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—— Abstract

Verified compilers such as CompCert and CakeML have become increasingly realistic over the last few
years, but their support for floating-point arithmetic has thus far been limited. In particular, they
lack the “fast-math-style” optimizations that unverified mainstream compilers perform. Supporting
such optimizations in the setting of verified compilers is challenging because these optimizations,
for the most part, do not preserve the IEEE-754 floating-point semantics. However, IEEE-754
floating-point numbers are finite approximations of the real numbers, and we argue that any compiler
correctness result for fast-math optimizations should appeal to a real-valued semantics rather than
the rigid IEEE-754 floating-point numbers.

This paper presents RealCake, an extension of CakeML that achieves end-to-end correctness
results for fast-math-style optimized compilation of floating-point arithmetic. This result is achieved
by giving CakeML a flexible floating-point semantics and integrating an external proof-producing
accuracy analysis. RealCake’s end-to-end theorems relate the I/O behavior of the original source
program under real-number semantics to the observable I/O behavior of the compiler generated and
fast-math-optimized machine code.
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1 Introduction

Verified compilers guarantee that the executable code they generate will only exhibit be-
haviors allowed by the semantics of the input program. Establishing such guarantees is
challenging [49], especially if the compiler is to perform sophisticated optimizations. Adding
new classes of optimizations requires significant design and proof engineering effort. Des-
pite tremendous progress, state-of-the-art verified compilers like CakeML [55] for ML and
CompCert [32] for C remain only moderately optimizing. While CakeML and CompCert
support classic optimizations like common subexpression and dead code elimination, their
compilation and optimization of floating-point programs is very limited: CompCert performs
only a few conservative optimizations and, prior to this work, CakeML did not support
floating-point arithmetic at all.

The limited support of floating-point programs in verified compilers is in stark contrast
to mainstream compiler frameworks like GCC [19] and LLVM [4]. Both of these compiler
frameworks support aggressive floating-point optimization via their fast-math flags [20, 57, 33,
7). Fast-math optimizations include reassociating arithmetic, e.g., rewriting x X (z x (x xz)) —
(z x z) X (z x x) to enable common subexpression elimination; fused-multiply-add (FMA)
introduction, i.e., rewriting x X y + z — fma(z,y, z) for strength reduction and to avoid
intermediate rounding; as well as branch folding and dead code elimination by assuming
special floating-point values like Not-a-Number (NaN) do not arise.

While such optimizations are sound under real-number semantics, they generally do not
preserve IEEE-754 behavior [26], e.g., because floating-point arithmetic is non-associative
due to the inherent rounding at every intermediate operation. In part, this is why verified
compilers up until now have not supported fast-math optimizations: CompCert strictly
preserves IEEE-754 semantics [10], under which such optimizations are disallowed.

However, for many applications strict preservation of IEEE-754 semantics is overly
constraining and artificial, preventing useful performance optimizations. Numerical applica-
tions are typically designed implicitly assuming real-number arithmetic and are only later
implemented in floating-point arithmetic.!

The Icing language [5] proposes a more relaxed, non-deterministic semantics for floating-
point expressions that allows a limited set of fast-math-style optimizations to be applied.
Icing comes with a proof-of-concept optimizer, whose formal correctness proof shows that
the optimization result is one of those modeled by the semantics of the initial expression.

While Icing showed what it means to allow fast-math-style optimizations in a verified
compiler, Icing did not go as far as bounding the accuracy of the resulting, fast-math-optimized
code. Icing’s correctness theorems describe only the optimizations that a verified compiler can
apply to a floating-point expression, but not their effect on overall program behavior. Hence
the Icing optimizer cannot bound changes in the accuracy of the optimized floating-point
expression with respect to the real-valued semantics of the unoptimized expression.

We argue that a verified compiler must provide accuracy guarantees to reasonably
support fast-math-style optimizations. Applications in domains such as signal processing [12],
embedded controllers [38], and neural networks [23], which could be optimized with fast-
math-style optimizations, are designed to operate in noisy environments and can thus tolerate
a certain amount of floating-point roundoff error by design, however, this noise has to be
bounded. For example, a real-number version of an embedded controller is typically proven
correct (i.e. stable) with respect to bounded implementation noise [3]. At the same time,
performance is important and so developers are often indifferent to fine-grained floating-point
implementation decisions.

I Error-free computation with rational or constructive real [8] libraries is often prohibitively expensive.
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To support such potentially safety-critical applications in a verified compiler, we introduce
a local, more flexible notion of correctness which we call error refinement: a floating-point
kernel within an application may be optimized (potentially changing its IEEE-754 behavior)
as long as its results remain within a user-specified error bound relative to the implicit
real-number semantics.

We formalize error refinement inside the CakeML compiler to support fast-math optimiz-
ations end-to-end. Our extension, which we call RealCake, carries source-level guarantees
down to fast-math-optimized executable machine code. That is, our final correctness theorem
shows that running the machine code for a fast-math-optimized floating-point program under
strict IEEE-754 semantics produces a result that is within a programmer-provided error
bound w.r.t. the unoptimized program evaluated under real-number semantics. While our
extension is done in the context of the CakeML compiler, we expect it to carry over to other
verified compilers like CompCert as well.

Our first key technical contribution is a relaxed floating-point semantics that allows
both fast-math-style optimizations as well as backward simulation soundness proofs (as
CakeML’s semantics requires determinism). RealCake’s relaxed semantics preserves the
core ideas of the existing Icing semantics [5] and models nondeterministic application of
an arbitrary number of fast-math rewrites, just as Icing does. Icing provides only a loose
coupling with CakeML via a simulation between the deterministic optimized expression
and a CakeML source program. Unlike Icing, RealCake’s semantics is designed to be more
tightly integrated with the CakeML source semantics. This new integration is necessary to
prove end-to-end error refinement that relates unoptimized real-valued CakeML programs
and optimized floating-point machine code. RealCake’s design furthermore supports function
calls, I/O and memory beyond (Icing supported) floating-point expressions and can thus
prove error refinement for complete applications.

The second technical contribution is to realize error refinement with translation valida-
tion [45, 51] using an interface to an existing proof-producing roundoff error bound analysis [6].
RealCake automatically composes the error bound proofs with its optimizer’s correctness
theorems to support fast-math optimizations with semantic and accuracy guarantees within
a verified compiler for the first time.

RealCake is primarily designed to support numerical kernels, straight-line code such
as those found in (safety-critical) embedded controllers or sensor-processing applications.?
Often such kernels are evaluated in a control loop or process sensor inputs repeatedly. For
such programs, both correctness as well as performance are important, and an analysis of the
straight-line code is sufficient: the correctness (stability) of the overall programs (and loops)
can be shown with, e.g., control-theoretic techniques that rely on the straight-line loop body’s
errors being bounded [3, 37]. We do not address some of the orthogonal challenges in bounding
the floating-point roundoff error for programs with loops and conditional statements, which
remain open research problems [15]; state-of-the-art proof-producing error bound analyses
only robustly support straight-line numerical kernels [54, 41, 6]. A key aspect of RealCake’s
design is the loose coupling between the compiler and error analysis. This loose coupling
leads to a clean separation of concerns, which we hope will allow us to switch to more general
error analysis methods when such are discovered.

We evaluated RealCake by optimizing all kernels from the standard floating-point arith-
metic benchmark suite FPBench [14] (Section 7) which can be expressed as input to RealCake,
for a total of 51 kernels. During our evaluation we found that CakeML was missing a general

2 RealCake nevertheless proves error refinement for whole programs, including I/O (Section 7).
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1 (* target error bound: 275, 1 (* guaranteed error bound: 275,
precondition P: precondition P:
3 0.0 <21 <50A—=20.0<2z2<5.0 %) 3 0.0<2x1 <50A—-20.0<2x2<5.0 %)
fun jetEngine(x1l:double, x2:double):double = fun jetEngine(x1l:double, x2:double):double =
5 opt: (let 5 noopt: (let
val t = (((3.0 x x1) *x x1) + (2.0 *x x2)) - x1 val t = fma((x1+x1)+x1, x1, (x2 + x2) - x1)
7 val t2 = (((3.0 x x1) *= x1) - (2.0 x x2)) 7 val t2 = fma((x1+x1)+x1, x1,
- x1 fma(-2.0, x2, -x1))
9 wvald= (x1 = x1) + 1.0 o val d = fma(x1l, x1, 1.0)
val s =t/ d val s =1t /d
11 val s2 =12 /d 11 val s2=1t2/d
in in
13 X1+ (((((((((2.0 % x1) * s) *x (s - 3.0)) + 13 x1 + fma(xl x d, fma((s - 3.0) + (s - 3.0),
((Xx1 * x1) * ((4.0 x s) - 6.0))) = d) + s, x1 * fma(4.0, s, -6.0)),
15 (((3.0 % x1) * x1) * s)) + 15 fma(x1l * x1, ((s + s) + s) + x1,
((x1 % x1) * x1)) + x1) + (3.0 % s2)) X1 + ((s2 + s2) + s2)))
17 end) 17 end)
(a) Unoptimized floating-point kernel. (b) Optimized floating-point kernel.

1 fun main () = let
val args = Commandline.arguments ()
3 val a = Double.fromString (List.nth args 1)

val b = Double.fromString (List.nth args 2)
5 val r = jetEngine (a, b)

in
7 TextIO0.print (Double.toString r)

end

(c) Main function.

Figure 1 Example unoptimized and optimized CakeML floating-point kernels, and a stand-in
main function. The opt: annotation (lines 5) allows developers to selectively apply optimizations.
Here, we choose to optimize the entire kernel, but a user may place only part of a program under
opt: and the rest will be compiled preserving IEEE-754 semantics.

optimization that is particularly effective for floating-point programs: global constant lifting.
RealCake achieves a (geometric) mean performance improvement for fast-math optimizations
of 3% and a maximum improvement of 16% on top of improvements from constant lifting with
respect to the unoptimized FPBench kernels. Our additional constant lifting optimization
achieves a geometric mean performance improvement of 83% across all benchmarks with
speedups of up-to 97%. For all optimized kernels, RealCake formally guarantees that the
roundoff error remains within a user-specified bound.

Contributions

To summarize, this paper makes the following contributions:
the concept of error refinement and its formalization within the CakeML verified compiler
(Section 2);
an extension of CakeML with strict, IEEE-754 semantics preserving, floating-point
arithmetic as well as a relaxed non-deterministic floating-point semantics (Section 4);
a fast-math optimizer that is effective in improving the performance of floating-point
programs (Section 5);
automated proof tools that soundly bound roundoff errors of (optimized or unoptimized)
kernels w.r.t. our new real-number semantics for CakeML (Section 6).

The RealCake development is publicly available.


https://github.com/CakeML/cakeml/tree/75310ce9010c0ccf4b4b7d2d038023a6ac2004c3
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2 Overview

We start by demonstrating at a high-level how RealCake works using an example, before
giving an overview of the RealCake toolchain and our major design decisions.

2.1 Example

Figure la shows jetEngine, a straight-line nonlinear embedded controller [3] adapted to
CakeML syntax. This controller has been proven to be safe for the dynamical system of a jet
engine compressor. That is, it has been proven that the two state variables (x1, z3) will remain
within the bounds given by P (on line 2), that the system will always steer the state variables
towards the equilibrium point (0.0), and that the systems thus remains stable. The stability
proof assumes the control expression to be real-valued, but accounts for a certain amount of
error, including measurement and implementation errors, and hence the controller is stable
as long as the errors remain below this bound. For the purpose of this paper, we choose
277 as the bound on the roundoff error due to a floating-point implementation. However, in
addition to stability, performance is also an important concern when designing controllers
for resource-constrained embedded systems. To summarize, an embedded developer designs
a controller, such as the jetEngine, assuming real-valued arithmetic together with an error
bound, and requires that the executed finite-precision code A) correctly implements the
control expression, B) is as efficient as possible, and C) meets the error bound.

Such a kernel may be part of a safety critical system so we would like to compile it to
an executable using a verified compiler. Unfortunately, no verified compiler today meets
the requirements listed above: while CompCert [10] does support floating-point arithmetic,
and so ensures A), it does not optimize floating-point programs and cannot provide roundoff
error bounds. Prior to our work, CakeML did not even support floating-point arithmetic.

RealCake, our extension of the CakeML compiler, closes this gap. RealCake automatically
optimizes the input kernel into the optimized version shown in Figure 1b, compiles it down
to machine code, and proves the end-to-end correctness theorem shown in Figure 2 that
captures both “traditional” compiler correctness as well as accuracy guarantees.

For this example, RealCake prepares the program for optimization by replacing floating-
point subtraction by addition of the inverse ((4.0 x s) — 6.0 — (4.0 x s) + (—1 x 6.0)), and
during optimization, RealCake replaces multiplications by additions (2.0 x 21 — 1 + z1),
and introduces FMA instructions (z1 x z1 + 1.0 — fma(z1,z1,1.0)) that go beyond IEEE-
754 semantics. For this example, RealCake compiles the optimized floating-point kernel
(Figure 1b) together with a simple stand-in main function (Figure 1c) into a verified binary.
On a Raspberry Pi v3, RealCake improves the performance of our example kernel by 95%.
This performance improvement comes from both floating-point specific optimizations, as well
as global constant lifting that is not specific but particularly effective for floating-points and
that CakeML did not support before (Section 7). Such a speedup is important for repeatedly
run code such as our embedded controller.

RealCake automatically proves the end-to-end correctness theorem that we formally state
in Figure 2. At a high-level, Theorem 1 relates the behavior of the optimized program with
the behavior of the real-number semantics of the initial, unoptimized program on the domain
specified by precondition P.3

3 The precondition is important, since roundoff errors directly depend on the ranges of (intermediate)
values.
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» Theorem 1 (jetEngine — Whole program correctness).

jetEngineInputsInPrecond (s1, s2) (w1, w2) A environmentOk ([jetEngine; si; s2],fs) =
Jwr.
CakeMLevaluatesAndPrints (jetEngineCode, s1, s2, fs) (toString w) A
initialFPcodeReturns jetEngineUnopt (w1, w2) w A
realSemanticsReturns jetEngineUnopt (wi, w2) r A abs (fpToReal w — 1) < 277

Figure 2 RealCake-proven specification theorem for the jetEngine kernel. Here, jetEngineCode
refers to the overall program consisting of the jetEngine kernel, the main function from Figure lc,
and the glue-code for I/0, jetEngine is the name of the produced binary, and jetEngineUnopt is the
kernel from Figure la.

Formally, the theorem states that, if the kernel is run on two arbitrary input strings s; and
S92, representing the double word inputs wy and wsy respectively, and the double words satisfy
precondition P from Figure la (assumption jetEngineInputsInPrecond), and if the machine
code for the jetEngine kernel is run with three command line arguments (the name of the
binary, and s; and s2) in an environment with filesystem fs (assumption environment0k), then
there exists a double-precision floating-point word w such that

(a) running the optimized kernel with the command line arguments prints the word w on
stdout*

(b) w is a result of running the unoptimized jetEngine kernel on (wy,ws) with optimizations
applied by our relaxed semantics, and

(c) running the initial unoptimized jetEngine kernel under real-number semantics on (wy, ws)
returns a real number 7 such that [w —r| < 27° where 275 is the user-given error bound.

2.2 Overview of CakeML

RealCake extends the CakeML compiler toolchain [55], built around a verified compiler for (a
dialect of) Standard ML (SML). CakeML compiles programs written in SML to x86, ARMv7,
ARMv8, MIPS, RISC-V and Silver [35] machine code and is implemented completely in the
HOL4 theorem prover [53]. Our work mainly focuses on the compiler part of the CakeML
ecosystem.

The behavior of a program written in the CakeML dialect of SML is defined in the
CakeML source semantics. This semantics is implemented as a deterministic function in the
HOLA4 theorem prover, in the style of functional big-step semantics [43]. CakeML programs
are turned into machine code using the in-logic compiler, with compiler passes going through
various intermediate languages.

The CakeML compiler’s correctness theorem states that the compiler preserves observable
behaviors of the input program, modulo out-of-memory errors that can occur in the generated
machine code [21].

4 We chose printing to standard output as one option for implementing I/O behavior to show how the
error bound proof can be related to I/O behavior. In a real-world setting this could be replaced by
other I/O functionality.
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Figure 3 Overview of the RealCake toolchain. Boxes with white background are part of the
original CakeML toolchain, our RealCake extensions are marked with a green background, dashed
lines indicate proof dependencies, solid lines indicate output flows.

2.3 Overview of RealCake

Figure 3 illustrates the RealCake toolchain, with the extensions over CakeML marked
in green. The RealCake toolchain takes as inputs a program and constraints similar to
those in Figure la. In a first step, the fast-math optimizer is run on each floating-point
kernel, optimizing it with respect to RealCake’s relaxed floating-point semantics, as well
as lifting constants. As a result we obtain an optimized floating-point kernel, and a proof
relating executions of the optimized kernel back to its unoptimized version. Next, the input
constraints, and the optimized kernel are run through our accuracy analysis pipeline (left
part of Figure 3). We have proven once and for all that if the analysis succeeds, the roundoff
error of the optimized floating-point kernel with respect to a real-number semantics of its
unoptimized version is below the user specified error bound. This requires non-trivially
combining properties of the fast-math optimizer with a simulation proof relating results of the
roundoff error analysis to CakeML floating-point programs. Finally, the CakeML compiler
compiles the optimized kernel into machine code that can be run on x86-64 and ARMv7
platforms.® RealCake automatically combines optimizer correctness with the correctness of
the accuracy analysis and the CakeML compiler correctness theorem to prove a theorem
about the I/0 behavior and the accuracy of the machine code with respect to the real-number
semantics of the unoptimized, initial kernel.

One of our key insights is to apply the fast-math optimizations that require reasoning
about nondeterministic semantics early; a nondeterministic semantics can be integrated more
easily with a deterministic verified compiler by resolving the nondeterminism before the code
enters the compiler itself. We formally prove the correctness of the fast-math optimizer: if
the optimizer turns kernel p; into kernel py, and evaluating ps returns the floating-point
word w, then the relaxed floating-point semantics can evaluate and optimize p; such that it
returns w.

5 At the time of writing, only the underlying ISA models for x86-64 and ARMv7 support floating-point
arithmetic in CakeML.

1:7

ECOOP 2022



1:8

Verified Compilation and Optimization of Floating-Point Programs in CakeML

2.4 Error Refinement

Optimization correctness alone effectively captures only the machine’s point of view, and
ignores the programmer’s (implicit) real-valued source semantics. To relate the real-number,
unoptimized program with its fast-math-optimized version requires both proving the correct-
ness of our optimizer (i.e. showing that the behavior of the source semantics is preserved), as
well as establishing accuracy guarantees using roundoff errors. Any fast-math optimization
will necessarily change the rounding and thus the result value of the floating-point kernel,
ruling out alternative bit-wise comparisons. While the programmer will be indifferent to
how exactly the floating-point code is compiled and will accept some roundoff error — or
she would not have chosen finite-precision arithmetic — this roundoff error should not be
unduly large and make the computed results useless.® We argue that a correctness theorem
of verified fast-math floating-point compilation thus needs to capture this error refinement.

To this end, RealCake automatically infers verified accuracy bounds via a verified
translation from CakeML source to the proof-producing formally verified static analysis
tool FloVer [6]. We combine a simulation proof relating the floating-point semantics of
FloVer and CakeML with a proof that all optimizations done by our fast-math optimizer are
real-valued identities. RealCake then lifts the roundoff error bound to the complete program
and combines it with the general compilation correctness proofs to automatically show the
end-to-end correctness theorem for our example (Figure 2). This makes RealCake the first
verified compiler for floating-point arithmetic that proves a whole-program specification
relating the I/O behavior of optimized floating-point machine code to the real-number
semantics of the unoptimized initial program.

We choose to integrate the roundoff error analysis only loosely with CakeML. This
gives us a flexible compiler infrastructure that allows us to prove roundoff error bounds
on optimized as well as unoptimized floating-point kernels, or to greedily optimize kernels
without necessarily proving roundoff error bounds (but still obtaining compiler correctness
guarantees). By not tightly integrating the roundoff error analysis into CakeML, we have
the option to relatively easily replace FloVer with an extension or another tool in the future.

RealCake’s end-to-end correctness theorem only relies on error bounds proven independ-
ently for each straight-line kernel instead of a global kernel error bound. Our focus on
straight-line kernels is inherited from the current capabilities of verified floating-point error
analyses (see Subsection 3.2 for a more detailed discussion), but can be easily lifted with
advances in this area. Per-kernel error analysis, on the other hand, is crucial to maintaining
compiler modularity: it is not (nor should it be) the compiler’s responsibility to ensure that
a program is globally numerically stable — that is a job for the algorithm designer. Rather,
the compiler compiles and optimizes a program and, in the case of fast-math floating-point
optimizations, ensures that it has preserved sufficient (user-provided) accuracy bounds with
respect to a specification over real-number semantics. This can be checked locally.

Similarly, the goal of the accuracy analysis is not necessarily to improve the accuracy of
a given kernel, even though introducing FMAs will generally have this effect, but rather to
ensure that the compiler has not introduced unacceptable numerical instability by accident.

Overall, a key challenge of RealCake is proof engineering. RealCake combines a verified
roundoff error analysis with the deterministic CakeML compiler and a non-deterministic
semantics that supports floating-point optimizations. Specifically, the main proof engineering

6 There are programs, such as compensated sum algorithms [25], that explicitly rely on the exact floating-
point semantics; such code would not be subject to fast-math-style optimizations and thus not written
under an opt: scope.
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challenge is getting the different tools to “cooperate”. CakeML’s source semantics is an
integral part of the CakeML ecosystem. Therefore, our integration of the relaxed floating-
point semantics must make sure to not break any existing invariants. Further, the semantics
of the external roundoff error analysis and the semantics of CakeML source programs must
be compatible such that analysis results can be transformed into CakeML source properties.
Finally, all of this has to happen while making sure that RealCake optimizes floating-point
programs with a non-deterministic relaxed floating-point semantics.

3 Background

In this section, we review some necessary background on IEEE-754 floating-point arithmetic,
how to analyze the roundoff error of IEEE-754 floating-point programs, and how the Icing
semantics allows to support fast-math-style optimizations in a verified compiler context.

3.1 [|EEE-754 Floating-Point Arithmetic

The IEEE-754 standard [26] defines the representation, special values, arithmetic operations,
and rounding modes of floating-point arithmetic. A floating-point number z is represented
as a triple (s, m, e) that defines x = (—1)® X m x 2¢ where s is the sign bit, m the so-called
significand and e the exponent. Most commonly used formats are binary single float and
double precision that use 23 and 52 bits for the significand and 8 and 11 bits for the exponent,
respectively. If the exponent of a number is 0, it is called a subnormal number, all other
valid numerical values are called normal numbers. IEEE-754 additionally defines the special
values Infinity and NaN that represent exceptional results. The standard further specifies
that arithmetic operations (e.g., +, —, X, /) are rounded correctly, i.e. the result is as if the
computation was performed in infinite precision and then rounded. The standard defines
five rounding modes, of which we assume and support the most commonly used: rounding
to nearest, ties to even. A further consequence of the finite precision and rounding is that
floating-point arithmetic does not satisfy common real-valued identities such as associativity
and distributivity. Hence, reordering a computation may lead to different results (and
roundoff errors), even though the expression is equivalent under the reals.

3.2 Analysis of Rounding Errors

There exist a number of analysis tools that bound absolute roundoff errors for floating-
point kernels and that provide formally verified error bounds: Precisa [56], FPTaylor [54],
real2Float [36], Gappa [17], and FloVer [6]. They either use a global optimization analysis
approach, or a forward dataflow analysis using an interval abstract domain to compute
absolute roundoff errors:

Jnax |[f(z) = f(2)] (1)

where f is the real-number expression, f its floating-point counterpart and P(z) is the
precondition that constrains the input variables x. A precondition providing lower and upper
bounds on the inputs is necessary to obtain interesting, non-infinite roundoff error bounds.
Computing relative errors | f(z) — f(z)|/|f(z)| is not well-defined when the denominator is
zero and is thus not suitable for a general error analysis. For our purpose of checking that
compilation has not introduced large numerical instabilities, any of the above mentioned
tools is in principle suitable. We choose FloVer, because it is conveniently implemented in
HOLA4.

1:9
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Despite the abundance of analysis tools, bounding finite-precision roundoff errors remains
a challenging and active research area. We thus choose to focus on verifying absolute roundoff
errors w.r.t. a real-number specification for straight-line arithmetic kernels, which is currently
well supported. To the best of our knowledge, all available verified roundoff error analysis
tools relate roundoff errors to idealized real-number semantics. Support for conditionals and
loops [41] is currently severely limited. The challenge with loops is that roundoff errors in
general grow in every loop iteration and thus computed fixpoints necessarily become infinite.
We thus focus on absolute error accuracy analysis of straight-line arithmetic kernels, i.e.
binary arithmetic operations (+, —, X, /), unary —, fma operations and let-bindings.

FloVer is a verified certificate checker for finite-precision roundoff errors that is meant
to validate results of external, unverified, floating-point analysis tools. Given a certificate,
encoding the result of the external analysis tool, FloVer verifies the bounds encoded in
the certificate by computing the bounds using a dataflow analysis in logic. In this work
in RealCake, we extend FloVer with an unverified function that computes a roundoff error
certificate, which we then send through the checking pipeline.

FloVer abstracts floating-point arithmetic operations by:

(Topy)=(roy)(l+e) lef[<e (2)

where o € {4+, —, x,/} and ¢ is the machine epsilon. FloVer uses interval arithmetic [40]
to propagate intermediate bounds on x and y, on which the magnitude of absolute errors
and error propagation depends, and equally uses interval arithmetic to propagate worst-case
error bounds through the arithmetic expression. For our evaluation, we have added support
for sqrt operations to FloVer which was previously unsupported.

FloVer’s soundness theorem states that a successful run of FloVer implies that the
encoded floating-point kernel can be run under IEEE-754 floating-point semantics, and that
the given error bound is a sound upper bound on the worst-case absolute error between the
floating-point execution and the idealized real-number semantics. Error bounds proven by
FloVer in RealCake are valid for normal and subnormal floating point numbers. To make
this possible we extended FloVer with support for subnormal floating-point numbers, and
have proven the corresponding HOL4 theorems.

3.3 Icing Floating-Point Semantics

Icing [5] was proposed as the first semantics to support fast-math-style optimizations in
a verified compiler, going beyond IEEE-754 floating-point semantics. To support fast-
math-style optimizations, Icing relies on three core ideas: fine-grained control, giving the
programmer full control over which part of the program is optimized; value trees, which are
a lazy representation of floating-point values; and nondeterministic floating-point evaluation,
applying optimizations while evaluating. We review the design rationale behind each of these
points.

Fine-Grained Control In unverified compilers fast-math optimizations are globally switched
on or off. For a verified compiler this is unsatisfactory, as some code can be heavily
optimized, while some of it might need to be compiled under strict IEEE-754 semantics.
Icing solved this issue by introducing fine-grained control over which part of a program is
optimized by annotating it with opt:, if optimizations should be applied, and noopt:, if
optimizations should not be applied.

Value Trees In Icing, floating-point values are not represented by 64-bit words. Instead,
Icing uses a lazy datatype called value trees. A value tree is a tree with constants as
leaf nodes, and operators as intermediate nodes. During evaluation, expression variables
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Figure 4 Value trees for the unoptimized example expression (left) and its optimized version
with an FMA instruction (right).

are replaced by a value tree loaded from an execution environment. When evaluating a
floating-point comparison, value trees are eagerly compressed into floating-point words.
Value trees are a perfect fit for encoding syntactic information about the evaluated
expression in the Icing semantics.

Nondeterministic Semantics To handle fast-math-style optimizations in the semantics, Icing
adds a set of allowed optimizations to the semantics, and the semantics can nondetermin-
istically optimize by applying a subset of the allowed optimizations to value trees.
Icing’s lazy value trees allow the semantics to alter the structure of a floating-point value
after it has been evaluated. This is key to modelling the floating-point optimizations.

Example

To illustrate how the Icing semantics works and how optimizations are applied we give a
simple example. We will optimize the floating-point expression opt:(x * 3.5 + 9.1) in the
Icing semantics.

If we evaluate the initial, unoptimized expression (opt:(x * 3.5 + 9.1)) in Icing semantics,
which nondeterministically optimizes by introducing FMA instructions, the semantics first
computes the value tree at the left-hand side of Figure 4. Because of the nondeterminism, the
semantics can now either keep the value tree as is, or introduce an FMA, replacing the value
tree by the one on the right-hand side of Figure 4. We explain next how Icing establishes a
relation between nondeterministic optimizations and evaluation of optimized expressions to
prove correctness of optimizers.

Correctness Proofs

The original Icing paper presents three different optimizers. Here, we focus on the so-called
greedy optimizer, and the IEEE-75/-translator. For a list of optimizations, the greedy
optimizer greedily applies them to a program wherever possible. The IEEE-754-translator
rules out further optimizations by replacing all opt: optimization annotations by noopt:.
Correctness of the IEEE-754-translator proves that program evaluation is deterministic
after applying the IEEE-754-translator, as no optimizations can be applied syntactically
or semantically. The main correctness theorem for the greedy optimizer states: Suppose
the greedy optimizer is run with optimizations o on floating-point program f and returns
program g. If evaluating ¢ without any optimizations under Icing semantics gives value tree
v, then one of the results of evaluating f nondeterministically under Icing semantics with
optimizations o enabled is also value tree v. In general we call such a proof a backwards
simulation, as it relates the result obtained from evaluating the optimized program back to
an evaluation of the initial program with the applied optimizations added to the semantics.
While being an important first step to support fast-math-style optimizations in a verified
compiler, Icing is not able to prove accuracy guarantees, which are required to prove end-
to-end error refinement. Even though the original Icing paper proposes to include roundoff
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error bounds in future work ([5], Theorem 1), we found that these guarantees could not be
translated into guarantees for CakeML programs, as the backwards simulation only allows
transferring information from CakeML programs to Icing expressions, but not vice versa.
This motivates our approach of tightly integrating a relaxed floating-point semantics with
CakeML source semantics. It allows to establish accuracy guarantees and carry them down
to machine code generated by the compiler.

4 RealCake’s Semantics

Our overall goal for RealCake is to optimize and compile floating-point kernels, establishing
verified end-to-end correctness and accuracy guarantees. In this section, we lay the foundations
for this work by extending the CakeML compiler with three different semantics: strict IEEE-
754 preserving floating-point arithmetic, relaxed floating-point semantics going beyond
IEEE-754, and a real-number semantics as a ground truth for bounding errors.

4.1 Extending CakeML with IEEE-754 Floating-Point Arithmetic

Prior to this paper, CakeML did not have support for floating-point arithmetic. In a first
step, we add strictly IEEE-754 compliant floating-point arithmetic to CakeML. This part of
the work did not require any deep new insights; we briefly review the supported operations.

The CakeML source language already had support for 64-bit machine words and we used
these to hold IEEE-754 double values, but added new primitive operations for 64-bit words
(single precision floats are currently not supported). The new source-level primitive operations
are floating-point addition, subtraction, multiplication, division; multiply-and-add, negation,
square root, absolute value, and the usual floating-point comparisons. The semantics was
defined using an existing formalization of IEEE-754 by Harrison [24], which includes NaNs
and Infinities.”

The bulk of the compiler required only simple changes since most intermediate languages
compile the strict IEEE-754 operations to their very similar counterparts in the next inter-
mediate language. The only internal part that required a bit more effort is the point where
the data abstraction is implemented, i.e. where all data becomes concrete. At this point
we had to wrap every primitive floating-point operation with code that unboxes and then
boxes the double values. The same code is also responsible for loading and storing to the
architecture-specific floating-point registers. Our IEEE-754-preserving compilation ensures
that evaluation order is preserved.

At the time of writing, the CakeML compiler has six target languages. We have added
floating-point support to two of them: the x86-64 and ARMv7 targets. The ARMv7 model
that we use already included IEEE-754 floating-point support based on the same standard
formalization that the CakeML semantics uses. For x86-64, we extended the model of the
x86-64 instruction set architecture to include a minimal collection of IEEE-754 floating-
point instructions required by the compiler. As the underlying L3 model [18] of the x86-64
instruction set architecture does not support FMA instructions, only the ARMv7 backend
currently supports code generation for kernels with FMA instructions.

7 The fragment of IEEE-754 that we include in CakeML has not changed between standard revisions.
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evaluate st env [App op es] =

case evaluate st env es of

(st’, Rerr v) => (st’, Rerr v)

(st’, Rval vs) =>
case do_app (st’.refs, st’.ffi) op vs of
None => (st’, Rerr (Rabort Rtype_error))
| Some ((refs, ffi), r) =>

(updateState st’ refs ffi, list_result r)

(a) Standard operator evaluation.

evaluate st env [App op es] =

case evaluate st env es of

(st’, Rerr v) => (st’, Rerr v)

| (st’, Rval vs) =>
case do_app (st’.refs, st’.ffi) op vs of
None => (st’, Rerr (Rabort Rtype_error))
| Some ((refs, ffi), r) =>
let (st’, r_opt) = optimizeIfOk st’ r

fp_res = if isFpBool op then toBool r_opt

else r_opt
in
(updateState st’ refs ffi, list_result r)

1:13

evaluate st env [FpOptimise ann e] =
case evaluate (updateOptFlag st ann) env [e] of
(st’, Rerr e) => (resetOptFlag st’ st, Rerr e)
| (st’, Rval vs) =>

(resetOptFlag st’ st, Rval (addAnnot ann vs))

(b) Optimization scope evaluation.

evaluate st env [App op es] =
case evaluate st env es of
(st’, Rerr v) => (st’, Rerr v)
| (st’, Rval vs) =>
if —realsAllowed st’.fp_state then
(advanceOracle st’,
Rerr (Rabort Rtype_error))
else
case do_app (st’.refs, st’.ffi) op vs of
None => (st’, Rerr (Rabort Rtype_error))
| Some ((refs, ffi), r) =>
(updateState st’ refs ffi, list_result r)

(c) Relaxed floating-point evaluation. (d) Real-valued operator evaluation.

Figure 5 HOL4 definitions of operator evaluation in CakeML source for (a) the simple case, (b)
relaxed floating-point operations, (c) optimization scopes, and (d) real-number operations. In (c)
and (d) difference to Figure 5a is highlighted in bold.

4.2 RealCake’s Relaxed Floating-Point Semantics

Next, we present RealCake’s relaxed floating-point semantics. Similar to Icing, the relaxed
floating-point semantics applies optimizations during evaluation. In CakeML, we call the
process of applying optimizations to floating-point kernels during evaluation semantic op-
timization. Before going into the details of how evaluation is implemented in the relaxed
semantics, we briefly review some necessary details of CakeML’s source semantics.

CakeML Source Semantics

The CakeML source semantics is implemented in the style of functional big-step semantics [43].
As such, CakeML source semantics (evaluate) is a pure, deterministic function in the HOL4
theorem prover. evaluate st; env e= (sta,r) means that evaluating the CakeML source
expression e under environment env and global state st results in global state sto and ends
with result r. If evaluation succeeded, r is a value, otherwise r is an error. Global state sty
and sty model the state of the foreign-function-interface (FFI), as well as global references.
In CakeML source semantics, the FFI models interactions with the outside world, e.g. I/O.

We explain the case for operator evaluation in more detail, as we will extend it with
relaxed floating-point operations later. The definition of operator evaluation in CakeML
is given in Figure 5a. In CakeML source, an operator application is written as App op es,
denoting that operator op is applied to the list of expressions es.

First, evaluate is run on the argument list. If evaluation of the argument list fails with an
error and a new state, the error and the state are returned. If evaluation succeeds returning
values vs, function do_app applies operator op to the value list vs for the current references
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(st .refs), and the current state of the FFI (st’.ffi). Function do_app fails if not enough or too
many arguments to operator op are given in vs. Therefore the semantics raises a type error
(Rabort Rtype_error) if do_app fails. If successful, function do_app returns a new state for the
global references (refs), a new state of the FFI (ffi), and a value v. The overall result of the
evaluate call is then the global state updated with refs and ffi, and value v.

Relaxed Floating-Point Semantics

Both the relaxed floating-point semantics and Icing use value trees to represent floating-
point values. However, Icing’s nondeterministic semantics cannot be directly added to
CakeML source, because evaluate is a deterministic function. RealCake instead encodes
the nondeterminism as a deterministic optimization oracle. Specifically, RealCake’s relaxed
floating-point semantics extends the global state with a floating-point optimization oracle:
fpState = <| rewrites : optimization list; opts : num — rewriteApp list;
canOpt : optChoice; choices : num|>

The oracle stores the currently allowed optimizations in the field rewrites. Component
opts encodes the oracle decisions of when which optimization is applied. opts @ returns all
optimizations that are applied next during evaluation of a floating-point expression. The
optimization scope can0pt models the fine-grained control by recording the last optimization
scope that has been seen while evaluating. The relaxed floating-point semantics optimizes
only if canOpt is an opt:annotation. In choices we track the number of optimizations that
have been applied. We will use this global counter for integrating the relaxed floating-point
semantics with the proof-producing synthesis.

In principle, RealCake’s relaxed floating-point semantics and the Icing semantics model
the same set of optimization results, as for each nondeterministic Icing result there exists a
deterministic oracle under which RealCake’s semantics returns the same value, and vice versa.
However, supporting floating-point optimizations in CakeML source is only possible with the
optimization oracle. Adding the oracle to the global state of the semantics causes the least
amount of friction with existing CakeML proofs, while also enabling the nondeterministic
simulation proofs from Icing in CakeML via manipulation of the global optimization oracle.

To integrate the relaxed floating-point semantics of RealCake with evaluate, Figure 5c¢
adds a separate case to evaluate for floating-point operators. As for standard operator
evaluation in Figure 5a, when evaluating a floating-point operation, evaluate first evaluates
the arguments, and runs do_app. When evaluating a floating-point operation, function do_app
does not alter the global state (st’.refs), and it does not call into the foreign function interface
(st'.ffi). It simply returns the value tree representing operator op applied to argument values
in vs. If do_app successfully returns value tree r, evaluate attempts to optimize the value tree.
To this end, function optimizeIfok first checks whether the canopt field of the optimization
oracle is set to opt. If optimizations are allowed, the function performs the optimizations of
the oracle in field opts. Then, the optimization oracle is advanced to the next decision, and
the global optimization counter choices is incremented. Function optimizeIfok returns both
the global state updated with the new optimization oracle, and the optimized value tree. If
no optimizations are allowed, the function leaves its inputs unchanged. Finally, if op is a
Boolean comparison of floating-point value trees (isFpBool op), evaluate turns the resulting
value tree into a Boolean constant as CakeML eagerly evaluates control-flow expressions.

For the loose connection between Icing and CakeML, it was sufficient for Icing to turn
value trees into floating-point words once a control-flow decision was made. To keep the
changes to the CakeML semantics local and manageable, RealCake’s relaxed floating-point
semantics eagerly evaluates value trees into words as soon as a Boolean comparison is applied
to them, even if no control-flow decision is made afterwards.
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Figure 5b adds the optimization annotations opt: and noopt: as a separate case to
evaluate. FpOptimize annot e means that expression e is evaluated under the optimization
scope annot, which can either be opt: or noopt:. Evaluation of an optimization scope replaces
the current semantic scope in canopt with the new scope annotation (updateOptFlag st annot),
before evaluating e. Next, the old annotation is recovered by resetOptFlag st’ st. Function
addAnnot annot vs ensures that all value trees in vs are extended with a correct scoping an-
notation. This is required to ensure that the semantics respects the fine-grained control. If
evaluate did not add the annotation to the value trees, the semantics could optimize expres-
sion noopt:(x + 2.4) by first evaluating x + 2.4 and then optimizing it once the expression
is used as part of a larger floating-point expression.

4.3 Integrating Relaxed Floating-Point Semantics into the Compiler
Toolchain

If we want to fully integrate RealCake’s relaxed floating-point semantics with CakeML, we
have to also integrate it with the tools included in the CakeML compiler toolchain. In the
toolchain, a binary implementation of the compiler is obtained by verified bootstrapping [29]
of the in-logic compiler using proof-producing synthesis [2]. Furthermore, CakeML source
code can be verified using CakeML’s program verification tools that rely on characteristic
formulae (CF) [22], allowing Hoare-logic like manual proofs (e.g., for verification of non-
terminating programs [46] or a proof checker for higher-order logic [1]). To prove whole-
program specifications (Section 6), we integrate RealCake’s relaxed floating-point semantics
with the proof-producing synthesis and CF.

CakeML Compiler Backend

A key insight for getting the deterministic compiler proofs to interact nicely with the
optimization oracles used in RealCake’s relaxed floating-point semantics was to implement
the fast-math optimizer as a source-level optimization pass, separate from the CakeML
compiler backend. With our extension from Subsection 4.1, the CakeML compiler backend
compiles deterministic 64-bit floating-point kernels to machine code and we reuse this
infrastructure by adding a third optimization scope, strict, to the relaxed floating-point
semantics. Intuitively, we use the strict annotation to completely disallow floating-point
optimizations in the compiler backend, allowing us to preserve determinism of the source
semantics for the correctness proofs.

Any program that is run with the strict annotation will never apply optimizations and
perform only IEEE-754 correct arithmetic operations. The difference between a strict and a
noopt annotation is that strict is “sticky” in the sense that if a program ever enters strict
mode, evaluation becomes deterministic and cannot escape from it through successive opt
annotations, while noopt and opt can be mixed freely; e.g. a program may be under a noopt
scope, while parts of it are marked with opt to selectively apply optimizations.

Proof-Producing Synthesis and CF

The proof-producing synthesis and the CF are key components of the CakeML compiler, and
required for bootstrapping the compiler. As both crucially depend on how the CakeML source
semantics are defined, we have to make sure that the bootstrapping still works, even after
adding the relaxed floating-point semantics. Specifically, the synthesis relies on expressions
being pure, and thus not altering global state. The crux is that we need the optimization
oracle to reside in global state for the backwards simulation proofs, and therefore must ensure
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that no floating-point optimizations can be applied in code produced by synthesis. The
choices component of the optimization oracle makes optimization attempts by the semantics
observable in the global state. We prove a lemma that if the optimization counter choices is
not incremented, evaluation cannot have attempted to optimize floating-point code under
an opt: scope. To use this lemma, the synthesis configures the initial optimization oracle
to be running under an opt scope, with an empty list of optimization choices. From this
configuration we show that no floating-point optimizations are ever attempted by synthesized
code, reestablishing the invariant of the expression being pure.

We use an optimization counter instead of a Boolean flag, as some of our simulation
theorems must combine optimization oracles, while preserving optimization decisions (e.g.,
when combining oracles for left and right-hand sides of binary operators). In such proofs, the
optimization counter gives an exact bound on when the behavior of the oracle must change.

The exact same technique is applied to CF: we make sure that programs reasoned about
with CF cannot apply optimizations based on the optimization oracle.

4.4 Extending CakeML with Real-Number Arithmetic

The third semantics added to CakeML in RealCake is a real-number semantics used for
bounding roundoff errors of floating-point kernels. We extend the CakeML source semantics
with support for real numbers and real-number operations by adding a new case to evaluate’s
operator evaluation in Figure 5d. Here, we focus on the real-number semantics. In Section 6 we
explain how RealCake translates floating-point programs into their real-number counterpart.

Evaluation of real-number operations follows the simple case from Subsection 4.2. The
main difference is that we extend the optimization oracle in the global state with an additional
flag real_sem. Function realsAllowed st.fp_state checks that the flag is set to true, otherwise
evaluation is aborted. The flag disallows real-number operations where necessary, as the
real-valued semantics is only used for verification purposes. Further, the compiler does not
compile real-valued operations or constants. In the compiler proofs, we rule out real-number
operations by assuming that the flag is switched off.

We have presented operator evaluation separately. In our implementation, when evaluating
an App op es expression, the CakeML source semantics first does a case split on op and chooses
whether to apply standard operator evaluation (Figure 5a), relaxed floating-point semantics
(Figure 5¢), or real-number semantics (Figure 5d).

When integrating the relaxed floating-point semantics with proof-producing synthesis of
CakeML (Subsection 4.3), the global counter choices is used to make attempted floating-point
optimizations observable. To preserve invariants of the proof-producing synthesis, the real-
number semantics requires a similar treatment: The global counter choices is incremented if
evaluation of a real-number operation is attempted but fails (advanceoracle).

5 RealCake’s Floating-Point Optimizer

In this section, we implement a fast-math-style peephole optimizer for RealCake and prove
it correct with respect to the relaxed floating-point semantics. At a high-level, we split
optimization into two steps. In step one, function planOpts computes which optimizations
should be applied to the kernel. We call the list of optimizations returned by planOpts
the optimization plan and refer to this first step as optimization planning. In step two,
function applyOpts(plan,e) applies the optimization plan plan to floating-point kernel e. Before
returning, the noopts function tags the result with a marker to dissallow further optimizations,
which is required to recover the determinism needed by the CakeML compiler proofs. We
call this second step optimization execution.
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Figure 6 Optimizations currently used by the peephole optimization phase, IEEE-754 preserving
optimizations are marked with a .

Optimization Planning

For a floating-point kernel e, function planOpts(e) returns a list of tuples (path, opts), where

the left-hand side path is an index into the kernel stating where the kernel should be

optimized, and the right-hand side opts is a list of optimizations stating how the kernel

should be optimized. The optimization planner planopts is split into the following phases

(applied in this order):
canonicalForm puts all floating-point kernels into a canonical shape replacing x — y with
x4+ ((—1) x y), associating +, x to the right ((z +y) + 2z =  + (y + 2)), and moving
constants to right-hand sides with commutativity of + and x.
undistribute replaces expressions like (x X y) + (z X 2) with & x (y + 2), “undistributing”
as much as possible to increase possibilities for FMA-introduction, and reduce the size
of the floating-point kernel. The symmetric case of (y x x) + (2 X z) is ignored by the
undistribute phase, as canonicalForm rotates all multiplications with commutativity.
peepholeOptimize re-establishes canonical form and applies the optimizations from Figure 6.
balanceTrees reorders sub-expressions in the floating-point kernel by replacing deeply-
nested arithmetic expressions like 1 4 (z2 + (23 + 24)) by more shallow versions, such as
(v1 + x2) + (23 + 24) and similarly for x.8

Function composePlans concatenates the optimization plans produced by each phase.

Optimization Execution

When executing the optimization plan, function applyopts first runs function optimizewithPlan
on the plan and its input kernel, where optimizewithPlan applies all elements of a given
optimization plan one by one. Function optimizewWithPlan optimizes an expression only if it is
wrapped under an opt: annotation. Further, either all or none of the optimizations in the
plan are applied: if optimization fails, then the unoptimized input kernel is returned.

For each element of the plan (path, opts), optimizeWithPlan traverses expression e following
path until reaching a sub-expression e’ and applies the optimizations opts at the end of the
path. Having reached expression e’ at the end of path, function optimizewithPlan calls function
rewrite(e, opts) that applies the optimizations opts to the CakeML expression e’.

As CakeML source supports stateful features like reference cells, and calls into a foreign-
function-interface (FFI), function rewrite(e, opts) checks that CakeML expression e is a
pure (floating-point) expression. This check, which is implemented as a function isPureExp(e),
effectively rules out optimization of expressions that use any of CakeML’s stateful features.

8 We added balanceTrees as an optimization pass to simplify register allocations.
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The result of running optimizewithPlan is given to function noOpts, that performs a bottom-
up traversal of expression e, replacing any opt: annotation with a noopt: annotation, disal-
lowing further optimizations and, as a result, making the program’s semantics deterministic.

5.1 Correctness of the Fast-Math Optimizer

Our optimizer is split into two separate phases, optimization planning, and optimization
execution. A key benefit of this split is that we can prove correctness of optimization
execution without caring about the exact optimizations contained in the plan. Rather, we
verify applyOpts for any potential plan generated by our optimization planner.

At a high-level, we show that the optimizations done by applyOpts are correct with
respect to the relaxed floating-point semantics, and no further optimizations can be applied
afterwards. Accordingly, we split correctness of applyOpts into two proofs. First, we prove that
running the result of noopts(e) gives the same result as running e with an oracle that performs
no optimizations. The correctness proof for noopts(e) is a simple backwards simulation and
thus we do not show it here. Second, we prove that there is a backwards simulation between
the result of optimizewithPlan(e, plan) and e, where plan has been generated by our planner.

» Theorem 2 (optimizeWithPlan — correctness).

evaluate st1 env (optimizeWithPlan (planOpts e) exps) = (stz2,Rvalr) A
allvarsBoundToFPVal exps env A flagAndScopeAgree cfg sti.fp_state A
notInStrictMode st;.fp_state A noRealsAllowed st;.fp_state =
3 fpOpt choices fpOptR choicesR.
evaluate (appendOptsAndOracle st1 (getRws (planOpts e)) fpOpt choices) env exps =
(appendOptsAndOracle stz (getRws (planOpts e)) fpOptR choicesR,Rval r)

Theorem 2 proves: for the result obtained from evaluating the syntactically optimized
kernel, there exists an optimization oracle such that evaluate returns the same result when
semantically optimizing with the optimizations from the computed plan. The CakeML source
semantics is untyped, and thus we assume that all variables are bound to floating-point
constants in exps (allvarsBoundToFPVal). Instead of showing correctness of optimizewithPlan
for the overall plan, we reduce the global correctness proof to a series of correctness proofs
about the separate phases, and combine them into the overall backwards simulation.

Extending the Optimizer

Extending the RealCake optimizer requires extending both the implementation of the
optimizer, and its correctness proof. To add a new peephole optimization, a user adds
the optimization to the list of optimization of peepholeOptimize, and extends the correctness
theorem for peepholeOptimize. All other theorems need not be changed. We provide a set
of lemmas that can be used to reduce the global correctness proof of peepholeOptimize to a
simple local backwards simulation for the newly-added optimization in terms of the rewrite
function only. Adding a new phase to planOpts is more involved as it requires showing a
global correctness theorem for the newly added phase, as well as extending the theorem that
splits up correctness of planOpts into correctness of its components. The complexity of the
first proof depends on the complexity of the phase, whereas splitting up the correctness proof
for planopts is a straightforward proof showing that optimizations of the newly added phase
are contained in the optimizations applied by planopts.



H. Becker et al.

6 Proving Error Refinement with RealCake

CakeML with relaxed floating-point semantics optimizes floating-point kernels and auto-
matically proves a relation between the unoptimized and the optimized kernel. However,
to meaningfully support floating-point arithmetic in a verified compiler, the compiler must
relate the unoptimized real-valued program and the optimized floating-point program.

Classic compiler optimizations like constant propagation and dead-code elimination have
a clear definition of when they can be applied and one can prove that the optimizations do
not change the program result. Floating-point fast-math optimizations do not follow this
intuition in general. As an example, we can introduce an FMA instruction in the simple
expression x * 2.9 + 0.05 with relaxed floating-point semantics: fma(x, 2.9, 0.05). The FMA
makes the expression generally faster and locally more accurate, as the result is only rounded
once. Correctness of the fast-math optimizer proves a backwards simulation between the
expressions, however, the theorem does not capture the change in roundoff errors.

We propose the notion of error refinement: the compiler may optimize a floating-point
kernel aggressively as long as the results remain within a (given) bound relative to real-number
semantics. This notion captures the implicit assumption or expectation by the programmer.
We make this notion of error refinement explicit by implementing a fully automatic pipeline
that computes an upper bound on the roundoff error of a floating-point kernel in CakeML
and compares it to a user-specified accuracy bound. For this we use the roundoff error
analysis tool FloVer [6], implemented in HOL4. We prove the roundoff error bound correct
with respect to a run of the original input kernel under an idealized real-number semantics.

6.1 Translating RealCake Kernels into FloVer Input

To infer roundoff errors for a RealCake kernel with FloVer, we define a straightforward
encoding function tofFlover(e), translating floating-point kernels with variables, constants,
unary and binary floating-point operations, FMAs, and let bindings into FloVer syntax.
Correctness of the translation functions proves once and for all a simulation relating determ-
inistic RealCake floating-point semantics with FloVer’s idealized finite-precision semantics.
To prove the simulation, our translation function ensures that the kernel is wrapped under a
noopt: annotation. As roundoff error analysis tools depend on ranges for the input variables
our pipeline also requires a real-number function specifying these input constraints.
RealCake implements a function isokError(e, P, err) that returns true if err is a sound
upper bound on the worst-case roundoff error for RealCake expression e and input constraints
p. First, the RealCake kernel e is translated into FloVer syntax with toFlover(e). Function
isOkError then runs FloVer’s unverified inference algorithm to generate a (untrusted) roundoff
error analysis certificate for the FloVer encoding of e and input constraints P. FloVer’s
certificate checker automatically checks the certificate, and if the check suceeds, the error
bound encoded in the certificate is correct. Finally, isokError checks that the global upper
bound encoded in the certificate is smaller or equal to the user-specified error constraint err.

6.2 Proving Roundoff Error Bounds for RealCake Kernels

To prove error refinement for an optimized kernel, we connect the soundness theorem of
FloVer to RealCake’s relaxed floating-point semantics. Together with the idealized real-valued
semantics we show once and for all the HOL4 theorem:
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» Theorem 3 (CakeML-FloVer roundoff errors).

Vf P err theVars vs body env.
isOkError_succeeds (f, P, err, theVars, body) A isPrecondFine theVars vs P =

dr fp.
realEvals_to (realify body) (envWithRealVars env theVars vs) r A
floatEvals_to body (envWithFloatVars env theVars vs) fp A
abs (valueTree2real fp — r) < err

On a high-level, Theorem 3 states that if function isokError succeeds, the analyzed function
can be run both under floating-point and real-number semantics, and err is an upper bound
on the roundoff error. The assumptions are: isOkError succeeds, and body is the function
body of RealCake floating-point kernel f, with the parameters thevars (isOkError_succeeds);
and the values vs bound to the parameters theVars are within the input constraints P
(isPrecondFine theVars wvs P). realify replaces floating-point operations by their real-number
counterparts. The theorem shows that there exists a real number r and a floating-point word
fp such that evaluation of the function under an idealized real-number semantics returns r
(realEvals_to), evaluation under floating-point semantics returns fp (floatEvals_to), and err
is an upper bound to the roundoff error of function f (abs(valueTree2real fp —r) < err).

Error refinement relates the user-given error bound back to a real-number semantics
of the initial, unoptimized kernel, but RealCake runs function isokerror on the optimized
kernel. In addition to Theorem 3 we also need to prove that the applied optimizations are
real-valued identities. Exactly like we prove correctness of optimizewithPlan in Subsection 5.1,
we have proven once and for all a simulation between the real-number semantics of the
optimized kernel and its unoptimized version. Combining this theorem with Theorem 3, we
automatically prove error refinement for floating-point kernels.

7 Evaluation: Performance and Accuracy Proofs

The RealCake development spans roughly 35k lines of proof-code, composed of the IEEE
floating-point implementation and proofs, including the ARMv7 backend (~1.5k LOC),
the relaxed floating-point semantics and the real-number semantics (~7k LOC, including
proofs), the implementation and correctness proofs for the optimizer (~20k LOC), and the
benchmarks from the evaluation (~7k LOC).

We evaluate RealCake on 51 benchmarks taken from the standard floating-point bench-
mark set FPBench [14]. Our evaluation includes all FPBench benchmarks that use floating-
point operations that are supported by RealCake and we exclude only those that cannot
be expressed in RealCake (for instance we exclude benchmarks with elementary function
calls; i.e. functions like sin, cos, ...). We use the preconditions that are already specified in
FPBench, but modify them slightly for the jetEngine and n_body kernels such that FloVer can
prove a roundoff error bound and does not report a possible division by zero. Our evaluation
shows how RealCake establishes end-to-end correctness proofs, and compares the runtime of
the optimized and unoptimized kernels.
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Table 1 Roundoff errors for optimized and unoptimized FPBench benchmarks; benchmarks
where the roundoff error improves are highlighted in bold font and benchmarks where no end-to-end
specification is proven are underlined.

Name Orig fast-math  Impr. Name Orig fast-math  Impr.
bspline3 1.295e-16  1.295e-16 0% rigidBody2 5.579%-13  6.410e-11  -360%
carbonGas 5.688¢-08  5.688¢-08 0% rump_C 4.079e+22  3.859e+22 5%
cartToPol 2.815¢-09  2.463e-09 13% rump_rev 3.859e+22  3.679e+22 5%
delta4 4.048¢-12  2.028e-13 5% rump__pow 4.079e+22  3.859e+22 5%
delta 1.970e-13  2.940e-12 -198% runge_kutta 4 2.220e-14  2.220e-14 0%
dopplerl 6.534e-13  6.412e-13 2% secd__example 2.657e-09  2.657e-09 0%
doppler2 6.534e-13  1.639%¢-12 50% sine_ newton 7.495e-15  6.275e-15 16%
doppler3 1.675e-12  2.680e-13 20% sineOrder3 1.765e-15  1.765e-15 0%
himmilbeau 3.417e-12  3.003e-12 12% sine 1.538e-15  1.373e-15 11%
hypot 2.815e-09  2.463e-09 13% sqroot 1.115e-15  1.059e-15 5%
hypot32 2.815e-09  2.463e-09 13% sqrt__add 1.322e-12  1.322e-12 0%
i4modified 4.002e-13  4.002e-13 0% sum 5.995e-15  5.995e-15 0%
intro_ ex 2.220e-10  2.220e-10 0% t01_s3 5.995e-15  5.995e-15 0%
jetEngineModi 5.209¢-08  3.898e-08 25% t02__s8 9.548e-15  8.438e-15 12%
kepler0 1.761e-13  1.801le-13 -2% t03_nl2 4.885e-14  4.885e-14 0%
keplerl 8.397e-13  8.467e-13 -1% t04__dgmom9 1.999 1.999 0%
kepler2 4.069e-12  3.973e-12 2% t05_nll_r4 4.441e-06  4.441e-06 0%
matDet2 5.107e-12  4.663e-12 9% t05_nll_t2 2.776e-16  2.776e-16 0%
matDet 5.107e-12  4.663e-12 9% t06__sums4__suml 1.443e-15 1.332e-15 8%
n_bodyXmod ERR ERR ERR t06__sums4__sum2 1.332e-15  1.332e-15 0%
n_bodyZmod ERR ERR  ERR turbinel 1.588e-13  1.54le-13 3%
nonlinl 2.220e-10  2.220e-10 0% turbine2 2.213e-13  2.213e-13 0%
nonlin2 2.657¢-09  2.657e-09 0% turbine3 1.108e-13  1.061le-13 1%
pid 7.621e-15  7.727e-15 -1% verhulst 8.343¢-16  8.343e-16 0%
predatorPrey 3.395e-16  3.366e-16 1% x_by_xy 2.220e-15  2.220e-15 0%
rigidBody1 6.565e-11  5.329e-13 80%

7.1 Automated End-To-End Proofs

We have translated all 51 FPBench benchmarks into HOL4 script files that are read by Real-
Cake. Each script file defines the original, unoptimized, floating-point kernel, a precondition
for the kernel, and a user-provided error bound. For simplicity, our evaluation uses 27° as
the user-provided error bound for all of the benchmarks, though those would be given by the
compiler user in a real-world setting.”

Our HOL4 automation at the end of each script file fully automatically optimizes the
kernel, instantiates Theorem 2 for the generated plan, infers a roundoff error bound and
compares it to the user-provided error bound. Finally, a whole-program specification relating
the behavior of the machine code for the optimized program to the real-number semantics of
the unoptimized program is proven automatically by combining the individual proofs.

RealCake proves the end-to-end correctness theorem (Theorem 1) for 45 benchmarks.
That is, for these benchmarks it is able to show that the roundoff error of the optimized
program is below the specified default error bound of 27°. For the three rump benchmarks and
the test04_dgmom9 benchmark, the computed errors are larger than the user-provided error
bound (already for the original unoptimized program), and for the benchmarks n_bodyXmod
and n_bodyZmod FloVer is not able to infer a roundoff error bound as its HOL4 computation
becomes stuck, likely due to limitations in the HOL4 real number computations.

9 If the error bound is choosen too tightly the optimizer may reject every optimization candidate, while a
too coarse bound could allow for too aggressive optimizations.
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Table 2 Running times for optimized and unoptimized FPBench benchmarks on the Raspberry
Pi v3; benchmarks where performance improves with fast-math optimizations are highlighted in bold.

Name Orig Csts Csts + fast-math ~ Name Orig Csts Csts + fast-math
bspline3* 1814 1.75 (91%)  1.75 (91% / 0%)  rigidBody2 54.92 510 (91%)  4.54 (92% / 11%)
carbonGas * 103.40  3.85 (97%) 3.85 (97% / 0%)  rump_C 107.48  6.82 (94%) 6.26 (95% / 9%)
cartToPol 2.05 2.04 (1%) 1.86 (10% / 9%) rump_ rev 107.96  6.80 (94%) 6.27 (95% / 8%)
deltad 634  6.33 (1%) 6.17 (3% / 3%)  rump_pow 11254 12.34 (90%) 1157 (90% / 7%)
delta 1349 1347 (1%) 11.44 (16% / 16%)  runge kutta 4* 93.46  9.53 (90%)  9.53 (90% / 0%)
dopplerl 36.02 3.25 (91%) 3.06 (92% / 6%) secd__example® 34.99 2.40 (94%) 2.40 (94% / 0%)
doppler2 36.00  3.25 (91%)  3.06 (92% / 6%)  sineOrder3* 34.86  2.08 (95%)  2.08 (95% / 0%)
doppler3 35.98  3.25 (91%) 3.07 (92% / 6%)  sine_newton” 126.34  10.73 (92%) 10.73 (92% / 0%)
himmilbeau 36.13  3.36 (91%)  3.05 (92% / 10%)  sinc" 5536 6.03 (90%)  6.03 (90% / 0%)
hypot32 204 204 (1%)  1.86 (10% /9%)  sqroot 87.06 485 (95%)  4.65 (95% / 5%)
hypot 205 205 (1%)  1.86 (10% / 10%)  sqrt_add* 3521 259 (93%)  2.59 (93% / 0%)
idmodified* 177 178 (0%) 178 (0% / 0%)  sum® 307 3.07 (1%) 3.07 (1% / 0%)
intro_ex" 1773 1.32 (93%)  1.32 (93% / 0%)  t01_s3* 307 3.08 (0%) 3.08 (0% / 0%)
jetEngineMod 195.99 11.80 (94%)  11.12 (95% / 7%)  t02_s8" 304 3.05 (0%) 3.05 (0% / 0%)
kepler0 532 531 (1%) 530 (1% / 1%)  t03_nl2* 178 178 (1%) 178 (1% / 0%)
keplerl 819 8.20 (0%) 8.16 (1% / 1%)  t04_dqmom9 163.82  11.76 (93%)  10.20 (94% / 14%)
kepler2 1243 1241 (1%)  12.22 (2% / 2%)  05_nll_rd* 34.67  2.06 (95%)  2.06 (95% / 0%)
matDet2 6.38  6.37 (1%)  5.67 (12% / 12%)  t05_nll_test2* 34.00  1.54 (96%)  1.54 (96% / 0%)
matDet 6.37 6.38 (0%)  5.65 (12% / 12%)  t06_sums4 suml” 1.70 1.70 (0%) 1.70 (0% / 0%)
n_bodyXmod 3846  5.20 (87%) 5.06 (87% / 3%)  t06_sums4 sum2* 1.68 1.67 (1%) 1.67 (1% / 0%)
n_bodyZmod 3840  5.27 (87%)  5.15 (87% / 0%)  turbinel® 12102 529 (96%)  5.29 (96% / 0%)
nonlinl* 1772 1.31 (93%)  1.31 (93% / 0%)  turbine2* 69.90  3.94 (95%)  3.94 (95% / 0%)
nonlin2* 35.06 2.1 (94%)  2.41 (94% / 0%)  turbine3* 12120 528 (96%)  5.28 (96% / 0%)
pid* 10411 472 (96%)  4.72 (96% / 0%)  verhulst* 5128 2.27 (96%)  2.27 (96% / 0%)
predatorPrey 52.25  2.81 (95%) 3.08 (95% / -9%)  x_by xy* 1.51 1.51 (1%) 1.51 (1% / 0%)
rigidBody1* 1911 278 (86%)  2.78 (86% / 0%)

We show the errors for the optimized and unoptimized kernels in Table 1. “Orig.”
the roundoff error for the unoptimized kernel, and “fast-math” is the roundoff error for the
optimized kernel, and column “Impr.” shows the percentage by which the error improved
with our fast-math optimizations, i.e. if the number is less than 0% the error has increased,
and decreased if it is greater than 0%. We highlight benchmarks where the roundoff error has
been decreased by the RealCake optimizer in bold font. While improving the roundoff error
is not the goal of our optimizations, FMA instructions are said to be locally more accurate,
and reordering of operations influences roundoff errors too. Hence we evaluate the effect
on roundoff errors of our optimization strategy. The benchmarks delta4, delta, rigidBodyl,
and rigidBody2 have the largest difference in roundoff errors. By inspecting the generated
code we found that in these cases, RealCake has significantly alterted the structure of the
kernel. The roundoff error computed for a single kernel is highly influenced by the order
of operations, thus we suspect that this large difference is mainly due to operator odering.
Overall, we notice that if RealCake can infer a roundoff error, the error of the optimized
kernel is usually within the same order of magnitude as the unoptimized version, but in
many cases it is actually more accurate.

7.2 Performance Improvements

We compared the performance of unoptimized and RealCake’s optimized floating-point
kernels. In a first run, we measured wide differences in speedups and slowdowns. By
manually inspecting the code, we noticed a missing optimization in CakeML: 64-bit word
constants should be pre-allocated (or lifted) to increase performance. Lifting constants is a
worthwhile optimization in general, and particularly effective for floating-point programs, as



H. Becker et al.

it is does not change the program’s IEEE-754-semantics and floating-point programs usually
contain many constants. Thus, we implemented an independent, semantics preserving, global
optimization that preallocates 64-bit words as global variables. Our performance evaluation
compares three versions of FPBench kernels: the unoptimized version as a baseline, the
kernel with preallocated constants, and the kernel after first applying fast-math optimizations
and then preallocating constants.

To measure performance, CakeML generates ARMv7 machine code where each numerical
kernel is run 10 million times in a loop. Each version of the benchmark, with the core loop
running the kernel 10 million times, is run three times on five different sets of inputs, for a
total of fifteen runs per benchmark.

We run the ARMv7 code on a Raspberry Pi v3 and summarize the results in Table 2.
Column “Orig.” shows the running time of the (10 million iterations of the) unoptimized
program in seconds. Column “Csts.” shows the running time of the program with preallocated
constants in seconds plus the relative speedup in percent. And column “Csts. + fast-math”
shows the running time of the program when first running RealCake’s optimizer and then
preallocating constants in seconds plus first the relative speedup in percent with respect
to the unoptimized program, and second the relative speedup with respect to the version
with preallocated constants. We mark benchmarks with a performance improvement of more
than 1% of the fast-math optimizations with respect to preallocating constants in bold (we
identified a difference within £1% to be noise).

Initially, some benchmarks experienced slowdowns of up to 20%. Via manual inspection,
we noticed that the fast-math optimizer created too many instructions. As a simple heuristic
to prevent this problem, RealCake sums the arities of the floating-point operators in the
program versions, and returns the unoptimized version if the heuristic value of the fast-math
optimized program is greater than or equal to the unoptimized program. Even if the heuristic
rejects an optimization, RealCake computes roundoff errors for both program versions and
proves an end-to-end specification theorem about the optimized program. In total, the
heuristic rejects optimizations for 27 benchmarks, and we mark them with a * in Table 2.

Overall the evaluation shows that preallocating constants is a valuable optimization
for CakeML on its own. On top of this, our fast-math optimizer is able to improve the
performance for 20 benchmarks and for 7 of those significantly (> 10%). This is remarkable,
since the FPBench benchmarks are carefully hand-written and do not target optimizations
specifically and are not representative of, e.g., automatically generated code from tools such
as Matlab that would be used in the development of embedded system kernels.

For one benchmark we notice a slowdown of 9% even with our heuristic, and the program
versions differ only by a single FMA instruction. We suspect that this slowdown is due to
bad pipelining on the Raspberry Pi.

RealCake’s constant preallocation achieves a geometric mean speeup of 83%, and the
geometric mean of the speedup for RealCake’s optimizer compared with the program with
preallocated constants is 3%. The maximum speedup achieved with preallocating constants
only is 97%, and we notice no slowdowns. When applying fast-math optimization, the
greatest slowdown is -9%, and the maximum speedup is 16%.

In general, benchmarks with higher speed-ups from our optimization strategy usually
provide many opportunities to both introduce fma instructions, and remove constants. We
think that the foundational work in RealCake facilitates exploration of other optimization
strategies in the future.
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8 Related Work

Verified Compilation of Floating-Point Programs

Besides CakeML, CompCert [31] is the other major available verified compiler, compiling
imperative C programs. CompCert supports floating-point programs [10] following the strict
IEEE-754 semantics. This semantics allows it to perform a few small optimizations that are
TEEE-754 compliant such as constant propagation and replacing a multiplication by two by
an addition (z x 2 — z + ).

RealCake supports additional optimizations based on real-valued identities that are not
IEEE-754 compliant. While our implementation is done in the context of CakeML and
verified in HOL4, the principles of RealCake are independent of the particular programming
language that is being compiled and should thus be portable to CompCert as well.

The Alive framework [34] provides a way to specify and prove correct peephole optimiza-
tions for C++ code that can be applied in an LLVM pass. Alive verifies optimizations using
SMT solvers and has been extended to bit-precise floating-point optimizations and optimiza-
tions involving special values, satisfying the IEEE-754 standard [39, 42]. These optimizations
are complementary to RealCake’s optimizations. Formal verification of Alive’s peephole
optimizations is addressed separately by the AliveInLean project [30]. The VELLVM pro-
ject [59] provides a rigorous semantics for LLVM IR semantics to reason about optimizations
and implements IEEE-754-preserving floating-point arithmetic.

Verification of Floating-point Programs

Besides FloVer, there are several other tools that provide formally verified roundoff error
bounds for floating-point arithmetic expressions:
FPTaylor [54], real2Float [36], Precisa [41], Gappa [17], and each of these can in principle
replace FloVer in RealCake. We chose FloVer for convenience as it is implemented in HOL4.

Verification of floating-point programs that go beyond numerical kernels is still relatively
limited. The above-mentioned automated tools, for instance, do not consider function calls,
and techniques for loops are very restricted [41, 15], and thus require the user to provide
range annotations for each function call, as well as loop invariants in general. Entire programs
have been manually formally verified w.r.t. a real-valued specification, but with considerable
human effort [48, 9], which is not suitable for a compilation setting.

If we only require verification of runtime exceptions, resp. absence of special values, then
abstract interpretation-based techniques do scale to larger programs [27] and some provide
formal verification [28].

Optimization of Floating-Point Programs

Floating-point optimizations have also been considered outside of the traditional compiler
context, most of them focused on performance optimization.

Precimonious [50] performs mixed-precision tuning, by determining which operations
can be implemented in a lower or higher precision, while satifying a user-provided error
bound. While Precimonious can handle short programs with loops, it cannot guarantee the
error bound as it uses a dynamic error analysis. Both FPTuner [11] and Daisy [16] perform
mixed-precision tuning while providing accuracy guarantees using a static analysis, but can
only handle relatively short straight-line expressions. Mixed-precision tuning requires a
global error analysis and is thus not suitable to be performed inside a fundamentally modular
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compiler. However, the precision-tuned program could be further optimized by a (verified)
compiler. While RealCake currently only supports double precision floating-point arithmetic,
an extension with (uniform) single precision requires merely some engineering work.

Several tools improve the performance or accuracy of floating-point programs by rewriting
with real-valued identities. Spiral [47] rewrites linear algebra kernels to improve their
performance on a particular hardware platform. Spiral does not take into account roundoff
errors; its rewrites are not IEEE-754-preserving, but it does not quantify the errors. The
HELIX project [58] uses Spiral as an external oracle for building a verified optimization
pipeline for dataflow optimizations. Optimizations in HELIX are done with respect to
real-number semantics which is orthogonal to RealCake’s floating-point peephole optimizer.

Herbie [44] aims to improve the accuracy, instead of performance, of floating-point
arithmetic expressions but estimates roundoff errors unsoundly using a dynamic analysis.
The Salsa [13] tool applies a set of transformation rules to improve performance while soundly
tracking roundoff errors. Finally, Daisy [16] first applies rewriting similar to Herbie in order
to improve performance gains due to mixed-precision tuning. Still further away is the tool
STOKE [52], which generates small floating-point kernels by superoptimization, but which
does not even guarantee real-valued equivalence. We consider these optimizations to be
orthogonal to the fast-math optimizations that we consider in RealCake. We note that the
scoping mechanism allows RealCake to easily integrate parts of the code that have been
heavily optimized, and that thus should not be modified further by the compiler.

9 Conclusion

We have presented RealCake, an extension of the CakeML compiler with fast-math-style
floating-point optimizations. Using an oracle-based relaxed floating-point semantics we
have integrated nondeterminstic semantics for fast-math-style optimizations into the verified
CakeML compiler. Via a connection to an external accuracy analysis, RealCake establishes
accuracy guarantees for the optimized program, relating it back to the real-numbered ex-
ecution of the unoptimized program. In summary, RealCake is the first verified compiler
that establishes end-to-end floating-point accuracy guarantees to enable fast-math-style
optimization and prove end-to-end compilation theorems. Our evaluation has shown how
RealCake automatically verifies whole programs, proving properties about their 1/O beha-
vior and accuracy. Further, both our fast-math optimizer and our global constant lifting
achieve significant performance improvements. RealCake’s error refinement establishes the
core infrastructure necessary to verify fast-math-style peephole optimizations, enabling the
implementation of additional optimizations such as vectorization in the future.
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