iteration. Forth, it
is noted that the proposed spectrum sharing scheme for the
centralized CRNs achieves the regret bound in the order of
T2, However, if a decentralized setting is considered then
the very recent work by Bubeck et al. [61] on distributed
online learning algorithm can be adopted where it obtains the
regret bound in the order of T(l_i) (s is the number of CRs).
As we can see, in this case the order of regret depends on the
number of CRs, and as the number of CRs increase the regret
order increases as well. However, the regret order is a con-
stant of 1/2 for the centralized setting using s-set semi-bandits
online learning framework.

eter of v; = , and learning rate 7; =

for i =1,..., s, the regret of CBS sched-

— i+ 1)Tn(K —i+1),
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B. CBS Scheduling With Channel Switching Costs

In this subsection, we build on the algorithmic idea from
the previous subsection as well as a stochastic policy to han-
dle the problem of CBS scheduling with channel switching
costs. In particular, we use a probabilistic switching policy as
a wrapper function around Algorithm 1 to form the s-set bandit
feedback with switching costs framework which is presented
in Algorithm 2.

Our randomized switching policy o () follows a stochastic
Bernoulli process as

o(t) = Switch,
" | No switch, with probability

with probability d(¢),
1—46(t).

Based on this policy, at each time slot the CBS switches the
entire slate with probability 6(¢) (line 5-11 in Algorithm 2),
in which case it runs the sequential sampling procedure of
Algorithm 1, or it decides to play the same slate as the
previous time slot with probability 1 — §(¢) (line 12-16 in
Algorithm 2). The probability to switch, §(¢), depends on the
number of channels K, and decays with time as ¢~%. The
choice of « is crucial — a slow decaying §(¢) would allow fre-
quent channel switching and help with exploration, but at the
expense of potentially not exploiting a high throughput chan-
nel and incurring additional lost throughput due to switching.
On the other hand, a fast decaying J(¢) may hurt exploration
and, therefore, overall achievable CRNs throughput. We show
that o = 1/3, i.e., 0(t) proportional to t=1/3, offers a good
trade-off between exploration and exploitation yielding order-
optimal regret upper bound. Note, though, that the switching
probability cannot exceed 1— (K In K /T)/3. We find () =
min{l — ¢, {/ EBEY where e = {/ZEBE Then, the CBS
scheduler maintams a distribution p()(t) € AK—1 = {p
[0,1]K = lp] =1}, i € [s], and at every time slot that
it decides to switch, samples S(")(¢) ~ p(*)(t). The distri-
bution p(i) depends on the throughput obtained and involves
mixing exploration proportional to a certain parameter y; > 0.
The only other difference in Algorithm 2 is the way in which
the CBS constructs an unbiased estimator of the throughput.
At time slot ¢, the achieved throughput for the j th channel, i.e.,
z;(t), is scaled by switching probability and the probability
of selecting the channel j in proceeding position, 1,...,%— 1.

Next, to better understand the regret analysis of the proposed
algorithm, we first consider the setting of scheduling for a
single CR (s = 1) with channel switching costs. Then, we
extend the analysis for the setting of multiple CRs (s > 1) and
give the main results of upper bound regret for Algorithm 2.

1) CBS Scheduling for a Single CR With Channel Switching
Costs: In Algorithm 2 we set s = 1 and then show that the
estimated throughput Z;(¢) (line 11 and 16 in Algorithm 2) is
unbiased. We first take the expectation w.r.t. the randomness
of switching as follows:

Y

xi (1)
- 26<t]>(pj<t>“5<“:f‘5<“

x; (t
gu_(g(&j(wﬂsu)j(l — (1)

Eq (i)t (3 (1)]

+

= g 12
p;(t) 0= (12
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Algorithm 2 CBS Scheduling With Channel Switching Costs (s-Set Semi-Bandits Feedback With Switching Costs)

3/(KlnK)“t!
Parameters: v; € (?/KIZ}EK 1] n; € (0, 21»,2(;_“_1) ( ;l+3 ), €=

Pt (0),....pi(0)). for all i € [s]. and j € [K].

Initialization: w!" (1) = 1, p\" (0) = . 5i(0) ~ p()(0) =
1: while ¢ < T"do
2. Set M; =0 for all i € [s].

3. Setd(t) =mind 1 —e, { KI?K}.

4:  Draw u ~ U]0,1].
5. if () > u then {\Switch}

3/Kln K
T -

fori=1,...,s do »
: @)y =1 - "”ﬂ‘l()”ZMi Y Mgy, forall j € [K
7: Set p; (1) = (1 — s )ZK RECIETE + i1 Ljgm,. for all j € [K].
8 Sample 5;(£) ~ p®(£) = (p (1), .. pi2 (1)), and form My 41 = M; U {Si(0)}.
: end for
10: Play the slate S(¢), and receive the reward zg, ;) (t) € [0,1] for all 7 € [s].
1 Set &(t 50 Gg py_iTign, forall i € [s], and j € [K] .
') = ST I 1 =M ol and 7 € K]
12:  else {\\No Switch}
13: Setp()( t) = p()(t—l) for all j € [K] and ¢ € [s].
14: SetS( = S5;(t —1), for all i € [s].
15: Play the slate S(¢), and receive the reward zg, ;) (¢) € [0,1], for all i € [s].
16 Set #(t) = (1) _iTigp,. forall i € [s] and j € [K].
) = o0 T P S 0= e sl and J < K]
17 end if
18:  Update w J(Z)(t +1) = w](»z)(t)exp(mij(t)), for all i € [s] and j € [K].
19: t=tr+ 1.

20: end while

Then by taking the expectation w.r.t. to the randomness of
channel S(t), we have

Es(t)y~p(t) [Ea(t)wé(t) [ij(t)ﬂ = Zpr(t)pj(t)1r=j = z;(1),
(13)

which shows that estimated throughput ;(#) is unbiased.

2
Theorem 2: For any K > 2, s = 1, n < %i/@,

and v € ({/EIE 1], the regret of the CBS scheduler for a
single CR with channel switching costs of ¢(t) is bounded as

E[R e—2 KnTS
KlnK
1 1
(KInK)3 (Ts —(Kan)g)
+ 3kmryird + BE
2 n

where expectation is with respect to the internal randomization
of the algorithm, and T > 8K In K.
Proof: See the Appendix. |
For an optimal choice of the learning rate, 1, we obtain the
following bound.

Corollary 1: For =

UETT R

4 In K ( 7 Kln K )—1/2 we
& — 1 1 1

T2V (=K% (k10 k)3 (T3 (K InK)3)t

have

E[R(T)] < 3.62(K In K)'/317%/3,

for T >8KInK.

Proof: See the Appendix. |

A few remarks are in order. First, note that [44] shows a
lower bound for multi-armed bandits with switching costs in
the order of (7%/3), so the bound in Corollary 1 is order-
optimal. Second, the algorithm of [45] achieves the same
regret bound but it involves mini-batching over epochs of size
T1/3. Our algorithm is a rather simple, and much easier to
understand and implement as it admits standard analysis tech-
niques. Also, the mechanism for ensuring that the CBS avoids
switching too often is fundamentally different as it relies on a
learning policy whose exploration rate diminishes over time,
whereas [45] resorts to playing a constant arm in epochs of
fixed size.

2) CBS Scheduling for Multiple CRs With Channel
Switching Costs: We now consider the setting in which the
CBS is serving multiple CRs which results in slate size of
s > 1. We show the following regret bound for Algorithm 2.

Theorem 3: For any K > s > 0, with exploration param-
eter of v, = (LﬁK)l/ 3, channel switching cost of c(#),
4 In(K—1i+1) ( 7
T2\ (=2 (KD \ (1 )3

and learning rates n; = +
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KIn K
Tilif(Kang%)‘l
BS scheduling algorithm presented in Algorithm 2 after

T > 8K In K time slots is bounded as

_1/2, for « = 1,...,s, the regret of the

E[R(T)] < 3.62s(K In K)/372/3,

where the expectation is with respect to the internal random-
ization of the algorithm.

Proof: See the Appendix. |

Note that the bound above is order-optimal due to the lower
bound of Q(T?2/3) in the case of multi-armed bandits with
switching costs [44]. To the best of our knowledge, the above
regret bound is the first which we derive for the s-semi bandit
with switching costs setting to address the CBS scheduling
problem in centralized CRNs.

V. PERFORMANCE EVALUATIONS

In this section, we validate our theoretical findings by
numerically evaluating the performance of the proposed CBS
scheduling algorithms and measuring the regret in various
CRNs with different settings. Our evaluation is conducted over
a spectrum in which the PUs activity are created by computer
simulations (synthetic data), as well as a spectrum in which
the PUs activity is collected from a set of real-world spectrum
data measurements.

A. CBS Scheduling on Synthetic Spectrum Data

Since we have considered no statistical assumptions on the
PUs activity, we first create and validate a non-stochastic PUs
activity on the frequency channels. Then, we run the proposed
algorithms on the constructed non-stochastic environment, and
compare the analytical and simulation results, as well as the
baseline solutions, where available.

1) Non-Stochastic PU Activity Environment Setup: We
simulate a stochastically constrained non-stochastic environ-
ment by adopting the approach of [52] to create the PUs.
This method has been demonstrably effective in testing non-
stochastic online learning algorithms via extensive experi-
ments [62]. We adopt the framework nearly as is except that
we generate normalized throughput (i.e., reward) in [0, 1]
instead of [—1, +1]. This difference also changes the mean
of throughput distribution on the channels. We describe the
non-stochastic environment setup in detail as follows. Given
the total number of time slots 7, we split it into n consecutive
(odd and even) phases as follows:

Lot 41ty ity 4+ 1, T, (14)
——
T1 T T,
where T, = |1.6"|, for » = 1,...,n, is increasing exponen-

tially with . Let 11 () denote the average throughput for data
transmission on channel j at time slot # for the odd and even
phases as follows:

, .

In odd phases: = u;(t) = { }’_ A Zofw I=9 (15)
f 7 <

In even phases: = p;(t) = {OA’ quj} = (16)
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Fig. 3. Non-stochastic PUs activity verification.

where A = 1/K represents the mean throughput gap. The
above setting means that for the channels j < s, we switch
between 4;(t) = 1 and p;(t) = A over consecutive phases
while keeping the means fixed during a phase. Similarly, for
every other channels, we switch between p;(¢) =1 — A and
uj(t) = 0. Then, at time slot ¢, we generate a random vector
X(t) € [0,1]¥ to indicate the PUs activity on the frequency
channels as follows: With probability s;(¢) the PUs signal
is OFF (i.e., setting z;(¢) equal to 1), and with probability
1 — pj(t) the PUs signal is ON (i.e., setting z;(t) equal to 0).

For our first set of experiments, we set K = 10 and s = 1.
We set the CBS to run two well-known stochastic algorithms
for channel scheduling, UCB1 [38] and MOSS [43], and the
popular non-stochastic algorithm EXP3 [21] on the simulated
spectrum with non-stochastic PUs activity. We set the time
horizon to T' = 12 x 103 time slots, and average over 1,000
random trials.

Fig. 3 illustrates the empirical regret of the CBS run-
ning the three algorithms, with the shaded areas representing
the two standard deviation of the empirical expected regret.
Based on the plots, we can see that the algorithms designed
for a stochastic settings, i.e., UCB1 and MOSS, exhibit a
nearly-linear regret, failing in the non-stochastic environment,
whereas EXP3 achieves a sublinear regret. This confirms
the non-stochastic PUs activity on the simulated synthetic
spectrum data.

2) CBS Scheduling on the Spectrum With Non-Stochastic
PUs Activity: We now evaluate the proposed CBS schedul-
ing algorithms empirically on the synthetic spectrum data
created by the method described in the previous subsection.
First we seek to evaluate the performance of the proposed
Algorithm 1, for CBS scheduling without channel switching
costs (c(t) = 0). We consider three different settings for the
CRN with various number of frequency channels K and CRs
s. The CBS then runs the Algorithm 1 for channel scheduling
and computes the total CRN throughput. The plot in Fig. 4
shows the empirical regret of the proposed Algorithm 1 along
with the theoretical upper bound from Theorem 1. The sim-
ulation results are consistent with the analytical results in
obtaining a sublinear regret upper bound, that is, the CBS
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Fig. 4. Algorithm 1 (analytical and simulation comparison).
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Fig. 5. Comparison of the proposed Algorithm 1 with the baseline solutions.

asymptotically converges to select the best slate to serve the
CRs and maximize the CRNs total throughput.

We also empirically compare the performance of the
proposed combinatorial semi-bandit algorithm (Algorithm
1) against two baseline algorithms: combinatorial UCB
(CombUCB) [63], [64] and combinatorial Thompson Sampling
(CombTS) [65]. We first set the setting of the non-stochastic
PUs activity environment created by the synthetic simulations
in the previous subsection, and then run the algorithms in the
CBS to schedule the channels for the CRs. Fig. 5 illustrates
the simulation results of the regret upper bound for the CBS
scheduling when the above three algorithms run over various
numbers of frequency channels K and CRs s. We observe that
the proposed non-stochastic algorithm achieves sublinear regret
while the both CombUCB and CombTS fail to converge to
the best s-set channels to serve the CRs and admit a relatively
linear regret upper bound.

We then evaluate the performance of the proposed
Algorithm 2, for handling channel switching costs on a sin-
gle CR, i.e., s = 1, by comparing its empirical regret against
that of prior work which includes the fixed-size mini-batch
algorithm of Arora et al. 2012 [45], and the adaptive mini-
batching algorithm of Arora er al. 2019 [50]. We set K = 10,
and channel switching cost ¢(f) = 1. Fig. 6 shows that our
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Fig. 6. Comparison of the proposed Algorithm 2 with the baseline solutions
for K =10 and s = 1.
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Fig. 7. Algorithm 2 with different K and s.

proposed switching policy compares favorably with other algo-
rithms. Finally, we evaluate the performance of Algorithm 2
for CBS scheduling with channel switching costs. Fig. 7 plots
the observed empirical regret and compares it with theoreti-
cal upper bound from Theorem 3. The results consistency and
sublinear regret confirm the analysis. Also, as expected, the
regret increases with the number of channels and CRs.

B. CBS Scheduling on Real-World Spectrum Measurement
Data

In this subsection, we evaluate performance of the proposed
CBS scheduling algorithms on the real-world spectrum mea-
surement data. The data has been collected by a group of
researchers in 5G-Xcast project in Turku city, Finland [36],
using CRFS RFeye spectrum measurement receiver for a
continuous 8-day period from January 20th to January 27th
from four years, 2015 to 2018.!

From the five wide frequency bands provided in the spec-
trum dataset by [36], we pick three bands as: Band 1: 130-800

IDetailed  information about the spectrum measurement setting,
equipment, and data can be found in [37] and the following website:
https://zenodo.org/record/1293283/files/Open%20Spectrum%20data.pdf?down-
load=1.
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Fig. 9. Real-world PUs’ state transition probability over the time in different channels.

MHz, Band 2: 800-1200 MHz, and Band 3: 1200-3000 MHz.
Fig. 8 illustrates a sample of power measurement across the
whole three bands. We consider that PUs signals are ON on
a frequency channel if power measurement is higher than
the threshold power level —90 dBm, and they are OFF if it
is less than this threshold. For channel selection within the
bands, we examine the PUs activity over the whole spectrum
and randomly pick a set of K = 36, K = 24, and K = 12
frequency channels which are mostly occupied by the PUs over
time. The frequency bandwidth of each channel is considered
W = 39.0625 KHz, according to the dataset information.

To better understand the behavior of the PUs activity in
practice, we examine the spectrum measurement data and
extract the PUs activity over multiple frequency channels. We
consider the two-state Markov Chain model for PUs activ-
ity, i.e., states “1” and “0” referring to ON and OFF state,
respectively. Then, using maximum likelihood estimation we
estimate the state transition probability of the PUs activities
as Poo, Po1, P10o, P11 where Pij denotes the transition prob-
ability from state i to state j, and i,j € {0,1}. We select
4 channels out of 36 channels across the frequency bands
uniformly at random and show the PUs state transition prob-
ability in Fig. 9. We find that the transition probability is
changing over the time, referring to the non-stationary behav-
ior of the PUs activities and implying that the PUs are not
behaving well and are not stable over the time to follow a
specific and known stochastic model. This observation moti-
vated us to search for non-stochastic learning algorithms which
can tackle the practical scenarios.

We set the number of CRs to s = 24, s = 15 and s = 8§,
accordingly. Based on the measurement information, signal

Regret

_; O K = 36,5 — 24 (with channel switching costs)

Bt —— K = 24,5 = 15 (with channel switching costs)

b A K=125=38 (with channel switching costs)
—3%— K = 36,5 = 24 (wihtout channel switching costs)

0 0.5 1 1.5 2

time slot

2.5
x10%

Fig. 10. Regret measurements of CBS scheduling for both with and without
channel switching costs settings.

power level is measured every three seconds across the whole
spectrum. This fixes the time slot length to ¢{; = 3 seconds
for our experimental evaluation. Data transmission time and
channel switching latency t.s; are considered to be 70% and
30% of the total time slot length while the control messaging
duration and learning time, which are not the focus of this
paper, are assumed to be negligible (i.e., t¢, = 0, ¢ = 0).
With an acceptable SNR if the channel assigned to a CR by
the CBS was idle, then the CR obtains a throughput using (1);
otherwise if the channel is busy, no throughput is acquired as
the CR stays in sleep mode to not interfere with the PU’s
signal.

In Fig. 10, we show the regret upper bound over 7' = 28, 812
time slots for the settings of CBS scheduling without and with
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Fig. 12.  Throughput measurement of CBS scheduling for both with and
without channel switching costs settings.

switching costs (i.e., Algorithm 1 and Algorithm 2, respec-
tively). For better comparison the regret is plotted in log scale.
From the figure, we see that first, the regret results are sub-
linear. Second, scheduling with channel switching costs has
higher regret compared to the case of without switching costs.
This is consistent with the analytical regret order bound of
their settings which are T2/3 and T/2, respectively. Third,
the regret increases as the number of channels and CRs
increase.

We further compare the regret upper bound of the proposed
CBS scheduler algorithm against the CombUCB [63], [64]
and CombTS [65] algorithms over the real-world spectrum
measurement data. From Fig. 11, we observe that the regret
bound of the proposed algorithm significantly outperforms the
state-of-the-art solutions (note that the regret is plotted in log
scale, so the differences are noteworthy). The reason is that
the real-world PUs activity, as shown in Fig. 9, does not fol-
low a stationary stochastic process. However, the proposed
non-stochastic algorithm captures the PUs dynamics and max-
imizes the network throughput by achieving sublinear regret
upper bound.

Fig. 12 also shows the average accumulated throughput by
the CBS over time. Again, as expected CBS accumulates more
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Fig. 13. Lost throughput due to channel switching latency.

throughput in the case of without switching costs. Fig. 13
also illustrates the average normalized lost throughput due to
channel switching latency for each network. We observe that
the lost throughput decreases over time. This is because as the
CBS learns the best slate, the frequency of channel switching
is reduced.

VI. DISCUSSION ON FUTURE WORK

¢ We investigated the throughput maximization problem
in centralized CRNs using optimal CBS scheduling.
We considered the switching costs in terms of lost
throughput, however, future work can study joint through-
put loss and energy consumption minimization as channel
switching consumes comparable energy in RF front-end
circuits [16], [20].

e We assumed fixed switching costs between any pair
of actions (i.e., frequency channels). This is similar to
the assumptions made in the literature [44], [45], [50].
However, switching latency may depend on frequency
separation distance between the pairs. Koren et al. [66]
proposed a new metric called movement costs wherein the
switching cost is linearly proportional to the arm index
differences between the pair of actions. We believe the
future work on CBS scheduling problem can adopt the
work by [66] to address the setting of different switching
costs between each pair of frequency channels.

o We assumed the number of CRs in CBS coverage are
smaller than the number of channels, i.e., s < K. The case
of s > K creates an interesting setting which involves
decision on prioritizing the serving CRs per time slot,
accounting the the traffic requirements of the CRs.

o In this paper, we omitted the impact of PUs and CRs
location which yielded to the combinatorial problem for-
mulation. When the users’ location impact is integrated
into the system model, it is formulated as an online
permutation problem ([22, Sec. 5.3]) which requires a
different setting and regret analysis. The future work can
further investigate the integration of channel switching
costs into the online permutation problem with the con-
sideration of different frequency separation costs between
the pairs of channels.
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o Decentralized CRNs with online learning-based CRs is of
great importance to be investigated. This setting involves
channel access collision among the CRs. The recent
work by Bubeck et al. [61] can tackle both the scenar-
ios in which the CRs either communicate the collision
information with each other or not.

VII. CONCLUSION

We modeled the cognitive base station (CBS) scheduling
problem in centralized cognitive radio networks (CRNs) with
non-stochastic multi-armed bandits and semi-bandit feedback
with channel switching costs. We proposed two novel online
learning algorithms with and without accounting the channel
switching costs, where we proved the order-optimal regret
upper bound of T2 and T2/3, respectively. By employ-
ing the proposed algorithms, the CBS achieved the maximum
network throughput over time by learning the best slate of
the frequency channels. Our algorithms are simple and intu-
itive and admit a much easier analysis than prior work. Our
solution relaxed the assumptions on the prior knowledge of pri-
mary users’ activity and their statistical model. We validated
our theoretical findings with extensive experimental evaluation
using synthetic and real-world spectrum measurement data.
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Using Jensen’s inequality and summing over ¢ we then get
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where we used the initialization of wj(-i)(l) =1, and the defi-
nition of W (1) = »-f A (V) Ljgaq, = K —i+1as well

as the definition of w!" (t+1) in Algorithm 1. Combining (25)
and (26), and some rearrangements we get
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Now considering that S (t), S2(t),...,S;—1(t) are given, we
take the expectation w.r.t. randomness of S;(¢), and use the
equalities in (9), (10), (17), (18), and (19), we then get

T T
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Since Y271 25y #(t) < (K — i+ 1)T, we obtain the
JEM;
expected regret of position i in the slate as follows:

In(K —
i

E[Ri(T) <~ T+ (e—2)(K—i+1)nT+ it1)

(29)

By getting the derivative from the above inequality w.r.t.
ni, we find the optimal value of learning rate n; =

In(K —i+1) o \/(K*i+1)ln(K7¢+1)
e—2)(K—it1)T" We choose v; = I
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and find that 7' > (K — i + 1) In(K — ¢ 4+ 1) satisfies both
vi < 1 and n; < 1. With these input parameters and sum-
ming the regret over i, we get the total regret upper bound in
statement of the theorem.

Proof of Theorem 2: First, we verify the following

equalities:
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In the followm we compute the upper bound for the terms

Zt 15 t) Doie1 15 t),and Zt 1 0(¢), which later we will
use them in the derlvatlon of the regret upper bound:
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In Algorithm 2 with s = 1, the regret at each time ¢ is a
random variable as follows:

r(t) = zj« (t) — g (¢)(t) + c(t), with probability §(¢),
zjx (t) — Tg (1) (1), with probability 1 — §(¢).

(36)

The expected value of the regret w.r.t. the randomness of
switching policy at time ¢ is equal to

Eg(ty~s(p)[r(t)] < (wj*(t) — zg() (1) + C(t))5(t)
+ (20 (5) = 500 (1)) (1 = 3(2))
< @y« (t) — @g(4)(t) +0(¢), (37)

where we used c¢(t) < 1. Hence, the expected value of the
accumulated regret R(T) w.r.t. the randomness of taken action
S() is

T
Es(t)mp(t)[B(T)] = Eg(t)mp(t) | Ea()~s(t) [ZT H
t=1
T T
<> 3 () = Y Esyep(e) {xS(t)(t)}
t=1 t=1
T
+ > 6t (38)
t=1

In the above equation, the expected regret upper bound consists
of three terms. We first derive the upper bound on the first two
terms then add it with the bound of the third term which we
have computed in (35). Below is the derivation of the upper
bound for the first two terms in (38). For a single f,

W(t+1) = wy(?)
S = 2 i 0 0)
K
< ]2221 Py(tl)_—”yY/K (1 + i (8) + (e — 2)m°; (¢ )2)
K
< exp (1_’77 gmt)fvj(w

(39)

where the equality follows from the definition of W (¢4 1) =
S wj(t + 1), and wj(t + 1) in Algorithm 2 with s = 1.
Also, the last inequality follows from the fact that e* > 14 z.
Finally, the first inequality holds by the definition of pj( ) in

Algorithm 2 and the fact that e* < 1+ z + (e — 2)z? for
z < 1. In this case, we need 7;(¢) < 1. From the definition
of Z;j(t) in Algorithm 2 and knowing that since p;(t) > %,

5(t) > €,1-5(t) > ¢ for T > 8K In K where € = {/ Kl}lK,

2
by choosing v > {/EBE we findn < 2 ¢ % which

satisfies the required condition (i.e., nZ;(¢) < 1). By taking the
logarithms and summing over T on both sides of equation (39),
for the left hand side (LHS) of the equation, and for any j we
have

T
S W(t+1)
t=1

W(T +1)
w(1)

>Inwj(T+1)-InK
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T
= nzgej(t) ~InkK. (40)
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By combining (39) with (40), we get
T T K
Z z;(t) — Z Z p; ()2 (1)
t=1 t=1;5=1
T T K In K
<> E) +(e—2n) > pi(t)aF(t) + - (41)
t=1 t=1;5=1

We take the expectation w.r.t. the both randomness of switch-
ing policy o(t) and S(z), substitute the j with j* (best channel
index) and use (12), (13), (30), (31), (32), then we get

T T
Z zj+(t) + Z Es(t)~p(t) [»’Csa)(t)}

— 9K 1 r
<’YZ$J e ﬁ(z;é(t Z
t— t=1
an
+7
n

which gives us the bound on the first two terms of regret
upper bound in (38). Next, by adding (35) with (42), we get
the upper bound for (38) as follows:

(e —2)Kn
i1+ L2

w)

. (42)

(43)

Substituting the bounds in (33), (34), and (35) into the above
equation, we obtain the expected regret upper bound in the
statement of the theorem.

Proof of Corollary 1: By getting the derivative from the

statement in Theorem 2 w.r.t. n, we find the optimal value
4 In K 7 KInK ~1/2
of n =
T2/3Y (e=2)K ((Klnx)% (T3 —(KInK)3)
2
which also satisfies n < % y %

g &%K we get the expected regret upper bound in the

corollary for any 7' > 8K In K as follows:
\[\/ 2K InK)3 T3

+ g(Kan)E T%

. By choosing v =

2

E[R(T)] < (KInK)3 T3 +

— 3.62(K InK)3 T'5.

Proof of Theorem 3: The proof follows similar steps as in the
proof of Theorem 2, Corollary 1, and Theorem 1 with a differ-
ence which arises in satisfying the condition of 7;2;(t) < 1
for every CR at position i in set C. Considering the defini-
tion of ;(¢) in Algorithm 2 and verifying the the following

inequalities: p](i)(t) > K_'Y;?_H for j & M;, 6(t) > e,
1—0(t) > ¢ for T > 8K1In K where ¢ = {“VLJI}K, and
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2;11 1-— pm(t) > (%)L for i > 1, by choosing 7; >

J
( &%K)l/ 3 we find the upper bound of learning rate 1; <
Qi,g(lg_i_ﬂ) 3/ (K I;fQZH. We then find the optimal value

4 In(K—itl) (7
7273\ (=KD (10 10)}

~1/2 which satisfies the required condition.

of the learning rate n; =

Kn K
(T3 —(K1InK)3)
By choosing v; = (&%K)I/?’, considering K — i+ 1 < K,
and summing the regret over all the channels in the slate, we
get the total expected regret upper bound in the theorem.
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