
Formal Methods in Computer-Aided Design 2022

Small Proofs from Congruence Closure

Oliver Flatt∗, Samuel Coward†, Max Willsey‡, Zachary Tatlock§, Pavel Panchekha¶

∗ University of Washington, Seattle WA 98195, USA, Email: oflatt@cs.washington.edu
† Numerical Hardware Group, Intel Corporation, Email: samuel.coward@intel.com

‡ University of Washington, Seattle WA 98195, USA, Email: mwillsey@cs.washington.edu
§ University of Washington, Seattle WA 98195, USA, Email: ztatlock@cs.washington.edu

¶ University of Utah, Salt Lake City, UT 84112, USA, Email: pavpan@cs.utah.edu

Abstract—Satisfiability Modulo Theory (SMT) solvers and
equality saturation engines must generate proof certificates from
e-graph-based congruence closure procedures to enable verifi-
cation and conflict clause generation. Smaller proof certificates
speed up these activities. Though the problem of generating
proofs of minimal size is known to be NP-complete, existing
proof minimization algorithms for congruence closure generate
unnecessarily large proofs and introduce asymptotic overhead
over the core congruence closure procedure. In this paper, we
introduce an O(n5) time algorithm which generates optimal
proofs under a new relaxed “proof tree size” metric that
directly bounds proof size. We then relax this approach further
to a practical O(n log(n)) greedy algorithm which generates
small proofs with no asymptotic overhead. We implemented our
techniques in the egg equality saturation toolkit, yielding the first
certifying equality saturation engine. We show that our greedy
approach in egg quickly generates substantially smaller proofs
than the state-of-the-art Z3 SMT solver on a corpus of 3 760
benchmarks.

I. INTRODUCTION

Congruence closure procedures based on e-graphs [1] are

a central component of equality saturation engines [2], [3]

and SMT solvers [4], [5]. Sophisticated optimizations like

deferred congruence [3] and incremental e-matching [6] make

such tools faster, but also make guaranteeing correctness more

difficult [7], [8].

Engineers sidestep the challenge of directly verifying high-

performance congruence implementations by instead extend-

ing procedures to generate proof certificates [8], [9]. Proof

certificates provide the sequence of equalities that the congru-

ence procedure used to establish that two terms are equivalent.

Clients can safely use results from an untrusted procedure by

checking its proofs. For example, several proof assistants adopt

this strategy to provide “hammer tactics” [10] which dispatch

proof obligations to SMT solvers and then reconstruct the

resulting SMT proofs back into the proof assistant’s logic,

thus improving automation without trusting solver implemen-

tations.

Proof size can be especially important when extending

existing verification tools with untrusted solvers. For example,

in a case study on six Intel-provided Register Transfer Level

(RTL) circuit design benchmarks [11], an untrusted equality

saturation engine took under 1 minute to optimize, but the

existing verification tool took 4.7 hours to replay and check the

large proof certificates generated by existing techniques [9].

Unfortunately, finding proofs of minimal size is an NP-

complete problem [12].

In this paper, we explore efficient generation of small proof

certificates for e-graph-based congruence procedures. We first

introduce the problem of finding minimal size proofs for con-

gruence closure procedures. We define the space of admissible

proofs and give an integer linear programming formulation for

finding a proof with minimal size. Next, we introduce a relaxed

metric called proof tree size, which directly bounds the size of

the proof, and develop TreeOpt, an O(n5) time algorithm for

finding a proof with minimal proof tree size. Unfortunately,

the O(n5) algorithm is still too expensive for practical use,

since congruence closure procedures often consider thousands

of equations. Thus we also developed an O(n log(n)) time

greedy approach using subproof size estimates. Our algorithm

incurs no asymptotic overhead relative to congruence closure

and finds small proofs in practice.

We evaluate our approach by implementing both proof gen-

eration and greedy proof minimization in the state-of-the-art

egg equality saturation toolkit [3], yielding the first certifying

equality saturation engine. We compare our greedy algorithm

against the state-of-the-art SMT solver Z3, which performs

proof reduction (see Section II) to find smaller proofs. Where

we can run Z3 (Z3 times out in 5.0% of cases), our proofs

are only 72.8% as big as Z3’s on average (15.0% in the best

case). Our proofs are also only 107.8% as big as TreeOpt’s on

average, compared to 147.6% for Z3. Using our greedy proof

minimizer, we were able to reduce proof replaying time in

the Intel-provided RTL verification case study from 4.7 hours

down to 2.3 hours.

In this paper, we first define the problem of finding the

minimal proof and provide an ILP formulation (Section III).

We then introduce the proof tree size metric and an optimal

O(n5) time algorithm for finding proofs of minimal tree size

(Section IV). Finally, we demonstrate a practical greedy algo-

rithm for finding proofs of small tree size with no asymptotic

overhead (Section V).

II. BACKGROUND AND RELATED WORK

Congruence is the property that a = b implies f(a) = f(b).
Congruence closure refers to building a model of a set of

equalities that satisfies congruence; these models can be used

for determining whether other equalities are true (as is com-

mon in SMT solvers) or for finding new equivalent forms of

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 13
This article is licensed under a Creative
Commons Attribution 4.0 International License

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

g

a +

0 2

+ 4

f

Fig. 1: A e-graph model of the equalities a+0 = a and 2+2 =
4 and the expression f(a+0, g(a+0, 2+2)). Note that the top

e-class contains both the expression f(a+ 0, g(a+ 0, 2 + 2))
and the expression f(a, g(a, 4)), which proves that these two

expressions are equal modulo the equalities.

an expression (as is common in equality saturation engines).

For example, consider the equalities a+0 = a and 2+2 = 4;

a model of these two equalities should permit queries like

whether f(a+0, g(a+0, 2+2)) has a simpler form or whether

it is equal to f(a, g(a, 4)).
A congruence closure model is typically represented as

an e-graph, which is a collection of e-nodes and e-classes.1

Each e-node represents a single function being applied and

an e-class for each argument; each e-class, meanwhile, is a

set of equivalent e-nodes. Any expression can be inserted

into the e-graph by converting it recursively into e-nodes,

while equalities can be added into the e-graph by merging

the e-classes for the equality’s left and right hand side. For

example, given the equalities a+0 = a and 2+2 = 4, one can

determine whether f(a+0, g(a+0, 2+2)) = f(a, g(a, 4)) by

inserting these two expression into an e-graph and then adding

the two equalities. The resulting e-graph is shown in Figure 1.

The two expressions end up in the same e-class, so they have

been proven to be equal.

Congruence procedures must handle queries quickly, with

tens or hundreds of thousands of equalities. The large number

of equalities means that e-graphs can contain hundreds of

thousands or even millions of e-nodes, with the resulting

e-graph taking significant time to construct. A substantial

literature [3], [6], [13] describes numerous optimizations to

e-graphs. Past work shows that an e-graph for n equalities

can be constructed in O(n log n) time [14].

Congruence Proofs Proof certificates for e-graphs allow

checking that two terms are equal without reconstructing the

e-graph. Instead, for an equality E1 = E2 witnessed by the

e-graph, a proof certificate is a list of given equalities that

1Depending on the author, the “e” in “e-graph” can stand for “expression”,
“equivalence”, or “equality”.

can be applied in order, one after another, as rewrite rules to

transform E1 into E2. Some of these equalities are applied at

the root of the expression being rewritten, while others apply

to subexpressions (via congruence). In our running example,

we can prove f(a + 0, g(a + 0, 2 + 2)) = f(a, g(a, 4)) as

follows:

f(a+ 0, g(a+ 0, 2 + 2))

a+0=a−−−−→ f(a, g(a+ 0, 2 + 2))

2+2=4−−−−→ f(a, g(a+ 0, 4))

a+0=a−−−−→ f(a, g(a, 4))

Note that some equalities may be reused, as in this example.

Over time, proof certificates have grown increasingly impor-

tant. In SMT solvers, proof certificates correspond to conflict

clauses and enable non-chronological backtracking, a key

component of modern SMT solvers [15]. In proof automation,

proof certificates bridge foundational logics and unverified

automated theorem provers, as in the “hammer” style of proof

tactics [10]. In equality saturation engines, replaying proof

certifications enables the combination of slow verification

procedures with fast equality saturation engines.

To produce proofs certificates, e-graph implementations

maintain a spanning tree for each e-class, with each edge of the

tree justifying the equality of the two e-nodes it connects [16].

This justification is either one of the (quantifier-free) equalities

provided as input or a congruence edge that refers to other

connected nodes in the tree. This spanning tree is maintained

alongside the union-find structure used for efficiently merging

e-classes, so there is no algorithmic overhead to maintaining it.

Producing a proof for the equality of two e-nodes in the same

e-class is then a simple recursive procedure which traverses

the path between two e-nodes, recursively finding subproofs

for each congruence edge. In a spanning tree, there is a unique

path between any two e-nodes, so this recursive algorithm is

quite fast, taking O(n log n) time for n equalities.

Shrinking Congruence Proofs Most uses of proof certifi-

cates, including generating conflict clauses and replaying and

checking proofs, take longer as more unique equalities are

used in the proof certificate. The standard approach to finding

smaller proof certificates, implemented in SMT solvers such as

Z3 [5], is based on the observation [16] that proof certificates

can contain redundant equations; for example, if the given

equalities include a = b, a = c, and b = c, a proof

certificate may include all three. By attempting to re-prove the

same equation while excluding one of the equalities, a proof

certificate can thereby be shrunk. If the initial proof certificate

has length k, this proof reduction procedure takes O(k2 log k)
(as checking the validity of each new proof takes O(k log k)
time using an e-graph).

This state of the art algorithm is limited in two ways.

First, when k ∈ o(
√
n), it introduces an asymptotic slowdown

over the rest of the congruence closure algorithm, which

can answer queries and generate proofs in O(n log n) time

76

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

(where n is the number of equalities). Second and more

importantly, proof reduction is ultimately limited by the choice

of the proof to reduce. Since proof reduction is too slow to

consider the entire e-graph, a valid initial proof is generated

before applying proof reduction, discarding many (potentially

useful) equalities right away. This means that, while it results

in shorter proof certificates, those proof certificates are still

longer than optimal. This paper addresses both concerns.

III. OPTIMAL DAG SIZE

Because proof certificates often contain repeated subproofs,

we propose a measure for a proof’s size in terms of the number

of unique equalities it uses. We call this measure DAG size

because equalities may be reused in the proof. DAG size is

also the same as the size of a conflict set in the context of SMT

solvers. The problem of finding a proof of minimal DAG size

is also NP-complete [12]. This section formalizes a DAG size

measure of proof length which accounts for subproof reuse,

and gives an ILP formulation for finding the proof of optimal

DAG size.

A. C-graphs

Traditionally, each equivalence class in an e-graph is rep-

resented by a spanning tree. Each edge in the spanning tree

is either a single equality between two terms or equality via

congruence. Any additional equalities between nodes already

connected are discarded, since there is already a way to prove

the two terms are equal. However, these equalities may enable

a significantly smaller proof. For example, an e-graph can be

constructed from the equalities a = b, b = c, and a = c.

The e-graph constructs a spanning tree with edges a = b and

b = c, discarding a = c. Now the e-graph will admit a proof

between a and c that has a size of 2.

Since these additional equalities can be used to produce

shorter proofs, our algorithm requires storing them. We call

the resulting structure a c-graph, which maintains a graph, not

a spanning tree, for each equivalence class. Storing these ad-

ditional edges merely requires recording information on every

e-graph merge operation, so can be done without changing the

complexity of the congruence closure algorithm. The c-graph

can be substituted directly for an e-graph without changing the

complexity of the congruence closure algorithm. In practice,

a c-graph uses the same representation and algorithms as an

e-graph, but additionally has an adjacency list for each node

storing this graph of equalities. In the context of producing

proofs, we define a simple version of a c-graph below:

Definition 1. A c-graph is an undirected graph G = (V,E),
where nodes V represent expressions and edges E represent

equalities, along with a justification j(e) for edge e. A

justification is either an equality v1 = v2 between the vertices

or a congruence subproof c1 = c2, where ci is a child of vi.

For convenience, we write C for the set of congruence edges

in E. An edge justified by an equality connects the left and

right-hand sides of the equality directly, while an edge justified

by a congruence c1 = c2 connects terms which are equal

v1: a+0 v2: a
=

v0: a+0+0
(v1, v2)

Fig. 2: A c-graph proof that a + 0 + 0 = a. There is one

congruence edge (v0, v1) with j((v0, v0)) = (v1, v2). Since

v0 and v2 are e-connected, the proof holds.

by congruence over c1 and c2 (e.g. f(c1) and f(c2)). If two

terms are equal due to the congruence of multiple children, the

c-graph contains one congruence edge per argument (one per

child). This keeps the encoding simple, as each congruence

edge corresponds to one proof of congruence. All functions

have a bounded arity, so this transformation does not affect

complexity results.

For a c-graph to be a valid proof, all congruence edges must

refer to e-connected nodes:

Definition 2. A congruence edge e ∈ E with j(e) = (c1 = c2)
is valid if the congruent children c1 and c2 are e-connected

in the reduced c-graph (G′, j), where G′ = (V,E \ {e}). All

non-congruence edges are valid.

Definition 3. Two vertices vs and vt are e-connected in a

c-graph (G, j) if there is a path between them consisting of

valid edges in E.

A c-graph then proves s = t if the corresponding vertices

vs and vt are e-connected. The particular path showing that

vs and vt are e-connected, along with proofs for each congru-

ence edge along the path, represents a particular proof. The

definition of e-connectedness and edge validity are mutally re-

cursive; the base case occurs when two vertices are connected

by a set of non-congruence edges.

The c-graph structure allows for a simple definition of the

DAG size metric:

Definition 4. The DAG size of a c-graph (G, j) is |E \ C|,
the number of non-congruence edges it contains.

Each non-congruence edge e ∈ E\C could also be assigned

a positive, real-numbered weight w(e), giving a weighted DAG

size:
∑

e∈E\C w(e). Applications could leverage these weights

in order to sample proofs that minimize an alternative objective

function, such as the run-time of verifying the steps of the

proof. The algorithms in this paper easily support weighted

DAG size, but we will use the simpler definition of DAG size

with each non-congruence edge assigned a weight of 1.

B. Minimal DAG Size

The key to finding shorter proofs is to keep track of a

c-graph of possible proofs during congruence closure, from

which a short proof can eventually be extracted. Traditional

congruence closure algorithms store only one proof of equality

between any two terms (they generate c-graphs shaped like

forests) because they discard any equalities they discover

between already-equal terms. Instead, we will store these

redundant edges, producing a c-graph shaped like a full graph,

77

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

EDGES S[i, j] ≤ (i, j) ∈ E \ C S[i, j] = S[j, i]

CONGRUENCE M [i, j, l, r] ≤ (i, j) ∈ E ∧ j((i, j)) = (l = r) M [i, j, l, r] = M [j, i, r, l]

PATHS P [i, i, j] = 0 P [i, k, j] ≤ V [i, j]

C[i, j] =
∑

k P [i, k, j] P [i, k, j] ≤ C[k, j]

VALIDITY V [i, j] ≤ S[i, j] +
∑

l,r M [i, j, l, r]

NO CYCLES 0 ≤ D[i, j] ≤ ℓ D[i, j] ≥ 1 if i �= j

(1− P [i, k, j])ℓ+ (D[i, j]−D[k, j]) ≥ D[i, k]

(1−M [i, j, l, r])ℓ+D[i, j] ≥ D[l, r]

GOAL C[vs, vt] = 1 min
∑

i,j S[i, j]

Fig. 3: An integer linear programming formulation of the minimum DAG size problem. Variables S, M , V , and P are sets

of boolean variables, while D is integer-valued. Variables are indexed by i, j, and k, which represent nodes in the c-graph.

Decision variables S and M define which non-congruence and congruence edges of E are selected respectively. ℓ = |C||C|+1|E|
bounds the maximum length of a valid non-cyclic path.

and will then later search this c-graph for a sub-c-graph of

minimal size. We will also discover any extra opportunities

for proofs of congruence between terms, adding these to the

c-graph as congruence edges.

Definition 5. Consider a c-graph (G, j), all of whose edges

are valid. We write (G′, j) ⊆ (G, j) when G′ ⊆ G and all

edges in (G′, j) are valid.

The goal is then to find the sub-c-graph of minimal size in

which two terms s and t remain e-connected.

Definition 6 (The Minimum DAG size Problem). Given a

c-graph (G, j) and two e-connected terms s and t, find a

(G′, j) ⊆ (G, j) in which s and t remain e-connected with

minimal DAG size.

Note that a sub-c-graph is defined by which edges in G

it keeps; this allows us to phrase the minimum DAG size

problem as an integer linear programming problem with one

decision variable per edge in E. The full linear programming

problem is given in Figure 3. It defines selected edges via

S and M , paths P and e-connectedness C (via edge validity

V), and breaks cycles using distance measure D; it is similar

to the standard formulation of graph connectedness as an

ILP problem, except with extra constraints for the validity

of congruence edges. These constraints require the selected

edges S and M to form a sub-c-graph of (G, j) with all

edges valid. Finally, vs and vt are asserted to be e-connected

to ensure that the sub-c-graph proves s = t and then DAG

size is minimized. While this ILP formulation is solvable by

industry-standard ILP solvers for very small instances, it is

NP-complete in general [12].

IV. OPTIMAL TREE SIZE

What makes the minimal DAG size problem NP-complete

is the fact that the e-connectedness of multiple congruence

edges can rely on the same edges. This sharing means that

the cost of using a congruence edge depends on equalities

other congruence edges rely on—global information about the

sub-c-graph of the solution as a whole. Instead of finding

the optimal solution, we optimize for a different metric to

achieve a practical algorithm for proof length minimization.

The distance metric D[i, j] in the ILP formulation, which we

call the tree size of a c-graph, is an effective metric for this

purpose.

The tree-size of a c-graph is computed by summing the

length of the proof, without sharing. Specifically, given a

c-graph (G, j) that proves s = t, its tree size is the tree size

of the path from vs to vt:

Definition 7. Consider a path P that e-connects vi to vj in a

c-graph. The tree size of P is the number of non-congruence

edges in P plus, for each congruence edge justified by (vl =
vr), the tree size of the path from vl to vr.

If a c-graph has minimal DAG size, its DAG size is the

number of non-congruence edges in the graph. Its tree size,

meanwhile, may count each more than once, so presents an

upper bound on the DAG size.2 We can thereby hope that the

c-graph of minimal tree size will also have a small DAG size.

Definition 8 (The Minimum Tree Size Problem). Given a

c-graph (G, j) that proves s = t, find the (G′, j) ⊆ (G, j)
that proves s = t and has minimal tree size.

2We chose the name “DAG size” and “tree size” because the relationship
between these two metrics is similar to the relationship between a DAG and
a tree containing the same parent-child relationships.

78

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

1 def optimal_tree_size(start, end):

2 for i in G.vertices:

3 dist[(i, i)] = 0

4

5 for (ℓ, r) in E \ C:

6 dist[ℓ, r] = 1

7

8 for i in range(|C|):

9 for (ℓ, r) in C:

10 dist[ℓ, r] = shortest_path(ℓ, r, dist)

11 return shortest_path(start, end, weights=dist)

Fig. 4: Pseudocode for the optimal proof tree size algorithm.

The algorithm keeps a dictionary dist[a, b], the length of the

shortest tree size from a to b found so far.

A. Minimum Proof Tree Size Algorithm

Unlike DAG size, tree size does not have the problem of

shared edges. Finding a proof of optimal tree size thus does

not require global reasoning about the surrounding context:

using the same edges with another part of the proof does not

reduce the tree size. As a result, it is possible to solve the

minimum tree size problem in polynomial time.

Finding a proof of optimal tree size is not a simple graph

search. The key problem is that congruence edges may contain

other congruence edges in their subproofs, and the tree size

of those subproofs is initially unknown. Moreover, often a

congruence edge (v1, v2) can be proven in terms of another

congruence edge (v3, v4) and vice versa. Our algorithm tackles

this problem by computing the size of proofs of congruence

bottom up, in multiple passes. At the i-th pass, it constructs

proofs of equalities between vertices where congruence sub-

proofs only go i layers deep. These proofs form an upper

bound on the optimal tree size, decreasing in size until

the optimal proof is found. When the algorithm reaches a

fixed point, the proof of optimal tree size is discovered. The

algorithm for finding the size of the optimal proof is given in

Figure 4. With more bookkeeping, it can be easily extended

to yield the specific proof the optimal size corresponds to.

In each pass, this algorithm computes the shortest path

for each proof of congruence. Non-congruence edges have

a weight of 1, and congruence edges are initialized to have

infinite weight. A fixed point is guaranteed after |C| iterations,

because each subproof for a congruence edge e cannot use

the same edge e again (else its tree size would increase).

The overall running time of the algorithm is bounded by

O(|C|2|E|), with |C|2 being the number of calls to the

shortest path algorithm and |E| being the complexity of finding

a shortest path given the weights. Since there may be n2

congruence edges for n nodes in the graph, the overall running

time is also bounded by O(n5). However, in practice the

number of congruence edges is some constant multiple of n,

and in this case the running time is O(n3).

V. GREEDY OPTIMIZATION OF PROOF TREE SIZE

The optimal algorithm of Section IV finds the proof with

minimal tree size, but it does so at an unacceptable cost:

its running time dominates the O(n log n) running time of

1 def greedy(start, end, pf_size_estimates):

2 todo = Queue((start, end))

3 fuel = T

4

5 while len(todo) > 0:

6 (start, end) = todo.pop()

7 path = shortest_path(start, end, pf_size_estimates)

8 for edge in path:

9 match edge:

10 congruence(ℓ, r) ->

11 if fuel > 0:

12 todo.push(ℓ, r)

13 fuel = fuel - 1

14 else:

15 add_to_proof(unoptimized_proof(ℓ, r))

16 axiom(a) ->

17 add_to_proof(a)

Fig. 5: Pseudocode for the greedy optimization of proof tree

size. The algorithm either recurs for congruence edges if fuel

allows, or it uses the estimates for each congruence edge.

Unlike TreeOpt, the algorithm is top-down and terminates after

T steps.

congruence closure itself [1]. In the context of c-graphs,

n = |E \C|, the set of input equalities to congruence closure.

This section thus proposes a greedy algorithm for proof tree

size, which reduces tree size and DAG size significantly in

practice, though it is not optimal with respect to either metric.

A. Greedy Optimization

The key insight behind the greedy algorithm is that the

multiple passes of the optimal algorithm are only necessary to

compute the minimal cost of congruence edges. If the tree size

for each congruence edge were known, the proof with optimal

tree size could be found by a simple shortest path algorithm.

The greedy algorithm is a simple breadth-first search shortest

path algorithm that takes estimated costs for congruence edges

as an input. The closer the estimates are to the proof of optimal

tree size, the better the results of the greedy algorithm.

Defer for now the challenge of estimating the tree size for

each congruence edge, and focus on the greedy algorithm

itself. The algorithm is simple: use a breadth-first search to

choose a path from the start vertex s to the end vertex t

of minimal length, using the estimates for each congruence

edge. However, those estimates may not be optimal, so the

algorithm then recurses for each congruence edge. Note the

difference between the optimal algorithm (which first opti-

mizes congruence edges) and the greedy algorithm (which

first finds a shortest path). If the recursion were performed

until all congruences are optimized, this algorithm would take

time O(|C|(n + |C|)), which is still too high compared to

the O(n log(n)) runtime of congruence closure. Instead, only

T expansions of congruence edges are permitted; in practice,

we choose T = 10, which seems to work well. After T

expansions, there may be sub-proofs which have not been

generated. In this case, the algorithm defaults to a generic

proof production algorithm for the remaining sub-proofs [16].

Figure 5 lists the greedy algorithm.

79

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

v1

v2

v3

v4

(v1, v2)

==

Fig. 6: An example reduced c-graph with a single congruence

edge. The root of the tree is the vertex labeled v4 at the top,

and there is a single congruence edge (v1, v2) in the spanning

tree. The proof of congruence between vertices 1 and 2 has

a tree size of two because the proof between the congruent

children involves two equalities.

B. Estimating Tree Sizes

The main challenge to instantiating the greedy algorithm

is generating size estimates for congruence edges. However,

there is a simple way to do so: reduce the c-graph to a forest

(Gt, j) with one tree per connected component, in such a way

that all edges remain valid. Luckily, the traditional congruence

closure proof production algorithm generates such reduced

c-graphs by omitting any unions which connect already-equal

terms. Now, the tree size of a proof of congruence can be

estimated by directly calculating the tree size of a proof in the

reduced instance. In such a reduced c-graph, there is only one

possible path between any two nodes, so the proof is unique.

Computing the tree sizes of all proofs in the reduced c-graph

requires some care to stay within the necessary asymptotic

bounds. First, each tree in (Gt, j) is arbitrarily rooted. Given

a vertex a, let size[a] be the size of the proof between a

and the root of its tree. Then the tree size of the proof between

any two vertices a and b can be calculated

size[a] + size[b] - 2 * size[lca(a, b)],

where lca computes the least common ancestor of a and b

in the tree. The lca function can be pre-computed for all

relevant proofs in O(n) time using Tarjan’s off-line algorithm

[17].

Figure 7 shows the pseudocode for calculating proof tree

sizes given (Gt, j). To avoid an infinite loop in proof length

calculation, the algorithm builds each tree in (Gt, j) incremen-

tally using a union-find structure (using the parent array).

Consider the example in Figure 6, in which the path to the

root node v4 contains a congruence edge. The tree size of the

proof between nodes v2 and v4, written tree_size(v2,

v4), involves calculating the size of the congruence proof

tree_size(v1, v3). So tree_size(v2, v4) cannot be

computed using v4 as the root of the tree, since the path to

the root involves the congruence edge. Instead, the algorithm

uses least common ancestor v2 to compute tree_size(v1,

v3). Because the proof is e-connected, any congruence edges

on the path to the least common ancestor can be computed

recursively without diverging.

1

2 def path_compress(vertex):

3 if parent[vertex] != vertex:

4 path_compress(parent[vertex])

5 parent[vertex] = parent[parent[vertex]]

6 size[vertex] = size[vertex] + size[parent[vertex]]

7

8 def traverse_to_ancestor(v, ancestor):

9 while parent[vertex] != ancestor:

10 edge = parent_edge(parent[vertex], G)

11 parent[edge.start] = edge.end

12 if is_congruence(edge):

13 traverse(j(edge).start, j(edge).end)

14 estimate_size(edge)

15 path_compress(vertex)

16

17 def traverse(start, end):

18 path_compress(start)

19 path_compress(end)

20 ancestor = argmin(

21 (lca(start, end), parent[start], parent[end]),

22 distance_to_root)

23 path_compress(ancestor)

24

25 # Ensure that start, end, and their lca share a parent

26 traverse_to_ancestor(start, ancestor)

27 traverse_to_ancestor(end, ancestor)

28 estimate_tree_size(start, end)

29

30 def estimate_tree_size(start, end):

31 tree_size[(start, end)] = size[start] + size[end]

32 - 2*size[lca(start, end)]

33

34 def estimate_size(edge):

35 match edge:

36 congruence(left, right) ->

37 size[edge.start] = tree_size[(left, right)]

38 axiom(a) ->

39 size[edge.start] = 1

40

41 for i in G.vertices:

42 parent[i] = i

43 size[i] = 0

44

45 for (start, end) in congruence_edges(G):

46 traverse(start, end)

Fig. 7: Pseudocode for computing tree sizes of all congruence

proofs given (Gt, j). The algorithm efficiently computes these

tree sizes by storing a union-find datastructure that keeps

track of size, the size of the proof between a node and

it’s parent. Computing the size of a proof involves traversing

the proof, updating the union-find whenever the size of a

sub-proof is discovered. The pseudocode uses the function

distance_to_root to denote the number of edges from

v to the root of its tree. It also makes use of lca, a function

that returns the lowest common ancestor of two vertices.

Each congruence edge results in at most one recursive call

to traverse, while non-congruence edges are added to the

union-find data structure directly. Ultimately, each edge in the

c-graph contributes at most five union-find operations: three

find operations at the start of tree_size, one union

operation to add it to the union-find data structure, and one

more find in traverse_to_ancestor. A sequence of

m operations on a union-find data structure with h nodes can

be executed in O(m log(h)) time [18]. This means the overall

cost of estimating sizes for congruence edges is O(n log(n))
since n bounds both m and h (recall n = |E \ C|). Adding

80

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100

DAG Size of Proof Certificate

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r

o
f

B
e
n
c
h
m

a
rk

s
 (

C
u
m

u
la

ti
v
e
)

TreeOpt

Greedy

Z3

Unoptimized

Fig. 8: This CDF compares the unoptimized (gray solid),

Z3 (blue dashed), greedy (green dash-dotted), and TreeOpt

(red dotted) proof generation algorithms on the same 3 571

benchmarks where Z3 does not time out. Each line shows

the number of benchmarks whose proofs are at most the size

indicated on the horizontal axis. Our greedy approach (green)

closely tracks the size of TreeOpt’s (red) proof certificates,

showing that its certificates are difficult to shrink further. Five

outliers with an unoptimized DAG size of more than 100 are

omitted.

on O(n + |C|) cost for the greedy algorithm itself yields an

overall runtime of O(n log(n)+n+|C|) = O(n log(n)+|C|).
Limiting the number of congruence edges C to a multiple of

n results in a O(n log(n)) runtime, introducing no asymptotic

overhead compared to congruence closure alone. 3

VI. EVALUATION

This section compares an implementation of our greedy

proof generation algorithm in the egg equality saturation

toolkit [3] to Z3’s proof generation [19]. As described in

Section II, Z3 applies proof reduction to the first proof it finds,

which substantially reduces proof size. Our greedy approach

instead attempts to extract a minimal proof from the e-graph.

We found that, even without a proof reduction post-pass, our

greedy approach can quickly find significantly smaller proofs

than Z3 (Figure 8).

A. Comparing egg to Z3

We use Z3 version 4.8.12 and egg version 0.7.1 compiled

with Rust 1.51.0. egg is a state-of-the-art equality saturation

library that implements the rebuilding algorithm for speeding

up equality saturation workloads. It is used by projects like

Herbie [20], Ruler [21] and Szalinski [22]. Z3 is a state-of-

the-art automated theorem prover and is optimized for theorem

proving workloads. To create a realistic benchmark set, we

used the Herbie 1.5 numerical program synthesis tool [20].

Herbie uses equality saturation for program optimization and

comes with a standard benchmark suite of programs drawn

from textbooks, research papers, and open-source software.

We extracted Herbie’s set of quantified equalities and recorded

all inputs and outputs from its equality saturation procedure.

3In practice, |C| is typically a small constant factor larger than n. We use
a constant factor of 10n as a reasonable limit on the number of congruence
edges.

TABLE I: Data comparing egg to Z3 using different proof

production algorithms: egg with proofs of optimal tree size,

egg with greedy optimization, egg with traditional proof re-

duction (see section II), Z3, and egg without any optimization.

Note that proof reduction’s analysis is in terms of k, the size

of the unoptimized proof, while n is the size of the entire

c-graph instance. In practice, k is often small relative to n.

Algorithm TreeOpt Ave Time (ms) Complexity

TreeOpt 100.0% 1008.60 O(n3)
Greedy 105.9% 39.33 O(n log(n))
Egg Reduc. 138.7% 23.01 O(n log(n) + k2 log(k))
Z3 147.3% 130.69 O(n log(n) + k2 log(k))
Egg 185.9% 22.15 O(n log(n))

This results in 3 760 input/output pairs, of which we focus on

the 3 571 where Z3 did not produce an answer after 2 minutes.

For the Z3 baseline, we converted each input/output pair

into a satisfiability query by asserting each quantified equality

(with a trigger for the left hand side of the equality) and then

asserting that the input and output are not equal. Z3 then

attempts to prove the input and output are equal using an e-

graph and the quantified equalities (the theory of uninterpreted

functions). We then computed the DAG size by counting the

number of calls to its quant-inst command [23] in its

proof scripts. We ran egg exactly how it is used by Herbie,

and then optimized proof length using the greedy algorithm of

Section V and measured DAG size by counting proof nodes.

Z3 times out after 2 minutes for 5.0% of the input/ouput

pairs, and completes in 213.25 milliseconds on average for

the remainder. egg does not time out, and runs for an average

of 39.57 milliseconds. To measure DAG size for the resulting

proofs, we ran both egg and Z3 in proof-producing mode and

examined the resulting proofs.

Figure 8 contains the results: the proofs produced by egg

are 72.8% as big as Z3’s on average, despite Z3’s use of a

proof reduction algorithm. Moreover, the effect of proof length

optimization is greater for longer proofs: queries with Z3 DAG

size over 10 see an average 36.0% reduction, while queries

with Z3 DAG size over 50 see an average 49.7% reduction.

B. Detailed Analysis

In this section, we perform a more detailed ablation study

comparing egg’s results using different algorithms. We im-

plement proof reduction for egg and the optimal tree width

algorithm described in Section IV. The ILP solution is not

feasible to run, so we use Z3 as a baseline.

Table I summarizes the results. Z3 and egg are optimized

for different workloads and so use different underlying con-

gruence closure algorithms, and so produce different proofs.

Using proof reduction, egg finds slightly shorter proofs than

Z3. It also performs better than Z3-style proof reduction

implemented in egg. Using the greedy algorithm, egg finds

proofs which are even shorter, and which are also quite close

to proofs of optimal tree size. The data in Table I consists of

the 3 571 out of 3 760 where Z3 did not time out, the same

set used in Figure 8.

81

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

TABLE II: RTL design benchmark results. Total runtime includes equality saturation and proof production runtimes but excludes

any formal verification time.

Tree Size DAG Size Runtime (sec)

Benchmark . . Orig Greedy Reduce .. Orig Greedy Reduce .. Total . Proof . Proof %

Datapath 1 174 90 48% 67 61 9% 37.5 2.58 7%

Datapath 2 561 92 84% 98 46 53% 34.5 2.08 6%

Datapath 3 14 13 7% 13 12 8% 5.13 0.49 9%

Datapath 4 4402 202 95% 223 120 46% 76.4 32.80 43%

Datapath 5 271 95 65% 101 72 29% 105 0.18 0.2%

Datapath 6 155 83 46% 67 49 27% 280 168.00 60%

While we would ideally use the minimal DAG size proofs as

a baseline in our evaluation, we found the ILP formulation was

infeasible to run on real queries. However, the O(n5) TreeOpt

algorithm, which runs in O(n3) time when the number of

congruences is bounded, performs well enough to run on all

of the examples. We found that in 81.1% of these cases, the

greedy algorithm in fact found the proof with optimal tree

size. Moreover, across all of these benchmarks our greedy

algorithm’s overall performance closely tracks that of TreeOpt,

showing that the greedy algorithm’s proof certificates are

difficult to shrink further.

C. Case Study

Typically, proof production is necessary in equality sat-

uration to perform translation validation. In this case, the

shorter proofs produced by proof length optimization re-

duce the number of translation validation steps that must

be performed and thus result in faster end-to-end results.

A practical application that benefits from this reduction is

hardware optimization performed using egg by researchers

at Intel Corporation [11]. Translation validation is used to

ensure that the egg optimized hardware designs are formally

equivalent to the input. Extremely high assurance is needed

for hardware designs because of the high cost of actual

hardware manufacturing. For each step in the tree proof two

Register Transfer Level (RTL) designs are generated, which

are proven to be formally equivalent by Synopsys HECTOR

technology, an industrial formal equivalence checking tool.

The intermediate steps generate a chain of reasoning proving

the equivalence of the input and optimized designs, necessary

because the tools can fail to prove equivalence of significantly

transformed designs. The tree proof is used to ensure that

HECTOR can prove each step with no user input as it is a

simpler check than a DAG proof step.

The results of evaluating this paper’s greedy optimization

algorithm on six Intel-tested RTL design benchmarks are

shown in Table II. On average, proof lengths decreased by

29%, with the best case showing a 53% reduction, while

proof production took only 34 seconds on average, miniscule

compared to multi-hour translation validation times. Moreover,

these reductions in proof length resulted in shorter transla-

tion validation times. The optimized constant multiplication

hardware design descibed in Figure 9 was generated by egg,

+ 5a+ b

a + 4a+ 2b

− + 3a+ 3b

b + 2a+ 4b

− a+ 5b

<< 1

<< 1

<< 1

<< 1

<< 1

<< 1

Fig. 9: Dataflow graph of an optimized multiple constant

multiplication circuit design generated by egg.

starting from an initial naive implementation. Running the

complete verification flow for the original and greedy proofs,

the runtime was reduced from 4.7 hours to 2.3 hours. In

more complex examples we expect that days of computation

could be saved. For parameterizable RTL, where a design must

typically be re-verified for every possible paramterization,

these gains add up quickly.

VII. CONCLUSION AND FUTURE WORK

This paper examined the problem of finding minimal con-

gruence proofs from first principles. Since finding the optimal

solution is infeasible, we introduced a relaxed metric for proof

size called proof tree size, and gave an O(n5) algorithm for

optimal solutions in that metric. While the optimal algorithm

is too expensive in practice, it provides a reasonable base-

line for small congruence problems, and inspired a practical

O(n log(n)) greedy algorithm which generates proofs which

are 107.8% as big on average.

We implemented proof generation in the egg equality

saturation toolkit, making it the first equality saturation engine

with this capability. Since equality saturation toolkits—unlike

SMT solvers—support optimization directly, this opens the

door to certifying the results of much recent work in opti-

mization and program synthesis [3], [20]–[22], [24]–[26].

Looking forward, we are especially eager for the community

to explore more applications of proof certificates in congru-

ence closure procedures. For example, it should be possible

82

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

to use proofs to tune rewrite rule application schedules in

e-matching, improve debugging of subtle equality saturation

issues, and enable equality-saturation-based “hammer” tactics

in proof assistants. It may also be possible to further improve

on the greedy proof generation algorithm with better heuristics

for estimating proof sizes, or to enable more efficient prover

state serialization via smaller proofs.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Applications Driving

Architectures (ADA) Research Center, a JUMP Center co-

sponsored by SRC and DARPA and supported by the National

Science Foundation under Grant No. 1749570.

REFERENCES

[1] C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation,
Stanford, CA, USA, 1980, aAI8011683.

[2] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation:
A new approach to optimization,” in Proceedings of the 36th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, ser. POPL ’09. New York, NY, USA: ACM, 2009, pp. 264–
276. [Online]. Available: http://doi.acm.org/10.1145/1480881.1480915

[3] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and
P. Panchekha, “Egg: Fast and extensible equality saturation,” Proc.

ACM Program. Lang., vol. 5, no. POPL, jan 2021. [Online]. Available:
https://doi.org/10.1145/3434304

[4] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in Proceedings of the 23rd

International Conference on Computer Aided Verification, ser. CAV’11.
Berlin, Heidelberg: Springer-Verlag, 2011, p. 171–177.

[5] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
Proceedings of the Theory and Practice of Software, 14th International

Conference on Tools and Algorithms for the Construction and

Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337–340. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1792734.1792766

[6] L. Moura and N. Bjørner, “Efficient e-matching for smt solvers,”
in Proceedings of the 21st International Conference on Automated

Deduction: Automated Deduction, ser. CADE-21. Berlin, Heidelberg:
Springer-Verlag, 2007, p. 183–198. [Online]. Available: https://doi.org/
10.1007/978-3-540-73595-3 13

[7] D. Winterer, C. Zhang, and Z. Su, “Validating smt solvers via semantic
fusion,” in Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
718–730. [Online]. Available: https://doi.org/10.1145/3385412.3385985

[8] D. Oe, A. Reynolds, and A. Stump, “Fast and flexible proof
checking for smt,” in Proceedings of the 7th International Workshop

on Satisfiability Modulo Theories, ser. SMT ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 6–13. [Online].
Available: https://doi.org/10.1145/1670412.1670414

[9] L. de Moura and N. Bjørner, “Proofs and refutations, and Z3,” in
Proceedings of the LPAR 2008 Workshops, Knowledge Exchange:

Automated Provers and Proof Assistants, and the 7th International

Workshop on the Implementation of Logics, Doha, Qatar, November

22, 2008, ser. CEUR Workshop Proceedings, P. Rudnicki, G. Sutcliffe,
B. Konev, R. A. Schmidt, and S. Schulz, Eds., vol. 418. CEUR-WS.org,
2008. [Online]. Available: http://ceur-ws.org/Vol-418/paper10.pdf

[10] L. Czajka and C. Kaliszyk, “Hammer for coq: Automation for dependent
type theory,” Journal of Automated Reasoning, vol. 61, 06 2018.

[11] S. Coward, G. A. Constantinides, and T. Drane, “Automatic datapath
optimization using e-graphs,” vol. abs/2204.11478, 2022. [Online].
Available: https://arxiv.org/abs/2204.11478

[12] A. Fellner, P. Fontaine, and B. Woltzenlogel Paleo, “Np-completeness of
small conflict set generation for congruence closure,” Formal Methods

in System Design, vol. 51, 12 2017.

[13] Y. Zhang, Y. R. Wang, M. Willsey, and Z. Tatlock, “Relational
e-matching,” Proc. ACM Program. Lang., vol. 6, no. POPL, jan 2022.
[Online]. Available: https://doi.org/10.1145/3498696

[14] P. J. Downey, R. Sethi, and R. E. Tarjan, “Variations on the common
subexpression problem,” J. ACM, vol. 27, no. 4, p. 758–771, oct 1980.
[Online]. Available: https://doi.org/10.1145/322217.322228

[15] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
“Dpll(t): Fast decision procedures,” in CAV, 2004.

[16] R. Nieuwenhuis and A. Oliveras, “Proof-producing congruence
closure,” in Proceedings of the 16th International Conference on

Term Rewriting and Applications, ser. RTA’05. Berlin, Heidelberg:
Springer-Verlag, 2005, p. 453–468. [Online]. Available: https://doi.org/
10.1007/978-3-540-32033-3 33

[17] H. N. Gabow and R. E. Tarjan, “A linear-time algorithm for a special
case of disjoint set union,” in Proceedings of the Fifteenth Annual

ACM Symposium on Theory of Computing, ser. STOC ’83. New York,
NY, USA: Association for Computing Machinery, 1983, p. 246–251.
[Online]. Available: https://doi.org/10.1145/800061.808753

[18] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,”
J. ACM, vol. 22, no. 2, p. 215–225, Apr. 1975. [Online]. Available:
https://doi-org.offcampus.lib.washington.edu/10.1145/321879.321884

[19] L. de Moura and N. Bjørner, “Proofs and refutations, and z3,” vol. 418,
01 2008.

[20] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock,
“Automatically improving accuracy for floating point expressions,”
SIGPLAN Not., vol. 50, no. 6, p. 1–11, Jun. 2015. [Online]. Available:
https://doi.org/10.1145/2813885.2737959

[21] C. Nandi, M. Willsey, A. Zhu, Y. R. Wang, B. Saiki, A. Anderson,
A. Schulz, D. Grossman, and Z. Tatlock, “Rewrite rule inference using
equality saturation,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA,
oct 2021. [Online]. Available: https://doi.org/10.1145/3485496

[22] C. Nandi, M. Willsey, A. Anderson, J. R. Wilcox, E. Darulova,
D. Grossman, and Z. Tatlock, “Synthesizing structured CAD models
with equality saturation and inverse transformations,” in Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 31–44. [Online].
Available: https://doi.org/10.1145/3385412.3386012

[23] S. Böhme, “Proof reconstruction for Z3 in Isabelle/HOL,” in 7th

International Workshop on Satisfiability Modulo Theories (SMT ’09),
2009.

[24] Y. Yang, P. M. Phothilimtha, Y. R. Wang, M. Willsey, S. Roy, and
J. Pienaar, “Equality saturation for tensor graph superoptimization,” in
Proceedings of Machine Learning and Systems, 2021.

[25] A. VanHattum, R. Nigam, V. T. Lee, J. Bornholt, and A. Sampson,
Vectorization for Digital Signal Processors via Equality Saturation.
New York, NY, USA: Association for Computing Machinery, 2021, p.
874–886. [Online]. Available: https://doi.org/10.1145/3445814.3446707

[26] Y. R. Wang, S. Hutchison, J. Leang, B. Howe, and D. Suciu, “SPORES:
Sum-product optimization via relational equality saturation for large
scale linear algebra,” Proceedings of the VLDB Endowment, 2020.

83

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

