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ABSTRACT

Efficient contact tracing and isolation is an effective strategy to
control epidemics, as seen in the Ebola epidemic and COVID-19
pandemic. An important consideration in contact tracing is the bud-
get on the number of individuals asked to quarantine—the budget is
limited for socioeconomic reasons (e.g., having a limited number of
contact tracers). Here, we present a Markov Decision Process (MDP)
framework to formulate the problem of using contact tracing to
reduce the size of an outbreak while limiting the number of people
quarantined. We formulate each step of the MDP as a combinatorial
problem, MinExposed, which we demonstrate is NP-Hard. Next,
we develop two approximation algorithms, one based on rounding
the solutions of a linear program and another (greedy algorithm)
based on choosing nodes with a high (weighted) degree. A key
feature of the greedy algorithm is that it does not need complete
information of the underlying social contact network, making it im-
plementable in practice. Using simulations over realistic networks,
we show how the algorithms can help in bending the epidemic
curve with a limited number of isolated individuals.
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1 INTRODUCTION

Contact tracing followed by isolation is one of the most effective
ways to control epidemics caused by infectious diseases. In this
intervention strategy, contact tracers ask infected individuals to
report their recent contacts; they then trace these contacts, asking
them to isolate for a period of time [5]. Recently, technologies such
as the Google-Apple app [1] have provided a solution to augment
human contact tracers. When contact tracing apps are used, the
strategy is called digital contact tracing; otherwise, it is called
manual contact tracing.
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The main limitation of contact tracing is the number of indi-
viduals who can be asked to isolate; this number is constrained
since isolation imposes a significant economic and social burden
to the population. For manual contact tracing, the budget is also
dependent on the economic cost of hiring contact tracers. From
these constraints, we can see a trade-off between reducing infection
spread and minimizing socioeconomic costs. This brings forth a
natural question that we study: which individuals should we isolate
to make the most effective use of the budget for contact tracing?

Our contributions.We use a Markov Decision Process (MDP)
framework to formulate the problem of reducing the size of an out-
break through efficient contact tracing while limiting the number of
isolations. At each timestep, the policymaker wants to choose a set
of nodes that, when asked to quarantine, minimizes the (expected)
number of infections at the end of the epidemic. Since the disease
dynamics are constantly changing (due to fluctuating attitudes and
behavior), we will only consider finite time horizons of the MDP
by solving the combinatorial problem,MinExposed, which focuses
on the second neighborhood of the infected set.
• We prove that MinExposed is NP-Hard, so we develop an
LP-based algorithmwith rigorous approximation guarantees.
Using insights from the previous algorithm, we introduce an
interpretable and practical greedy approximation algorithm.
• Based on our theoretical results, we devise a heuristic which
requires minimal information of the contact graph or disease
model, and thus can be made operational in the real world.
• We run simulations of an epidemic with realistic contact net-
works and parameter values to assess the performance of our
heuristic—the results suggest that the heuristic successfully
bends the epidemic curve.

2 PRELIMINARIES

Let 𝐺 = (𝑉 , 𝐸) be the social contact network and let the disease
spread on 𝐺 by an SIR type diffusion process [7]: at each timestep
𝑡 , an infected node 𝑢 ∈ 𝐼 (𝑡) transmits the disease to each of their
neighbors 𝑣 independently with probability 𝑞𝑢𝑣 . We assume the cur-
rently infected nodes, 𝐼 = 𝐼 (𝑡), are known to the policymaker and
will self-isolate until they recover. Though all previously infected
nodes self-isolate, neighbors of 𝐼 , which we denote 𝑉1 = 𝑁𝐺 (𝐼 ) − 𝐼 ,
are already exposed and can continue to spread the disease to the
rest of the graph. Policymakers must contact trace these individuals
and ask them to isolate. Since this process is expensive and time-
intensive for both the government and quarantined individuals, we
let 𝐵 be the budget on the number of nodes that can be reached.



Given this, the objective of policymakers is to minimize the total
number of infections in𝐺 at the end of the epidemic. This is an ide-
alized problem to solve since the contact graph, transmission rates,
and compliance rates are all constantly changing due to various
forms of social distancing. As a result, we focus on locally optimal
solutions which minimize the expected number of infections in
the second neighborhood of 𝐼 . We denote this neighborhood as
𝑉2 = 𝑁𝐺 (𝑉1) − 𝐼 −𝑉1 and formalize the problem below.

TheMinExposed Problem: Given contact graph 𝐺 = (𝑉 , 𝐸),
a subset 𝐼 ⊆ 𝑉 of infected nodes, transmission probabilities 𝑞𝑢𝑣 for
(𝑢, 𝑣) ∈ 𝐸, and a budget 𝐵, the objective is to find a subset 𝑄 ⊆ 𝑉1
satisfying |𝑄 | ≤ 𝐵 to quarantine which minimizes the expected
number of infections in 𝑉2. In our full paper [6], we also consider
the possibility of non-compliance when asked to quarantine.

3 OUR APPROACH

In this section, we present our two algorithms; we defer the proofs
of their approximation guarantees and the hardness of MinExposed
to our full paper [6]. There, we also show how our methods can be
extended to guarantee demographic fairness, both with respect to
the people quarantined and the expected number of total infections.

3.1 DepRound

We write MinExposed as a mixed-integer linear program (MILP):
min

∑
𝑣∈𝑉2 𝑧𝑣 s.t.

𝑥𝑢 + 𝑦𝑢 = 1 for 𝑢 ∈ 𝑉1∑
𝑢∈𝑉1 𝑥𝑢 ≤ 𝐵 (1)

𝑧𝑣 ≥ 𝑦𝑢 · 𝑝𝑢 · 𝑞𝑢𝑣 for (𝑢, 𝑣) ∈ 𝐸 ∩ (𝑉1 ×𝑉2) (2)
𝑥𝑢 , 𝑦𝑢 ∈ {0, 1}, 𝑧𝑣 ∈ [0, 1] for 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2

We have 𝑥𝑢 , 𝑦𝑢 for 𝑢 ∈ 𝑉1 as indicators representing 𝑢 being quar-
antined and 𝑢 potentially spreading the disease, respectively. We
allow at most 𝐵 nodes to be quarantined, as indicated by Constraint
1. Finally, 𝑧𝑣 for 𝑣 ∈ 𝑉2 represents a lower bound on the probability
of 𝑣 getting infected, as conveyed through Constraint 2.

Algorithm 1 DepRound
1: Relax the integer constraints of the MILP to obtain an LP
2: Solve the LP to get vectors 𝑥,𝑦 ∈ [0, 1]𝑉1

3: Apply [8] to round vector 𝑥 ∈ [0, 1]𝑉1 to get 𝑋 ∈ {0, 1}𝑉1

4: Output 𝑄 = {𝑢 ∈ 𝑉1 : 𝑋𝑢 = 1}

3.2 DegGreedy

In the analysis of DepRound (see [6]), we used the union bound
to give an upper bound on the objective value of MinExposed.
We now show a simple and interpretable greedy algorithm that
directly minimizes the upper bound, and hence gives the same
approximation guarantee as DepRound.

Algorithm 2 DegGreedy

1: 𝑤𝑢 ← 𝑝𝑢 ·
∑

𝑣∈𝑉2,(𝑢,𝑣) ∈𝐸 𝑞𝑢𝑣 for 𝑢 ∈ 𝑉1
2: pick 𝐵 nodes with the highest𝑤𝑢 values in 𝑉1 to be in 𝑄

4 COMPUTATIONAL EXPERIMENTS

We report on computational experiments conducted to assess the
performance of our algorithms. To do this, we use realistic represen-
tation of the underlying social network and the disease dynamics.
Diseasemodel.Weassume a simple SIRmodel, with a two-timestep
recovery. At each timestep, we have a susceptible set (𝑆), infected
set (𝐼 = 𝐼1 ¤∪𝐼2), and a recovered set (𝑅). The partitioning of 𝐼 models
incomplete information: 𝐼1 is the set of recently infected nodes not
yet known to be transmitting the disease (due to the incubation
period and wait time testing). By the next timestep, 𝐼1 has been
tested and becomes 𝐼2, which is known to the policymaker. As a
result, all quarantine decisions will be based only on 𝐼2.
Algorithms to compare. In our full paper [6], we devised a prac-
tical and implementable variant of DegGreedy, which we called
Private DegGreedy. Here, we compare it with two intuitive base-
lines studied in Armbruster and Brandeau [2]: MostNamed and
ListLength. The MostNamed policy selects nodes in 𝑉1 with the
most infected neighbors and the ListLength policy is similar, but
weighs each neighbor by the inverse of their degree.
Social contact networks. We use a realistic synthetic social con-
tact network for Montgomery County in Virginia constructed by a
first principles approach by Barrett et al. [3] and Eubank et al. [4].
For details on the networks and disease model parameters such as
transmission probabilities and budget, see our full paper [6].

Figure 1: Assessing the performance of the algorithms on

realistic instances using agent-based simulations.

Figure 1 shows the effect of the algorithms on the epidemic
trajectory. As can be noted the method bends the epidemic curve
by (𝑖) reducing the total number of infections, (𝑖𝑖) delaying the peak,
and (𝑖𝑖𝑖) reducing the size of the peak. The latter two are especially
important in practice: a later peak enables time for developing
vaccines, which can potentially stop the infection before the peak,
and having a smaller peak ensures that people are able to receive
adequate treatment in hospitals, which have limited capacity.
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