% Formal Methods in Computer-Aided Design 2022

Small Proofs from Congruence Closure

Oliver Flatt*, Samuel Cowardf, Max Willseyi, Zachary Tatlock®, Pavel Panchekha¥
* University of Washington, Seattle WA 98195, USA, Email: oflatt@cs.washington.edu
 Numerical Hardware Group, Intel Corporation, Email: samuel.coward @intel.com
i University of Washington, Seattle WA 98195, USA, Email: mwillsey @cs.washington.edu
§ University of Washington, Seattle WA 98195, USA, Email: ztatlock@cs.washington.edu
T University of Utah, Salt Lake City, UT 84112, USA, Email: pavpan@cs.utah.edu

Abstract—Satisfiability Modulo Theory (SMT) solvers and
equality saturation engines must generate proof certificates from
e-graph-based congruence closure procedures to enable verifi-
cation and conflict clause generation. Smaller proof certificates
speed up these activities. Though the problem of generating
proofs of minimal size is known to be NP-complete, existing
proof minimization algorithms for congruence closure generate
unnecessarily large proofs and introduce asymptotic overhead
over the core congruence closure procedure. In this paper, we
introduce an O(n°) time algorithm which generates optimal
proofs under a new relaxed ‘“proof tree size” metric that
directly bounds proof size. We then relax this approach further
to a practical O(nlog(n)) greedy algorithm which generates
small proofs with no asymptotic overhead. We implemented our
techniques in the egg equality saturation toolkit, yielding the first
certifying equality saturation engine. We show that our greedy
approach in egg quickly generates substantially smaller proofs
than the state-of-the-art Z3 SMT solver on a corpus of 3760
benchmarks.

I. INTRODUCTION

Congruence closure procedures based on e-graphs [1] are
a central component of equality saturation engines [2], [3]
and SMT solvers [4], [5]. Sophisticated optimizations like
deferred congruence [3] and incremental e-matching [6] make
such tools faster, but also make guaranteeing correctness more
difficult [7], [8].

Engineers sidestep the challenge of directly verifying high-
performance congruence implementations by instead extend-
ing procedures to generate proof certificates [8], [9]. Proof
certificates provide the sequence of equalities that the congru-
ence procedure used to establish that two terms are equivalent.
Clients can safely use results from an untrusted procedure by
checking its proofs. For example, several proof assistants adopt
this strategy to provide “hammer tactics” [10] which dispatch
proof obligations to SMT solvers and then reconstruct the
resulting SMT proofs back into the proof assistant’s logic,
thus improving automation without trusting solver implemen-
tations.

Proof size can be especially important when extending
existing verification tools with untrusted solvers. For example,
in a case study on six Intel-provided Register Transfer Level
(RTL) circuit design benchmarks [11], an untrusted equality
saturation engine took under 1 minute to optimize, but the
existing verification tool took 4.7 hours to replay and check the
large proof certificates generated by existing techniques [9].

d https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13

Unfortunately, finding proofs of minimal size is an NP-
complete problem [12].

In this paper, we explore efficient generation of small proof
certificates for e-graph-based congruence procedures. We first
introduce the problem of finding minimal size proofs for con-
gruence closure procedures. We define the space of admissible
proofs and give an integer linear programming formulation for
finding a proof with minimal size. Next, we introduce a relaxed
metric called proof tree size, which directly bounds the size of
the proof, and develop TreeOpt, an O(n%) time algorithm for
finding a proof with minimal proof tree size. Unfortunately,
the O(n®) algorithm is still too expensive for practical use,
since congruence closure procedures often consider thousands
of equations. Thus we also developed an O(nlog(n)) time
greedy approach using subproof size estimates. Our algorithm
incurs no asymptotic overhead relative to congruence closure
and finds small proofs in practice.

We evaluate our approach by implementing both proof gen-
eration and greedy proof minimization in the state-of-the-art
egg equality saturation toolkit [3], yielding the first certifying
equality saturation engine. We compare our greedy algorithm
against the state-of-the-art SMT solver Z3, which performs
proof reduction (see Section II) to find smaller proofs. Where
we can run Z3 (Z3 times out in 5.0% of cases), our proofs
are only 72.8% as big as Z3’s on average (15.0% in the best
case). Our proofs are also only 107.8% as big as TreeOpt’s on
average, compared to 147.6% for Z3. Using our greedy proof
minimizer, we were able to reduce proof replaying time in
the Intel-provided RTL verification case study from 4.7 hours
down to 2.3 hours.

In this paper, we first define the problem of finding the
minimal proof and provide an ILP formulation (Section III).
We then introduce the proof tree size metric and an optimal
O(n®) time algorithm for finding proofs of minimal tree size
(Section IV). Finally, we demonstrate a practical greedy algo-
rithm for finding proofs of small tree size with no asymptotic
overhead (Section V).

II. BACKGROUND AND RELATED WORK
Congruence is the property that a = b implies f(a) = f(b).
Congruence closure refers to building a model of a set of
equalities that satisfies congruence; these models can be used
for determining whether other equalities are true (as is com-
mon in SMT solvers) or for finding new equivalent forms of

This article is licensed under a Creative
BY Commons Attribution 4.0 International License

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A e-graph model of the equalities a+0 = @ and 242 =
4 and the expression f(a+0, g(a+0,2+2)). Note that the top
e-class contains both the expression f(a +0,g(a+ 0,2+ 2))
and the expression f(a, g(a,4)), which proves that these two
expressions are equal modulo the equalities.

an expression (as is common in equality saturation engines).
For example, consider the equalities a +0 = a and 2+ 2 = 4;
a model of these two equalities should permit queries like
whether f(a+0, g(a+0,2+2)) has a simpler form or whether
it is equal to f(a, g(a,4)).

A congruence closure model is typically represented as
an e-graph, which is a collection of e-nodes and e-classes.!
Each e-node represents a single function being applied and
an e-class for each argument; each e-class, meanwhile, is a
set of equivalent e-nodes. Any expression can be inserted
into the e-graph by converting it recursively into e-nodes,
while equalities can be added into the e-graph by merging
the e-classes for the equality’s left and right hand side. For
example, given the equalities a+0 = a and 242 = 4, one can
determine whether f(a+0, g(a+0,2+2)) = f(a,g(a,4)) by
inserting these two expression into an e-graph and then adding
the two equalities. The resulting e-graph is shown in Figure 1.
The two expressions end up in the same e-class, so they have
been proven to be equal.

Congruence procedures must handle queries quickly, with
tens or hundreds of thousands of equalities. The large number
of equalities means that e-graphs can contain hundreds of
thousands or even millions of e-nodes, with the resulting
e-graph taking significant time to construct. A substantial
literature [3], [6], [13] describes numerous optimizations to
e-graphs. Past work shows that an e-graph for n equalities
can be constructed in O(nlogn) time [14].

Congruence Proofs Proof certificates for e-graphs allow
checking that two terms are equal without reconstructing the
e-graph. Instead, for an equality £y = FEo witnessed by the
e-graph, a proof certificate is a list of given equalities that

'Depending on the author, the “e¢” in “e-graph” can stand for “expression”,
“equivalence”, or “equality”.

76

can be applied in order, one after another, as rewrite rules to
transform F; into Fs. Some of these equalities are applied at
the root of the expression being rewritten, while others apply
to subexpressions (via congruence). In our running example,
we can prove f(a + 0,g9(a + 0,2+ 2)) = f(a,g9(a,4)) as
follows:

fla+0,9(a+0,2+2))
02 fla, gla + 0,2 + 2))

(a,g(a+0,4))

(a,9(a,4))

2+42=4 f

a+0=a f

Note that some equalities may be reused, as in this example.

Over time, proof certificates have grown increasingly impor-
tant. In SMT solvers, proof certificates correspond to conflict
clauses and enable non-chronological backtracking, a key
component of modern SMT solvers [15]. In proof automation,
proof certificates bridge foundational logics and unverified
automated theorem provers, as in the “hammer” style of proof
tactics [10]. In equality saturation engines, replaying proof
certifications enables the combination of slow verification
procedures with fast equality saturation engines.

To produce proofs certificates, e-graph implementations
maintain a spanning tree for each e-class, with each edge of the
tree justifying the equality of the two e-nodes it connects [16].
This justification is either one of the (quantifier-free) equalities
provided as input or a congruence edge that refers to other
connected nodes in the tree. This spanning tree is maintained
alongside the union-find structure used for efficiently merging
e-classes, so there is no algorithmic overhead to maintaining it.
Producing a proof for the equality of two e-nodes in the same
e-class is then a simple recursive procedure which traverses
the path between two e-nodes, recursively finding subproofs
for each congruence edge. In a spanning tree, there is a unique
path between any two e-nodes, so this recursive algorithm is
quite fast, taking O(nlogn) time for n equalities.

Shrinking Congruence Proofs Most uses of proof certifi-
cates, including generating conflict clauses and replaying and
checking proofs, take longer as more unique equalities are
used in the proof certificate. The standard approach to finding
smaller proof certificates, implemented in SMT solvers such as
Z3 [5], is based on the observation [16] that proof certificates
can contain redundant equations; for example, if the given
equalities include ¢ = b, a = ¢, and b ¢, a proof
certificate may include all three. By attempting to re-prove the
same equation while excluding one of the equalities, a proof
certificate can thereby be shrunk. If the initial proof certificate
has length , this proof reduction procedure takes O (k2 log k)
(as checking the validity of each new proof takes O(klog k)
time using an e-graph).

This state of the art algorithm is limited in two ways.
First, when k € o(y/n), it introduces an asymptotic slowdown
over the rest of the congruence closure algorithm, which
can answer queries and generate proofs in O(nlogn) time

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

(where n is the number of equalities). Second and more
importantly, proof reduction is ultimately limited by the choice
of the proof to reduce. Since proof reduction is too slow to
consider the entire e-graph, a valid initial proof is generated
before applying proof reduction, discarding many (potentially
useful) equalities right away. This means that, while it results
in shorter proof certificates, those proof certificates are still
longer than optimal. This paper addresses both concerns.

III. OpTIMAL DAG SIZE

Because proof certificates often contain repeated subproofs,
we propose a measure for a proof’s size in terms of the number
of unique equalities it uses. We call this measure DAG size
because equalities may be reused in the proof. DAG size is
also the same as the size of a conflict set in the context of SMT
solvers. The problem of finding a proof of minimal DAG size
is also NP-complete [12]. This section formalizes a DAG size
measure of proof length which accounts for subproof reuse,
and gives an ILP formulation for finding the proof of optimal
DAG size.

A. C-graphs

Traditionally, each equivalence class in an e-graph is rep-
resented by a spanning tree. Each edge in the spanning tree
is either a single equality between two terms or equality via
congruence. Any additional equalities between nodes already
connected are discarded, since there is already a way to prove
the two terms are equal. However, these equalities may enable
a significantly smaller proof. For example, an e-graph can be
constructed from the equalities a = b, b = ¢, and a = c.
The e-graph constructs a spanning tree with edges a = b and
b = ¢, discarding a = c. Now the e-graph will admit a proof
between a and c that has a size of 2.

Since these additional equalities can be used to produce
shorter proofs, our algorithm requires storing them. We call
the resulting structure a c-graph, which maintains a graph, not
a spanning tree, for each equivalence class. Storing these ad-
ditional edges merely requires recording information on every
e-graph merge operation, so can be done without changing the
complexity of the congruence closure algorithm. The c-graph
can be substituted directly for an e-graph without changing the
complexity of the congruence closure algorithm. In practice,
a c-graph uses the same representation and algorithms as an
e-graph, but additionally has an adjacency list for each node
storing this graph of equalities. In the context of producing
proofs, we define a simple version of a c-graph below:

Definition 1. A c-graph is an undirected graph G = (V, E),
where nodes V' represent expressions and edges I represent
equalities, along with a justification j(e) for edge e. A
Jjustification is either an equality v1 = vo between the vertices
or a congruence subproof c1 = ca, where c; is a child of v;.

For convenience, we write C for the set of congruence edges
in E. An edge justified by an equality connects the left and
right-hand sides of the equality directly, while an edge justified
by a congruence c; co connects terms which are equal

77

SE—
vq:a+0

~——

(V1, v2)

Vo: a+0+0

Vo. a

Fig. 2: A c-graph proof that a + 0 + 0 = a. There is one
congruence edge (vg,v1) with j((vo,v0)) = (v1,v2). Since
vo and vy are e-connected, the proof holds.

by congruence over ¢; and co (e.g. f(c1) and f(c2)). If two
terms are equal due to the congruence of multiple children, the
c-graph contains one congruence edge per argument (one per
child). This keeps the encoding simple, as each congruence
edge corresponds to one proof of congruence. All functions
have a bounded arity, so this transformation does not affect
complexity results.

For a c-graph to be a valid proof, all congruence edges must
refer to e-connected nodes:

Definition 2. A congruence edge e € E with j(e) = (¢1 = ¢2)
is valid if the congruent children ¢y and co are e-connected
in the reduced c-graph (G',j), where G' = (V, E \ {e}). All
non-congruence edges are valid.

Definition 3. Two vertices vs and v; are e-connected in a
c-graph (G, j) if there is a path between them consisting of
valid edges in F.

A c-graph then proves s = t if the corresponding vertices
vs and vy are e-connected. The particular path showing that
vs and v; are e-connected, along with proofs for each congru-
ence edge along the path, represents a particular proof. The
definition of e-connectedness and edge validity are mutally re-
cursive; the base case occurs when two vertices are connected
by a set of non-congruence edges.

The c-graph structure allows for a simple definition of the
DAG size metric:

Definition 4. The DAG size of a c-graph (G,j) is |[E\ C
the number of non-congruence edges it contains.

s

Each non-congruence edge e € E\C could also be assigned
a positive, real-numbered weight w(e), giving a weighted DAG
size:), o w(€). Applications could leverage these weights
in order to sample proofs that minimize an alternative objective
function, such as the run-time of verifying the steps of the
proof. The algorithms in this paper easily support weighted
DAG size, but we will use the simpler definition of DAG size
with each non-congruence edge assigned a weight of 1.

B. Minimal DAG Size

The key to finding shorter proofs is to keep track of a
c-graph of possible proofs during congruence closure, from
which a short proof can eventually be extracted. Traditional
congruence closure algorithms store only one proof of equality
between any two terms (they generate c-graphs shaped like
forests) because they discard any equalities they discover
between already-equal terms. Instead, we will store these
redundant edges, producing a c-graph shaped like a full graph,

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

EDGESs S[i,j] < (i,j) e ENC Sli, g1 = Slj, il
CONGRUENCE M[i, j,I,r] < (i,j) € EAj((i,5)) = (U =7r) M[i,j,1,r] = M[j,i,r,1]
PATHS Pli,i,j] =0 Pli, k. j) < Vli,]
VALIDITY Vi, j] < S[i, j] + >, M[i, j, 1, 7]
No CycLEs 0< D[i,j] <¢ Dli,jl>1ifi#j

(1 - M[lvjalyﬂ)e—’_ D[Za.ﬂ > D[lar]
GoAL Clus,v] =1 min), S[i, j]

Fig. 3: An integer linear programming formulation of the minimum DAG size problem. Variables S, M, V, and P are sets
of boolean variables, while D is integer-valued. Variables are indexed by ¢, j, and k, which represent nodes in the c-graph.
Decision variables S and M define which non-congruence and congruence edges of F are selected respectively. £ = |C|!CI+1| E]|

bounds the maximum length of a valid non-cyclic path.

and will then later search this c-graph for a sub-c-graph of
minimal size. We will also discover any extra opportunities
for proofs of congruence between terms, adding these to the
c-graph as congruence edges.

Definition 5. Consider a c-graph (G, j), all of whose edges
are valid. We write (G',j) C (G,j) when G' C G and all
edges in (G', j) are valid.

The goal is then to find the sub-c-graph of minimal size in
which two terms s and ¢ remain e-connected.

Definition 6 (The Minimum DAG size Problem). Given a
c-graph (G,j) and two e-connected terms s and t, find a
(G',j) C (G,j) in which s and t remain e-connected with
minimal DAG size.

Note that a sub-c-graph is defined by which edges in G
it keeps; this allows us to phrase the minimum DAG size
problem as an integer linear programming problem with one
decision variable per edge in E. The full linear programming
problem is given in Figure 3. It defines selected edges via
S and M, paths P and e-connectedness C' (via edge validity
V), and breaks cycles using distance measure D; it is similar
to the standard formulation of graph connectedness as an
ILP problem, except with extra constraints for the validity
of congruence edges. These constraints require the selected
edges S and M to form a sub-c-graph of (G, j) with all
edges valid. Finally, v and v, are asserted to be e-connected
to ensure that the sub-c-graph proves s = ¢ and then DAG
size is minimized. While this ILP formulation is solvable by
industry-standard ILP solvers for very small instances, it is
NP-complete in general [12].

78

IV. OPTIMAL TREE SIZE

What makes the minimal DAG size problem NP-complete
is the fact that the e-connectedness of multiple congruence
edges can rely on the same edges. This sharing means that
the cost of using a congruence edge depends on equalities
other congruence edges rely on—global information about the
sub-c-graph of the solution as a whole. Instead of finding
the optimal solution, we optimize for a different metric to
achieve a practical algorithm for proof length minimization.
The distance metric D[, j] in the ILP formulation, which we
call the free size of a c-graph, is an effective metric for this
purpose.

The tree-size of a c-graph is computed by summing the
length of the proof, without sharing. Specifically, given a
c-graph (G, j) that proves s = ¢, its tree size is the tree size
of the path from v to vy:

Definition 7. Consider a path P that e-connects v; to v; in a
c-graph. The tree size of P is the number of non-congruence
edges in P plus, for each congruence edge justified by (v, =
vy), the tree size of the path from v to vy.

If a c-graph has minimal DAG size, its DAG size is the
number of non-congruence edges in the graph. Its tree size,
meanwhile, may count each more than once, so presents an
upper bound on the DAG size.> We can thereby hope that the
c-graph of minimal tree size will also have a small DAG size.

Definition 8 (The Minimum Tree Size Problem). Given a
c-graph (G, j) that proves s = t, find the (G',j) C (G,J)
that proves s =t and has minimal tree size.

2We chose the name “DAG size” and “tree size” because the relationship
between these two metrics is similar to the relationship between a DAG and
a tree containing the same parent-child relationships.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

def optimal_tree_size(start, end):
for i in G.vertices:
dist[(i, 1i)] 0

for (£, 1)
dist[£4, 7]

in E \ C:
1

for i in range(|C|):
for (¢, r) in C:
dist[4, r] = shortest_path (¢, r, dist)
return shortest_path(start, end, weights=dist)

— OO0 R WN =

Fig. 4: Pseudocode for the optimal proof tree size algorithm.
The algorithm keeps a dictionary dist[a,b], the length of the
shortest tree size from a to b found so far.

A. Minimum Proof Tree Size Algorithm

Unlike DAG size, tree size does not have the problem of
shared edges. Finding a proof of optimal tree size thus does
not require global reasoning about the surrounding context:
using the same edges with another part of the proof does not
reduce the tree size. As a result, it is possible to solve the
minimum tree size problem in polynomial time.

Finding a proof of optimal tree size is not a simple graph
search. The key problem is that congruence edges may contain
other congruence edges in their subproofs, and the tree size
of those subproofs is initially unknown. Moreover, often a
congruence edge (v1,v2) can be proven in terms of another
congruence edge (vs, v4) and vice versa. Our algorithm tackles
this problem by computing the size of proofs of congruence
bottom up, in multiple passes. At the i-th pass, it constructs
proofs of equalities between vertices where congruence sub-
proofs only go ¢ layers deep. These proofs form an upper
bound on the optimal tree size, decreasing in size until
the optimal proof is found. When the algorithm reaches a
fixed point, the proof of optimal tree size is discovered. The
algorithm for finding the size of the optimal proof is given in
Figure 4. With more bookkeeping, it can be easily extended
to yield the specific proof the optimal size corresponds to.

In each pass, this algorithm computes the shortest path
for each proof of congruence. Non-congruence edges have
a weight of 1, and congruence edges are initialized to have
infinite weight. A fixed point is guaranteed after |C| iterations,
because each subproof for a congruence edge e cannot use
the same edge e again (else its tree size would increase).
The overall running time of the algorithm is bounded by
O(|C]?|E|), with |C|*> being the number of calls to the
shortest path algorithm and | E/| being the complexity of finding
a shortest path given the weights. Since there may be n?
congruence edges for n nodes in the graph, the overall running
time is also bounded by O(n°). However, in practice the
number of congruence edges is some constant multiple of n,
and in this case the running time is O(n?).

V. GREEDY OPTIMIZATION OF PROOF TREE SIZE

The optimal algorithm of Section IV finds the proof with
minimal tree size, but it does so at an unacceptable cost:
its running time dominates the O(nlogn) running time of

79

def greedy(start, end, pf_size_estimates):

todo = Queue ((start, end))

fuel = T

while len(todo) > O0:
(start, end) = todo.pop()

path = shortest_path(start, end, pf_size_estimates)
for edge in path:
match edge:
congruence (£, 1)
if fuel > 0:
todo.push (£, r)

O 001NN B WD

->

13 fuel = fuel - 1

14 else:

15 add_to_proof (unoptimized_proof (£, 1))
16 axiom(a) —>

add_to_proof (a)

Fig. 5: Pseudocode for the greedy optimization of proof tree
size. The algorithm either recurs for congruence edges if fuel
allows, or it uses the estimates for each congruence edge.
Unlike TreeOpt, the algorithm is top-down and terminates after
T steps.

congruence closure itself [1]. In the context of c-graphs,
n = |E\ C|, the set of input equalities to congruence closure.
This section thus proposes a greedy algorithm for proof tree
size, which reduces tree size and DAG size significantly in
practice, though it is not optimal with respect to either metric.

A. Greedy Optimization

The key insight behind the greedy algorithm is that the
multiple passes of the optimal algorithm are only necessary to
compute the minimal cost of congruence edges. If the tree size
for each congruence edge were known, the proof with optimal
tree size could be found by a simple shortest path algorithm.
The greedy algorithm is a simple breadth-first search shortest
path algorithm that takes estimated costs for congruence edges
as an input. The closer the estimates are to the proof of optimal
tree size, the better the results of the greedy algorithm.

Defer for now the challenge of estimating the tree size for
each congruence edge, and focus on the greedy algorithm
itself. The algorithm is simple: use a breadth-first search to
choose a path from the start vertex s to the end vertex t
of minimal length, using the estimates for each congruence
edge. However, those estimates may not be optimal, so the
algorithm then recurses for each congruence edge. Note the
difference between the optimal algorithm (which first opti-
mizes congruence edges) and the greedy algorithm (which
first finds a shortest path). If the recursion were performed
until all congruences are optimized, this algorithm would take
time O(|C|(n + |C])), which is still too high compared to
the O(nlog(n)) runtime of congruence closure. Instead, only
T expansions of congruence edges are permitted; in practice,
we choose 7' = 10, which seems to work well. After T
expansions, there may be sub-proofs which have not been
generated. In this case, the algorithm defaults to a generic
proof production algorithm for the remaining sub-proofs [16].
Figure 5 lists the greedy algorithm.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: An example reduced c-graph with a single congruence
edge. The root of the tree is the vertex labeled v4 at the top,
and there is a single congruence edge (v1,vy) in the spanning
tree. The proof of congruence between vertices 1 and 2 has
a tree size of two because the proof between the congruent
children involves two equalities.

B. Estimating Tree Sizes

The main challenge to instantiating the greedy algorithm
is generating size estimates for congruence edges. However,
there is a simple way to do so: reduce the c-graph to a forest
(G, j) with one tree per connected component, in such a way
that all edges remain valid. Luckily, the traditional congruence
closure proof production algorithm generates such reduced
c-graphs by omitting any unions which connect already-equal
terms. Now, the tree size of a proof of congruence can be
estimated by directly calculating the tree size of a proof in the
reduced instance. In such a reduced c-graph, there is only one
possible path between any two nodes, so the proof is unique.

Computing the tree sizes of all proofs in the reduced c-graph
requires some care to stay within the necessary asymptotic
bounds. First, each tree in (G, j) is arbitrarily rooted. Given
a vertex a, let size[a] be the size of the proof between a
and the root of its tree. Then the tree size of the proof between
any two vertices a and b can be calculated

sizela] + sizel[b] - 2 x size[lca(a, b)],

where 1ca computes the least common ancestor of a and b
in the tree. The 1ca function can be pre-computed for all
relevant proofs in O(n) time using Tarjan’s off-line algorithm
[17].

Figure 7 shows the pseudocode for calculating proof tree
sizes given (G, j). To avoid an infinite loop in proof length
calculation, the algorithm builds each tree in (G, j) incremen-
tally using a union-find structure (using the parent array).
Consider the example in Figure 6, in which the path to the
root node vy contains a congruence edge. The tree size of the
proof between nodes ve and v4, written tree_size (vg,
vy4), involves calculating the size of the congruence proof
tree_size (vy, v3).Sotree_size (vy, w4) cannotbe
computed using vy as the root of the tree, since the path to
the root involves the congruence edge. Instead, the algorithm
uses least common ancestor v, to compute tree_size (vq,
vs) . Because the proof is e-connected, any congruence edges
on the path to the least common ancestor can be computed
recursively without diverging.

def path_compress (vertex) :
if parent[vertex] != vertex:
path_compress (parent [vertex])
parent [vertex] = parent[parent [vertex]
size[vertex] = size[vertex] + size[parent[vertex]]

def traverse_to_ancestor (v, ancestor):

O 001NN B WD

while parent[vertex] != ancestor:
10 edge = parent_edge (parent [vertex], G)
11 parent [edge.start] = edge.end
12 if is_congruence (edge) :
13 traverse (j(edge) .start, Jj(edge).end)
14 estimate_size (edge
15 path_compress (vertex)

17 def traverse(start, end):

18 path_compress (start)

19 path_compress (end)

20 ancestor = argmin (

21 (lca(start, end), parent[start], parent[end]),
22 distance_to_root)

23 path_compress (ancestor)

24

25 # Ensure that start, end, and their lca share a parent
26 traverse_to_ancestor (start, ancestor)

27 traverse_to_ancestor (end, ancestor)

28 estimate_tree_size (start, end)

29

30 def estimate_tree_size(start, end):

31 tree_size[(start, end)] = size[start] + sizelend]
32 - 2xsize[lca(start, end)]
33

34 def estimate_size (edge):

35 match edge:

36 congruence (left, right) ->

37 size[edge.start] = tree_size[(left, right)]
38 axiom(a) -—>

39 size[edge.start] = 1

40

41 for i in G.vertices:

42 parent[i] = 1

43 size[i] = 0

44

45 for (start, end) in congruence_edges (G) :

46 traverse (start, end)

Fig. 7: Pseudocode for computing tree sizes of all congruence
proofs given (G, j). The algorithm efficiently computes these
tree sizes by storing a union-find datastructure that keeps
track of size, the size of the proof between a node and
it’s parent. Computing the size of a proof involves traversing
the proof, updating the union-find whenever the size of a
sub-proof is discovered. The pseudocode uses the function
distance_to_root to denote the number of edges from
v to the root of its tree. It also makes use of 1ca, a function
that returns the lowest common ancestor of two vertices.

Each congruence edge results in at most one recursive call
to traverse, while non-congruence edges are added to the
union-find data structure directly. Ultimately, each edge in the
c-graph contributes at most five union-find operations: three
find operations at the start of tree_size, one union
operation to add it to the union-find data structure, and one
more find in traverse_to_ancestor. A sequence of
m operations on a union-find data structure with h nodes can
be executed in O(m log(h)) time [18]. This means the overall
cost of estimating sizes for congruence edges is O(nlog(n))
since n bounds both m and h (recall n = |E \ C|). Adding

80

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

3500

3000

2500 1

2000 1

15001

----- TreeOpt
—-= Greedy
--- 273

—— Unoptimized

1000

Number of Benchmarks (Cumulative)

5
1=}
IS}

40 60 80
DAG Size of Proof Certificate

100

Fig. 8: This CDF compares the unoptimized (gray solid),
Z3 (blue dashed), greedy (green dash-dotted), and TreeOpt
(red dotted) proof generation algorithms on the same 3571
benchmarks where Z3 does not time out. Each line shows
the number of benchmarks whose proofs are at most the size
indicated on the horizontal axis. Our greedy approach (green)
closely tracks the size of TreeOpt’s (red) proof certificates,
showing that its certificates are difficult to shrink further. Five
outliers with an unoptimized DAG size of more than 100 are
omitted.

on O(n + |C|) cost for the greedy algorithm itself yields an
overall runtime of O(nlog(n)+n+|C|) = O(nlog(n)+|C|).
Limiting the number of congruence edges C' to a multiple of
n results in a O(nlog(n)) runtime, introducing no asymptotic
overhead compared to congruence closure alone.

VI. EVALUATION

This section compares an implementation of our greedy
proof generation algorithm in the egg equality saturation
toolkit [3] to Z3’s proof generation [19]. As described in
Section II, Z3 applies proof reduction to the first proof it finds,
which substantially reduces proof size. Our greedy approach
instead attempts to extract a minimal proof from the e-graph.
We found that, even without a proof reduction post-pass, our
greedy approach can quickly find significantly smaller proofs
than Z3 (Figure 8).

A. Comparing egg to Z3

We use Z3 version 4.8.12 and egg version 0.7.1 compiled
with Rust 1.51.0. egg is a state-of-the-art equality saturation
library that implements the rebuilding algorithm for speeding
up equality saturation workloads. It is used by projects like
Herbie [20], Ruler [21] and Szalinski [22]. Z3 is a state-of-
the-art automated theorem prover and is optimized for theorem
proving workloads. To create a realistic benchmark set, we
used the Herbie 1.5 numerical program synthesis tool [20].
Herbie uses equality saturation for program optimization and
comes with a standard benchmark suite of programs drawn
from textbooks, research papers, and open-source software.
We extracted Herbie’s set of quantified equalities and recorded
all inputs and outputs from its equality saturation procedure.

3In practice, |C| is typically a small constant factor larger than n. We use
a constant factor of 10n as a reasonable limit on the number of congruence
edges.

81

TABLE I: Data comparing egg to Z3 using different proof
production algorithms: egg with proofs of optimal tree size,
egg with greedy optimization, egg with traditional proof re-
duction (see section II), Z3, and egg without any optimization.
Note that proof reduction’s analysis is in terms of k, the size
of the unoptimized proof, while n is the size of the entire
c-graph instance. In practice, k is often small relative to n.

Algorithm TreeOpt Ave Time (ms) Complexity
TreeOpt 100.0% 1008.60 O(n?)

Greedy 105.9% 39.33 O(nlog(n))

Egg Reduc. 138.7% 23.01 O(nlog(n) + k2 log(k))
Z3 147.3% 130.69 O(nlog(n) + k2 log(k))
Egg 185.9% 22.15 O(nlog(n))

This results in 3 760 input/output pairs, of which we focus on
the 3571 where Z3 did not produce an answer after 2 minutes.

For the Z3 baseline, we converted each input/output pair
into a satisfiability query by asserting each quantified equality
(with a trigger for the left hand side of the equality) and then
asserting that the input and output are not equal. Z3 then
attempts to prove the input and output are equal using an e-
graph and the quantified equalities (the theory of uninterpreted
functions). We then computed the DAG size by counting the
number of calls to its quant—inst command [23] in its
proof scripts. We ran egg exactly how it is used by Herbie,
and then optimized proof length using the greedy algorithm of
Section V and measured DAG size by counting proof nodes.
Z3 times out after 2 minutes for 5.0% of the input/ouput
pairs, and completes in 213.25 milliseconds on average for
the remainder. egg does not time out, and runs for an average
of 39.57 milliseconds. To measure DAG size for the resulting
proofs, we ran both egg and Z3 in proof-producing mode and
examined the resulting proofs.

Figure 8 contains the results: the proofs produced by egg
are 72.8% as big as Z3’s on average, despite Z3’s use of a
proof reduction algorithm. Moreover, the effect of proof length
optimization is greater for longer proofs: queries with Z3 DAG
size over 10 see an average 36.0% reduction, while queries
with Z3 DAG size over 50 see an average 49.7% reduction.

B. Detailed Analysis

In this section, we perform a more detailed ablation study
comparing egg’s results using different algorithms. We im-
plement proof reduction for egg and the optimal tree width
algorithm described in Section IV. The ILP solution is not
feasible to run, so we use Z3 as a baseline.

Table I summarizes the results. Z3 and egg are optimized
for different workloads and so use different underlying con-
gruence closure algorithms, and so produce different proofs.
Using proof reduction, egg finds slightly shorter proofs than
Z3. Tt also performs better than Z3-style proof reduction
implemented in egg. Using the greedy algorithm, egg finds
proofs which are even shorter, and which are also quite close
to proofs of optimal tree size. The data in Table I consists of
the 3571 out of 3760 where Z3 did not time out, the same
set used in Figure 8.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

TABLE II: RTL design benchmark results. Total runtime includes equality saturation and proof production runtimes but excludes

any formal verification time.

Tree Size

Benchmark Orig Greedy Reduce Orig

DAG Size
Greedy

Runtime (sec)

Reduce Total Proof Proof %

174
561
14
4402
271
155

90
92
13
202
95
83

48%
84%

7%
95%
65%
46%

67
98
13
223
101
67

Datapath 1
Datapath 2
Datapath 3
Datapath 4
Datapath 5
Datapath 6

While we would ideally use the minimal DAG size proofs as
a baseline in our evaluation, we found the ILP formulation was
infeasible to run on real queries. However, the O(n®) TreeOpt
algorithm, which runs in O(n3) time when the number of
congruences is bounded, performs well enough to run on all
of the examples. We found that in 81.1% of these cases, the
greedy algorithm in fact found the proof with optimal tree
size. Moreover, across all of these benchmarks our greedy
algorithm’s overall performance closely tracks that of TreeOpt,
showing that the greedy algorithm’s proof certificates are
difficult to shrink further.

C. Case Study

Typically, proof production is necessary in equality sat-
uration to perform translation validation. In this case, the
shorter proofs produced by proof length optimization re-
duce the number of translation validation steps that must
be performed and thus result in faster end-to-end results.
A practical application that benefits from this reduction is
hardware optimization performed using egg by researchers
at Intel Corporation [11]. Translation validation is used to
ensure that the egg optimized hardware designs are formally
equivalent to the input. Extremely high assurance is needed
for hardware designs because of the high cost of actual
hardware manufacturing. For each step in the tree proof two
Register Transfer Level (RTL) designs are generated, which
are proven to be formally equivalent by Synopsys HECTOR
technology, an industrial formal equivalence checking tool.
The intermediate steps generate a chain of reasoning proving
the equivalence of the input and optimized designs, necessary
because the tools can fail to prove equivalence of significantly
transformed designs. The tree proof is used to ensure that
HECTOR can prove each step with no user input as it is a
simpler check than a DAG proof step.

The results of evaluating this paper’s greedy optimization
algorithm on six Intel-tested RTL design benchmarks are
shown in Table II. On average, proof lengths decreased by
29%, with the best case showing a 53% reduction, while
proof production took only 34 seconds on average, miniscule
compared to multi-hour translation validation times. Moreover,
these reductions in proof length resulted in shorter transla-
tion validation times. The optimized constant multiplication
hardware design descibed in Figure 9 was generated by egg,

7%
6%
9%
43%
0.2%
60%

61
46
12
120
72
49

9%
53%
8%
46%
29%
27%

37.5
34.5
5.13
76.4
105
280

2.58
2.08
0.49
32.80
0.18
168.00

< 5a 4+ b

4a + 2b

3a + 3b

2a + 4b

<<1

a+ 5b

Fig. 9: Dataflow graph of an optimized multiple constant
multiplication circuit design generated by egg.

starting from an initial naive implementation. Running the
complete verification flow for the original and greedy proofs,
the runtime was reduced from 4.7 hours to 2.3 hours. In
more complex examples we expect that days of computation
could be saved. For parameterizable RTL, where a design must
typically be re-verified for every possible paramterization,
these gains add up quickly.

VII. CONCLUSION AND FUTURE WORK

This paper examined the problem of finding minimal con-
gruence proofs from first principles. Since finding the optimal
solution is infeasible, we introduced a relaxed metric for proof
size called proof tree size, and gave an O(n®) algorithm for
optimal solutions in that metric. While the optimal algorithm
is too expensive in practice, it provides a reasonable base-
line for small congruence problems, and inspired a practical
O(nlog(n)) greedy algorithm which generates proofs which
are 107.8% as big on average.

We implemented proof generation in the egg equality
saturation toolkit, making it the first equality saturation engine
with this capability. Since equality saturation toolkits—unlike
SMT solvers—support optimization directly, this opens the
door to certifying the results of much recent work in opti-
mization and program synthesis [3], [20]-[22], [24]-[26].

Looking forward, we are especially eager for the community
to explore more applications of proof certificates in congru-
ence closure procedures. For example, it should be possible

82

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

to

use proofs to tune rewrite rule application schedules in

e-matching, improve debugging of subtle equality saturation
issues, and enable equality-saturation-based “hammer” tactics
in proof assistants. It may also be possible to further improve

on
for

the greedy proof generation algorithm with better heuristics
estimating proof sizes, or to enable more efficient prover

state serialization via smaller proofs.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Applications Driving
Architectures (ADA) Research Center, a JUMP Center co-
sponsored by SRC and DARPA and supported by the National

Sci

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

ence Foundation under Grant No. 1749570.

REFERENCES

C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation,
Stanford, CA, USA, 1980, aAI8011683.

R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation:
A new approach to optimization,” in Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL '09. New York, NY, USA: ACM, 2009, pp. 264—
276. [Online]. Available: http://doi.acm.org/10.1145/1480881.1480915
M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and
P. Panchekha, “Egg: Fast and extensible equality saturation,” Proc.
ACM Program. Lang., vol. 5, no. POPL, jan 2021. [Online]. Available:
https://doi.org/10.1145/3434304

C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi¢,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in Proceedings of the 23rd
International Conference on Computer Aided Verification, ser. CAV’11.
Berlin, Heidelberg: Springer-Verlag, 2011, p. 171-177.

L. De Moura and N. Bjgrner, “Z3: An efficient smt solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337-340. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1792734.1792766

L. Moura and N. Bjgrner, “Efficient e-matching for smt solvers,”
in Proceedings of the 21st International Conference on Automated
Deduction: Automated Deduction, ser. CADE-21. Berlin, Heidelberg:
Springer-Verlag, 2007, p. 183-198. [Online]. Available: https://doi.org/
10.1007/978-3-540-73595-3_13

D. Winterer, C. Zhang, and Z. Su, “Validating smt solvers via semantic
fusion,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
718-730. [Online]. Available: https://doi.org/10.1145/3385412.3385985
D. Oe, A. Reynolds, and A. Stump, “Fast and flexible proof
checking for smt,” in Proceedings of the 7th International Workshop
on Satisfiability Modulo Theories, ser. SMT 09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 6-13. [Online].
Available: https://doi.org/10.1145/1670412.1670414

L. de Moura and N. Bjgrner, “Proofs and refutations, and Z3,” in
Proceedings of the LPAR 2008 Workshops, Knowledge Exchange:
Automated Provers and Proof Assistants, and the 7th International
Workshop on the Implementation of Logics, Doha, Qatar, November
22, 2008, ser. CEUR Workshop Proceedings, P. Rudnicki, G. Sutcliffe,
B. Konev, R. A. Schmidt, and S. Schulz, Eds., vol. 418. CEUR-WS.org,
2008. [Online]. Available: http://ceur-ws.org/Vol-418/paper10.pdf

L. Czajka and C. Kaliszyk, “Hammer for coq: Automation for dependent
type theory,” Journal of Automated Reasoning, vol. 61, 06 2018.

S. Coward, G. A. Constantinides, and T. Drane, “Automatic datapath
optimization using e-graphs,” vol. abs/2204.11478, 2022. [Online].
Available: https://arxiv.org/abs/2204.11478

A. Fellner, P. Fontaine, and B. Woltzenlogel Paleo, “Np-completeness of
small conflict set generation for congruence closure,” Formal Methods
in System Design, vol. 51, 12 2017.

Y. Zhang, Y. R. Wang, M. Willsey, and Z. Tatlock, “Relational
e-matching,” Proc. ACM Program. Lang., vol. 6, no. POPL, jan 2022.
[Online]. Available: https://doi.org/10.1145/3498696

83

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. J. Downey, R. Sethi, and R. E. Tarjan, “Variations on the common
subexpression problem,” J. ACM, vol. 27, no. 4, p. 758-771, oct 1980.
[Online]. Available: https://doi.org/10.1145/322217.322228

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
“Dpll(t): Fast decision procedures,” in CAV, 2004.

R. Nieuwenhuis and A. Oliveras, “Proof-producing congruence
closure,” in Proceedings of the 16th International Conference on
Term Rewriting and Applications, ser. RTA’05. Berlin, Heidelberg:
Springer-Verlag, 2005, p. 453—468. [Online]. Available: https://doi.org/
10.1007/978-3-540-32033-3_33

H. N. Gabow and R. E. Tarjan, “A linear-time algorithm for a special
case of disjoint set union,” in Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing, ser. STOC *83. New York,
NY, USA: Association for Computing Machinery, 1983, p. 246-251.
[Online]. Available: https://doi.org/10.1145/800061.808753

R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,”
J. ACM, vol. 22, no. 2, p. 215-225, Apr. 1975. [Online]. Available:
https://doi-org.offcampus.lib.washington.edu/10.1145/321879.321884

L. de Moura and N. Bjgrner, “Proofs and refutations, and z3,” vol. 418,
01 2008.

P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock,
“Automatically improving accuracy for floating point expressions,”
SIGPLAN Not., vol. 50, no. 6, p. 1-11, Jun. 2015. [Online]. Available:
https://doi.org/10.1145/2813885.2737959

C. Nandi, M. Willsey, A. Zhu, Y. R. Wang, B. Saiki, A. Anderson,
A. Schulz, D. Grossman, and Z. Tatlock, “Rewrite rule inference using
equality saturation,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA,
oct 2021. [Online]. Available: https://doi.org/10.1145/3485496

C. Nandi, M. Willsey, A. Anderson, J. R. Wilcox, E. Darulova,
D. Grossman, and Z. Tatlock, “Synthesizing structured CAD models
with equality saturation and inverse transformations,” in Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 31-44. [Online].
Available: https://doi.org/10.1145/3385412.3386012

S. Bohme, “Proof reconstruction for Z3 in Isabelle/HOL,” in 7th
International Workshop on Satisfiability Modulo Theories (SMT ’09),
2009.

Y. Yang, P. M. Phothilimtha, Y. R. Wang, M. Willsey, S. Roy, and
J. Pienaar, “Equality saturation for tensor graph superoptimization,” in
Proceedings of Machine Learning and Systems, 2021.

A. VanHattum, R. Nigam, V. T. Lee, J. Bornholt, and A. Sampson,
Vectorization for Digital Signal Processors via Equality Saturation.
New York, NY, USA: Association for Computing Machinery, 2021, p.
874-886. [Online]. Available: https://doi.org/10.1145/3445814.3446707
Y. R. Wang, S. Hutchison, J. Leang, B. Howe, and D. Suciu, “SPORES:
Sum-product optimization via relational equality saturation for large
scale linear algebra,” Proceedings of the VLDB Endowment, 2020.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 30,2023 at 16:41:18 UTC from IEEE Xplore. Restrictions apply.

