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Abstract. The classical (parallel) black pebbling game is a useful
abstraction which allows us to analyze the resources (space, space-time,
cumulative space) necessary to evaluate a function f with a static data-
dependency graph G. Of particular interest in the field of cryptography
are data-independent memory-hard functions fG,H which are defined by
a directed acyclic graph (DAG) G and a cryptographic hash function
H. The pebbling complexity of the graph G characterizes the amor-
tized cost of evaluating fG,H multiple times as well as the total cost
to run a brute-force preimage attack over a fixed domain X , i.e., given
y ∈ {0, 1}∗ find x ∈ X such that fG,H(x) = y. While a classical attacker
will need to evaluate the function fG,H at least m = |X | times a quan-
tum attacker running Grover’s algorithm only requires O (

√
m) blackbox

calls to a quantum circuit CG,H evaluating the function fG,H . Thus, to
analyze the cost of a quantum attack it is crucial to understand the
space-time cost (equivalently width times depth) of the quantum circuit
CG,H . We first observe that a legal black pebbling strategy for the graph
G does not necessarily imply the existence of a quantum circuit with
comparable complexity—in contrast to the classical setting where any
efficient pebbling strategy for G corresponds to an algorithm with com-
parable complexity for evaluating fG,H . Motivated by this observation
we introduce a new parallel reversible pebbling game which captures
additional restrictions imposed by the No-Deletion Theorem in Quan-
tum Computing. We apply our new reversible pebbling game to ana-
lyze the reversible space-time complexity of several important graphs:
Line Graphs, Argon2i-A, Argon2i-B, and DRSample. Specifically, (1) we
show that a line graph of size N has reversible space-time complexity

at most O
(
N

1+ 2√
log N

)
. (2) We show that any (e, d)-reducible DAG has

reversible space-time complexity at most O (
Ne + dN2d

)
. In particular,

this implies that the reversible space-time complexity of Argon2i-A and
Argon2i-B are at most O (

N2 log log N/
√

log N
)

and O (
N2/ 3

√
log N

)
,

respectively. (3) We show that the reversible space-time complexity of
DRSample is at most O (

N2 log log N/ log N
)
. We also study the cumu-

lative pebbling cost of reversible pebblings extending a (non-reversible)
pebbling attack of Alwen and Blocki on depth-reducible graphs.
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1 Introduction

The (parallel) black pebbling game [PH70,Coo73] is a powerful abstraction which
can be used to analyze the resources (space, space-time, amortized space-time)
necessary to evaluate any function fG with a static data-dependency graph G. In
the black pebbling game we are given a directed acyclic graph (DAG) G = (V,E)
where nodes intuitively represent intermediate data values and edges represent
dependencies between these values, e.g., if z = x×y then we would add directed
edges from nodes x and y to node z to indicate that x and y are required to com-
pute z. However, while the parallel black pebbling game is a useful abstraction
for classical computation it is not a suitable model for reversible computation
as in quantum computation. In this paper, we introduce a parallel reversible
pebbling game as an abstraction which can be used to analyze the resources
required to build a reversible quantum circuit evaluating our function fG. We
use the parallel reversible pebbling game to analyze the space-time cost of sev-
eral important graphs (the line graph, Argon2i-A, Argon2i-B, DRSample) asso-
ciated with prominent data-independent memory-hard functions (iMHFs)—used
in cryptography to design egalitarian proof of work puzzles and to protect low-
entropy secrets (e.g., passwords) against brute-force attacks.

Review: Parallel Black Pebbling. The classical parallel black pebbling game
begins with no pebbles on the graph (P0 = {}), and during each round of
the pebbling game, we may only place a new pebble on a node v if all of v’s
parents were pebbled in the previous round. Intuitively, if the data value Xv cor-
responding to node v is computed as Xv := H(Xu,Xv−1) then G would include
directed edges (u, v) and (v − 1, v) indicating that we cannot compute value Xv

(resp. place a pebble on node v) unless Xu and Xv−1 are already available in
memory (resp. we already have pebbles on nodes u and v − 1). More formally,
if Pi ⊆ V denotes the set of pebbled nodes during round i, then we require
that parents(Pi+1 \ Pi, G) ⊆ Pi where parents(S,G) =

⋃
v∈S{u : (u, v) ∈ E}. In

the black pebbling game we are given a subset T ⊆ V of target nodes (corre-
sponding to output data values) and the goal of the black pebbling game is to
eventually place a pebble on each node in T . A pebbling P = (P0, P1, . . . , Pt)
is legal if P0 = {} and parents(Pi+1 \ Pi, G) ⊆ Pi for each i < t. Intuitively,
the requirement that parents(Pi+1 \ Pi, G) ⊆ Pi enforces the natural constraint
that we cannot compute a new data value before all dependent data values are
available in memory. In the sequential pebbling game, we additionally require
that |Pi+1 \ Pi| ≤ 1 so that only one new pebble can be placed on the graph
in each round while the parallel pebbling game has no such restriction. Thus,
a legal parallel (resp. sequential) pebbling of a data-dependency graph G natu-
rally corresponds to a parallel (resp. sequential) algorithm to compute fG and
the number of pebbles |Pi| on the graph in each round i corresponds to memory
usage during each round of computation.
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The sequential black pebbling game has been used to analyze space complex-
ity [HPV77,PTC76] and to examine space-time tradeoffs [Cob66,Coo73,Pau75,
PV76,Tom81]. In the field of cryptography, the parallel black pebbling game has
been used to analyze the security of data-independent memory-hard functions
(iMHFs). An iMHF fG,H is defined using a cryptographic hash function H and
a data-dependency graph G [AS15,AB16,ABP17,BZ17]. The output of fG,H(x)
is defined to be the label XN of the final sink node N in G where the label
X1 = H(X) of the first (source) node is obtained by hashing the input and
the label of each internal node v is obtained by hashing the labels of all of v’s
parents, e.g., if parents(v,G) = {u, v − 1} then we would set Xv = H(Xu, xv−1).
In many cryptographic applications (e.g., password hashing), we want to ensure
that it is moderately expensive to evaluate fG,H to ensure that a brute-force
pre-image attack (given y find some x such that fG,H(x) = y) is prohibitively
expensive even when the domain X of inputs is smaller (e.g., low entropy pass-
words). When modeling the cryptographic hash function H as a random oracle,
one can prove that the cost to evaluate fG,H in the parallel random oracle model
is exactly captured by the pebbling cost of G [AS15,AT17,ABP18]. Thus, we
would like to pick a graph G with high pebbling costs and/or understand the
pebbling costs associated with candidate iMHFs. Prior work demonstrated that
the amortized space-time complexity of prominent iMHF candidates, includ-
ing Password Hashing Competition winner Argon2i, was lower than previously
hoped [AB16,ABP17,AB17,BZ17]. On the positive side, recent work has shown
how to use depth-robust graphs [EGS75] to construct iMHFs with (essentially)
optimum amortized space-time complexity [ABP17,ABH17,BHK+19]. However,
it is important to note that the classical black pebbling game does not include
any rules constraining our ability to remove pebbles. We are allowed to remove
pebbles from the graph at any point in time which corresponds to freeing mem-
ory and can be done to reduce the space usage. While the classical pebbling
game allows us to discard pebbles at any point in time to free memory, this
action is often not possible in a quantum circuit due to the No-Deletion Theo-
rem [KPB00]. In this sense, the black pebbling game cannot be used to model
reversible computation as in a quantum circuit and an efficient parallel black
pebbling for a graph G does not necessarily imply the existence of a quantum
circuit CG,H with comparable cost.

Review: Measuring Pebbling Costs. There are several natural ways to measure
the cost of a pebbling. The space cost of a pebbling P = (P0, . . . , Pt) mea-
sures the maximum number of pebbles on the graph during any round, i.e.,
maxi |Pi| and the space complexity of a graph measures the minimum space
cost over all legal pebblings of G. Similarly, the space-time cost of a pebbling
P = (P0, . . . , Pt) measures the product t × maxi |Pi| and the cumulative peb-
bling cost is

∑
i |Pi|. Intuitively, space complexity measures the amount of mem-

ory (e.g., RAM) required for a computation and space-time cost measures the
full cost of the computation by telling how long the memory will be locked up
during computation. Cumulative pebbling cost gives the amortized space-time
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complexity of pebbling multiple copies of the graph G, i.e., when we are evalu-
ating our function fG on multiple different inputs in parallel [AS15].

(Quantum) Pre-image Attacks. Understanding the amortized space-time com-
plexity of a graph G is important to estimate the cost of a classical brute-force
pre-image attack over a domain X of size m. In particular, suppose we are given
a target output y (e.g., y = fG,H(x′) for a secret input x ∈ X ) and we wish
to find some input x′ ∈ X such that y = fG,H(x′). Classically, the space-time
cost of a black-box pre-image attack would require us to evaluate the function
fG,H on Ω(m) inputs. If the cumulative pebbling cost of G is given by

∑
i |Pi|

then the total space-time cost of the pre-image attack would scale proportionally
to m

∑
i |Pi|, i.e., m times the amortized space-time complexity. Thus, a more

efficient black pebbling strategy for G yields a lower-cost pre-image attack.
In the context of quantum computing, Grover’s algorithm [Gro96] substan-

tially reduces the cost of a brute-force pre-image attack over a domain X of
size m. In particular, Grover’s algorithm only requires O(

√
m) black-box queries

to the function fG,H evaluating the function fG,H and this is optimal—any
quantum algorithm using fG,H as a black box must make at least Ω(

√
m)

queries [BBBV97]. If we instantiate fG,H with a quantum circuit of width w
and depth d then full Grover circuit would have width W = O(w) and depth
D = d × O(

√
m). In particular, the total space-time (equivalently width-depth)

cost of the attack would be wd × O(
√

m). Thus, to analyze the cost of a quan-
tum pre-image attack it is crucial to understand the space-time (or width-depth)
cost of a quantum circuit CG,H computing fG,H . Our goal will be to treat H
as a black box and use graph pebbling to characterize the space-time cost. A
natural first attempt would be to use the classical black pebbling game to ana-
lyze the parallel pebbling cost of G as above. If this approach worked we could
simply leverage prior (parallel) black pebbling analysis of prominent iMHF can-
didates [AB16,ABP17,AB17,BZ17] to analyze the cost of a quantum pre-image
attack. Unfortunately, this approach breaks down because a legal black pebbling
strategy does not necessarily correspond to a valid quantum circuit CG,H with
comparable cost. Thus, we will require a different pebbling game to analyze the
width-depth cost of the quantum circuit CG,H .

Notation. We use the notation [N ] (resp. [a, b]) to denote the set {1, . . . , N}
(resp. {a, a + 1, . . . , b}) for a positive integer N (resp. a ≤ b). The notation
$← denotes a uniformly random sampling, e.g., we say x $← [N ] when x is a

uniformly sampled integer from 1 to N . For simplicity, we let log(·) be a log
base 2, i.e., log x := log2 x.

Let G = (V,E) be a directed acyclic graph (DAG) where we denote N
to be the number of nodes in V = [N ]. Given a node v ∈ V , we define
parents(v,G) to be the immediate parents of node v in G, and we extend
this definition to a subset of nodes as well; for a set W ⊆ V , we define
parents(W,G) :=

⋃
w∈W {u : (u,w) ∈ E}. We let ancestors(v,G) be the set

of all ancestors of v in G, i.e., ancestors(v,G) :=
⋃

i≥1 parents
i(v,G), where

parents1(v,G) = parents(v,G) and parentsi(v,G) = parents(parentsi−1(v,G), G).
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Similarly, for a set W ⊆ V , we define ancestors(W,G) :=
⋃

i≥1 parents
i(W,G),

where parents1(W,G) = parents(W,G) and recursively define parentsi(W,G) =
parents(parentsi−1(W,G), G).

We denote the set of all sink nodes of G with sinks(G) := {v ∈ V : �(v, u) ∈
E} – note that ancestors(sinks(G), G) = V . We define depth(v,G) to refer to
the number of the longest directed path in G ending at node v and we define
depth(G) = maxv∈V depth(v,G) to refer to the number of nodes in the longest
directed path in G. Given a node v ∈ V , we define indeg(v) := |parents(v,G)|
to denote the number of incoming edges into v, and we also define indeg(G) :=
maxv∈V indeg(v). Given a set S ⊆ V of nodes, we use G − S to refer to the
subgraph of G obtained by deleting all the nodes in S and all edges that are
incident to S. We also use the notation S≤k := S∩[k] denotes the subset of S that
only intersects with [k]. We say that a DAG G = (V,E) is (e, d)-depth robust if
for any subset S ⊆ V such that |S| ≤ e we have depth(G−S) ≥ d. Otherwise, we
say that G is (e, d)-reducible and call the subset S a depth-reducing set (which
is of size at most e and yields depth(G − S) < d).

We denote with PG,T and P‖
G,T the set of all legal sequential and parallel

classical pebblings of G with target set T , respectively. In the case where T =
sinks(G), we simply write PG and P‖

G, respectively.

1.1 Our Results

We introduce the parallel reversible pebbling game as a tool to analyze the
(amortized) space-time cost of a quantum circuit evaluating a function f with a
static data-dependency graph G. Prior work [Ben89,Krá01,MSR+19] introduced
a sequential reversible pebbling game. As we discuss, there are several key sub-
tleties that arise when extending the sequential reversible pebbling game to the
parallel setting. We argue that any parallel quantum pebbling P = (P0, . . . , Pt)
of the graph G corresponds to a quantum circuit CP evaluating f with compara-
ble costs, e.g., the depth of the quantum circuit CP corresponds to the number
of pebbling rounds t and the width of the circuit corresponds to the space com-
plexity of the pebbling, i.e., maxi |Pi|. Thus, any reversible pebbling attack will
yield a more efficient quantum pre-image attack1.

As an application, we use the parallel reversible pebbling game to analyze the
space-time cost of several important password hashing functions fG,H including
PBKDF2, BCRYPT, Argon2i, and DRSample.

Reversible Pebbling Attacks on Line Graphs. We first focus on analyzing the
reversible pebbling cost of a line graph LN with N nodes {1, . . . , N} and edges
1 While one could use the parallel reversible pebbling game as a heuristic to lower
bound the cost of a quantum pre-image attack we stress that, at this time, there is
no pebbling reduction which provably lower bounds the cost of a quantum pre-image
attack on fG,H using reversible pebbling cost of the underlying DAG G. We do have
pebbling reductions for classical (non-reversible) pebblings in the parallel random
oracle model [AS15], but there are several technical barriers which make it difficult
to extend this reduction to the quantum random oracle model.
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(i, i+1) for each 1 ≤ i < N . Classically, there is a trivial black pebbling strategy
for the line graph with simply walks a single pebble from node 1 to node N over
N pebbling rounds, i.e., in each round i we place a new pebble on node i and then
delete the pebble on node i − 1. This pebbling strategy is clearly optimal as the
maximum space usage is just 1 and the space-time cost is just N × 1 = N . How-
ever, this simple pebbling strategy is no longer legal in the reversible pebbling
game and it is a bit tricky just to find a reversible pebbling strategy whose space-
time cost is significantly lower than O (

N2
)
—the space-time cost of the näıve

pebbling strategy which avoids removing pebbles. In Theorem 1 we show that the
(sequential) reversible space-time complexity of a line graph is O

(
N

1+ 2√
log N

)
.

A similar argument seems to be implicitly assumed by Bennett [Ben89] though
the argument was never explicitly formalized as a reversible pebbling strategy.
The result improves upon a result of Li and Vitányi [LV96] who showed that the
space-time complexity is at most O (

N log 3 log N
)
2.

Because the space-time complexity of the line graph G = LN is so low, it
is a poor choice for an iMHF fG,H or for password hashing [BHZ18]. However,
the line graph LN naturally corresponds to widely deployed password hashing
algorithms like BCRYPT [PM99] and PBKDF2 [Kal00] which use hash iteration
to increase costs where the parameter N controls the number of hash iterations.
Thus, to understand the cost of a (quantum) brute-force password cracking
attack it is useful to analyze the (reversible) pebbling cost of LN .

Reversible Pebbling Attack for Depth-Reducible DAGs. In Theorem 2 we give a
generic parallel reversible pebbling attack on any (e, d)-reducible DAG G with
space-time cost O (

Ne + dN2d
)

which corresponds to a meaningful attack when-
ever e = o(N) and d2d = o(N). A DAG G is said to be (e, d)-reducible if there is
a subset S ⊆ V of at most e nodes such that any length d path P in G contains
at least one node in S. As we show this leads to meaningful reversible pebbling
attacks on Argon2i, the winner of the Password Hashing Competition. Specifi-
cally, we demonstrate how to construct depth-reducing sets for Argon2i-A (an
older version of Argon2i) and Argon2i-B (the current version of Argon2i) with
e = o(N) and d2d = o(N). This leads to reversible pebbling attacks with space-
time complexity O (

N2 log log N/
√

log N
)

and O (
N2/ 3

√
log N

)
against Argon2i-

A and Argon2i-B, respectively—see Corollary 1.
In the classical pebbling setting, Alwen and Blocki [AB16] previously gave

a generic pebbling attack on (e, d)-reducible DAGs with amortized space-time
cost O (

Ne + N2d/e
)
. However, this pebbling attack is not legal in the reversible

setting, and without amortization, the space-time cost is still N2—the average
number of pebbles on the graph per round is just e + Nd/e but at the peak,
the pebbling strategy still requires Ω(N) pebbles. In our pebbling strategy, the
maximum space usage is O (

e + d2d
)
.

2 The pebbling of Li and Vitányi [LV96] runs in time O (
N log 3

)
while using at most

O (log N) pebbles. Our pebbling strategy uses more pebbles to reduce the overall
space-time cost by improving the pebbling time.
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Reversible Pebbling Attack Against DRSample. Finally, we use the parallel
reversible pebbling game to analyze DRSample [ABH17]—a proposal to update
the edge distribution in Argon2i with a depth-robust graph. With high prob-
ability, a randomly sampled DRSample DAG G will not be (e, d)-reducible for
parameters e, d as large as e = Ω(N/ log N) and d = Ω(N). Thus, the generic
reversible pebbling attack on (e, d)-reducible graphs does not seem to apply. We
give an alternate pebbling strategy by partitioning the nodes of G into 	N/b

consecutive blocks of size b and converting a parallel reversible pebbling of the
line graph L�N/b	 into a legal reversible pebbling of G. The reversible pebbling
strategy will be cost-effective as long as we have an efficient pebbling strategy
for L�N/b	 and the graph G does not contain too many “long” edges (u, v) with
|v − u| ≥ b — we show that DRSample does not contain too many long edges
when b = N/ log2 N . Combined with our parallel reversible pebbling strategies
for the line graph, this leads to an attack on DRSample with space-time cost at
most O (

N2 log log N/ log N
)
—see Corollary 2.

More generally, in Theorem 3 we give an efficient reversible pebbling algo-
rithm which transforms a legal reversible pebbling P ′ = (P ′

1, . . . , P
′
t′) of the

line graph L�N/b	 into a legal reversible pebbling P = (P1, . . . , Pt) of a DAG
G = (V,E). The reversible pebbling requires t = O (bt′) rounds and space
bs′ + (#skip) where #skip is upper bounded by the number of long edges
(u, v) ∈ E with |v−u| ≥ b and s′ = maxi |P ′

i | upper bounds the space usage of the
pebbling P ′. Thus, the total space-time complexity will be O (

b2s′t′ + N#skip
)

and we will be able to obtain an efficient reversible pebbling attack as long as
b = o(N) and (#skip) = o(N)—we show that this is the case for DRSample.

Cumulative Pebbling Cost and Parallel Reversible Pebbling. Alwen and
Blocki [AB16] gave a general parallel black pebbling attack on any (e, d)-
reducible graph. This general pebbling attack was used to upper bound the
cumulative cost of many prominent iMHFs including Argon2i-A [AB16] and
Argon2i-B [AB17]. More generally the attack shows that any constant indegree
DAG G has cumulative pebbling cost at most O (

N2 log log N/ log N
)
. We show

how the pebbling attack of Alwen and Blocki [AB16] can be extended to the par-
allel reversible pebbling game3. In particular, we can show that the cumulative
reversible pebbling costs of an (e, d)-reducible DAG with maximum indegree δ

is upper bounded by O
(
eN + gδN + N2d

g

)
for any parameter g ≥ d matching

the non-reversible pebbling attacks of Alwen and Blocki [AB16]—see Theorem
4. More specifically, since any DAG G with constant indegree δ = O(1) is (e, d)-
reducible with d = N/ log2 N and e = O (N log log N/ log N) [AB16] we can plug

3 Alwen, Blocki and Pietrzak [ABP17] later provided a recursive version of the peb-
bling attacks of Alwen and Blocki [AB16] which can further reduces the cumulative
pebbling cost of a DAG which is (ei, di)-reducible at a sequence of points (ei, di) with
di < di−1 and ei ≥ di−1. The recursive pebbling attack yields tighter asymptotic
upper bounds for some iMHF candidates [BZ17,ABP17]. We conjecture that these
recursive pebbling attacks can also be generalized to the reversible pebbling setting
though we leave this as an open problem.
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in g = e to obtain a reversible pebbling strategy with cumulative cost at most
O (

N2 log log N/ log N
)
—see Corollary 3. We can also upper bound the cumu-

lative reversible pebbling costs of Argon2i-A and Argon2i-B as O (
N1.75 log N

)

and O (
N1.8

)
respectively—see the full version for the details.

1.2 Technical Overview

Defining the Parallel Reversible Pebbling Game. We begin by defining and moti-
vating the parallel reversible pebbling game. We want to ensure that any legal
(parallel) reversible pebbling strategy for G corresponds to a quantum circuit
CG,H evaluating fG,H that could be used as part of a pre-image attack using
Grover’s algorithm.

We first consider the parallel quantum random oracle model [BDF+11] where
the random oracle is a function H : {0, 1}≤2λ → {0, 1}λ. In the parallel quantum
random oracle model we are given access to a quantum oracle maps basis states
of the form |x1, y1, . . . , xk, yk, z〉 to the new state |x1, y1 ⊕ H(x1), . . . , xk, yk ⊕
H(xk), z〉. Here, x1, . . . , xk denote the queries, y1, . . . , yk denote the output reg-
isters and z denotes any auxiliary data. Notice that if yi = 0λ then the ith output
register will just be H(xi) after the query is submitted.

Now consider the function f(x) = HN (x) where H1(x) = H(x) and
Hi+1(x) = H(Hi(x)). The data-dependency graph for f is simply the line graph
G = LN . In our reversible pebbling game, we want to ensure that each pebbling
transition corresponds to a legal state transition in the quantum random oracle
model. If N = 5, then the pebbling configuration Pi = {2, 3, 4} intuitively corre-
sponds to a quantum state containing the labels X2 = H2(x), X3 = H3(x) and
X4 = H4(x). From this state, we could use X4 and an input register and submit
the query |X4, 0λ〉 to the random oracle to obtain X5 = H(X4) from the result-
ing state |X4,H(X4)〉. Similarly, while we cannot simply delete X3 we could
uncompute this value by using X3 as an output register and submitting the ran-
dom oracle query |X2,X3〉 to obtain the new state |X2,H(X2) ⊕ X3〉 = |X2, 0λ〉
in which the label X3 has been removed. However, without the label X1 there
is no way to uncompute X2 without first recomputing X1.

The above example suggests that we extend the parallel pebbling game by
adding the rule that parents(Pi \Pi+1, G) ⊆ Pi, i.e., a pebble can only be deleted
if all of its parents were pebbled at the end of the previous pebbling round.
While this rule is necessary, it is not yet sufficient to prevent impossible quan-
tum state transitions. In particular, the rule would not rule out the pebbling
transition from Pi = {1, 2, . . . , i} to the new configuration Pi+1 = {} where all
labels have been removed from memory. This pebbling transition would corre-
spond to a quantum transition from a state in which labels X1, . . . , Xi are stored
in memory to a new state where all of these labels have been uncomputed after
just one (parallel) query to the random oracle. Because quantum computation is
reversible this would also imply that we could directly transition from the orig-
inal state (no labels computed) to a state in which all of the labels X1, . . . , Xi

are available after just one (parallel) query to the quantum random oracle. How-
ever, it is known that computing Xi = Hi(x) requires at least i rounds of
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computation even in the parallel quantum random oracle model [BLZ21]. Thus,
the pebbling transition from Pi = {1, 2, . . . , i} to Pi+1 = {} must be disallowed
by our reversible pebbling rules as the corresponding quantum state transition
is impossible.

We address this last issue by adding another pebbling rule: if v ∈ parents(Pi \
Pi−1, G) ∪ parents(Pi−1 \ Pi, G), then v ∈ Pi. Intuitively, the rule ensures that
if the label Xv appeared in an input register to either compute or uncompute
some other data label then we cannot also uncompute Xv in this round, i.e., we
must keep a pebble at node v.

We make several observations about the reversible pebbling game. First, any
legal reversible pebbling of a DAG G is also a legal (classical) parallel black
pebbling of G since we only added additional pebbling restrictions. More for-
mally, if P‖

G (resp. PG) denotes the set of all legal parallel (resp. sequential)
black pebblings of G and P →← ,‖

G (resp. P →←
G ) denotes the set of all legal paral-

lel (resp. sequential) reversible pebblings of G then we have P →← ,‖
G ⊆ P‖

G and
P →←

G ⊆ PG. Thus, any lower bounds on the classical parallel pebbling cost of G
will immediately carry over to the reversible setting. However, upper bounds will
not necessarily carry over since classical pebbling attacks may not be legal in
the reversible pebbling game. Second, we observe that the following sequential
reversible pebbling strategy works for any DAG G = (V = [N ], E). In the first
N rounds, pebble all nodes in topological order without deleting any pebbles.
In the next N − 1 rounds remove pebbles from all nodes (excluding sinks(G)) in
reverse topological order. More formally, assuming that 1, . . . , N is a topological
order and that node N is the only sink node we have Pi = [i] for each i ≤ N
and PN+j = [N ] \ [N − j,N − 1] for each j ≤ N − 1. The pebbling requires N
pebbles and finishes in t = 2N − 1 rounds so the space-time cost is 2N2 − N .
We refer to the above sequential strategy as the näıve reversible pebbling for a
graph G.

Reversible Pebbling Attack on Line Graphs. We give a reversible pebbling attack
on a line graph LN of size N with the space-time cost O

(
N

1+ 2√
log N

)
. This can

be achieved by generalizing Li and Vitányi’s work [LV96]. Li and Vitányi [LV96]
gave a reversible pebbling strategy on a line graph of size N with space-time
cost O (

N log 3 log N
)

by translating ideas of Bennett [Ben89] into a reversible
pebbling argument. Intuitively, if we define N(k) using the recurrence relation-
ship N(k) = k +

∑k−1
j=0 N(j), solving to N(k) = 2k − 1, then they show that the

line graph with N(k) nodes can be pebbled using space S(k) = S(k − 1)+1 = k
and time T (k) = 3T (k − 1) + 1 = O (

3k
)

for a total space-time cost of
O (

k3k
)

= O (
(N(k))log 3 log N(k)

)
. Their pebbling strategy works as follows:

(1) recursively apply the pebbling strategy to place a pebble on node N(k − 1)
using space at most S(k − 1) and time at most T (k − 1), (2) place a pebble on
node v1 = N(k − 1) + 1, (3) recursively apply the strategy (in reverse) to clear
any leftover pebbles from nodes 1 to N(k − 1) in time T (k − 1) and (additional)
space at most S(k−1). We are left with (k−1)+

∑k−2
j=1 N(j) = N(k−1) remain-



The Parallel Reversible Pebbling Game 61

ing nodes which will be handled recursively using time T (k−1) and (additional)
space S(k − 1).

We observe that by increasing the space usage slightly we can decrease the
pebbling time to obtain a superior space-time cost. We note that Bennett [Ben89]
mentions a similar idea in his paper, but that this idea was not formalized as
a reversible pebbling strategy either by Bennett [Ben89] or by Li and Vitányi
[LV96]. The key modification is as follows: we redefine N(k) = ck +

∑k−1
j=0 cN(j)

solving to N(k) = Θ
(
(c + 1)k

)
. We can now recursively pebble a line graph

with N(k) nodes in sequential time T (k) = (2c + 2)T (k − 1) + c = O (
(2c + 2)k

)

and space S(k) = c + S(k − 1) = ck. Intuitively, the recursive pebbling strategy
will begin by dropping pebbles on each of the nodes N(k − 1) + 1, 2N(k − 1) +
2, ..., cN(k − 1) + c using space at most S(k − 1) + c and time 2c · T (k − 1). We
are left with c(k −1)+

∑k−2
j=0 cN(j) = N(k −1) remaining nodes which can then

be handled recursively. Setting c = 2k, we have k = Θ(
√

log N(k)) yielding an

upper bound of O
(

N(k)
1+(2+o(1)) 1√

log N(k)

)

on the sequential space-time cost.

We can obtain a minor improvement by exploiting parallelism to save time
while increasing space usage slightly. In particular, our parallel strategy uses
space O (

c2k
)

and time O (
(c + 2)k

)
with total space-time cost O (

c(2c + 4)k
)
.

Setting c + 1 = 2k we have a slightly better upper bound O
(

N(k)
1+ 2√

log N(k)

)

on the space-time cost. Further details can be found in the full version.

Generic Reversible Pebbling Attack on Depth-Reducible Graphs. We give a
generic reversible pebbling attack on any (e, d)-reducible DAG G = (V = [N ], E)
with maximum indegree 2. The space-time cost of our reversible pebbling attack
is at most O (

Ne + Nd2d
)
. Thus, the attack will be superior to the näıve

reversible pebbling strategy as long as e = o(N) and d2d = o(N). We begin
with a depth-reducing set S ⊆ V of size |S| ≤ e. Our reversible pebbling strat-
egy will never remove pebbles from the set S until all of the sink nodes in G are
pebbled and we are ready to remove pebbles from the remaining nodes. On each
round i ≤ N we will place a new pebble on node {i}. To ensure that this step
is legal, we consider the subgraph formed by all of node i’s ancestors in G − S.
Since G − S does not contain a directed path of length d and each node has at
most 2 parents there are at most 2d ancestors of node i in G − S. Once again
applying the observation that the depth of G − S is at most d we can start to
repebble i’s ancestors in round i − d − 1 to ensure that i’s immediate parents
are pebbled by round i − 1. After we place a pebble on node i we can remove
pebbles from i’s ancestors in G − S over the next d rounds. Since we only keep
pebbles on the set S and the ancestors of up to 2d nodes in G−S, the maximum
space usage of this reversible pebbling strategy will be O (

e + d2d
)
.

We apply the generic attack to Argon2i-A and Argon2i-B. In particular,
we apply ideas from the previous work [AB17,BZ17] to show that Argon2i-A
(resp. Argon2i-B) graphs are (e, d)-reducible with e = O (

N log log N/
√

log N
)

and d = log N/ log log N (resp. e = O (
N/ 3

√
log N

)
and d = (log N)/2). This
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leads to reversible pebbling attacks with cost O (
N2 log log N/

√
log N

)
and

O (
N2/ 3

√
log N

)
) for Argon2i-A and Argon2i-B, respectively. An intriguing open

question is whether or not these are the best reversible pebbling attacks for
Argon2i-A and Argon2i-B?

Reversible Pebbling Attack on DRSample. We provide a general reversible peb-
bling attack on any DAG G with the property that G contains few skip nodes
(defined below). Intuitively, given a DAG G = (V,E) with |V | = N and a param-
eter b ≥ 1, we can imagine partitioning the nodes of V into consecutive blocks
B1 = {v1, . . . , vb}, B2 = {vb+1, . . . , v2b}, . . . , B�N/b	 = {v(�N/b	−1)b+1, . . . , vN}
such that we have 	N/b
 blocks in total and each block contains exactly b nodes
(with the possible exception of the last block if N/b is not an integer). We call
a node u in block Bi a skip node if G contains a directed edge (u, v) from u to
some node v ∈ Bj with j > i + 1 and we call the edge (u, v) a skip edge, i.e., the
edge (u, v) skips over the block Bi+1 entirely.

We first observe that if the graph G contained no skip edges then it would
be trivial to transform a (parallel) reversible pebbling P ′ of the line graph
L�N/b	 = (V ′, E′) with space-time cost Π

→← ,‖
st (P ′) into a (parallel) reversible

pebbling P of G with space-time cost O
(
b2Π

→← ,‖
st (P ′)

)
(see Definition 2 for the

definition of Π
→← ,‖

st (·)). In particular, placing a pebbling on node v′ ∈ V ′ of
the line graph corresponds to b rounds in which we pebble all nodes in block
Bv′ . Thus, the pebbling time increases by a factor of O (b), and the total space
usage also increases by a factor b. Unfortunately, this strategy may result in an
illegal reversible pebbling when G contains skip edges. However, we can modify
the above strategy to avoid removing pebbles on skip nodes which intuitively
increases our space usage by s—the total number of skip nodes in the graph G.
The procedure P = Trans(G,P ′, b) and an example for the reversible pebbling
strategy are formally described in the full version. As long as s is sufficiently
small, we obtain an efficient parallel reversible pebbling attack on G. In par-
ticular, given a reversible pebbling P ′ of the line graph L�N/b	 = (V ′, E′) with
space-time cost Π

→← ,‖
st (P ′) we can find a reversible pebbling P of G with space-

time cost O
(
sN + b2Π

→← ,‖
st (P ′)

)
. Combining this observation with our efficient

reversible pebbling attacks on the line graph we can see that the space-time
costs will be at most O (

sN + b2(N/b)1+ε
)

for any constant ε > 0. For graphs
like DRSample [ABH17], we can show that (whp) the number of skip nodes is
at most s = O

(
N log log N

log N

)
when we set the block size b = O

(
N

log2 N

)
leading

to a reversible pebbling attack with space-time cost O
(

N2 log log N
log N

)
.

Cumulative Cost for Reversible Pebblings: Depth-Reducing Reversible Pebbling
Attacks. Alwen and Blocki [AB16] gave a non-reversible pebbling attack with
reduced cumulative pebbling cost for any (e, d)-reducible DAG G. While their
pebbling attack is non-reversible, we observe that almost all pebbling rounds
respect the constraints of reversible pebbling. We then identify the few non-
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reversible rounds and how these steps can be patched to respect the additional
constraints of reversible pebbling. See details in Sect. 4.

1.3 Related Work

Related Pebbling Games. Prior work [Ben89,Krá01,MSR+19] introduced a
reversible pebbling game to capture restrictions imposed by the Quantum No-
Deletion Theorem and analyze space-time tradeoffs in quantum computing.
However, the pebbling game considered in these works is sequential and only
allows for the addition/removal of one pebble in each round. Thus, the sequen-
tial reversible pebbling game is not suitable for analyzing the space-time cost
of a quantum circuit evaluating fG,H since the circuit can evaluate H multiple
times in parallel. We note that there are several important subtleties that must
be considered when extending the game to the parallel setting.

More recently, Kornerup et al. [KSS21] introduced a new (sequential) peb-
bling game called the spooky pebble game to model measurement-based deletion
in quantum computation. Intuitively, measurement-based deletion allows for the
conversion of some qubits into (cheaper) classical bits which can later be used to
restore the quantum state. The spooky pebble game only allows for sequential
computation and the cost model ignores classical storage. One disadvantage of
instantiating a spooky pebbling attack as part of a quantum pre-image attack
is that the final attack requires many intermediate measurements which intro-
duces additional technical challenges, i.e., we need to ensure that each and every
intermediate measurement does not disturb the state of the nearby qubits or
the rest of the quantum computer [Div00]. By contrast, a pebbling attack in
our parallel reversible pebbling game naturally corresponds to a quantum cir-
cuit which does not require any intermediate measurements and our cost model
accounts for the total storage cost (classical + quantum). While Kornerup et
al. [KSS21] introduced a spooky pebbling attack on the line graph, we note this
spooky pebbling strategy does not yield an efficient reversible pebbling attack
in our model as their pebbling attack inherently relies on frequent intermediate
measurements to reduce the number of qubits.

Remark 1. One could always try to eliminate the intermediate measurements
by applying the “principle of deferred measurement” [NC02]. However, “deferred
measurement” increases the space and/or depth of a quantum circuit. For exam-
ple, if the quantum circuit C acts on s qubits and performs m intermediate
measurements then we can obtain an equivalent quantum circuit C ′ with no
intermediate measurements with the caveat that C ′ operates on s′ = s+poly(m)
qubits. The space blowup is especially high if C makes many intermediate mea-
surements, e.g., s = O (log m). Fefferman and Remscrim [FR21] gave a space-
efficient version of the transform, but their transform yields a large penalty in
running time cost, i.e., the transform incurs a multiplicative poly(t2s) overhead
in the total running time t.

If we apply spooky pebbling in the context of Grover’s search then the total
number of intermediate measurements m would be exponential, i.e., even if we
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have a quantum circuit Cf evaluating a function f : {0, 1}k → {0, 1}k with
just a single intermediate measurement, performing the full Grover’s search to
find a pre-image of f would involve m = O (

2k/2
)

intermediate measurements
and applying “deferred measurement” to the full Grover circuit would incur a
massive time (or space) penalty. Thus, finding a quantum circuit Cf which has
reduced space-time cost and does not require any intermediate measurements
would yield a more compelling quantum pre-image attack.

2 Parallel Reversible Pebbling Games

The biggest difference between the classical and reversible pebbling games occurs
when removing pebbles from a pebbling configuration. In a classical setting, we
can always delete any pebbles in any point in time when they are no longer
needed. On the other hand, in a reversible setting, this is not feasible by quantum
no-cloning theorem. Since we can only free a pebble by querying a random oracle
at the same input, we can observe that a pebble can be deleted only if we know
all of its parents, i.e., all of its parents were previously pebbled. The following
definition captures this property:

Definition 1 (Parallel/Sequential Reversible Graph Pebbling). Let
G = (V,E) be a DAG and let T ⊆ V be a target set of nodes to be pebbled. A
pebbling configuration (of G) at round i is a subset Pi ⊆ V . Let P = (P0, . . . , Pt)
be a sequence of pebbling configurations. Below are the following properties which
define various aspects of reversible pebblings.

(1) The pebbling should start with no pebbles (P0 = ∅) and end with pebbles on
all of the target nodes i.e., T ⊆ Pt.

(2) A pebble can be added only if all of its parents were pebbled at the end of the
previous pebbling round, i.e., ∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x,G) ⊆
Pi−1.

(3) (Quantum No-Deletion Property) A pebble can be deleted only if all of its
parents were pebbled at the end of the previous pebbling round, i.e., ∀i ∈ [t] :
x ∈ (Pi−1 \ Pi) ⇒ parents(x,G) ⊆ Pi−1.

(4) (Quantum Reversibility) If a pebble was required to generate new pebbles (or
remove pebbles), then we must keep the corresponding pebble around, i.e.,
∀i ∈ [t] : x ∈ parents(Pi \ Pi−1, G) ∪ parents(Pi−1 \ Pi, G) ⇒ x ∈ Pi.

(5) (Remove Excess Pebbles) We also consider an optional constraint that Pt =
T . If a pebbling does not satisfy this optional constraint we call it a relaxed
pebbling.

(6) (Sequential pebbling only) At most one pebble is added or removed in each
round, i.e., ∀i ∈ [t] : |(Pi ∪ Pi−1) \ (Pi ∩ Pi−1)| ≤ 1.

Now we give pebbling definitions with respect to the above properties.

– A legal parallel reversible pebbling of T is a sequence P = (P0, . . . , Pt) of
pebbling configurations of G where P0 = ∅ and which satisfies conditions (1),
(2), (3), (4) and (5) above. If our pebbling additionally satisfies condition (6)
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then we say that it is a sequential pebbling. Similarly, if our pebbling does not
satisfy condition (5) then we call our pebbling strategy a relaxed pebbling.

– A legal reversible pebbling sequence is a sequence of pebbling configurations
(P0, . . . , Pt) which satisfies properties (2) and (3) and (4) without requiring
P0 = {}.

– A legal (non-reversible) pebbling sequence is a sequence of pebbling configu-
rations (P0, . . . , Pt) satisfying condition (2).

We denote with P →←
G,T and P →← ,‖

G,T the set of all legal sequential and parallel
reversible pebblings of G with a target set T , respectively. We denote with P̃ →←

G,T

and P̃ →← ,‖
G,T the set of all legal relaxed sequential and parallel reversible pebblings

of G with target set T , respectively. Note that we have P →←
G,T ⊆ P →← ,‖

G,T and P̃ →←
G,T ⊆

P̃ →← ,‖
G,T . We will mostly be interested in the case where T = sinks(G) in which case

we simply write P →←
G and P →← ,‖

G or P̃ →←
G and P̃ →← ,‖

G , respectively.

Remark 2. We first note that from any parallel relaxed reversible pebbling of
G we can obtain a quantum circuit CG,H which computes fG,H . If our peb-
bling is not relaxed then the circuit CG,H will map the basis state |x, y, z〉 to
the new state |x, y ⊕ fG,H(x), z〉 with no ancilla bits although this property is
not necessary for Grover’s search. Including the requirement that a reversible
pebbling eliminates excess pebbles makes it easier to apply the pebbling attack
as a recursive subroutine. Thus, in this paper, we will focus on finding non-
relaxed reversible pebbling attacks. We also note that the space-time cost of a
relaxed/non-relaxed reversible pebbling is not fundamentally different. In par-
ticular, if (P1, . . . , Pt) is a relaxed pebbling where Pt = T contains the final sink
node N , then (P1, . . . , Pt, Pt−1 ∪ T, . . . , P1 ∪ T, T ) is a legal and complete (non-
relaxed) reversible pebbling of G. The running time increases by a multiplicative
factor of 2 and the space increases by an additive factor of |T | ≤ |Pt| where T
is the target set. In particular, the overall space-time costs increase by a multi-
plicative factor of 4 at most. In the remainder of the paper, when we write “legal
reversible pebbling” we assume that the pebbling is parallel and non-relaxed by
default.

Definition 2 (Reversible Pebbling Complexity). Given a DAG G =
(V,E), we essentially use the same definitions for the reversible pebbling com-
plexity as defined in the previous literature [AS15,ABP17,ABP18]. That is, the
standard notion of time, space, space-time and cumulative pebbling complexity
(CC) of a reversible pebbling P = {P0, . . . , Pt} ∈ P →← ,‖

G are also defined to be:

– (time complexity) Π
→← ,‖

t (P ) = t,
– (space complexity) Π

→← ,‖
s (P ) = maxi∈[t] |Pi|,

– (space-time complexity) Π
→← ,‖

st (P ) = Π
→← ,‖

t (P ) · Π
→← ,‖

s (P ), and
– (cumulative pebbling complexity) Π

→← ,‖
cc (P ) =

∑
i∈[t] |Pi|.
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For α ∈ {s, t, st, cc} and a target set T ⊆ V , the parallel reversible pebbling
complexities of G are defined as

Π
→← ,‖

α (G,T ) = min
P∈P →← ,‖

G,T

Π
→← ,‖

α (P ).

When T = sinks(G) we simplify notation and write Π
→← ,‖

α (G).
We define the time, space, space-time and cumulative pebbling complex-

ity of a sequential reversible pebbling P = {P0, . . . , Pt} ∈ P →←
G in a similar

manner: Π →←
t (P ) = t, Π →←

s (P ) = maxi∈[t] |Pi|, Π →←
st (P ) = Π →←

t (P ) · Π →←
s (P ),

and Π →←
cc (P ) =

∑
i∈[t] |Pi|. Similarly, for α ∈ {s, t, st, cc} and a target set

T ⊆ V , the sequential reversible pebbling complexities of G are defined as
Π →←

α (G,T ) = minP∈P →←
G,T

Π →←
α (P ). When T = sinks(G) we simplify notation

as well and write Π →←
α (G).

When compared to the definition of a classical pebbling, we can observe
that a reversible pebbling has more restrictions, i.e., it only allows us to have
pebbles exactly on the target nodes at the end of the pebbling steps, and it
further requires quantum no-deletion property and quantum reversibility. This
implies that any legal reversible pebblings are also legal classical pebblings, i.e.,
P‖

G,T ⊆ P →← ,‖
G,T (resp. PG,T ⊆ P →←

G,T ). This implies that for any graph G, target

set T and cost metric α ∈ {s, t, st, cc}, we have Π
‖
α(G,T ) ≤ Π

→← ,‖
α (G,T ) (resp.

Πα(G,T ) ≤ Π →←
α (G,T )) for a DAG G = (V,E) and a target set T ⊆ V , where

Π
‖
α(G,T ) (resp. Πα(G,T )) denotes the parallel (resp. sequential) classical peb-

bling complexities which are defined essentially the same as in Definition 2 with
a classical pebbling P = {P0, . . . , Pt} ∈ P‖

G (resp. PG). This means that any
lower bound on the classical pebbling complexity of a graph G immediately car-
ries over to the reversible setting and an upper bound (attack) on the reversible
pebbling cost immediately carries over to the setting classical pebbling.

In the context of quantum pre-image attacks, parallel space-time costs are
arguably the most relevant metric. In particular, the depth of the full Grover
circuit scales with the number of queries to our quantum circuit CG,H for fG,H

multiplied by the number of pebbling rounds for G. Similarly, the width of the
full Grover circuit will essentially be given by the space usage of our pebbling.
Thus, the space-time of Grover’s algorithm will scale directly with Π

→← ,‖
s (P ).

The cumulative pebbling complexity would still be relevant in settings where we
are running multiple instances of Grover’s algorithm in parallel and can amortize
space usage over multiple inputs. In this paper, we primarily focus on analyzing
reversible space-time costs, as this would likely be the most relevant metric in
practice. However, cumulative pebbling complexity still can be worthwhile to
study and we provide some initial results in this direction.
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3 Reversible Pebbling Attacks and Applications
on iMHFs

3.1 Warmup: Parallel Reversible Pebbling Attack on a Line Graph

We first consider two widely deployed hash functions, PBKDF2 [Kal00] and
BCRYPT [PM99], as motivating examples for analyzing a line graph. Basically,
they are constructed by hash iterations so they can be modeled as a line graph
when simplified. Hence, the pebbling analysis of a line graph tells us about the
costs of PBKDF2 and BCRYPT. Although there has been some effort to replace
such password-hash functions with memory-hard functions such as Argon2 or
SCRYPT [BHZ18], PBKDF2 and BCRYPT are still commonly used by a num-
ber of organizations. Thus, it is still important to understand the costs of an
offline brute-force attack on passwords protected by functions like PBKDF2 and
BCRYPT. In fact, NIST recommends using memory-hard functions for password
hashing [GNP+17] but they still allow PBKDF2 and BCRYPT when used with
long enough hash iterations. Hence, there is still value to analyze the quantum
resistance of these functions. Our reversible pebbling attack on DRSample relies
on efficient pebbling strategies for line graphs as a subroutine providing further
motivation to understand the reversible pebbling costs of a line graph.

As we illustrated in Sect. 1.2, we give a (sequential/parallel) reversible peb-
bling strategy for a line graph LN using recursion. It can be done by recursively
define the sequence of consecutive locations I(k) as I(k) = I(k − 1)′ ◦ I(k −
2)′ ◦ . . . ◦ I(0)′ for k > 0 and I(0) = {}, where for 0 ≤ j < k, I(j)′ is defined
to be a concatenation of c copies of I(j) and ij (which is an incident node to
I(j)), i.e., I(j)′ := I(j)(1) ◦ i

(1)
j ◦ I(j)(2) ◦ i

(2)
j ◦ . . . ◦ I(j)(c) ◦ i

(c)
j , where A(�)

denotes the �th copy of A. Intuitively, we can sequentially pebble I(k) by peb-
bling I(k − 1)′, I(k − 2)′, . . . , I(0)′. Here, pebbling I(j)′ means that we pebble
I(j)(�), i

(�)
j , and unpebble I(j)(�), and we move on to the next copy to pebble

I(j)(�+1). We can parallelize this strategy by removing and adding pebbles on
the consecutive copies at the same time, which requires more space usage but
saves time. Here, we only state the space-time cost of our reversible pebbling
strategy on a line graph in Theorem1. Details of our pebbling strategy can be
found in the full version.

Theorem 1. Let LN be a line graph of size N . Then we have Π →←
st (LN ) =

O
(
N

1+(2+o(1)) 1√
log N

)
and Π

→← ,‖
st (LN ) = O

(
N

1+ 2√
log N

)
.

The proof of Theorem 1 can be found in the full version.

3.2 Reversible Pebbling Attacks on (e, d)-Reducible DAGs

In this section, we introduce another type of reversible pebbling attack on (e, d)-
reducible DAGs with depth-reducing sets with d very small. In this paper, we
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only consider DAGs with constant indegree, and especially the current state-of-
the-art constructions of iMHFs have indegree 2. Therefore, we will assume that
indeg(G) = 2 for the DAGs that we consider.

Since the graph has indegree 2, if we find a depth-reducing set S such that
G−S has depth d, then we observe that |ancestors(v,G−S)| ≤ 2d for any node v
in G − S. If d is small, i.e., d � log N , then 2d � N and we can expect that the
space-time cost for pebbling such (e, d)-reducible DAG becomes o(N2). More
precisely, we start with giving a regular pebbling strategy (without quantum
restrictions) for such DAGs.

Classical Black Pebbling Strategy. We begin by giving a classical pebbling strat-
egy with small space-time complexity. Note that prior pebbling strategies focused
exclusively on minimizing cumulative pebbling cost, but the pebbling attacks of
Alwen and Blocki [AB16]4 for (e, d)-reducible graphs still have the space-time
cost Ω(N2).

We first introduce the following helpful notation. For nodes x and y in a DAG
G = (V,E), let LongestPathG(x, y) denote the number of nodes in the longest
path from x to y in G. Then for a node w ∈ V , a depth-reducing set S ⊆ V ,
and a positive integer i ∈ Z>0, we first define a set Aw,S,i which consists of the
nodes v where the longest directed path from v to w in G − S≤w−1 has length
i, i.e., it contains exactly i nodes.

Aw,S,i :=
{

v : LongestPathG−S≤w−1
(v, w) = i

}
.

It is trivial by definition that for any v ∈ V , Av,S,1 = {v}.
Let G = (V = [N ], E) be an (e, d)-reducible DAG. We observe that

depth(G≤k − S≤k) ≤ d is still true for any k ≤ N . At round k, we have always
ensured that we have pebbles on the set S≤k and on {k} itself. Further, at
round k, we can look d steps into the future so that at round k + d we can peb-
ble node k +d without delay. Hence, we start to repebble ancestors(k +d,G−S)
in this round and because depth(G≤k − S≤k) ≤ d we are guaranteed to fin-
ish within d rounds—just in time to pebble node k + d. Taken together, in
round k, we have pebbles on {k}, S≤k, and ancestors(k + i, G − S) for all

i ≤ d. More precisely, for v ∈ V , let Pv = S≤v ∪
(⋃d

j=1

⋃d
i=j Av−1+j,S,i

)
.

Since each ancestor graph has size at most 2d and there are at most d of
them, we observe that the total number of pebbles in each round is at most
1 + |S≤k| +

∑d
i=1 |ancestors(k + i, G − S)| ≤ 1 + e + d2d. Hence, we have that

Π
‖
st(G) ≤ N(1 + e + d2d).

Reversible Pebbling Strategy. While the above strategy works in the classical
setting it will need to be tweaked to obtain a legal reversible pebbling. In par-
ticular, after node k + d is pebbled we cannot immediately remove pebbles from

4 If G is (e, d)-reducible then Alwen and Blocki [AB16] showed that Π
‖
cc(G) ≤

ming≥d

(
eN + gN · indeg(G) + N2d

g

)
= o(N2).
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all nodes in ancestors(k + d,G − S) because this would violate our quantum
reversibility property. Instead, we can reverse the process and unpebble nodes in
ancestors(k + d,G−S) over the next G−S rounds—with the possible exception
of nodes v ∈ ancestors(k + d,G−S) which are part of ancestors(k + d+ j,G−S)
and are still required for some future node k + d + j. Thus, if a DAG G is
(e, d)-reducible we can establish the following result.

Theorem 2. Let G = (V = [N ], E) be an (e, d)-reducible DAG. Then
Π

→← ,‖
st (G) = O (

Ne + Nd2d
)
.

We will give the proof of Theorem 2 later in the subsection. To prove Theo-
rem 2, we first would need to give a legal reversible pebbling for an (e, d)-reducible
DAG G. Lemma 1 provides the desired reversible pebbling for G. The proof of
Lemma 1 can be found in the full version.

Lemma 1. Let G = (V = [N ], E) be an (e, d)-reducible DAG and let S ⊆ V be
a depth-reducing set. Define

Bv :=
d+1⋃

j=1

d+1⋃

i=j

(Av+1−j,S,i ∪ Av−1+j,S,i) ,

for v ∈ V . Then P = (P0, P1, . . . , P2N ), where each pebbling configuration is
defined by

– P0 = ∅,
– for v ∈ [N ], Pv := S≤v ∪ Bv, and
– for N < v ≤ 2N , Pv := P2N−v ∪ {N},
is a legal parallel reversible pebbling for G.

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Let P = {P0, P1, . . . , P2N} as defined in Lemma 1, in
which we showed that it is a legal quantum pebbling. Clearly, Π

→← ,‖
t (P ) = 2N .

Further, we observe that Π
→← ,‖

s (P ) ≤ maxv∈V {|S≤v|+|Bv|+1}. Since we assume
that indeg(G) = 2, we have

|Bv| =

∣
∣
∣
∣
∣
∣

d+1⋃

j=1

d+1⋃

i=j

(Av+1−j,S,i ∪ Av−1+j,S,i)

∣
∣
∣
∣
∣
∣

≤
d+1∑

j=1

d+1∑

i=j

|Av+1−j,S,i| + |Av−1+j,S,i|

≤
d+1∑

j=1

d+1∑

i=j

2i+1 = 8d2d + 2.

Taken together, Π
→← ,‖

st (P ) ≤ 2N(e + 8d2d + 3) = O (
Ne + Nd2d

)
. Hence,

Π
→← ,‖

st (G) = min
P∈P →← ,‖

G,{N}
Π

→← ,‖
st (P ) = O (

Ne + Nd2d
)
. ��
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Analysis of Argon2i. There are a number of variants for the Argon2i graphs. We
will focus on Argon2i-A [BCS16] and Argon2i-B5 [BDKJ16] here. Recall that
Argon2i-A is a graph G = (V = [N ], E), where E = {(i, i + 1) : i ∈ [N − 1]} ∪
{(r(i), i)}, where r(i) is a random value that is picked uniformly at random from
[i−2]. Argon2i-B has the same structure, except that r(i) is not picked uniformly
at random but has a distribution as follows:

Pr [r(i) = j] = Pr
x∈[N ]

[

i

(

1 − x2

N2

)

∈ (j − 1, j]
]

.

Lemma 2. Let GArg-A = (VA = [N ], EA) and GArg-B = (VB = [N ], EB) be
randomly sampled graphs according to the Argon2i-A and Argon2i-B edge distri-
butions, respectively. Then with high probability, the following holds:

(1) GArg-A is (e1, d1)-reducible for e1 = N
d′ + N lnλ

λ and d1 = d′λ, for any 0 <

λ < N and 0 < d′ < N
λ .

(2) GArg-B is (e2, d2)-reducible for e2 = N
d′ + 2N√

λ
and d2 = d′λ, for any 0 < λ < N

and 0 < d′ < N
λ .

Alwen and Blocki [AB16,AB17] established similar bounds to Lemma 2, but
focused on parameter settings where the depth d is large. By contrast, we will
need to pick a depth-reducing set with a smaller depth parameter d � log N
to minimize the d2d cost term in our pebbling attack. The full proof of Lemma
2 can be found in the full version. Here, we only give a brief intuition of the
proof. To reduce the depth of a graph, we follow the approach of Alwen and
Blocki [AB16,AB17] and divide N nodes into λ layers of size N/λ and then
reduce the depth of each layer to d′ so that the final depth becomes d = d′λ.
To do so, we delete all nodes with parents in the same layer, and then delete
one out of d′ nodes in each layer. And then we count the number of nodes to be
deleted in both steps for each graph.

Applying the result from Lemma2 to Theorem 2, we have the following space-
time cost of reversible pebbling for Argon2i-A and Argon2i-B. Intuitively, we
obtain Corollary 1 by setting λ =

√
log N and d′ = λ/ ln λ ≈ 2

√
log N/ log log N

(resp. λ = 3
√

log2 N and d′ = 3
√

log N/2) in Lemma 2 for Argon2i-A (resp.
Argon2i-B). The full proof of Corollary 1 can be found in the full version.

Corollary 1. Let GArg-A = (VA = [N ], EA) and GArg-B = (VB = [N ], EB)
be randomly sampled graphs according to the Argon2i-A and Argon2i-B
edge distributions, respectively. Then with high probability, Π

→← ,‖
st (GArg-A) =

O
(

N2 log log N√
log N

)
, and Π

→← ,‖
st (GArg-B) = O

(
N2

3√log N

)
.

3.3 Reversible Pebbling Attacks Using an Induced Line Graph

In this section, we give another general strategy to pebble DAGs by “reduc-
ing” the DAG G to a line graph, as shown in Fig. 1. Intuitively, given a DAG
5 We will follow the naming convention of Alwen and Blocki [AB17] throughout the

paper and use Argon2i-A to refer to Argon2i-A v1.1 and Argon2i-B to refer to v1.2+.
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Fig. 1. A line graph L�N/b� induced from a DAG G. Note that each block in an original
graph corresponds to a node in the corresponding line graph, e.g., a block Bi in G that
consists of five nodes correspond to the node v′

i in L�N/b�.

G = (V,E) with |V | = N and an integer parameter b ≥ 1, we can partition V
into consecutive blocks B1, . . . , B�N/b	 such that each block contains exactly b
nodes, while for the last block we can have less than b nodes if N/b is not an
integer.

Notation. Now we consider a reversible pebbling P ′ of the line graph L�N/b	 =
(V ′ = [	N/b
], E′). Intuitively, each node in L�N/b	 corresponds to each block
in G. To transform P ′ into a pebbling P of G, it will be useful to introduce
some notation. Given a node v′ ∈ V ′ and the pebbling P ′ of L�N/b	, we define
LastDelete(P ′, v′) := max {i : v′ ∈ P ′

i} to denote the unique index i such that
node v′ ∈ P ′

i , but v′ �∈ P ′
j for all rounds j > i, i.e., the pebble on node v′ was

removed for the final time in round i + 1. Similarly, it will be convenient to
define LastAdd(P ′) := max

{
i : 	N/b
 �∈ P ′

i−1

}
to be the unique round where a

pebble was placed on the last node v = 	N/b
 for the final time (Note: it is
possible that a legal pebbling P ′ places/removes a pebble on node v = 	N/b

several times). We make a couple of basic observations. First, we note that if
u′ < v′ then LastDelete(P ′, u′) > LastDelete(P ′, v′) since we need node v′ − 1 on
the graph to remove a pebble from node v′. Similarly, we note that for any node
v′ < 	N/b
 that LastDelete(P ′, v′) > LastAdd(P ′) since we need node 	N/b
 − 1
to be pebbled before we can place a pebble on the final node. Given our graph
G = (V,E), a parameter b, and a partition B1, . . . , B�N/b	 of V into consecutive
blocks of size b, we define Skip(Bi, G), for each i, to be the set of all skip nodes
in block Bi, i.e., the set of nodes with an outgoing edge that skips over block
Bi+1:

Skip(Bi, G) := {v ∈ Bi : ∃j > i + 1 such that v ∈ parents(Bj , G)}. (1)

We further define NumSkip(G, b) as the total number of skip nodes in G =
(V,E) after partitioning the set of nodes V into consecutive blocks of size b, i.e.,
NumSkip(G, b) :=

∑�N/b	
i=1 |Skip(Bi, G)|, where Bi’s are defined as before.

Pebbling Attempt 1. Our first approach to convert P ′ ∈ P →← ,‖
L�N/b	 to a legal

reversible pebbling P of G is as follows. Since each node in L�N/b	 corresponds to
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a block (of size at most b) in G, we can transform placing a pebble on a node in
L�N/b	 to pebbling all nodes in the corresponding block in G in at most b steps.
Similarly, we can convert removing a pebble on a node in L�N/b	 to removing
pebbles from all nodes in the corresponding block in G in at most b steps. It
gives us Π

→← ,‖
s (P ) ≤ bΠ

→← ,‖
s (P ′) since each node is transformed to a block of

size at most b, and Π
→← ,‖

t (P ) ≤ bΠ
→← ,‖

t (P ′) since one pebbling/removing step
in L�N/b	 is transformed to at most b pebbling/removing steps in G.

However, this transformation does not yield a legal reversible pebbling of G
due to the skip nodes. In particular, given a reversible pebbling configuration
P ′

k = {v′} of L�N/b	, it is legal to proceed as P ′
k+1 = {v′, v′ +1}. However, when

converting it to a reversible pebbling of G, one would need to place pebbles on
block Bv′+1 while only having pebbles on block Bv′ . This could be illegal if there
is a node v ∈ V such that v ∈ Bi for i < v′ and v ∈ parents(Bv′+1, G), i.e., v
is a skip node in Bi, because v must be previously pebbled to place pebbles on
block Bv′+1.

Reversible Pebbling Strategy. To overcome this barrier, when we convert P ′ ∈
P →← ,‖

L�N/b	 to a legal reversible pebbling P of G, we define a transformation P =
Trans(G,P ′, b) which convert placing/removing a pebble on/from a node v′ in
L�N/b	 to placing/removing pebbles on/from all nodes in the corresponding block
Bv′ in G in at most b steps as our first attempt, but when we remove pebbles
from Bv′ in G, we keep skip nodes for the block in the transformation until we
delete pebbles from the block for the last time, i.e., after round LastDelete(P ′, v′),
since these skip nodes will no longer needed to pebble nodes in other blocks in
the future.

Furthermore, for the last block (in G), when a pebble is placed on the last
node (in L�N/b	) for the final time, i.e., in round LastAdd(P ′), we indeed want
to only pebble the last node (sink node) in the block but not the entire block.
Hence, we need additional (at most b−1) steps to remove pebbles from all nodes
except for the last node in the block.

We can argue the legality of the converted pebbling of G because pebbling
steps in each block is legal and keeping skip nodes during the transformation
does not affect the legality of pebbling. Intuitively, whenever we pebble a new
node v in L�N/b	 the node v − 1 must have been pebbled in the previous round.
Thus, in G we will have pebbles on all nodes in the block Bv−1. Now for every
node w ∈ Bv and every edge of the form (u,w) we either have (1) u ∈ Bv−1,
(2) u ∈ Bv or (3) u ∈ Bj with j < v − 1. In the third case, u is a skip node
and will already be pebbled allowing us to legally place a pebble on node w.
Similarly, in the first case, we are guaranteed that u is already pebbled before
we begin pebbling nodes in block Bv since every node in Bv−1 is pebbled, and in
the second case, u will be (re)pebbled before node w. A similar argument shows
that all deletions are legal as well. The full proof of Lemma3 can be found in
the full version.
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Lemma 3. Let G = (V = [N ], E) and b ∈ [N ] be a parameter. If P ′ ∈ P →← ,‖
L�N/b	 ,

then P = Trans(G,P ′, b) ∈ P →← ,‖
G .

The formal definition of the procedure Trans(G,P ′, b) and an example for the
reversible pebbling strategy can be found in the full version. Now we observe the
following theorem describing the space-time cost of the converted pebbling in
terms of the cost of the reduced pebbling of the line graph. We defer the proof
of Theorem 3 to the full version.

Theorem 3. Given a DAG G = (V,E) with |V | = N nodes, a reduced line
graph L�N/b	 = (V ′, E′) with |V ′| = 	N/b
 nodes (where b is a positive integer),
and a legal reversible pebbling P ′ ∈ P →← ,‖

L�N/b	 , there exists a legal reversible pebbling

P = Trans(G,P ′, b) ∈ P →← ,‖
G such that

Π
→← ,‖

st (P ) ≤ 2b2Π
→← ,‖

st (P ′) + 2bΠ
→← ,‖

t (P ′) · NumSkip(G, b).

Analysis on DRSample. DRSample [ABH17] is the first practical construction
of an iMHF which modified the edge distribution of Argon2i. Consider a DAG
G = (V = [N ], E). Intuitively, similar to Argon2i, each node v ∈ V \ {1} has
at most two parents, i.e., there is a directed edge (v − 1, v) ∈ E and a directed
edge from a random predecessor r(v). While Argon2i-A picks r(v) uniformly at
random from [v − 2], DRSample picks r(v) according to the following random
process: (1) We randomly select a bucket index i ≤ log v, (2) We randomly
sample r(v) from the bucket Bi(v) = {u : 2i−1 < v − u ≤ 2i}. We can upper
bound the number of skip nodes when we sample G according to this distribu-
tion. In particular, we observe that NumSkip

(
GDRS,

⌈
N

log2 N

⌉)
= O

(
N log log N

log N

)

where GDRS is a randomly sampled graph according to the DRSample edge
distribution. Intuitively, to count the number of skip nodes, we need to find
edges with length > b so that the edge skips over a block. There are at most
log v − log b (out of log v) buckets which potentially could result in a skip node,
which implies that the probability that the edge (r(v), v) is longer than b is at
most 1 − log b/ log v ≤ 1 − log b/ log N = log(N/b)/ log N . Thus, the expected
number of skip nodes in DRSample is at most N log(N/b)/ log N and standard
concentration bounds imply that the number of skip nodes will be upper bounded
by O(N log(N/b)/ log N) with high probability. Setting b = 	N/ log2 N
 we
can conclude that the expected number of skip nodes in DRSample is at most
O(N log log N/ log N) with high probability. Further details can be found in the
full version. Applying this result to Theorem3, we have the following space-time
cost of reversible pebbling for DRSample.

Corollary 2. Let GDRS = (VDRS = [N ], EDRS) be a randomly sampled graph
according to the DRSample edge distribution. Then with high probability,
Π

→← ,‖
st (GDRS) = O

(
N2 log log N

log N

)
.

The proof of Corollary 2 is deferred to the full version and we only give a brief
intuition here. Basically, we can reduce GDRS to the induced line graph L�log2 N	
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of size 	log2 N
. Then by plugging in the reversible time and space-time cost
of L�log2 N	 and the number of skip nodes of GDRS in Theorem 3 with setting

b = 	N/ log2 N
, we can conclude that Π
→← ,‖

st (GDRS) = O
(

N2 log log N
log N

)
.

4 Reversible Pebbling Attacks for Minimizing
Cumulative Complexity

In this section, we adapt the depth-reducing pebbling attack GenPeb from Alwen
and Blocki [AB16] to a reversible pebbling attack with the same asymptotic
CC. The pebbling attack of Alwen and Blocki [AB16] applies to any (e, d)-
reducible DAG G with e = o(N) and d = o(N). We first provide an overview of
their pebbling strategy before describing how we extend the attack to obtain a
reversible pebbling.

Overview of the Attack [AB16]. Suppose that we are given a DAG G = (V =
[N ], E) with constant indegree δ along with a depth-reducing set S of size |S| ≤ e.
Intuitively, the pebbling attack of Alwen and Blocki [AB16] can be divided into
a series of alternating “light phases” and “balloon phases.” It is also helpful
to imagine partitioning the nodes [N ] into intervals Ii = [(i − 1)g + 1, ig] of g
consecutive nodes.

– Light Phases: During the ith light phase our goal will be to pebble all of the
nodes in Ii over the next g consecutive pebbling rounds. The pre-condition
for the ith light phase is that we start off with pebbles on all of the nodes
(parents(Ii) ∪ S) ∩ [(i − 1)g] where parents(Ii) = {u : ∃v ∈ Ii s.t. (u, v) ∈ E}
denotes the set of parents of nodes in Ii. Similarly, the post-condition for the
ith light phase is that we have pebbles on all of the nodes (parents(Ii) ∪ S) ∩
[(i−1)g]∪ Ii. If Pj = (parents(Ii) ∪ S)∩ [(i−1)g] denotes the initial pebbling
configuration at the start of the light phase then we can set Pj+x = Pj ∪
[(i − 1)g, (i − 1)g + x] so that Pj+g gives us our post-condition. During each
light phase we keep at most |(parents(Ii) ∪ S) ∩ [(i − 1)g] ∪ Ii| ≤ e + δg + g
pebbles on the graph. Thus, the total cost incurred during each light phase
is at most (e + δg + g)g and the total cost incurred over all N

g light phases is
at most N(e + δg + g).

– Balloon Phases: The ith balloon phase takes place immediately after the ith

light phase with the goal of quickly recovering previously discarded pebbles
to satisfy the pre-condition for the next ((i + 1)st) light phase. In particular,
the post-condition for the ith balloon phase should match the pre-condition
for the (i+1)st light phase. The pre-condition for the ith balloon phase is that
our starting configuration contains pebbles on all of the nodes S∩ [ig]. During
a balloon phase, we are not worried about space so we can recover pebbles on
the entire set [ig] within d rounds by exploiting the fact that G − S contains
no directed path of length d. Once we have recovered pebbles on the entire
set [ig] we can then discard all of the pebbles that are not needed for the next
light phase. Thus, the total cost incurred by each individual balloon phase is
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at most dN and the total cost incurred over all N
g balloon phases is at most

N2d
g .

4.1 A Reversible Pebbling Attack

We first note that the pebbling attack above [AB16] is not reversible. In particu-
lar, at the end of each balloon phase we immediately transition from the pebbling
configuration with pebbles on all of the nodes [ig] to the pebbling configuration
with pebbles only on the nodes (parents(Ii+1) ∪ S) ∩ [ig]. The purpose of this
pebbling transition is to save space during the next light phase by discarding
unnecessary pebbles. Unfortunately, the rules of the reversible pebbling game
would prevent us from discarding all of these pebbles.

To address this challenge we define a reversible balloon phase which reaches
the desired target pebbling configuration (parents(Ii+1) ∪ S) ∩ [ig] in at most
2d pebbling rounds. Intuitively, our reversible balloon phase is based on several
observations: (1) any legal monotonic black pebbling sequence Pj ⊆ Pj+1 ⊆
. . . ⊆ Pj+k is also a legal reversible pebbling sequence the reversible pebbling
game only places additional restrictions on which pebbles can be removed, (2)
if (S ∩ [ig]) ⊆ Pj then there is a monotonic black pebbling sequence Pj ⊆
Pj+1 ⊆ . . . ⊆ Pj+d with Pj+d = [ig], (3) if Pj , . . . , Pj+d and P ′

j , . . . , P
′
j+d are

both legal reversible pebbling sequences and Pj+d = P ′
j+d then the sequence

Pj , . . . , Pj+d, P
′
j+d−1, . . . , P

′
j is also a legal reversible pebbling sequence taking us

from initial configuration Pj to final configuration P ′
j—we defer the formal proof

to the full version of this paper, (4) setting Pj = ((parents(Ii) ∪ S) ∩ [(i − 1)g])∪
[(i − 1)g + 1, ig] (the configuration from the post-condition at the end of the ith

light phase) and P ′
j = (parents(Ii+1) ∪ S) ∩ [ig] (the configuration from the pre-

condition at the beginning of the (i+1)st light phase) we observe that S ∩ [ig] ⊆
Pj ∩P ′

j . Thus, we can exploit the above observation to obtain reversible pebbling
sequences Pj , . . . , Pj+d and P ′

j , . . . , P
′
j+d with Pj+d = [ig] = P ′

j+d allowing us
to transition from Pj to P ′

j in time 2d. Using the modified reversible balloon
phase (above) we obtain our main result Theorem 4. In particular, given a (e, d)
depth-reducible DAG we obtain a reversible pebbling strategy with cumulative
pebbling cost Ne+N(δ +1)g + 2N2d

g . This result is asymptotically equivalent to
the non-reversible pebbling attacks of Alwen and Blocki [AB16] so we can apply
it to analyze the reversible CC of any iMHF. The detailed pebbling attack and
legality proofs are deferred to the full version.

The proof of Lemma 4 can be found in the full version.

Lemma 4. Let 〈P1, . . . , Pt〉 and 〈P ′
1, . . . , P

′
t′〉 be two legal reversible pebbling

sequences for some graph G such that Pt = P ′
t′ . Then for any T ⊆ Pt,

〈P1, . . . , Pt, P
′
t′−1 ∪ T, P ′

t′−2 ∪ T, . . . , P ′
1 ∪ T 〉

is also a legal reversible pebbling sequence for G.

Each balloon phase from [AB16] is monotonic because it simply pebbles all
possible nodes each round. To extend the non-reversible balloon phase of [AB16],
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observe that the final pebbling configuration is [ig] for some i ≥ 1, i.e., we end
with pebbles on all of the nodes 1, 2, . . . , ig. While the final target configuration
(after the balloon phase completes) discards many pebbles from the graph we
note that it still includes pebbles on all nodes in S ∩ [ig]. Thus, there is also
a monotonic pebbling from this target configuration to the configuration with
pebbles on [ig]. Lemma 4 shows that we can combine these halves to form a
reversible balloon phase.

This gives an upper bound on the reversible CC of pebbling graphs. The
proof of Theorem 4 can be found in the full version of this paper.

Theorem 4. For any (e, d)-reducible graph G on N nodes and any g ∈ [d,N ],

Π
→← ,‖

cc (G) ≤ 2N

(
2Nd

g
+ e + (δ + 1)g

)

+ N +
2N2d

g
.

For any iMHF corresponding to a DAG G the reversible cumulative peb-
bling complexity obtained from our attack is identical to the attack from
Alwen and Blocki [AB16]. In particular, for Argon2i-A and Argon2i-B we have
Π

→← ,‖
cc (GArg-A) = O (

N1.75 log N
)

and Π
→← ,‖

cc (GArg-B) = O (
N1.8

)
.

Alwen and Blocki [AB16] showed that any constant indegree DAG is (e, d)-
reducible with e = O (N log log N/ log N) and d = N/ log2 N . Applying The-
orem 4 we obtain the following upper bound for any DAG G with constant
indegree.

Corollary 3. For any DAG G = (V = [N ], E) with constant indegree δ = O (1)
the reversible cumulative pebbling cost is at most Π

→← ,‖
cc (G) = O

(
N2 log log N

log N

)
.
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