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AbstractÐA central challenge in password security is to
characterize the attacker’s guessing curve i.e., what is the
probability that the attacker will crack a random user’s password
within the first G guesses. A key challenge is that the guessing
curve depends on the attacker’s guessing strategy and the
distribution of user passwords both of which are unknown to us.
In this work we aim to follow Kerckhoffs’s principle and analyze
the performance of an optimal attacker who knows the password
distribution. Let λG denote the probability that such an attacker
can crack a random user’s password within G guesses. We develop
several statistically rigorous techniques to upper and lower bound
λG given N independent samples from the unknown password
distribution P . We show that our upper/lower bounds on λG hold
with high confidence and we apply our techniques to analyze eight
large password datasets. Our empirical analysis shows that even
state-of-the-art password cracking models are often significantly
less guess efficient than an attacker who can optimize its attack
based on its (partial) knowledge of the password distribution. We
also apply our statistical tools to re-examine different models of
the password distribution i.e., the empirical password distribution
and Zipf’s Law. We find that the empirical distribution closely
matches our upper/lower bounds on λG when the guessing number
G is not too large i.e., G ≪ N . However, for larger values of G
our empirical analysis rigorously demonstrates that the empirical
distribution (resp. Zipf’s Law) overestimates the attacker’s success
rate. We apply our statistical techniques to upper/lower bound the
effectiveness of password throttling mechanisms (key-stretching)
which are used to reduce the number of attacker guesses G.
Finally, if we are willing to make an additional assumption about
the way users respond to password restrictions, we can use
our statistical techniques to evaluate the effectiveness of various
password composition policies which restrict the passwords that
users may select.

Index TermsÐpassword distribution, password cracking, pass-
word dataset, theoretical bounds, statistical analysis, password
policies

I. INTRODUCTION

Understanding and characterizing the distribution over user

chosen passwords is a key challenge in the field of cybersecurity

with important implications towards the development of robust

security policies. How expensive does a password hashing

algorithm need to be to deter an offline brute-force attacker?

Can we strengthen the password distribution by imposing

restrictions, e.g., requiring passwords to include numbers and/or

capital letters, on the passwords that users can pick? If so are the

security gains significant enough to justify the usability costs?

Characterizing the attacker’s guessing curve is a fundamental
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challenge which is central to addressing the above questions.

In particular, we would like to know the probability that an

attacker will crack a random user’s password after G attempts

as G ranges from small (online password spraying attacker)

to large (offline attack). As a concrete motivating application

suppose that an organization’s current authentication policy

locks a user account if there are more than G = 100 incorrect

login attempts within a 30 day period. The organization is

considering adopting a stricter lockout policy which locks

down the account after G = 50 incorrect logins within 30

days, but will only adopt such a change if the policy change

substantially reduces the risk posed by an online attacker. An

immediate challenge is that the answer to these questions

depends on the distribution P over user passwords as well as

the attacker’s guessing strategy both of which are unknown.

One natural attempt to address the above questions is to

fix a state-of-the art password cracking model M and assume

that the attacker uses this model to generate password guesses.

Now our organization might estimate that adopting the stricter

lockout policy (resp. doubling the cost of the password hash

function) reduces the success rate of an online (resp. offline)

password attacker by λG,M − λG/2,M where λG,M denotes

the probability that an attacker will crack a randomly sampled

password pwd← P within G guesses when using model M .

Since the distribution P is unknown the organization cannot

compute λG,M directly. However, it is easy to approximate

λG,M empirically given a few samples S = (s1, . . . , sN ) from

the unknown password distribution P .

One downside to the above approach is that our policy

decision is dependent on the specific password cracking model

M . Password cracking models can be developed using a

variety of different techniques including: Neural Networks [1],

Probabilistic Context Free Grammars [2], [3], Markov Models

[4]±[7] and sophisticated rule lists [8] used in password

cracking software such as John the Ripper (JtR) [9] and Hashcat

[10]. Basing policy decisions on a model specific guessing

curve λG,M may be unwise as this curve can vary greatly from

model to model. In particular, we do not know which model

M the attacker will use and it is plausible that the attacker’s

model will be more sophisticated than any publicly available

model. Furthermore, the attacker might continue to improve

the cracking model M over time.

In an attempt to address this challenge prior work (e.g.,

[1], [11]) proposed using the minimum guessing number



heuristic to approximate the performance of an attacker who

may have a more advanced password cracking model with more

training data and/or more sophisticated rule lists/dictionaries.

Under this heuristic we use multiple different password

cracking models (Neural Networks [1], Probabilistic Context

Free Grammars [2], [3], Markov Models [4]±[7]) to estimate

the attacker’s guessing curve. In particular, if a password pwd
is cracked within G guesses under any of these models then,

under the minimum guessing number heuristic, we assume that

the real world attacker would also crack this password within

G guesses. Our analysis indicates that, even we apply the

minimum guessing number heuristic, we can still significantly

underestimate the performance of a real world attacker.

Kerckhoffs’s principle states one should design systems

under the assumption that the attacker will eventually gain

full familiarity with them. Applying this principal within the

context of password security our organization should assume

that the attacker knows the password distribution and consider

the guessing curve λG of such an attacker when making policy

decisions. Here, λG denotes the cumulative probability mass of

the top G passwords in the (unknown) password distribution P
i.e., the probability that an attacker who knows the distribution

can guess a random password pwd ← P within G guesses.

While a real world attacker may not have perfect knowledge

of the password distribution, we should expect that password

cracking models will improve over time and performance of

the real world attacker may even approach the ideal guessing

curve λG in the limit. Thus, when making password policy

decisions the conservative option is to follow Kerckhoffs’s

principle and consider the guessing curve of the ideal attacker

who knows the password distribution instead of using heuristics

to guesstimate the performance of an unknown attacker. An

additional advantage of following Kerckhoffs’s principle is that

the policy recommendations will be stable i.e., they would

not need to be reevaluated every time a more sophisticated

password cracking model is developed. However, an immediate

challenge is that the distribution P is unknown to us making

it impossible to directly compute λG.

One common heuristic to estimate λG is to use the empirical

distribution derived from a breached password dataset e.g.,

as in [12]±[18]. In particular, given a dataset S of N user

passwords we can let f̂i denote the frequency of the ith most

common password pwd in the sample S. Assuming that the

samples S were drawn iid from our password distribution P
we can then estimate that an attacker making G guesses per

account will crack a random user’s password with probability

λ̂G =
∑G

i=1 f̂i/N . A downside to this approach is that the

empirical estimate λ̂G can substantially overestimate the true

value λG. Indeed we will always have λ̂G = 1 whenever

G ≥ N even when the password distribution P is very strong.

For example, suppose that P is the uniform distribution over

strong 56-bit passwords so that an attacker will crack a random

user’s password with probability at most λG = 2−56G within

G guesses. However, if we use the empirical distribution with

a very large sample size N = 233 (larger than the global

population) we would still have λ̂N = 1 ≫ 2−23 = λN .

Thus, it may also be undesirable to base policy decisions on

the empirical distribution λ̂G Ð especially in offline attack

settings where G can be large.

In this paper we address the following questions: Can we

confidently derive accurate upper and lower bounds on λG?

When (if ever) can we use the empirical distribution λ̂G to

accurately model the real distribution? How guess efficient are

state-of-the-art password cracking models?

Despite their shortcomings and many attempts to replace

them passwords remain entrenched as the dominant form of

authentication on the internet and are likely to play a critical

role in the foreseeable future because they are easy to use, easy

to deploy and users are already familiar with them [19]. Thus,

characterizing the distribution λG of user chosen passwords

will continue to be a important challenge in the field of

cybersecurity.

A. Our Contributions

We develop a statistical framework to upper and lower bound

the guessing curve (λG) of an ideal attacker who knows the

password distribution. We stress that we make no a priori

assumptions about the shape of the password distribution.

Instead, to apply our statistical framework we only require

independent samples S = (s1, . . . , sn) from the unknown

password distribution P . All of our bounds can be shown to

hold with high probability over the randomly selected password

samples. In practice, the password samples could either be

obtained from prior breached password datasets or (ideally) an

organization could adapt prior work [15], [16] to obtain samples

from its own users in a secure and privacy preserving manner

Ð see discussion in Section V-D. We apply our techniques to

analyze several empirical password datasets and illustrate how

the upper/lower bounds can be used to guide policy decisions.

Upper Bounds. We develop two techniques to obtain high

confidence upper bounds on the guessing curve of an ideal

attacker using the empirical password distribution and linear

programming. We first show that λG is (with high probability)

upper bounded by the empirical estimate λ̂G i.e., with high

probability we have λG ≤ λ̂G + ϵ for a very small constant

ϵ > 0. Empirical analysis shows that this upper bound is

often tight when G ranges from small to moderately large.

However, the upper bound becomes less and less tight as G
increases and devolves into the trivial upper bound λG ≤ 1 once

G ≥ Distinct(S) exceeds the number of distinct passwords

in our sample S. Thus, we develop a second approach to upper

bound λG when G is large using linear programming (LP).

Our LP approach adapts techniques of Valiant and Valiant [20]

for estimating properties of a distribution when the number

of samples is smaller than the support of the distribution.

Intuitively, our LP searches for a distribution which maximizes

λG subject to the constraint that the distribution is ªsufficiently

consistentº with our sample S. With high probability, the

real distribution P will also be consistent with all of our

linear constraints so we will obtain a valid upper bound by

maximizing over all consistent distributions. Empirical analysis

shows that our LP upper bounds are superior for sufficiently



large G and that we often obtain non-trivial upper bounds even

when G ≥ Distinct(S).

Lower Bounds. We develop three techniques to obtain high

confidence lower bounds on the guessing curve (λG) of an

ideal attacker: sampling, model-sampling hybrid and linear

programming. Additionally, we show how to adapt prior

analysis of Blocki et al. [14] to obtain another high confidence

lower bound. Our first sampling technique is a simple algorithm

inspired by Good-Turing frequency estimation. The algorithm

randomly partitions our sample S into two components D1

and D2 of size N − d and d respectively, builds a dictionary

T (D1, G) containing the G most common passwords in D1,

and computes the fraction of passwords in D2 which appear

in this dictionary Ð we remark that a real world attacker

who obtains the samples D1 can also build the dictionary

T (D1, G) and then use this dictionary to crack other passwords.

Empirical analysis demonstrates that the resulting lower bounds

are nearly tight for smaller guessing numbers (e.g., G ≤ 106),

but the lower bound will plateau at ≈ 1 − Unique(S)
N once

G > Distinct(S), where Unique(S) counts the number of

passwords which appear exactly once in our sample S. We

provide two additional techniques to push past this barrier and

derive stronger lower bounds when G is large. First, we can

adapt the linear program described earlier to instead search for

a distribution that minimizes λG subject to the constraint that

the distribution is ªsufficiently consistentº with our sample S.

Empirical analysis confirms that this approach generates tighter

lower bounds when G > Distinct(S) allowing us to push past

the 1− Unique(S)
N barrier. Finally, we show how a password

cracking model M can be used to extend the first lower bound

when G > Distinct(D1) using a hybrid approach: as before

we partition our sample S into two components D1 and D2 and

then we output the fraction of passwords in D2 which either

appear in D1 or that appear in the top G − Distinct(D1)
guesses generated by our model M . Empirical analysis shows

that this combined bound can improve on our prior lower

bounds when G is very large.

Empirical Analysis. We apply our theoretical upper and

lower bounds to analyze eight password datasets (i.e. Yahoo!,

RockYou, 000webhost, Neopets, Battlefield Heroes, Brazzers,

Clixsense, CSDN), and we compare our bounds with state-

of-the-art password cracking techniques such as Markov

models [4]±[7], Probabilistic Context-free Grammars (PCFG)

[2], [3], neural networks [1], John the Ripper (JtR) and Hashcat.

We find that our new techniques for lower bounding λG

significantly improve upon prior work of Blocki et al. [14] e.g.,

for RockYou dataset with guessing budget G = 1.3× 108 our

lower bounds are λG ≥ 62.64% (sampling) and λG ≥ 72.70%
(linear programming) in comparison to the weaker lower bound

λG ≥ 53.95% obtained from [14]. Our empirical analysis also

shows that, for smaller values of G, our upper and lower bounds

on λG are very close and that the empirical estimate λ̂G is

sandwiched between these two values. This provides an answer

to our second question i.e., the empirical guessing curve λ̂G

closely approximates the real guessing curve as long as the

guessing number G is not too large. By contrast, for some

larger values of G we can demonstrate with high confidence

that the empirical guessing curve λ̂G significantly overestimates

λG indicating that the empirical distribution should not be used

to approximate the real guessing curve in these settings. We

also compare our upper/lower bounds to CDF-Zipf curves fit

to the empirical dataset [21] and, we identify cases where the

CDF-Zipf curve overestimates λG by at least 12%.

We find that our lower bounds on λG are often significantly

higher than the guessing curves obtained using state-of-the-art

password cracking models [1], [2], [8], [22] indicating that there

is still room to develop improved password cracking models

which are more guess efficient. For example, an attacker making

G ≈ 8.4 million guesses per account would crack at most 14%
of passwords in the 000webhost using any of the state-of-

the-art password cracking models we analyzed. By contrast,

our high confidence1 lower bounds show that an attacker who

knows the password distribution would crack at least 39.16%
of 000webhost passwords. Similar observations held for other

datasets. This provides compelling statistical evidence even

the most sophisticated password cracking models still have

a large room for improvement in guess efficiency. There has

been a push towards designing moderately expensive password

hashing algorithms to discourage offline attacks e.g., see [14],

[23]±[26]. If password guessing becomes more expensive then

attacker will have additional incentive to develop guess efficient

models.

Implications for Password Policies. We apply our statistical

techniques to quantify the security benefits of adopting a stricter

lockout policy and/or increasing the cost of the password

hash function by a multiplicative factor b i.e., such that cost

of making G/b password guesses after this cost increase

is identical to the cost of making G guesses beforehand.

In particular, we derive upper and lower bounds on the

security benefit (λG − λG/b) of such policy changes for

various values of b. We also apply our statistical techniques

to analyze several prominent password composition policies.

For example, the Yahoo! password frequency corpus S can

be divided into two sets S0 and S1 representing passwords

picked before/after Yahoo! adopted six character minimum

policy for user passwords. We can then apply our statistical

techniques to compare the distributions of user passwords with

and without this restriction. If we are willing to adopt the

normalized probabilities model [27], a heuristic assumption

about the way user’s react to password composition policies,

then we can apply our statistical techniques to quantify the

performance of arbitrary password composition policies using

other password datasets such as 000webhost and RockYou Ð

see discussion and analysis in Section V.

B. Related Work

Password Hashing and Memory Hard Functions: Key-

stretching was proposed as early as 1979 [28] as a way to

1The probability of an errant lower (or upper) bound can be upper bounded
by a small constant δ. In our experiments we tuned our parameters such that
δ ≤ 0.01.



protect lower-entropy passwords against offline brute force

attacks by making the password hash function moderately

expensive to compute. Password hashing algorithms such as

BCRYPT [29] and PBKDF2 [30] use hash iteration to control

guessing costs, but are potentially vulnerable to an attacker who

uses FPGAs or Application Specific Integrated Circuits (ASICs)

to dramatically reduce guessing costs. Blocki et al. [14] argued

that hash iteration alone cannot provide sufficient protection

for user password without introducing an unacceptably long

delay during the authentication process i.e., minutes. Memory

hard functions such as such as scrypt [26], Argon2 [24] or

DRSample [25] are designed to force an attacker to allocate

large amounts of memory for the duration of computation and

are believed to be ASIC resistant. When attempting to tune

the cost parameters of our key-stretching algorithm it will be

important to understand the password distribution λG i.e., a

defender might want to compute λG−λG/2 to decide whether

or not doubling the cost parameter would substantially reduce

the % of passwords cracked by an offline attacker. We also note

that as organizations start to use moderately expensive memory

hard password hash functions like scrypt [26], Argon2 [24] or

DRSample [25] offline attackers will have stronger incentives

to develop guess efficient password cracking models. Thus, it

will be desirable to base security decisions on λG instead of

using a password cracking model.

Offline Password Cracking Models and Defenses: Offline

password cracking has been studied for decades. Researchers

have proposed many password cracking algorithms based on

probabilistic password models such as Probabilistic Context-

free Grammars (PCFG) [2], [3], Markov models [4]±[7], and

neural networks [1]. Monte-Carlo strength estimation [22] is a

tool which allows us to efficiently approximate the guessing

number of a given without requiring the defender to simulate

the full attack. Liu et al. [8] developed tools to estimate

guessing numbers for software tools such as John the Ripper

(JtR) [9] and Hashcat [10] which are used more frequently

by real world attackers. Juels and Rivest [31] suggested the

use of honeywords (fake passwords) to help detect offline

attacks. Compromised Credential Checking services such as

HaveIBeenPwned and Google Password Checkup can be used

to help alert users when one of their passwords have been

breached [32], [33]. Distributed password hashing e.g., [34]

ensures that the information needed to evaluate the password

hash function is distributed across multiple servers so that a

hacker who breaks into any individual server will not be able

to mount an offline attack. Multifactor authentication provides

another defense against password cracking attacks [35], [36].

Strengthening the Password Distribution: A large body of

research has focused on encouraging (or forcing) users to pick

stronger passwords. Password composition policies [37]±[39]

require users to pick passwords that comply with particular

requirements e.g., passwords must at least one number and one

upper case letter or passwords must be at least 8 characters long.

Password composition policies often induce a substantial usabil-

ity burden [37], [40] and can often be counter-productive [27],

[39]. Telepathwords [41] is a password meter which encourages

users to select stronger passwords by displaying realtime

predictions for the next character that the user will type.

Bonneau and Schecter [42] introduced the notion of incremental

password strengthening where users are continually nudged

to memorize one more character of a strong 56-bit password.

Another line of work has focused on developing strategies for

users to generate stronger passwords e.g., see [43]±[46]. To

determine whether a particular intervention (e.g., password

generation strategy/composition policy/strength meter/ etc..)

strengthened the password distribution we need to characterize

the attacker’s guessing curve before/after the intervention.

Empirical Distribution: The empirical password distribution

has been used to evaluate many password research ideas.

Harsha et al. [47] used empirical distributions derived from the

LinkedIn and RockYou datasets to quantify the advantage of an

attacker after learning the length of the user’s password. The

empirical password distribution has also been used to tune and

evaluate distribution-aware password throttling mechanisms

[48], [49] to defend against online attacks, distribution-aware

mechanisms to tune relevant cost parameters for password

hashing [17], [18], [50], achieve (personalized) password typo

correction [12], [13] and evaluate the security of Compromised

Credential Checking protocols [33].

Estimating Properties of (Password) Distributions: Valiant

and Valiant [20] proposes an approach to accurately estimate

key properties of any distribution over at most k distinct

elements using N = O(k/ log k) independent and identically

distributed (i.i.d.) samples. However, we cannot directly apply

the results of Valiant and Valiant [20] to bound λG in our

password setting as the number of distinct passwords k in the

support of the password distribution P is unknown to us and we

almost certainly have k ≫ N2 even for our largest password

datasets. However, we are able to adapt the techniques of

Valiant and Valiant [20] when developing the linear program

that we use to upper/lower bound λG. Bonneau [16] collected a

password frequency corpus derived from approximately 7×107
Yahoo! passwords and used this corpus to estimate properties of

the Yahoo! password distribution. Subsampling was one of the

key heuristics used to identify stable statistical estimates e.g.,

Bonneau found that the value λ̂10 was stable under subsampling

[16] heuristically concluding that λ10 ≈ λ̂10. By contrast, we

provide rigorous statistical techniques to upper/lower bound

λG directly and precisely bound the probability of an error δ.

We also stress that the value λ̂G will not be stable with respect

to subsampling for many larger values of G > 10 while our

techniques can still be applied to obtain rigorous upper/lower

bounds on λG.

II. ATTACK MODEL AND NOTATION

A. Notation

We let P denote an arbitrary password distribution over

passwords pwd1, pwd2, . . . and we let pi denote the probability

of sampling pwdi. We use s← P to denote a random sample

from the distribution and S = {s1, ..., sN} ← PN to denote a

multiset of N independent and identically distributed samples

from P . We will occasionally abuse notation and also use



P to denote the set of passwords {pwd1, pwd2, . . .} in the

support of the distribution. We assume that the passwords are

ordered in descending order of probability such that p1 ≥
p2 ≥ p3 . . . and in general pi ≥ pi+1. Note that passwords

are sampled with replacement so we could have si = sj for

i < j. It will be convenient to define fS
i

.
= |{j : sj = pwdi}|

as the number of times pwdi appears in the sample S Ð the

superscript S may be omitted when the sample set S is clear

from context (Note that if i < j we could still have fS
i < fS

j

even though pi > pj since the passwords pwdi are ordered

by probability not by their frequency in the sample S.) We

will also define FS
i

.
= |{pwdj : fS

j = i}| as the number of

distinct passwords that appear exactly i times in S and denote

FS =
(

FS
1 , FS

2 , ..., FS
N

)

as the frequency encoding of our

sample S. Under this notation we have Unique(S) = FS
1 ,

Distinct(S) =
∑

i≤N FS
i and N =

∑

i≤N i× FS
i .

It will be convenient to let LS denote the list of all

distinct passwords in S ordered by frequency fS
i Ð ties

can be broken in arbitrary order e.g., lexicographic. We also

define the set T (S,G) which contains the first G passwords

in LS . If G ≥ Distinct(S) then T (S,G) is simply the

set of all distinct passwords in the sample S. Finally, we

will use bpdf(i, N, p)
.
=

(

N
i

)

pi(1 − p)N−i to denote the

binomial probability density function i.e., if password pwd
has probability p and we draw N samples from our password

distribution P then bpdf(i, N, p) denotes the probability that

pwd is sampled exactly i times.

B. Attacker Model

We consider an attacker who knows the password distribution

P but does not have additional information about the sampled

passwords S ← PN . In particular, for each i the attacker

knows pwdi and pi. For each sampled user password si ∈ S
the attacker is given G guesses to crack the password si. For an

online attacker G will typically be small as an authentication

server can lock the account after several consecutive incorrect

login attempts. By contrast, G will be much larger for an offline

attacker who has stolen the (salted) cryptographic hash of the

user’s password can check as many passwords as s/he wants

by comparing the (salted) cryptographic hash hi = H(ui, si)
with the hash hi

j = H(ui, pwdj) for each j ≤ G. An offline

attacker is limited only by the resources s/he is willing to

invest cracking and by the cost of repeatedly evaluating the

password hash function.

Whether G is large or small the optimal strategy for the

attacker is always to check the G most probable passwords

pwd1, pwd2, . . . , pwdG in the distribution. We use the random

variable λ(S,G)
.
=

∑

i≤G fS
i /N to denote the percentage of

passwords in S cracked within G guesses. Observe that the

expected value of λ(S,G) is E(λ(S,G)) =
∑

i≤G pi = λG.

In the next section we will show that the random variable

λ(S,G) is tightly concentrated around its mean λG i.e., except

with negligible probability we will have |λG − λ(S,G)| ≤ ϵ.
In this sense upper/lower bounding λG and λ(S,G) can be

seen as (nearly) equivalent problems.

III. THEORETICAL UPPER/LOWER BOUNDS

In this section we introduce several algorithms to generate

high-confidence upper bounds and lower bounds on λG given

N independent and identically distributed (iid) samples S =
{s1, . . . sn} from our password distribution P . An upper bound

UB(S,G) (resp. an lower bound LB(S,G)) derived from the

sample S holds with confidence 1−δ if Pr[λG ≥ UB(S,G)] ≤
δ (resp. Pr[λG ≤ LB(S,G)] ≤ δ) where the randomness is

taken over the selection of S ← PN . Before presenting our

results, we first introduce the well-known bounded differences

inequality [51] (also called McDiarmid’s inequality), which

will be useful in our proofs.

Theorem 1. (Bounded Differences Inequality [51]) Suppose

that (X1, ..., Xn) ∈ Ω are independent random variables. Let

f : Ω → R satisfy the bounded differences property with

constants c1, ..., cn, i.e., for all i ∈ {1, ..., n} and all x, x′ ∈ Ω
that differ only at the i-th coordinate, the output of the function

|f(x)− f(x′)| ≤ ci. Then,

Pr[f(X1, ..., Xn)− E(f(X1, ..., Xn)) ≥ t] ≤ δ,

Pr[f(X1, ..., Xn)− E(f(X1, ..., Xn)) ≤ −t] ≤ δ,

where δ = exp
(

−2t2∑
n
i=1

c2
i

)

.

As an immediate application of McDiarmid’s inequality

we can prove that, except with negligible probability, we have

|λ(S,G)− λG| ≤ ϵ i.e., λ(S,G) is tightly concentrated around

its mean E[λ(S,G)] = λG when the sample size N is large

enough Ð see Theorem 2. Thus, one strategy to derive a

high confidence upper/lower bound for λG is to derive a

high confidence upper/lower bound for λ(S,G) and we will

immediately obtain a high confidence upper/lower bound for

λG as a corollary. The proof of Theorem 2 is in Appendix E-B.

Intuitively, we have |λ(S,G) − λ(S′, G)| ≤ 1/N whenever

S = {s1, ..., si, ..., sN} and S′ = {s1, ..., s′i, ..., sN} is

obtained by swapping out si for s′i. Thus, we can apply

McDiarmid’s inequality.

Theorem 2. For any guessing number G ≥ 0 and any 0 ≤
ϵ ≤ 1 we have:

Pr[λ(S,G) ≤ λG + ϵ] ≥ 1− exp
(

−2Nϵ2
)

, and

Pr[λ(S,G) ≥ λG − ϵ] ≥ 1− exp
(

−2Nϵ2
)

where the randomness is taken over the sample set S ← PN

of size N .

A. Empirical Distribution as an Upper Bound

In this section we show that we can upper bound λG using the

empirical distribution λ̂G. In particular, we argue that for any

sample S we have λ̂G ≥ λ(S,G). As an immediate corollary

we get that Pr[λG > λ̂G + ϵ] ≤ δ where δ = exp
(

−2Nϵ2
)

.

Theorem 3. For any sample set S ← PN with size N and

any G > 0 we have λ(S,G) ≤ 1
N

∑

i:pwdi∈T (S,G) f
S
i .



Proof. We observe that
∑

i:pwdi∈T (S,G) f
S
i =

max
1≤j1<···<jG≤|P |

∑

i∈{j1,...,jG}
fS
i ≥

∑

i≤G fS
i = Nλ(S,G).

It follows that λ(S,G) ≤ 1
N

∑

i∈T (S,G) f
S
i as claimed.

Recall that T (S,G) is the set of G most frequent passwords

in the sample S. Applying Theorem 2 to Theorem 3, we can

immediately obtain the upper bound of λG as below:

Corollary 4. For any guessing number G ≥ 0 and ϵ > 0 we

have

Pr

[

λG ≤
1

N

∑

i∈T (S,G)
fi + ϵ

]

≥ 1− exp
(

−2Nϵ2
)

,

where the randomness is taken over the selection of S ← PN .

B. A Lower Bound for G < N

In this section, we introduce a new idea to lower bound λG.

The key idea is to randomly partition our sample S into two

datasets D1 = {s1, ..., sN−d} and D2 = {sN−d+1, ..., sN}
with size N − d and d. We can then construct a dictionary

T (D1, G) containing the top G passwords in D1 which is used

to attack passwords in D2. In particular, we let h(D1, D2, G) =
|{N −d+1 ≤ i ≤ N : si ∈ T (D1, G)}| denote the number of

samples in D2 that are also in T (D1, G). Because we can view

D2 as d independent samples from the password distribution

P we have E [h(D1, D2, G)/d] ≤ λG since λG denotes the

expected fraction of passwords in D2 that are cracked using the

optimal dictionary instead of T (D1, G). Adding a slack term

t/d we can use the Bounded Differences Inequality to argue that

Pr[λG ≤ 1
d (h(D1, D2, G)− t)] ≤ δ where δ = exp(−2t2/d).

We remark that h(D1, D2, G)/d can also be viewed as the

success rate of an attacker who has partial knowledge of the

password distribution. In particular, suppose that the attacker

has N − d samples D1 from P e.g., obtained by cracking the

corresponding password hashes or by some other means such

as phishing. Then the attacker can construct the dictionary

T (D1, G) and use this dictionary to crack the remaining

passwords in D2. We can view h(D1, D2, G) as the number

passwords in D2 that that the attacker would crack within G
guesses.

Theorem 5. For any guessing number G ≥ 1 and any

parameters 0 < d < N and t ≥ 0, we have

Pr[λG ≥
1

d
(h(D1, D2, G)− t)] ≥ 1− exp

(

−2t2/d
)

where the randomness is taken over the samples D1 ← PN−d

and D2 ← Pd.

When applying Theorem 5 we can select d ≪ N and set

t =
√

(d/2) ln(1/δ) to get ensure that t/d = o(1) is small and

our probability of error is at most δ. The proof of Theorem 5 is

deferred to the full version [52] of the paper. The full version

[52] also contains a corollary lower bounding λ(S,G) using

Theorems 5 and 2.

The lower bound in Theorem 5 is often tight for smaller

values of G ≪ N , but it will plateau at G = Distinct(S)
since the set T (D1, G) already contains all of the passwords

in D1. When d≪ N and G = Distinct(S) the lower bound

will closely match the Good-Turing estimate 1− Distinct(S)
N

for the total probability mass of all passwords in the set S.

C. An Extended Lower Bound Using Password Models

The lower bound from Section III-B plateau’s when G ≥
Distinct(S). Is it possible to derive tighter lower bounds for

larger values of G? In this section we show that any password

cracking model can be used to derive high confidence lower

bounds on λG and then show how our prior lower bound can

be combined with a password cracking model M to derive

tighter bounds.

Let M(D1, G) be the set of top G password guesses output

by an attack model M trained on D1. We now follow the

same approach as before and partition S into two sets D1 =
{s1, ..., sN−d}, D2 = {sN−d+1, ..., sN}. Let h′M (D1, D2, G)
be the number of passwords cracked in D2 by making guesses

in M(D1, G). We can prove a generalized lower bound of λG

Ð see Theorem 6 below.

Theorem 6. For any guessing number G > 0 and any

parameters 0 < d < N , t ≥ 0 we have:

Pr[λG ≥
1

d
(h′M (D1, D2, G)− t)] ≥ 1− exp

(

−2t2/d
)

where the randomness is taken over the sample S of size N .

Proof. Since p1, p2, ..., pi, ... are sorted in decreasing order,

we have E(h′M (D1, D2, G)) = d × ∑

i:pwdi∈M(D1,G) pi ≤
d×∑

i≤G pi = d× λG. Using Theorem 1, we have:

Pr[h′M (D2, G) ≤ d
∑

i:pwdi∈M(D1,G)

pi + t] ≥ 1− exp
(

−2t2/d
)

⇒ Pr[λG ≥
1

d
(h′M (D2, G)− t)] ≥ 1− exp

(

−2t2/d
)

where the last line follows since λG ≥
∑

i:pwdi∈M(D1,G) pi.

As an immediate corollary of Theorem 6 we can also lower

bound λ(S,G) Ð see the full version [52]. As a more useful

corollary given any model M we can define a hybrid attack

model M∗(D1, G) which, given a dataset D1, first constructs

a dictionary T (D1, G) containing the top G passwords in

D1. When trying to crack a new password pwd ← P the

model M∗(D1, G) begins by checking each of the passwords

in this dictionary T (D1, G). If G > Distinct(D1) and pwd
does not appear in the dictionary T (D1, G) then the model

proceeds to generate the remaining G′ = G−Distinct(D1)
guesses using the model M Ð we can optionally omit

guesses which already appear in our training dataset D1. Note

that for G ≤ Distinct(D1) we have h′M∗(D1, D2, G) =
h(D1, D2, G) where h(D1, D2, G) counts the number of

samples in D2 that appear in the top G samples from D1.

For G ≥ Distinct(D1) the function h′M∗(D1, D2, G) counts

the number of samples in D2 that either (1) appear in D1 or

(2) appear in M(D1, G
′). Thus, at minimum we always have

h′M∗(D1, D2, G) ≥ max{h(D1, D2, G), h′M (D1, D2, G
′)}

where G′ = G−Distinct(D1). Intuitively, the lower bound



will be at least as good as our prior approach from Theorem 5

and at least as good as the model M .

Corollary 7. Let M be a password cracking model and let

parameters G, d > 0 , t > 0 be given then

Pr[λG ≥
1

d
(h′M∗(D1, D2, G)− t)] ≥ 1− δ

where δ = exp
(

−2t2/d
)

and the randomness is taken over

the set S of size N .

We can also view the lower bound from Corollary 7 as

denoting the success rate of a hybrid attacker i.e., an attacker

who has obtained a cracked/leaked passwords D1 and runs the

hybrid attack described above will crack h′M∗(D1, D2, G) of

the remaining passwords in D2 within G guesses.

D. Upper And Lower Bounds Using Linear Programming

In this section we propose a different approach to generate

upper and lower bounds using linear programming which is

inspired by work of Valiant and Valiant [20]. As we will see

in our empirical analysis these LP bounds tend to be tighter

when the guessing number is large though the bounds are

slightly worse when the guessing number G is smaller i.e.,

G≪ Distinct(S).
Intuitively, we derive our upper (resp. lower) bounds by de-

signing a linear program to find a distribution P ′ that maximizes

(resp. minimizes) λ′G subject to various consistency constraints

derived from our sample S ← Pn. To simplify our exposition

it is helpful to begin with a simplifying assumption that the

probability distribution P can be represented as a histogram

h1, . . . , hℓ over a finite probability mesh X = {x1, . . . , xℓ} i.e.,

there are exactly hi passwords in the support of the distribution

which have probability exactly xi. We will later show how this

simplifying assumption can be removed.

The values hi are our unknown variables in our linear

program. We first note that any valid probability histogram must

satisfy the constraints that h1x1 + . . .+ hℓxℓ = 1 and 0 ≤ hi.

More significantly, we adapt ideas from Good-Turing Frequency

estimation to argue that the known value PS
i

.
=

(i+1)FS
i+1

N−i will

be close to the (unknown value)
∑ℓ

j=1 hjxj · bpdf(i, N, xj)

with high probability i.e., we can compute PS
i and add

linear constraints on the variables h1, . . . , hℓ to ensure that

PS
i ≈

∑ℓ
j=1 hjxj · bpdf(i, N, xj). We include this constraint

for each value of i ≤ i′ where i′ is a parameter that will be

selected later. We remark that the original password distribution

P will be consistent with each of these constraints with high

probability. Thus, with high probability, minimizing (resp.

maximizing) λ′G subject to the relevant constraints yields

a lower (resp. upper) bound on λG. We can remove our

simplifying assumption that P is consistent with a finite

probability mesh by (1) adding a new variable p which

intuitively represents the probability mass of all passwords

in the distribution with probability ≤ xℓ, (2) ensuring that

the probability mesh is sufficiently fine-grained that every

probability value 1 ≥ p ≥ xℓ is close to some point on the

mesh, and (3) adding slack terms to each constraint to ensure

that the probability histogram for P is still consistent with all

of the constraints even after rounding probability values to fit

the mesh.

We remark that if the dataset S was not sampled inde-

pendently from some (unknown) distribution P then it is

possible that there will be no feasible solution to our linear

program. Thus, as a side-benefit our linear program can allow

us to identify datasets which are inconsistent with our iid

assumption. As a concrete example, suppose that the dataset

S was sampled by picking s1, . . . , sN/2 ← P independently

and then duplicating the last N/2 passwords i.e., sN/2+i = si
for i ≤ N/2. The resulting dataset would (likely) be correctly

rejected by our linear program since it is not iid.

1) A Linear Programming Task with Idealized Settings:

We first describe our linear program in the idealized setting

where we assume that our (unknown) password distribution

P is consistent with a finite probability mesh. In particular,

we will fix a finite probability mesh Xℓ = {x1, . . . , xℓ} with

x1 > x2 > · · ·xℓ and assume that for all passwords pwdi we

have pi ∈ X i.e., the mesh contains every probability value in

our distribution. This allows us to view the original distribution

P as a histogram H = h1, . . . , hℓ where hi denotes the number

of items in the support of P which occur with probability xi.

We use h1, . . . , hℓ ≥ 0 as variables in our linear program

(relaxing the natural constraint that hi is an integer). Now the

linear constraint
∑

j hjxj = 1 encodes the requirement that

our probabilities sum to 1.

Given our sample S of size N recall that FS
i denotes

the number of distinct passwords that appear exactly i
times in our sample S. Thus, the expected value of FS

i is
∑ℓ

j=1 hjbpdf(i, N, xj) and
∑l

j=1 hj×xj×bpdf(i, N, xj) is

the expected probability mass of all items that were sampled

exactly i times. Adapting ideas from Good-Turing Frequency es-

timation we can argue that (whp)
∑l

j=1 hj×xj×bpdf(i, N, xj)

will be close to PS
i =

(i+1)FS
i+1

N−i .

In particular, Lemma 1 shows that for each frequency i we

will have PS
i −ϵ2,i− i+1

N−i ≤
∑ℓ

j=1 hj×xj×bpdf(i, N, xj) ≤
PS
i + ϵ2,i with high probability. Thus, we will include this

linear constraint for each i ≤ i′ where i′ is a parameter that can

be tuned. Intuitively, increasing i′ adds additional constraints

to our linear program which reduces the feasible region and

can only improve the upper/lower bound. However, increasing

i′ can also decrease our confidence δ since we need to ensure

that P is consistent with all of the constraints that we generate

to argue that the upper/lower bounds are valid.

Intuitively, if we search for a distribution that maximizes

(resp. minimizes) λG we obtain an upper bound (resp. lower

bound) since the real distribution P will be one of the feasible

solutions (whp). The remaining challenge is to encode λG

as a linear objective function using the variables h1, . . . , hℓ.

If we happened to know the integers c, idx such that G =
c+

∑

j<idx hj and 0 ≤ c ≤ hidx then we easily could encode

λG = c · xidx +
∑

j<idx hi · xi as a linear objective function.

However, we cannot compute c or idx a priori since the

values h1, . . . , hℓ are unknown. We deal with this challenge



by introducing a separate linear program for each possible

value of idx and by adding a new variable c along with the

constraints that 0 ≤ c ≤ hidx and c = G−
∑

j<idx hj . Letting

y∗idx denote the value of optimal solution to our LP with the

parameter idx we can combine these solutions to get our final

upper/lower bound i.e., y∗ = max{y∗idx : idx ≤ ℓ} (resp.

y∗ = min{y∗idx : idx ≤ ℓ}) when computing our upper bound

(resp. lower bound) where each y∗idx is the value we obtain

when maximizing (resp. minimizing) the corresponding LP.

Our linear program LP1(G, b,Xℓ, F
S , idx, i′, ϵ2) is shown

below (Linear Programming Task 1). The inputs include the

guessing budget G, the probability mesh Xℓ = {x1, . . . , xℓ},
the set FS = {FS

1 , . . . , FS
N}, a bit b ∈ {−1, 1} which

indicates whether we are looking for an upper or lower

bound, the (guessed) value idx and parameters i′ and ϵ2 =
{ϵ2,0, . . . , ϵ2,i′} related to the consistency constraints.

Linear Programming Task 1:

LP1(G, b,Xℓ, F
S , idx, i′, ϵ2)

Input Parameters: G, b, Xℓ = {x1, . . . , xℓ}, FS =
{FS

1 , . . . , FS
N}, idx, i′, ϵ2 = {ϵ2,0, . . . , ϵ2,i′}

Variables: h1, . . . , hℓ, c

Objective: min
(

b× (
∑

j<idx hj × xj + c× xidx)
)

Constraints:

1)
∑

j<idx hj + c = G

2) ∀0 ≤ i ≤ i′,
(i+1)FS

i+1

N−i − ϵ2,i− i+1
N−i ≤

∑ℓ
j=1 hj×

xj × bpdf(i, N, xj) ≤ (i+1)FS
i+1

N−i + ϵ2,i

3)
∑ℓ

j=1 hj × xj = 1
4) 0 ≤ c ≤ hidx

The following lemma indicates that constraint (2) holds with

high probability over the selection of S ← PN when we select

the parameters i′ and ϵ2 = {ϵ2,0, . . . , ϵ2,i′} properly.

Lemma 1. For any i ≥ 0 and 0 ≤ ϵ2,i ≤ 1,

we have
(i+1)FS

i+1

N−i − ϵ2,i − i+1
N−i ≤ ∑

j hj × xj ×
bpdf(i, N, xj) ≤ (i+1)FS

i+1

N−i + ϵ2,i with probability at least

1−2×exp
(

−2(N−i)2ϵ22,i
N(i+1)2

)

where the probability is taken over

the selection of our sample S ← PN .

The proof of Lemma 1 is in Appendix E-A. Using Lemma 1

and conclusions we present above, we can show that the

upper/lower bounds of λG derived from our linear program

hold with high-confidence. In particular, for any constant

δ > 0 the parameters ϵ2,i can be tuned such that, except with

probability δ, we have the lower bound (resp. upper bound)

λG ≥ min
1≤idx≤ℓ

LP1(Xℓ, F
S , idx,G, 1, i′, ϵ2) (resp. λG ≤

max
1≤idx≤ℓ

LP1(Xℓ, F
S , idx,G,−1, i′, ϵ2). See Theorem 10 in

Appendix E-A for a formal statement.

2) Intermediate Step: Linear Programming with Countably

Infinite Probability Mesh: In this section we show how to

relax the assumption that the real password distribution P
is consistent with a finite probability mesh and replace it

with a slightly weaker assumption that P is consistent with

a countably infinite mesh X = {x1, x2, ..., xℓ, xℓ+1, ...} with

x1 > x2 > x3 > · · · and limi→∞ xi = 0. As before we

assume that for all passwords pwdi in the support of P the

probability pi ∈ X of sampling this password lies in the mesh

X . Suppose that H = (h1, h2, . . .) is a histogram encoding

of P and let p =
∑

i≥ℓ+1 xihi be the total probability mass

of all passwords in P with probability smaller than xℓ. Our

key idea to ensure that our linear programs remain finite is to

introduce a new variable for p and eliminate the variables hj

for each j > ℓ. For example, we now have the constraints that

p+ x1h1 + . . .+ xℓhℓ = 1 and that 0 ≤ p ≤ 1.

Lemma 1 still applies so (whp) we have (i+ 1)FS
i+1/(N −

i) − ϵ2,i − i+1
N−i ≤ ∑∞

j=1 xjhjbpdf(i, N, xj) ≤ (i +

1)FS
i+1/(N − i) + ϵ2,i i.e., the expected probability mass

of all items that appear i times in our sample S ← PN

(i ≥ 0) is still
∑∞

j=1 xjhjbpdf(i, N, xj). However, we cannot

add these constraints to our linear program since we do not

have variables for hj when j > ℓ. Instead, we rely on the

following observations (1) The function f(x) = bpdf(0, N, x)
is monotonically decreasing over the domain [0, 1] so we

have bpdf(0, N, xℓ) < bpdf(0, N, xj) whenever j > ℓ. Thus,

we can bound the partial sum
∑∞

j=ℓ+1 xjhjbpdf(0, N, xj) as

follows p ≥∑∞
j=ℓ+1 xjhjbpdf(0, N, xj) ≥ p ·bpdf(0, N, xℓ).

(2) For i > 0 the function fi(x) = bpdf(i, N, x) is

monotonically increasing over the domain [0, 1/N ]. Thus, for

i > 0 we have bpdf(i, N, xℓ) > bpdf(i, N, xj) whenever

xj < xℓ < 1
N . In this case we can bound the partial sum

∑∞
j=ℓ+1 xjhjbpdf(i, N, xj) as follows p · bpdf(i, N, xℓ) ≥

∑∞
j=ℓ+1 xjhjbpdf(0, N, xj) ≥ 0.

We can use the above observations to update Constraint

(2) in LP1. Similarly, we can replace Constraint (3) in LP1

with
∑ℓ

j=1 hjxj = 1− p. We call this updated linear program

LP1a. Since this is only an intermediate step, we defer the full

description of LP1a and associated theorems to the full version

[52]. We briefly remark that for i > 0 (resp. i = 0) we have

limx→0 bpdf(i, N, x) = 0 (resp. limx→0 bpdf(0, N, x) = 1)

so the upper/lower bounds on our partial sums are essentially

tight and we are not substantially loosening our constraints in

LP1a.

3) Final LP: Eliminating Ideal Mesh Assumptions: In

this section, we present our final linear program to bound

λG without making any idealized assumptions about the

distribution P . Following [20], we fix a particular mesh

Xℓ,q = {x1, . . . , xℓ} where we have xi = q · xi+1 = qℓ−ixℓ

for each 1 ≤ i < ℓ. Note that the parameter q > 1 determines

how fine-grained our mesh values are. We will pick xℓ to be

suitably small (e.g., xℓ = 10−4N−1) and set ℓ =

⌊

ln( 1
xℓ

)

ln q

⌋

+1

so that x1 ≈ 1.

For the purposes of analysis consider a histogram encoding

of the real distribution P i.e., Hr = {hr
1, h

r
2 . . .} where

the mesh Xr = {xr
1, x

r
2, . . .} = {Pr[pwd] : pwd ∈ P} is

defined using the exact probabilities in the distribution. Of

course the mesh Xr and the associated histogram Hr are

unknown so we cannot simply evaluate the formula above.

However, it is helpful to imagine rounding each point xr
i

to a value Round(xr
i ) ∈ Xℓ,q and defining the rounded



histogram hi =
∑

j:Round(xr
j
)=xi

hr
j accordingly. Supposing

that G = c+
∑idx′

i=1 hr
i for some idx′ and c ≤ hr

idx′ we also

have G = c +
∑idx

i=1 hi for some idx and c ≤ hi. Assuming

that we always round down, i.e., Round(xr
i ) ≤ xr

i , then we

have λG = c′ · xr
idx′ +

∑idx′−1
j=1 xr

ih
r
i ≥ c · Round(xr

idx′) +
∑idx′−1

j=1 Round(xr
i )h

r
i ≥ c · xidx +

∑idx−1
j=1 hixi.

Intuitively, to obtain our lower bound we relax all of our

constraints from LP1a to ensure that our rounded histogram

is still consistent even still hold (whp) even if P does not

precisely fit the mesh Xℓ,q. For example, we can replace the

exact constraint that
∑ℓ

j=1 h
r
j × Round(xr

i ) = 1− p with an

approximate version 1−q
q ≤ ∑ℓ

j=1 h
r
j × Round(xr

i ) ≤ 1 − p
which the rounded histogram will still satisfy. The approach

to define our linear program for the upper bound is similar

with the key difference that we round up instead of down i.e.,

Round(xr
i ) ≥ xr

i .

The linear program LPlower to lower bound λG is shown

below. We add slack terms with parameters q, ϵ3, x̂ϵ3 to

ensure that the rounded histogram is consistent with all of

the constraints. The linear program LPupper to upper bound

λG is similar to LPlower. We show it in Appendix A.

Linear Programming Task 2:

LPlower(G,Xℓ, F
S , idx, i′, ϵ2, ϵ3, x̂ϵ3)

Input Parameters: G, Xℓ = {x1, ..., xℓ}, FS =
{FS

1 , ..., FS
N}, idx, i′, ϵ2 = {ϵ2,0, . . . , ϵ2,i′}, x̂ϵ3 =

{x̂ϵ3,0 , . . . , x̂ϵ3,i′ }, ϵ3 = {ϵ3,i = 1
qi+1

(

1−x̂ϵ3,i

1−qx̂ϵ3,i

)N−i

−
1, 0 ≤ i ≤ i′}
Variables: h1, ..., hℓ, c, p

Objective: min
(

∑

j<idx hj × xj + c× xidx

)

Constraints:

1)
∑

j<idx hj + c = G
2) ∀0 ≤ i ≤ i′:

a) for i = 0, 1
qi+1 (

(i+1)FS
i+1

N−i − ϵ2,i − i+1
N−i −

p) ≤∑ℓ
j=1 hj × xj × bpdf(i, N, xj) ≤ (1 +

ϵ3,i)(
(i+1)FS

i+1

N−i +ϵ2,i−p×bpdf(i, N, qxℓ))+
bpdf(i, N, x̂ϵ3,i)

b) for 1 ≤ i ≤ i′, 1
qi+1 (

(i+1)FS
i+1

N−i − ϵ2,i −
i+1
N−i − p × bpdf(i, N, qxℓ)) ≤

∑ℓ
j=1 hj ×

xj × bpdf(i, N, xj) ≤ (1+ ϵ3,i)(
(i+1)FS

i+1

N−i +
ϵ2,i) + bpdf(i, N, x̂ϵ3,i)

3) 1−p
q ≤

∑ℓ
j=1 hj × xj ≤ 1− p

4) 0 ≤ c ≤ hidx

(Note: we consider idx = 1, 2, ..., ℓ + 1. When idx =
ℓ+ 1, we define hℓ+1 = G and xℓ+1 = 0.)

Theorem 8 shows that the upper/lower bounds we obtain

hold with high confidence Ð due to space limitations the

formal proof is deferred to the full version [52].

Theorem 8. Given an unknown password distribution P for

any G ≥ 0, integer i′ ≥ 0, ϵ2 = {ϵ2,0, . . . , ϵ2,i′} ∈ [0, 1]i
′+1,

x̂ϵ3 = {x̂ϵ3,0 , . . . , x̂ϵ3,i′ }, ϵ3 = {ϵ3,i = 1
qi+1 (

1−x̂ϵ3,i

1−qx̂ϵ3,i

)N−i −

1, 0 ≤ i ≤ i′}, we have:

Pr

[

λG ≥ min
1≤idx≤l+1

LPlower(Xl,q, F
S , idx,G, i′, ϵ2, ϵ3, x̂ϵ3)

]

≥ 1− δ

Pr

[

λG ≤ max
1≤idx≤l+1

LPupper(Xl,q, F
S , idx,G, i′, ϵ2, ϵ3, x̂ϵ3)

]

≥ 1− δ

where δ = 2×
∑

0≤i≤i′ exp
(

−2(N−i)2ϵ22,i
N(i+1)2

)

and the random-

ness is taken over the sample S ← PN of size N .

As a corollary of Theorem 8 we can also lower bound

λ(S,G) Ð see the full version [52].

E. A Lower Bound for G ≥ N Derived from Existing Work

In this section we prove a lower bound using an idea from

prior work. We use this bound as a comparison in Section IV

showing that our bounds perform very well.

Fixing arbitrary parameters L ≥ 1 and j ≥ 2 Blocki et

al. [14] proposed the formula f(S,L)
.
= 1

N

∑

i:fS
i
≥j f

S
i −

N
(j−1)!Lj−1 as a lower bound for the expected number of

passwords cracked by a rational attacker2 when the value

of a cracked password is at least v > NL. In Theorem 9 we

prove that the same formula f(S,L) can be used to derive

high confidence lower bounds for λNL (fixing G = NL) as

below:

Theorem 9. Given a sample set S ← PN with size N , for any

L ≥ 1, t ≥ 0, 0 ≤ ϵ ≤ 1, any integer j ≥ 2, the expected

percentage of passwords cracked by a perfect knowledge

attacker making G = N × L guesses is bounded as below:

Pr[λG ≥ f(S,L)− t/N − ϵ] ≥ 1− δ

where δ = exp
(

−2t2/(Nj2)
)

+ exp
(

−2Nϵ2
)

, f(S,L)
.
=

1
N

∑

i:fS
i
≥j f

S
i − N

(j−1)!Lj−1 and the randomness is taken over

the sample set S ← PN .

We leave the proofs of Theorem 9 to the full version [52] as

the analysis closely follows Blocki et al. [14] and McDiarmid’s

inequality, and is not the main focus of this paper.

This lower bound is derived only as a comparison to the

new approaches we proposed above. Empirical analysis in

Section IV demonstrates our new techniques (Corollary 7 and

Theorems 5 and 8 ) yield superior lower bounds.

IV. EMPIRICAL ANALYSIS

In this section we apply our techniques to upper/lower bound

λG to analyze several empirical password datasets. We compare

these bounds to guessing curves generated by state of the art

password cracking models.

2Intuitively, a rational password cracker will continue checking passwords as
long as the marginal reward piv of checking the next password pwdi exceeds
the marginal guessing cost. Assuming the cost to check each password guess
is at most 1 then as piv ≥ 1 the attacker will continue guessing and check
the next password pwdi.
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Fig. 1: 000webhost, Neopets, Battlefield Heroes, Brazzers, Clixsense, CSDN, Yahoo! and RockYou Guessing Curves, and Best

Bounds

A. Datasets

We use eight empirical password datasets in our analysis:

Yahoo!, RockYou, 000webhost, Neopets, Battlefield Heroes,

Brazzers, Clixsense and CSDN Ð for the last six datasets we

use the sanitized versions prepared by Liu et al. [8]. Table II in

Appendix C provides basic information about each dataset. N
represents the total size of the dataset and # Distinct represents

the number of distinct passwords after eliminating duplicates

(i.e. Distinct(S)). Similarly, # Unique represents the number

of passwords that appear exactly once in S (i.e. Unique(S)).
In our analysis we view each dataset S as representing N iid

samples from an unknown password distribution. Good-Turing

frequency estimation tells us that the total probability mass of

unseen passwords is approximately 1 −
∑

pwd∈S Pr[pwd] ≈
Unique(S)

N which means for G = Distinct(S) we have λG ≥
∑

pwd∈S Pr[pwd] ≈ N−Unique(S)
N . Thus, for Yahoo! (resp.

CSDN) we should have λG ≥ 0.575 (resp. λG ≥ 0.443).

One of the password datasets (Yahoo! [15], [16]) is actually

a differentially private frequency list and does not include

plaintext passwords. For this dataset we can still apply our

techniques to upper/lower bound λG, but we cannot compare

our bounds with empirical password cracking models. While

the dataset was slightly perturbed to satisfy differential privacy,

Blocki et al. [15] showed that the L1 distortion is minimal i.e.,

the additional error term is O(1/
√
N).

The Independent Samples Assumption: In our analysis

we assume that the dataset S was sampled iid from some

unknown distribution P . As we noted previously our linear

program allows us to reject datasets S which are clearly

inconsistent with our iid assumption. In particular, if the linear

program is infeasible this indicates that there is no password

distributions P consistent with the dataset S. This might occur

if a large fraction of the dataset was duplicated3 For example,

the description of the LinkedIn frequency corpus [47] indicates

3When s1, s2 ← P are sampled independently it is always possible that
s1 = s2. By contrast, if we sample s1 ← P and then simply fix s2 = s1
without re-sampling then we would say that the record s2 was duplicated
e.g., a user registers for an account with password s1 and later registers for a
second account with the same password.



that that the dataset contains 177, 500, 189 passwords, but only

164, 590, 819 unique e-mail addresses [53]. This means that

there are more passwords than unique users and it is possible

that many of the entries in the LinkedIn frequency corpus are

duplicates. We confirmed that the LinkedIn frequency corpus

is not iid using our linear program. The linear program was

infeasible indicating that we can reject the independent samples

hypothesis for this dataset. By contrast, with every other dataset

our linear program found feasible solutions. While we cannot

absolutely guarantee that our LP rejects every dataset S which is

not iid these results increase our confidence that this assumption

is a reasonable approximation of reality.

Ethical Considerations. Many of the password datasets

we analyze contain stolen passwords that were subsequently

leaked on the internet and the usage of this data raises important

ethical considerations. We did not crack any new passwords

as part of our analysis and the breached datasets are already

publicly available. Thus, our usage of the data does not pose

any additional risk to users.

B. Password Cracking Models

We use the empirical attack results in Liu et al. [8] to

compare with our bounds for 000webhost, Neopets, Battlefield

Heroes, Brazzers, Clixsense and CSDN datasets and to generate

an extended lower bound using Corollary 7. Liu et al. [8]

evaluate 10 password cracking models on the six datasets

based on Markov model, PCFG, neural networks, Hashcat,

and JtR techniques. In our analysis, we focus on the best

performing ones of each password cracking technique: the

neural network model (denote as NN) in Melicher et al. [1],

the Markov 4-gram model (denote as Markov) in Dell’Amico

and Filippone [22], the original PCFG model [2] (denote as

PCFG), the extended JtR [8] (denote as JtR), and Hashcat

(denote as Hashcat) implemented in Liu et al. [8]. Some other

models (e.g. Markov backoff model [22] and the PCFG model

in Komanduri [54]) in Liu et al. [8] may outperform Markov

or PCFG in some ranges of G, but for every value of G
their performance is worse than at least one of the models we

selected.

C. Evaluation

For each password dataset S we generate upper/lower

bounds on λG using our results from Section III and compare

the upper/lower bounds with the guessing curves derived

from password cracking models. Our upper/lower bounds and

empirical attack results for 000webhost, Neopets, Battlefield

Heros, Brazzers, Clixsense, and CSDN, Yahoo!, and RockYou

are shown in Figures 1(a)-(h). The vertical dashed gray line in

each subfigure shows Distinct(S) of the dataset S.

In these figures we use FrequencyUB(S,G) (resp.

LPUB(S,G)) to denote the upper bound obtained from Corol-

lary 4 (resp. Theorem 8) with password dataset S. Similarly,

we use SamplingLB(S,G) (resp. LPLB(S,G)) to denote the

lower bound obtained by applying Theorem 5 (resp. Theo-

rem 8). For comparison we also plot PriorLB(S, G, j) which

denotes the lower bound from Theorem 9 based on results

of Blocki et al. [14] Ð specifically we set PriorLB(S,G) =
max

2≤j≤1000
PriorLB(S, G, j) where PriorLB(S, G, j) is the lower

bound we obtain after fixing the parameter j in Theorem 9.

Two of the lower bounds LBUB and LPLB require us to solve

linear programs as a subroutine. We used Gurobi 9.0.1 [55] as

our linear programming solver.

For each of the upper/lower bounds there is an error

term δ which upper bounds the probability that our bound

is wrong. The error term δ will depend on our choice of

parameters. For example, in Theorem 9 (resp. Theorem 5 ) the

parameters t, ϵ (resp. t, d) determines δ = exp(−2t2/(Nj2))+
exp(2Nϵ2) (resp. δ = exp(−2t2/d)). Briefly, we always

select parameters such that δ ≤ 0.01. For example, to

generate SamplingLB(S,G) we set d = 2.5 × 104 and

t ≥
√

d ln(1/δ)/2 in Theorem 5 i.e., we randomly partition

S into D1 ∈ PN−d and D2 ∈ Pd and return our lower bound

(h(D1, D2, G)− t)/d where h(D1, D2, G) counts the number

of passwords in D2 that are top G passwords in D1. See

Appendix D for concrete details on how we specify all of these

relevant parameters for other upper/lower bounds.

We compare our upper/lower bounds with empirical pass-

word guessing curves derived from state of the art password

cracking models. Specifically, we compare with the guessing

curves generated by Liu et al. [8]. In particular, for each

password dataset S they first subsample 25, 000 passwords

to obtain a smaller dataset D2. Then for each password

pwd ∈ D2 and password cracking model M they compute

a guessing number gM,pwd for that password (often using

Monte Carlo strength estimation [22]). Finally, for a guess-

ing bound G we can estimate that the model will crack

λ̃G,M = |{pwd ∈ D2 : gM,pwd ≤ G| /|D2| passwords. We can

also apply Corollary 7 to derive a new lower bound on

λG by combining the results from our model M with our

sampling based lower bound SamplingLB(S,G) Ð we use

ExtendedLB(S,G,M) to denote the extended lower bound

and highlight these lower bounds using dotted lines in Figure 1.

The guessing curves generated by Liu et al. [8] were generated

with a subsample of size d = 25000. We used the same value

of d when applying the lower bounds SamplingLB(S,G) and

ExtendedLB(S,G,M) as this is already sufficient to achieve

error bound δ ≤ 0.01.

D. Discussion

Figure 1 shows that when G is small our upper bound

FrequencyUB(S,G) and lower bound SamplingLB(S,G) are

very close to each other. For example, when G ≤ 262144
(resp. G ≤ 1.048576× 106) the difference between the upper

bound FrequencyUB and the lower bound SamplingLB for

Yahoo! dataset is smaller than 1.407% (resp. 2.483%). As

long as FrequencyUB(S,G) − SamplingLB(S,G) is small

the empirical distribution λ̂G will give us an accurate approx-

imation of the guessing curve λG from the real (unknown)

password distribution. However, as G becomes large the gap

FrequencyUB(S,G) − SamplingLB(S,G) begins to widen

e.g., for the Yahoo! dataset when G = 1.6777216×107 we have

FrequencyUB(S,G)−SamplingLB(S,G) = 22.769%. While



FrequencyUB(S,G) and lower bound SamplingLB(S,G) give

the best upper/lower bounds for smaller G we can see that

the bounds reach plateau once G ≥ Distinct(S) e.g., for the

Yahoo! dataset SamplingLB(S,G) and FrequencyUB(S,G)
remain constant for all G ≥ 3.3885218 × 107. Once G ≥
Distinct(S) we need new ideas upon the lower bound

λG ≥ N−Unique(S)
N or the upper bound λG ≤ 1.

Our linear programming bounds LPUB and LPLB push past

the G ≤ Distinct(S) barrier and allow us to obtain tighter up-

per and lower bounds even when G ≥ Distinct(S). The linear

programming bounds (LPUB and LPLB) are worse when G is

small e.g., for Yahoo! dataset when G = 262144 FrequencyLB
and SamplingLB tightly bound λG as 34.14% ≤ λG ≤
35.55% while the LP bounds are 3.58% ≤ λG ≤ 45.66%.

However, as G increases we find that the linear programming

approach yields significantly tighter bounds e.g., for the Yahoo!

dataset when G = 6.7108864× 107 our LP bounds show that

61.76% ≤ λG ≤ 77.72% while our frequency and sampling

based bounds 56.41% ≤ λG ≤ 100% are much less tight. In

such cases when λ̂G > LPUB(S,G) the empirical distribution

should not be used to estimate the real guessing curve.

Similar to SamplingLB(S,G) our linear programming lower

bound LPLB(S,G) also plateaus when G is sufficiently large,

but it plateaus at a higher value e.g., 64.97% for Yahoo! dataset.

We also note that both of our lower bounds SamplingLB and

LPLB dramatically outperform the lower bound PriorLB based

on prior work of Blocki et al. [14].

Are Password Cracking Models Guess Efficient? Fig-

ure 1 demonstrates empirical cracking models are often

much less guess efficient than an attacker who knows the

distribution. In particular, if λ̃G,M denotes the percentage

of passwords cracked by model M withing G guesses and

λ̃G,M < max{SamplingLB(S,G), LPLB(S,G)} then we can

be confident that a perfect knowledge attacker would crack

more passwords. For example, Figure 1a (resp. Figure 1d)

shows that an attacker making G = 8390551 (resp. G =
2097152) guesses would crack at most 14% (resp. 42.14%) of

000webhost (resp. Brazzers) passwords using any password

cracking model. By contrast, our lower bounds indicate that

an attacker who knows the password distribution will crack at

least 39.16% (resp. 58.05%) of 000webhost (resp. Brazzers)

passwords. These results indicate that even state of the art

password cracking models can be improved substantially. One

policy implication of this finding is that higher levels of key

stretching may be necessary to protect hashed passwords against

offline brute-force attacks.

Reducing the Uncertain Region: The lower bound

ExtendedLB extends our sampling based approach with em-

pirical password cracking models. The lower bound eventually

improves on SamplingLB and LPLB for sufficiently large

G. For example, for Brazzers dataset when G = 1016 our

model based lower bound using neural network attack results

(ExtendedLB : NN) shows λG ≥ 96.34% while the best of our

other lower bounds is only 58.62%.

Figure 1i plots the best upper/lower bounds (denoted as

ub/lb in the figure) for the Yahoo!, RockYou, 000webhost, and

Neopets datasets Ð to avoid overcrowding we plot the best

upper/lower bounds for Battlefield Heroes, Brazzers, Clixsense,

and CSDN datasets in Appendix C. In particular, we plot

UB(S,G) = min{LPUB(S,G), FrequencyUB(S,G)}
(solid curves) and LB(S,G) = max{LPLB(S,G),
SamplingLB(S,G), ExtendedLB: NN(S,G)} (dotted curves).

Notice that the lower bound appears to initially plateau before

it starts to increase again e.g., for 000webhost dataset the lower

bound plateaus at 55.55% when G = 3.35544 × 107, barely

increases when 3.35544×107 ≤ G ≤ 3.43597×1010 and then

starts to significantly increase again when G ≥ 3.43597×1010.

The initial plateau point is occurs when the lower LPLB(S,G)
plateaus and once the empirical guessing curves ªcatch upº

the curve starts to increase again. Each point on the best

bounds in Figure 1i hold with probability no less than 0.98

(the union bound of the probabilities that each bound holds).

The real (unknown) guessing curve λG lies somewhere in

between LB(S,G) and UB(S,G). While our work substantially

tightens the gap UB(S,G)−LB(S,G), there is still an uncertain

region between the solid/dotted curves. We conjecture that

improved password cracking models may be able to tighten

this gap.

The Impact of Sample Size: We use Yahoo! dataset

(N = 69301337) as an example to analyze the impact of

the sample size on the quality of our lower/upper bounds.

We generate four subsampled Yahoo! datasets with sample

size N = 104, 105, 106, 107 respectively and generate the best

upper/lower bounds for each subsampled dataset (as we did

for the original Yahoo! dataset in Figure 1i). We use the same

parameter settings as we use for the original Yahoo! dataset,

except that for N = 104 we set d = 2500 instead of 25000
when generating SamplingLB(S,G) using Theorem 5. We plot

the best upper and lower bounds for different sample sizes

in Figure 2. As expected the upper/lower bounds improve as

the sample size increases and when N = 107 the bounds are

reasonably close to those obtained from the original dataset.

On the negative side when the sample size is just N = 104

the upper/lower bounds diverge rapidly. Thus, for smaller

password datasets such as those collected from a user study our

upper/lower bounds may not be particularly useful. This may

justify the continued use of password cracking models as a

heuristic when analyzing smaller password datasets though we

still need to be cautious when drawing conclusions as state-of-

the-art password cracking models dramatically under-perform in

comparison to an attacker who knows the password distribution.

Developing statistical techniques to rigorous compare two

password distributions with only a few samples remains an

important open research challenge.

Attacker with Partial Knowledge of the Password

Distribution: The results in Figure 1 indicate that a perfect-

knowledge attacker will often substantially outperform state-

of-the-art password models. However, the password cracking

models do not require perfect knowledge of the password

distribution and it is possible that our lower-bounds on λG

might overestimate the performance of a real-world attacker.

As discussed previously we can also view the lower bound
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from Theorem 5 as lower bounding the performance of an

attacker with partial knowledge of the distribution. Suppos-

ing that the attacker has obtained k independent samples

D1 = {s1, . . . , sk} ← P (e.g., s1, . . . , sk might represent

passwords that the attacker has already cracked) from our

unknown distribution P the attacker can build a dictionary

T (D1, G) containing the top G passwords from D1 and use this

dictionary to help crack any remaining passwords. In Figure 3

we evaluate the performance of this partial knowledge attacker

for k ∈ {104, 105, 106, 107, N−d} where d = 25, 000 denotes

the size of our holdout test set D2. Figure 3 plots the results

for the Neopets dataset with similar plots for 000webhost,

Yahoo! and RockYou are deferred to the full version [52]

of the paper. The figure shows that as the attacker obtains

(cracks) more password samples (k) the performance of the

hybrid (partial knowledge) attacker continues to improve and

gradually approaches our theoretical lower bounds e.g., fixing

the guessing number G = 524288 a hybrid attacker building

a dictionary from 107 samples will crack 10.696% more user

passwords than an attacker with 106 samples. For comparison,

we also plot the guessing curve derived using the minimum

guessing number (min-guess number) heuristic. Intuitively,

we heuristically assume that each particular password will be

cracked within G guesses if the password was cracked by any

of the five password cracking models (see Figure 1b) within

G guesses. The minimum guessing number was proposed as

a heuristic to model the performance of a real-world attacker

[11] who may have more sophisticated dictionaries and rule-

lists than publicly available models. Our experimental results

indicate that our hybrid partial knowledge attacker will quickly

start to outperform the minimum guessing number heuristic

and to approach our lower bound from Theorem 5.

V. APPLICATIONS TO PASSWORD POLICIES

In this section we illustrate how our statistical techniques

can be used to help guide password policies.

A. Tuning Password Hash Cost Parameters

We first consider the problem of tuning the cost parameter of

a password hash function. An offline attacker who has stolen

the (salted) cryptographic hash of the user’s password can

check as many passwords as s/he wants by computing the

(salted) cryptographic hashes of likely password guesses to

see if they match the stolen hash value. An offline attacker

is limited only by the resources s/he is willing to invest

cracking and by the cost of repeatedly evaluating the password

hash function. Ideally a password hash function should be

moderately expensive to compute so that it is impractical for

an offline attacker to check millions or billions of password

guesses. However, the function cannot be too expensive as the

organization must also evaluate the hash function every time a

user attempts to login.

Suppose that our organization is considering doubling the

cost of the hash function. Assuming that the attacker’s resources

remain constant this would reduce the number of passwords

that the offline attacker can check from G to G/2 and the

probability that the attacker cracks the user’s password would

decrease from λG to λG/2. However, doubling the hash cost

parameter will require the organization to invest additional

computing resources to handle user authentications. Thus, the

organization will only make the change if the security benefits

are substantial enough.

We can use our statistical techniques to upper/lower bound

the security gain λG−λG/2 (resp. λG−λG/2x ) when increasing

hashing costs by a factor of 2 (resp. 2x). In particular, if

UB(S,G) (resp. LB(S,G)) denotes our upper/lower bounds

on λG then we know that

LB(S,G)−UB(S,G/2x) ≤ λG−λG/2x ≤ UB(S,G)−LB(S,G/2x) .

Figure 4 plots our upper/lower bounds on λG − λG/2x for

x ∈ {1, 2, 3, 4, 5} for the Neopets dataset Ð similar results

for Yahoo!, RockYou and 000webhost are deferred to the

full version [52]. For example, suppose that the attacker was

originally able to attempt G = 1.67× 107 password guesses

before we increase our guessing costs by 25. The figure

indicates that this policy change will reduce the number of

cracked passwords by at least 25.2% and at most 37.7%. If

reducing the potential damage of an offline attack by 25.2%
(resp. 37.7%) is (resp. is not) worth the additional costs then

the organization should (resp. should not) increase the hash cost

parameter. We remark that an organization that transitions away

from a password hash function like PBKDF2 or BCRYPT to

a modern memory hard function like scrypt [26], Argon2 [24]

or DRSample [25] will substantially increase hashing costs.

We remark that upper/lower bounding λG − λG/b can be

useful when defending against online password spraying attacks.

Suppose that our organization is considering adopting a stricter

version of its lockout policy where an account is locked

whenever there are at least G/b (as opposed to G) incorrect
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login attempts within a 30 day window. For reference, NIST

Authentication Guidelines [56] suggests limiting the number of

incorrect login attempts to G = 100 within a 30 day window.

Adopting a stricter lockout policy comes with a usability cost

so our organization would only adopt the policy if the security

benefits (λG−λG/b) are substantial enough e.g., with G = 128
in Figure 4 we have 0.491% ≤ λG − λG/2 ≤ 0.579%.

B. Comparing Password Distributions

The Yahoo! frequency corpus [15], [16] allows us to

compare password distributions along several dimensions:

gender, account tenure and composition policy (before/after)

the adoption of a six character minimum restriction. The

comparison results are shown in Figure 7 in Appendix C.

Measuring Shifts in The Password Distributions over Time

We generated upper and lower bounds for Yahoo! passwords

with account tenure of 5-10 years and account tenure below 1

year as shown in Figure 7a. We found statistically significant

evidence for Bonneau’s claim [16] that there is ªa weak trend

towards improvement over time, with more recent accounts

having slightly stronger passwordsº. For example, when our

attacker makes G = 8192 guesses, at least 16.86% old account

passwords (5-10 years) will be guessed while at most 14.40%
new account passwords (0-1 year) will be guessed (confidence:

98%). One caveat is that the weak trend towards stronger

passwords may be partially explained by Yahoo!’s adoption of

the six-character minimum requirement.

Measuring the Effect of Gender on Password Strength

Bonneau [16] previously found that (self-reported) gender had

a small/split effect on password security with ªmale-chosen

passwords being slightly more vulnerable to online attack and

slightly stronger against offline attack.º We are able to provide

statically significant justification for these claims using our

upper/lower bounds as shown in Figure 7c. First, we can

provide statistically significant evidence that female passwords

are more resistant to an attacker making G ≤ 128 guesses.

For example, when G = 32 we find that the attacker will

crack at least 2.776% (resp. at most 2.283%) of male (resp.

female) passwords. For 512 ≤ G ≤ 1048576 the conclusions

are reversed e.g., when G = 131072 we find that the attacker

will crack at most 30.050% (resp. at least 32.219%) of male

(resp. female) passwords. (Note: When G > 1048576 the

upper/lower bounds start to diverge preventing us from making

definitive comparisons. Also, when G = 256 the upper/lower

bounds for male/female passwords are very close).

Measuring The Effect of Password Requirements At Regis-

tration We generated upper/lower bounds for Yahoo! passwords

that were selected with (and without) a six character minimum

restriction as shown in Figure 7b. Bonneau [16] previously

concluded that the change made ªalmost no differenceº in

security against online guessing while slightly increasing the

resistance to offline attacks. By contrast, we find statistically

significant evidence that an online attacker making at most

G = 8 guesses will crack more passwords picked under

the six character minimum restriction. For example, when

an online attacker makes G = 8 guesses, we can say (with

98% confidence) that the attacker will crack between 1.393%
to 1.610% (resp. 1.645% to 1.880%) of passwords picked

without the restriction (resp. with the restriction). The findings

are reversed for an attacker making 256 ≤ G ≤ 524288
guesses yielding statistically significant evidence for Bonneau’s

finding that passwords picked under the six-character minimum

restriction are more resistant to offline attacks. (Note: for larger

values of G the upper/lower bounds begin to diverge preventing

us from making a definitive comparison).

C. Password Composition Policies

We now turn our attention to the problem of identifying

secure password composition policies which yield password

distributions that are more resistant to online (resp. offline)

password cracking attacks. One immediate challenge we face

is that, with the exception of the Yahoo! frequency corpus,

none of the available password datasets record the passwords

that each user would have selected in response to (additional)

restrictions. One potential remedy would be to run a large user

study to ask users what password they would select under

a variety of restrictions i.e., obtaining samples from each

of the resulting distributions for each password composition

policy. However, as we previously discussed one limitation of

our statistical techniques is that we need a reasonably large

number of samples from each distribution before we would

be able to draw meaningful comparisons e.g., see Figure 2. In

practice, the number of participants N (e.g., N ≤ 104) in any

user study would be heavily constrained by practical budget

considerations and would be too small to allow us to draw

meaningful comparisons using our statistical techniques.

We address the challenges above by following [27] and

making a heuristic assumption about the way that users respond

to password restrictions. Suppose that we are given a predicate

Allowed describing our password composition policy i.e.,

Allowed(pwd) = 1 if and only if users are allowed to select

the password pwd. If P1 (resp. P2) denotes the probability

distribution before (resp. after) adopting the composition policy

then the normalized probabilities model [27] says that for each

password pwd with Allowed(pwd) = 1 we have

Pr
x←P2

[x = pwd] = Pr
x←P1

[x = pwd | Allowed(x) = 1] .

Intuitively, we can imagine that each user utilizes rejection

sampling and repeatedly samples passwords from P1 until
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s/he finds one that is consistent with the composition policy.

While this heuristic assumption may not perfectly model

how users respond to password restrictions, the assumption

allows us to apply our statistical techniques to compare

candidate password composition policies and identify the most

promising candidates for further evaluation. In particular, if

the password dataset S1 denotes N iid samples from the

distribution P1 then we can filter S1 by removing passwords

that are incompatible with the composition policy to obtain

S2 = {pwd ∈ S : Allowed(pwd) = 1}. Now S2 can

be viewed as N ′ ≤ N iid samples from P2. Thus, we can

apply our statistical techniques to obtain upper/lower bounds

(UB(S2, G) and LB(S2, G)) for the new distribution. In our

analysis we primarily focus on smaller guessing numbers G
to determine whether or not the new distribution is more/less

resistant to online cracking.

We analyze a wide variety of candidate PCPs. In general,

we use xclassy to denote the policy which requires the user to

pick a password with at least y characters total coming from at

least x distinct character classes (lowercase letters, uppercase

letters, digits, special characters). For example, 4class8 requires

passwords that are at least 8 characters long and include at

least one lowercase, one uppercase, one digit and one special

character. We also consider the PCP used by Github.com (at

least 15 characters OR at least 8 characters including a number

and a lower case letter). Finally, we consider a proposal of

Schechter et al. [57] to use a count-min-sketch data structure

to estimate the frequency of each user password and ban

passwords whose (estimated) frequency is above a threshold

r×N . We instantiated this policy with the differentially private

count-min-sketch as described in [48] which adds laplace noise

to each cell in the count-sketch data-structure to preserve

ϵ-differential privacy. Since the count-min-sketch is trained

based on sampled passwords S we adopted the following

approach to ensure that the comparison with other PCPs is fair.

1) We randomly partition the dataset S into two equal size

datasets Strain and Stest of size N/2. 2) The dataset Strain is

used to construct the noisy count-min-sketch (depth=5, width

=106, 20MB of space) using the differential privacy parameter

ϵ = 0.1 and then discarded. 3) We define the password policy

Allowed(pwd) = 1 if and only the estimated frequency of

pwd is at most r × N/2 Ð we fixed r = 10−5 in our

experiments below and explore different threshold parameters

r ∈ {10−4, 10−5, 10−6} in the full version [52]. Because the

count-sketch was trained only using passwords from the dataset

Strain we can filter Stest to obtain fresh samples that are

consistent with the composition policy.

Figure 5 shows the upper and lower bounds of different

PCPs as well as the upper/lower bounds of the original dataset

(original ub, original lb) of the three datasets. To avoid

clutter we omitted PCPs (e.g. 1class8, 2class8, 1class12)

that performed similarly to others. Since we are focusing

primarily on online attacks, we enlarge the plots and only

show 1 ≤ G ≤ 1000 in this figure. Note: to get tighter bounds

with small G, we set the parameter d in SamplingLB to be

N/2 and set the error rate ϵ of FrequencyUB to be 0.01. We

leave the full plots with G > 1000 in the full version [52].

An interesting finding is that no single PCP, excluding count-

min-sketch, performs well across all datasets and parameter

ranges. For example, 1.6% of the 000webhost passwords that

comply with the policy are P@ssw0rd so applying the 4class8
rule actually increases the percentage of cracked passwords as

shown in Figure 5b. Similarly, the 1class16 policy performs

particularly poorly on the Neopets dataset. On the positive

side the count-min sketch PCP universally performed well

across all three datasets and for all guessing parameters G.

For example, when G = 128 applying the count-min sketch

PCP to the 000webhost dataset reduces the percentage of

cracked passwords from at least 2.434% to at most 0.283%. For

comparison, applying the 4class8 (resp. 1class16) increases

(resp. decreases) the percentage of cracked passwords to at

least 4.395% (resp. at least 1.379%). Our analysis supports the

proposal of Schechter et al. [57] to base password composition

policies on (estimated) password frequency with the caveat

that our analysis in this section does depend on a heuristic

assumption about how password composition policies impact

the distribution. We also remark that when the guessing number

G is low that it is more likely that a real world attacker will

closely resemble a perfect knowledge attacker. In particular,

the attacker only needs to know the top G passwords and

we expect that each of these passwords will occur relatively

frequently making them the easiest to learn.

D. Discussion: Obtaining Password Samples

Before applying our statistical techniques we implicitly as-

sume that our organization has been able to obtain independent



samples S = (s1, . . . , sN ) from the unknown distribution P
over user passwords. While our organization can always rely on

a breached password dataset such as 000webhost or RockYou,

it is unlikely that the password samples will be perfectly

representative of the current user password distribution e.g.,

due to varying demographic factors, language, culture, account

value and password restrictions. Ideally, an organization would

obtain the samples S = (s1, . . . , sN ) from its own users before

applying our statistical framework. While the collection of

such a sample raises security and privacy concerns, we stress

that we do not require plaintext passwords in order to apply

our statistical techniques. Bonneau [16] already developed

an efficient framework to securely collect an anomymized

password frequency list and Blocki et al. [15] developed an

efficient differentially private algorithm that was used to publish

a differentially private version of Yahoo! frequency corpus that

Bonneau collected (N ≈ 70 million users). An organization

could adapt this same framework to securely and privately

collect a password frequency corpus from its own users and then

apply our statistical techniques to characterize the attacker’s

guessing curve.

VI. CONCLUSION

We introduced several statistical techniques to upper and

lower bound λG the performance of a password cracker who

knows the distribution from which passwords were sampled.

Our upper/lower bounds hold with high confidence and can be

derived from a password dataset even when the real password

distribution is unknown to us. We applied our technique to

analyze several large empirical password datasets. Our analysis

demonstrates that the empirical guessing curve closely matches

the real guessing curve as long as G is not too large, and

highlights that state-of-the-art password cracking models are

often far less guess efficient than a perfect knowledge attacker.

For example, with the 000webhost dataset the state-of-the-

art password cracking models indicate the attacker making

8338608 guesses would crack any password with probability

14% while our lower bound shows the probability is at least

39.16% with high confidence (99%). This shows that even

the most sophisticated password cracking models still have a

large room for improvement. We also demonstrate how to

apply our theoretical bounds to determine whether or not

particular password interventions (e.g., key-stretching, imposing

restrictions on the passwords users can pick) yield effective

defenses. While our results significantly narrows the uncertain

region for λG, there are regions where our best upper/lower

bounds diverge significantly. Reducing this gap will help us to

better understand the distribution over user chosen passwords

and is an important challenge for future research.

ACKNOWLEDGMENTS

This research was supported in part by the National Science

Foundation under awards CNS #1755708 and CNS #2047272,

a gift from Protocol Labs, and by a Purdue Big Ideas award.

We would like to thank anonymous reviewers for constructive

feedback which helped us to improve the presentation of this

paper.

REFERENCES

[1] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin,
and L. F. Cranor, ªFast, lean, and accurate: Modeling password
guessability using neural networks,º in USENIX Security 2016, T. Holz
and S. Savage, Eds. USENIX Association, Aug. 2016, pp. 175±191.

[2] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, ªPassword
cracking using probabilistic context-free grammars,º in 2009 IEEE

Symposium on Security and Privacy. IEEE Computer Society Press,
May 2009, pp. 391±405.

[3] R. Veras, C. Collins, and J. Thorpe, ªOn semantic patterns of passwords
and their security impact,º in NDSS 2014. The Internet Society, Feb.
2014.

[4] A. Narayanan and V. Shmatikov, ªFast dictionary attacks on passwords
using time-space tradeoff,º in ACM CCS 2005, V. Atluri, C. Meadows,
and A. Juels, Eds. ACM Press, Nov. 2005, pp. 364±372.

[5] C. Castelluccia, M. DÈurmuth, and D. Perito, ªAdaptive password-strength
meters from Markov models,º in NDSS 2012. The Internet Society, Feb.
2012.

[6] J. Ma, W. Yang, M. Luo, and N. Li, ªA study of probabilistic password
models,º in 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2014, pp. 689±704.

[7] M. DÈurmuth, F. Angelstorf, C. Castelluccia, D. Perito, and A. Chaabane,
ªOmen: Faster password guessing using an ordered markov enumerator,º
in International Symposium on Engineering Secure Software and Systems.
Springer, 2015, pp. 119±132.

[8] E. Liu, A. Nakanishi, M. Golla, D. Cash, and B. Ur, ªReasoning
analytically about password-cracking software,º in 2019 IEEE Symposium

on Security and Privacy. IEEE Computer Society Press, May 2019, pp.
380±397.

[9] ªJohn the ripper,º https://www.openwall.com/john/, accessed March 15,
2021.

[10] ªHashcat,º https://hashcat.net/hashcat/, accessed March 15, 2021.

[11] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri,
D. Kurilova, M. L. Mazurek, W. Melicher, and R. Shay, ªMeasuring
real-world accuracies and biases in modeling password guessability,º in
USENIX Security 2015, J. Jung and T. Holz, Eds. USENIX Association,
Aug. 2015, pp. 463±481.

[12] R. Chatterjee, A. Athayle, D. Akhawe, A. Juels, and T. Ristenpart,
ªpASSWORD tYPOS and how to correct them securely,º in 2016 IEEE

Symposium on Security and Privacy. IEEE Computer Society Press,
May 2016, pp. 799±818.

[13] R. Chatterjee, J. Woodage, Y. Pnueli, A. Chowdhury, and T. Ristenpart,
ªThe TypTop system: Personalized typo-tolerant password checking,º in
ACM CCS 2017, B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu,
Eds. ACM Press, Oct. / Nov. 2017, pp. 329±346.

[14] J. Blocki, B. Harsha, and S. Zhou, ªOn the economics of offline password
cracking,º in 2018 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2018, pp. 853±871.

[15] J. Blocki, A. Datta, and J. Bonneau, ªDifferentially private password
frequency lists,º in NDSS 2016. The Internet Society, Feb. 2016.

[16] J. Bonneau, ªThe science of guessing: Analyzing an anonymized corpus
of 70 million passwords,º in 2012 IEEE Symposium on Security and

Privacy. IEEE Computer Society Press, May 2012, pp. 538±552.

[17] J. Blocki and A. Datta, ªCASH: A cost asymmetric secure hash
algorithm for optimal password protection,º in CSF 2016Computer

Security Foundations Symposium, M. Hicks and B. KÈopf, Eds. IEEE
Computer Society Press, 2016, pp. 371±386.

[18] W. Bai and J. Blocki, ªDahash: Distribution aware tuning of password
hashing costs,º arXiv preprint arXiv:2101.10374, 2021.

[19] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, ªThe quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,º in 2012 IEEE Symposium on Security and

Privacy. IEEE Computer Society Press, May 2012, pp. 553±567.

[20] G. Valiant and P. Valiant, ªEstimating the unseen: Improved estimators
for entropy and other properties,º Journal of the ACM (JACM), vol. 64,
no. 6, pp. 1±41, 2017.

[21] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, ªZipf’s law in
passwords,º IEEE Transactions on Information Forensics and Security,
vol. 12, no. 11, pp. 2776±2791, 2017.



[22] M. Dell’Amico and M. Filippone, ªMonte Carlo strength evaluation:
Fast and reliable password checking,º in ACM CCS 2015, I. Ray, N. Li,
and C. Kruegel, Eds. ACM Press, Oct. 2015, pp. 158±169.

[23] J.-P. A. et al., ªPassword hashing competition,º 2015, https://password-
hashing.net/.

[24] A. Biryukov, D. Dinu, and D. Khovratovich, ªArgon2: new generation
of memory-hard functions for password hashing and other applications,º
in 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2016, pp. 292±302.

[25] J. Alwen, J. Blocki, and B. Harsha, ªPractical graphs for optimal side-
channel resistant memory-hard functions,º in ACM CCS 2017, B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds. ACM Press,
Oct. / Nov. 2017, pp. 1001±1017.

[26] C. Percival, ªStronger key derivation via sequential memory-hard
functions,º 2009.

[27] J. Blocki, S. Komanduri, A. Procaccia, and O. Sheffet, ªOptimizing
password composition policies,º in Proceedings of the Fourteenth

ACM Conference on Electronic Commerce, ser. EC ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 105±122.
[Online]. Available: https://doi.org/10.1145/2482540.2482552

[28] R. Morris and K. Thompson, ªPassword security: A case history,º
Communications of the ACM, vol. 22, no. 11, pp. 594±597, 1979.

[29] N. Provos and D. Mazieres, ªBcrypt algorithm,º in USENIX, 1999.

[30] B. Kaliski, ªPkcs# 5: Password-based cryptography specification version
2.0,º 2000.

[31] A. Juels and R. L. Rivest, ªHoneywords: making password-cracking
detectable,º in ACM CCS 2013, A.-R. Sadeghi, V. D. Gligor, and M. Yung,
Eds. ACM Press, Nov. 2013, pp. 145±160.

[32] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Inv-
ernizzi, B. Benko, T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein,
ªProtecting accounts from credential stuffing with password breach
alerting,º in USENIX Security 2019, N. Heninger and P. Traynor, Eds.
USENIX Association, Aug. 2019, pp. 1556±1571.

[33] L. Li, B. Pal, J. Ali, N. Sullivan, R. Chatterjee, and T. Ristenpart,
ªProtocols for checking compromised credentials,º in ACM CCS 2019,
L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds. ACM Press, Nov.
2019, pp. 1387±1403.

[34] A. Everspaugh, R. Chatterjee, S. Scott, A. Juels, and T. Ristenpart, ªThe
pythia PRF service,º in USENIX Security 2015, J. Jung and T. Holz, Eds.
USENIX Association, Aug. 2015, pp. 547±562.

[35] J. Brainard, A. Juels, R. L. Rivest, M. Szydlo, and M. Yung, ªFourth-
factor authentication: Somebody you know,º in ACM CCS 2006, A. Juels,
R. N. Wright, and S. De Capitani di Vimercati, Eds. ACM Press,
Oct. / Nov. 2006, pp. 168±178.

[36] M. Mannan and P. C. van Oorschot, ªLeveraging personal devices for
stronger password authentication from untrusted computers,º J. Comput.

Secur., vol. 19, no. 4, p. 703±750, Dec. 2011.

[37] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek,
L. Bauer, N. Christin, and L. F. Cranor, ªEncountering stronger
password requirements: user attitudes and behaviors,º in Proceedings of

the Sixth Symposium on Usable Privacy and Security, ser. SOUPS ’10.
New York, NY, USA: ACM, 2010, pp. 2:1±2:20. [Online]. Available:
http://doi.acm.org/10.1145/1837110.1837113

[38] J. Campbell, W. Ma, and D. Kleeman, ªImpact of restrictive composition
policy on user password choices,º Behaviour & Information Technology,
vol. 30, no. 3, pp. 379±388, 2011.

[39] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, ªOf passwords and
people: measuring the effect of password-composition policies,º in CHI,
2011, Conference Proceedings, pp. 2595±2604. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1979321

[40] A. Adams and M. A. Sasse, ªUsers are not the enemy,º Communications

of the ACM, vol. 42, no. 12, pp. 40±46, 1999.

[41] S. Komanduri, R. Shay, L. F. Cranor, C. Herley, and S. E. Schechter,
ªTelepathwords: Preventing weak passwords by reading users’ minds,º in
USENIX Security 2014, K. Fu and J. Jung, Eds. USENIX Association,
Aug. 2014, pp. 591±606.

[42] J. Bonneau and S. E. Schechter, ªTowards reliable storage of 56-bit
secrets in human memory,º in USENIX Security 2014, K. Fu and J. Jung,
Eds. USENIX Association, Aug. 2014, pp. 607±623.

[43] J. Yan, A. Blackwell, R. Anderson, and A. Grant, ªPassword memorability
and security: Empirical results,º IEEE Security & privacy, vol. 2, no. 5,
pp. 25±31, 2004.

[44] W. Yang, N. Li, O. Chowdhury, A. Xiong, and R. W. Proctor, ªAn
empirical study of mnemonic sentence-based password generation
strategies,º in ACM CCS 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel,
A. C. Myers, and S. Halevi, Eds. ACM Press, Oct. 2016, pp. 1216±1229.

[45] J. Blocki, M. Blum, and A. Datta, ªNaturally rehearsing passwords,º in
ASIACRYPT 2013, Part II, ser. LNCS, K. Sako and P. Sarkar, Eds., vol.
8270. Springer, Heidelberg, Dec. 2013, pp. 361±380.

[46] J. Blocki, S. Komanduri, L. F. Cranor, and A. Datta, ªSpaced repeti-
tion and mnemonics enable recall of multiple strong passwords,º in
NDSS 2015. The Internet Society, Feb. 2015.

[47] B. Harsha, R. Morton, J. Blocki, J. Springer, and M. Dark, ªBicycle
attacks considered harmful: Quantifying the damage of widespread
password length leakage,º Computers & Security, vol. 100, p. 102068,
2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167404820303412

[48] J. Blocki and W. Zhang, ªDalock: Distribution aware password throttling,º
arXiv preprint arXiv:2005.09039, 2020.

[49] Y. Tian, C. Herley, and S. Schechter, ªStopguessing: Using guessed
passwords to thwart online guessing,º in 2019 IEEE European Symposium

on Security and Privacy (EuroS&P). IEEE, 2019, pp. 576±589.

[50] W. Bai, J. Blocki, and B. Harsha, ªInformation signaling: A
counter-intuitive defenseagainst password cracking,º arXiv preprint

arXiv:2009.10060, 2020.

[51] C. McDiarmid, ªOn the method of bounded differences,º Surveys in

combinatorics, vol. 141, no. 1, pp. 148±188, 1989.

[52] J. Blocki and P. Liu, ªTowards a rigorous statistical analysis of
empirical password datasets,º CoRR, vol. abs/2105.14170, 2021. [Online].
Available: https://arxiv.org/abs/2105.14170

[53] R. Redman, ªLinkedin revisited ± full 2012 hash dump analysis,º https:
//blog.korelogic.com/blog/2016/05/19/linkedin passwords 2016, May 19,
2016.

[54] S. Komanduri, ªModeling the adversary to evaluate password strength
with limited samples,º Ph.D. dissertation, 2016.

[55] L. Gurobi Optimization, ªGurobi optimizer reference manual,º 2021.
[Online]. Available: http://www.gurobi.com

[56] P. Grassi and J. Fenton, ªNist sp800-63b: Digital authentication guideline,º
Technical report, NIST, Reston, VA, 2016. https://pages.nist.gov/800-63-
3/sp800-63b.html, Tech. Rep., 2016.

[57] S. Schechter, C. Herley, and M. Mitzenmacher, ªPopularity is everything:
A new approach to protecting passwords from statistical-guessing attacks,º
in 5th USENIX Workshop on Hot Topics in Security (HotSec 10).
Washington, DC: USENIX Association, Aug. 2010.

[58] D. Malone and K. Maher, ªInvestigating the distribution of password
choices,º in Proceedings of the 21st international conference on World

Wide Web, 2012, pp. 301±310.

[59] D. Wang and P. Wang, ªOn the implications of zipf’s law in passwords,º
in European Symposium on Research in Computer Security. Springer,
2016, pp. 111±131.

[60] N. Cubrilovic, ªRockyou hack: From bad to worse,º https://techcrunch.
com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/,
December 15, 2009.

[61] X. Yang, ªChinese internet suffers the most serious user data leak
in history,º https://blogs.forcepoint.com/security-labs/chinese-internet-
suffers-most-serious-user-data-leak-history, December 26, 2011.

[62] D. Goodin, ª13 million plaintext passwords belonging to
webhost users leaked online,º https://arstechnica.com/information-
technology/2015/10/13-million-plaintext-passwords-belonging-to-
webhost-users-leaked-online/, October 28, 2015.

[63] J. Cox, ªAnother day, another hack: Tens of millions of neopets
accounts,º https://motherboard.vice.com/en us/article/ezpvw7/neopets-
hack-another-day-another-hack-tens-of-millions-of-neopets-accounts,
May 5, 2016.

[64] J. Walker, ªLulzsec over, release battlefield heroes data,º
https://www.rockpapershotgun.com/2011/06/26/lulzsec-over-release-
battlefield-heroes-data/, June 26, 2011.

[65] J. Cox, ªNearly 800,000 brazzers porn site accounts exposed in forum
hack,º https://motherboard.vice.com/en us/article/vv7pgd/nearly-800000-
brazzers-porn-site-accounts-exposed-in-forum-hack, September 5, 2016.

[66] D. Goodin, ª6.6 million plaintext passwords exposed as site
gets hacked to the bone,º https://arstechnica.com/information-
technology/2016/09/plaintext-passwords-and-wealth-of-other-data-for-
6-6-million-people-go-public/, September 13, 2016.



APPENDIX A

THE LINEAR PROGRAM LPUPPER

Below we show the linear program LPupper that is used to

generate the upper bound (LPUB(S,G)) in Theorem 8.

Linear Programming Task 3:

LPupper(G,Xl, F
S , idx, i′, ϵ2, ϵ3, x̂ϵ3)

Input Parameters: G, Xl = {x1, ..., xl}, FS =
{FS

1 , ..., FS
N}, idx, i′, ϵ2 = {ϵ2,0, . . . , ϵ2,i′}, x̂ϵ3 =

{x̂ϵ3,0 , . . . , x̂ϵ3,i′ }, ϵ3 = {ϵ3,i = 1
qi+1

(

1−x̂ϵ3,i

1−qx̂ϵ3,i

)N−i

−
1, 0 ≤ i ≤ i′}
Variables: h1, ..., hl, c, p

Objective: max
(

∑

j<idx hj × xj + c× xidx

)

Constraints:

1)
∑

j<idx hj + c = G
2) ∀0 ≤ i ≤ i′:

a) for i = 0, 1
1+ϵ3,i

(
(i+1)FS

i+1

N−i − ϵ2,i − i+1
N−i −

p − bpdf(i, N, qx̂ϵ3,i)) ≤
∑l

j=1 hj × xj ×
bpdf(i, N, xj) ≤ qi+1(

(i+1)FS
i+1

N−i +ϵ2,i−p×
bpdf(i, N, xl))

b) for 1 ≤ i ≤ i′, 1
1+ϵ3,i

(
(i+1)FS

i+1

N−i −
ϵ2,i − i+1

N−i − p × bpdf(i, N, xl) −
bpdf(i, N, qx̂ϵ3,i)) ≤

∑l
j=1 hj × xj ×

bpdf(i, N, xj) ≤ qi+1(
(i+1)FS

i+1

N−i + ϵ2,i)

3) 1− p ≤∑l
j=1 hj × xj ≤ q × (1− p)

4) 0 ≤ c ≤ hidx

(Note: we consider idx = 1, 2, ..., l + 1. When idx =
l + 1, we define hl+1 = G and xl+1 = xl.)

APPENDIX B

ZIPF’S LAW IN PASSWORDS

Zipf’s law [21], [58], [59] has been proposed as reasonable

model for the password distribution λG. For example, CDF

Zipf’s law estimates that λG ≈ yGr where the constant

y, r > 0 are tuned based on the sample S. Several papers

[14], [21], [59] find that CDF Zipf’s law closely fits all

known empirical password distributions. However, there is

no theoretical guarantee that the estimate yGr is close to λG.

we compare our upper/lower bounds with the CDF-Zipf curves

using the parameters y, r from [59] for the datasets RockYou,

Battlefield Heroes, 000webhost, CSDN and [14] for the more

recent Yahoo! dataset [15], [16]. The plots and parameter

settings for Rockyou, Yahoo! and CSDN datasets are shown in

Figure 6 and Table I. The comparison results for 000webhost

and Battlefield Heroes are similar to the other three datasets. We

leave their plots and parameter settings in the full version [52].

In all of the plots the CDF-Zipf plot (green) is close to our best

upper bound (red). For the Battlefield, CSDN and 000webhost

datasets the CDF-Zipf plot (green) lies in between our best

upper bound (red) and our best lower bound (blue) indicating

that the curve yGr is consistent with our statistical bounds. For

the RockYou and Yahoo! datasets the CDF-Zipf plots (green)

often lie above the red upper bound e.g., for the RockYou (resp.

TABLE I: CDF Zipf’s Law Parameters [14], [59]

Dataset (S) y r

Yahoo! [15] 0.03315 0.1811
RockYou [60] 0.037433 0.187227

CSDN [61] 0.058799 0.148573

TABLE II: Basic Information for Password Datasets

Dataset (S) # Passwords (N ) # Distinct # Unique

Yahoo! [15] 69301337 33895873 29452171
RockYou [60] 32603388 14344391 11884632

000webhost [62] 15268903 10592935 9006529
Neopets [63] 68345757 27987227 21509860

Battlefield Heroes [64] 541016 416130 373549
Brazzers [65] 925614 587934 491136
Clixsense [66] 2222529 1628577 1455585

CSDN [61] 6428449 4037749 3581824

Yahoo!) dataset when G = 33554432 (resp. G = 134217728)

we have yGr ≥ 0.96 (resp. yGr ≥ 0.98) while our upper

bounds imply that λG ≤ 0.87 (resp. λG ≤ 0.86). In such cases

we can confidently state that the CDF-Zipf curve overestimates

λG.

APPENDIX C

MISSING FIGURES AND TABLES

The basic information of the eight datasets used in this paper

is in Table II.

Figure 7 shows the comparison results of Yahoo! frequency

corpus discussed in Section V-B.

We have shown the best upper/lower bounds for Yahoo!,

RockYou, 000webhost, and Neopets in Figure 1i in the main

body of the paper. Here we plot the best upper/lower bounds

for Battlefield Heroes, Brazzers, Clixsense, and CSDN datasets

in Figure 8.

APPENDIX D

PARAMETER SETTING

To generate high-confidence theoretical bounds of λG and

λ(S,G), we assign the parameters values to guarantee every

bound in Section III holds with probability at least 0.99.

Recall that the parameter ϵ in Corollary 4, Theorem 5,

Corollary 7, Theorem 9 bound the difference between λG

and λ(S,G). We fix this parameter as ϵ = ϵ1 =
(

ln(δ1)
−2N

)
1
2

where we set δ1 = 0.00009 for all bounds of λG and λ(S,G).
Then the upper bound in Corollary 4 (FrequencyUB(S,G))
holds with probability at least 1− δ1 ≥ 0.99.

We denote δ2,j = exp
(

−2t2

Nj2

)

in Theorem 9. We set δ2,j =

0.01− δ1 (i.e. t =
(

Nj2 ln(δ2,j)
−2

)
1
2

) such that the lower bound

in Theorem 9 (PriorLB(S, G, j)) holds with probability at least

1− δ1 − δ2,j ≥ 0.99 for any j ≥ 2.

We denote δ3 = exp
(

−2t2

d

)

in both Theorem 5 and

Corollary 7. We set d = 25000 and δ3 = 0.01 − δ1 (i.e.

t =
(

d ln(δ3)
−2

)
1
2

) such that the lower bound in Corollary 7

(ExtendedLB(S,G)) extends the lower bound in Theorem 5

(SamplingLB(S,G)), and both of them hold with probability

at least 1− δ3 ≥ 0.99.
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Fig. 6: Comparison of CDF Zipf’s Law Guessing Curves and Our Best Upper/Lower Bounds

101 103 105 107 109
0

20

40

60

80

100

# of Guesses (G)

%
C

ra
ck

ed
P

as
sw

o
rd

s

5-10y ub

5-10y lb

0-1y ub

0-1y lb

(a) Account Tenure

101 103 105 107 109
0

20

40

60

80

100

# of Guesses (G)

none ub

none lb

6 char minimum ub

6 char minimum lb

(b) Password Requirements At Registra-
tion

101 103 105 107 109
0

20

40

60

80

100

# of Guesses (G)

female ub

female lb

male ub

male lb

(c) Gender (self-reported)

Fig. 7: Analysis on Yahoo! Corpus

101 104 107 1010 1013 1016
0

20

40

60

80

100

# of Guesses (G)

%
C

ra
ck

ed
P

as
sw

o
rd

s
(λ

G
)

BattlefieldHero ub

BattlefieldHero lb

Brazzer ub

Brazzer lb

Clixsense ub

Clixsense lb

CSDN ub

CSDN lb

Fig. 8: Best Upper/Lower Bounds for Battlefield Heroes,

Brazzers, Clixsense, and CSDN

We denote δ4,i = exp
(

−2(N−i)2ϵ22,i
N(i+1)2

)

in

Theorem 8. we set q = 1.002, i′ = 4,

{δ4,0, δ4,1, δ4,2, δ4,3, δ4,4} = {0.00009, 0.000165, 0.00175,
0.00175, 0.0012}, and {x̂ϵ3,0 , x̂ϵ3,1 , x̂ϵ3,2 , x̂ϵ3,3 , x̂ϵ3,4} =
{7.0/N, 11.0/N, 14.0/N, 16.3/N, 18.5/N}. Note that

ϵ2,i =
(

N(i+1)2 ln(δ4,i)
−2(N−i)2

)
1
2

and ϵ3,i =
1

qi+1

(

1−x̂ϵ3,i

1−qx̂ϵ3,i

)N−i

− 1

for any 0 ≤ i ≤ i′. Both of the upper and lower bounds

in Theorem 8 (LPUB(S,G) and LPLB(S,G)) hold with

probabilities at least 1−∑i′

i=0 δ4,i ≥ 0.99.

APPENDIX E

MISSING PROOFS

A. Missing Proofs of LP Bounds in Section III-D

Reminder of Lemma 1. For any i ≥ 0 and 0 ≤

ϵ2,i ≤ 1, we have
(i+1)FS

i+1

N−i − ϵ2,i − i+1
N−i ≤

∑

j hj × xj ×
bpdf(i, N, xj) ≤ (i+1)FS

i+1

N−i + ϵ2,i with probability at least

1−2×exp
(

−2(N−i)2ϵ22,i
N(i+1)2

)

where the probability is taken over

the selection of our sample S ← PN .

Proof of Lemma 1. We first prove that
∑

j hj × xj ×
bpdf(i, N, xj) can be bounded using i+1

N−iE(F
S
i+1) as below:

∑

j

hj × xj × bpdf(i, N, xj)

=
∑

j

hj × xj ×
N !

(N − i)!i!
xi
j(1− xj)

N−i

=
i+ 1

N − i

∑

j

hj × (1− xj)× bpdf(i+ 1, N, xj)

=
i+ 1

N − i
E(FS

i+1)−
i+ 1

N − i

∑

j

hj × xj × bpdf(i+ 1, N, xj)

Since 0 ≤ i+1
N−i

∑

j hj × xj × bpdf(i+ 1, N, xj) ≤ i+1
N−i , we

have i+1
N−iE(F

S
i+1) − i+1

N−i ≤
∑

j hj × xj × bpdf(i, N, xj) ≤
i+1
N−iE(F

S
i+1).

Next we will prove that when i is small, FS
i+1 is highly

concentrated on E(FS
i+1). We define Y1, ..., YN to be N

independent password sample random variables, and consider

FS
i+1 = h(Y1, ..., YN ) to be a function that outputs the

number of distinct passwords that appear exact i + 1 times

among all N samples in the sample set S. Then we have



sup
y1,...,yi,...,yN ,y′

i

|h(y1, ..., yi, ..., yN )−h(y1, ..., y
′
i, ..., yN )| ≤ 1.

Using Theorem 1, for any t1 ≥ 0 we have:

Pr[h(Y1, ..., YN ) ≥ E(FS
i+1)− t1] ≥ 1− exp

(

−2t21/N
)

Pr[h(Y1, ..., YN ) ≤ E(FS
i+1) + t1] ≥ 1− exp

(

−2t21/N
)

Denote t1 = N−i
i+1 ϵ2,i. Since h(Y1, ..., YN ) = FS

i+1

we have
(i+1)FS

i+1

N−i − ϵ2,i − i+1
N−i ≤

∑

j hj × xj ×
bpdf(i, N, xj) ≤ (i+1)FS

i+1

N−i + ϵ2,i with probability at least

1− 2× exp
(

−2(N−i)2ϵ22,i
N(i+1)2

)

.

Theorem 10. Given a probability distribution P which is

consistent with a finite mesh Xl = {x1, . . . , xl} for any G ≥ 0,

any i′ ≥ 0, any ϵ2 = {ϵ2,0, . . . , ϵ2,i′} ∈ [0, 1]i
′+1, we have:

Pr

[

λG ≥ min
1≤idx≤l

LP1(Xl, F
S , idx,G, 1, i′, ϵ2)

]

≥ 1− δ

Pr

[

λG ≤ max
1≤idx≤l

|LP1(Xl, F
S , idx,G,−1, i′, ϵ2)|

]

≥ 1− δ

where δ = 2×
∑

0≤i≤i′ exp
(

−2(N−i)2ϵ22,i
N(i+1)2

)

and the random-

ness is taken over the sample S ← PN of size N .

B. Other Missing Proofs

Reminder of Theorem 2. For any guessing number G ≥ 0
and any 0 ≤ ϵ ≤ 1 we have:

Pr[λ(S,G) ≤ λG + ϵ] ≥ 1− exp
(

−2Nϵ2
)

, and

Pr[λ(S,G) ≥ λG − ϵ] ≥ 1− exp
(

−2Nϵ2
)

where the randomness is taken over the sample set S ← PN

of size N .

Proof of Theorem 2. Recall that the samples s1, s2, ..., sN
in S are N independent random variables sampled from

the real password distribution P . For any two sample set

S = {s1, ..., si, ..., sN} and S′ = {s1, ..., s′i, ..., sN} that only

differs on one sample si and s′i, we have N × |λ(S,G) −
λ(S′, G)| ≤ 1. Therefore, using Theorem 1, for any parameter

0 ≤ ϵ ≤ 1 we have:

Pr[λ(S,G) ≥ λG + ϵ] ≤ exp
(

−2Nϵ2
)

⇒ Pr[λ(S,G) ≤ λG + ϵ] ≥ 1− exp
(

−2Nϵ2
)

Pr[λ(S,G) ≤ λG − ϵ] ≤ exp
(

−2Nϵ2
)

⇒ Pr[λ(S,G) ≥ λG − ϵ] ≥ 1− exp
(

−2Nϵ2
)
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