DIFFERENTIALLY PRIVATE Lo-HEAVY HITTERS IN THE
SLIDING WINDOW MODEL

Jeremiah Blocki, Seunghoon Lee & Tamalika Mukherjee Samson Zhou

Purdue University UC Berkeley and Rice University

West Lafayette, IN 47906, USA Houston, TX 77005, USA

{jblocki, lee2856, tmukherj}@purdue.edu samsonzhoul@gmail.com
ABSTRACT

The data management of large companies often prioritize more recent data, as a
source of higher accuracy prediction than outdated data. For example, the Facebook
data policy retains user search histories for 6 months while the Google data retention
policy states that browser information may be stored for up to 9 months. These
policies are captured by the sliding window model, in which only the most recent
W statistics form the underlying dataset. In this paper, we consider the problem of
privately releasing the Lo-heavy hitters in the sliding window model, which include
L,-heavy hitters for p < 2 and in some sense are the strongest possible guarantees
that can be achieved using polylogarithmic space, but cannot be handled by existing
techniques due to the sub-additivity of the L, norm. Moreover, existing non-private
sliding window algorithms use the smooth histogram framework, which has high
sensitivity. To overcome these barriers, we introduce the first differentially private
algorithm for Ly-heavy hitters in the sliding window model by initiating a number
of Ly-heavy hitter algorithms across the stream with significantly lower threshold.
Similarly, we augment the algorithms with an approximate frequency tracking
algorithm with significantly higher accuracy. We then use smooth sensitivity and
statistical distance arguments to show that we can add noise proportional to an
estimation of the Ly norm. To the best of our knowledge, our techniques are the
first to privately release statistics that are related to a sub-additive function in the
sliding window model, and may be of independent interest to future differentially
private algorithmic design in the sliding window model.

1 INTRODUCTION

Differential privacy (Dwork, 2006; Dwork et al., 2016) has emerged as the standard for privacy in both
the research and industrial communities. For example, Google Chrome uses RAPPOR (Erlingsson
et al., 2014) to collect user statistics such as the default homepage of the browser or the default
search engine, etc., Samsung proposed a similar mechanism to collect numerical answers such as
the time of usage and battery volume (Nguyén et al., 2016), and Apple uses a differentially private
method (Greenberg, 2016) to generate predictions of spellings.

The age of collected data can significantly impact its relevance to predicting future patterns, as the
behavior of groups or individuals may significantly change over time due to either cyclical, temporary,
or permanent change. Indeed, recent data is often a more accurate predictor than older data across
multiple sources of big data, such as stock markets or Census data, a concept which is often reflected
through the data management of large companies. For example, the Facebook data policy (Facebook)
retains user search histories for 6 months, the Apple differential privacy (Upadhyay, 2019) states
that collected data is retained for 3 months, the Google data retention policy states that browser
information may be stored for up to 9 months (Google), and more generally, large data collection
agencies often perform analysis and release statistics on time-bounded data. However, since large
data collection agencies often manage highly sensitive data, the statistics must be released in a way
that does not compromise privacy. Thus in this paper, we study the (event-level) differentially private
release of statistics of time-bounded data that only use space sublinear in the size of the data.

Definition 1.1 (Differential privacy (Dwork et al., 2016)). Given ¢ > 0 and § € (0,1), a ran-
domized algorithm A operating on datastreams is (e, §)-differentially private if, for every pair of

neighboring datasets S and &' and for all sets E of possible outputs, we have, Pr [A(S) € E] <
ef-Pr[A(6') € E]+4.

In the popular streaming model of computation, elements of an underlying dataset arrive one-by-one
but the entire dataset is considered too large to store; thus algorithms are restricted to using space
sublinear in the size of the data. Although the streaming model provides a theoretical means to
handle big data and has been studied thoroughly for applications in privacy-preserving data analysis,
e.g., (Mir et al., 2011; Blocki et al., 2012; Joseph et al., 2020; Huang et al., 2022; Dinur et al.,
2023) and adaptive data analysis, e.g., (Avdiukhin et al., 2019; Ben-Eliezer et al., 2022b; Hassidim
et al., 2020; Braverman et al., 2021a; Chakrabarti et al., 2022; Ajtai et al., 2022; Beimel et al., 2022;
Ben-Eliezer et al., 2022a; Attias et al., 2023), it does not properly capture the ability to prioritize
more recent data, which is a desirable quality for data summarization. The time decay model (Cohen
& Strauss, 2006; Kopelowitz & Porat, 2008; Su et al., 2018; Braverman et al., 2019) emphasizes
more recent data by assigning a polynomially decaying or exponentially decaying weight to “older”
data points, but these functions cannot capture the zero-one property when data older than a certain
age is completely deleted.

The sliding window model. By contrast, the sliding window model takes a large data stream as an
input and only focuses on the updates past a certain point in time by implicitly defining the underlying
dataset through the most recent W updates of the stream, where W > 0 is the window parameter.
Specifically, given a stream w1, . . ., w,y, such that u; € [n] forall ¢ € [m] and a parameter W > 0 that
we assume satisfies W < m without loss of generality, the underlying dataset is a frequency vector
f € R™ induced by the last W updates of the stream wy, —yy 41, - . ., U, SO that fr, = |{ : u; = k}|,
for all k € [n]. Then the goal is to output a private approximation to the frequency fj of each
heavy-hitter, i.e., the indices k € [n] for which f; > aL,(f), which denotes the L, norm of f for a

parameter p > 1, L,(f) = || fll, = >, fip)l/p~

In this case, we say that streams & and & are neighboring if there exists a single update ¢ € [m)]
such that u; # u}, where u1, ..., u,, are the updates of & and uj, . .., u,, are the updates of &'.

Note that if & is an L;-heavy hitter, i.e., a heavy-hitter with respect to L1 (f), then f > aLi(f) so

that f > « (Z?zl fi) > « (Z?zl ff)l/z, and k is also an Lo-heavy hitter. Thus, any Lo-heavy
hitter algorithm will also report the L;-heavy hitters, but the converse is not always true. Indeed,
for the Yahoo! password frequency corpus (Blocki et al., 2016) (n =~ 70 million) with heavy-hitter

threshold a = 5(1)—0 there were 3,972 Lo-heavy hitters, but only one L;-heavy hitter. On the other

hand, finding L,-heavy hitters for p > 2 requires Q(n'—2/P) space (Chakrabarti et al., 2003; Bar-
Yossef et al., 2004), so in some sense, the Ly-heavy hitters are the best we can hope to find using
polylogarithmic space. Although there is a large and active line of work in the sliding window
model (Datar et al., 2002; Braverman & Ostrovsky, 2007; Braverman et al., 2014; 2016; 2018; 2020;
Borassi et al., 2020; Woodruff & Zhou, 2021; Braverman et al., 2021b; Jayaram et al., 2022), there is
surprisingly little work in the sliding window model that considers differential privacy (Upadhyay,
2019; Upadhyay & Upadhyay, 2021).

1.1 OUR CONTRIBUTIONS

In this paper, we consider the problem of privately releasing approximate frequencies for the heavy-
hitters in a dataset defined by the sliding window model. We give the first differentially private
algorithm for approximating the frequencies of the Ly-heavy hitters in the sliding window model.

Theorem 1.2. For any o € (0,1), ¢ > 0, window parameter W on a stream of length m that induces
a frequency vector f € R™ in the sliding window model, and privacy parameter € > %, there

exists an algorithm such that:
(1) (Privacy) The algorithm is (e, 0)-differentially private for § = %

(2) (Heavy-hitters) With probability at least 1 — # the algorithm outputs a list L such that
k € L for each k € [n] with f, > o Ly(f) and j ¢ L for each j € [n] with f; < § La(f).

(3) (Accuracy) With probability at least 1 — ri“’

forall k € L, where fk denotes the noisy approximation of fi, output by the algorithm.

we simultaneously have | fr, — fi| < G La(f)

abnt asn?

(4) (Complexity) The algorithm uses O (10%7 m) bits of space and O (10%,4 ") operations per

update where n = max{1,e}.

Pure differential privacy for L;-heavy hitters. Along the way, we develop techniques for handling
differentially private algorithms in the sliding window model that may be of independent interest. In
particular, we also use our techniques to obtain an L;-heavy hitter algorithm for the sliding window
model that guarantees pure differential privacy.

Continual release for L.-heavy hitters. Finally, we give an algorithm for continual release of L

and Ly-heavy hitters in the sliding window model that has additive error @ for each estimated
heavy-hitter frequency and preserves pure differential privacy, building on a line of work (Chan et al.,
2012; Upadhyay, 2019; Huang et al., 2022) for continual release. By comparison, the algorithm of
(Upadhyay, 2019) guarantees O (WB/ 4) additive error while the algorithm of (Huang et al., 2022)

gives (g, §)-differential privacy. We remark that since vW < Lo(t — W + 1 : t) for any t € [m],
where Lo(t — W + 1 : t) denotes the Lo norm of the sliding window between times ¢t — W + 1
and ¢, then our improvements over (Upadhyay, 2019) for the continual release of L;-heavy hitters
actually also resolve the problem of continual release of Lo-heavy hitters. Nevertheless, the approach
is somewhat standard and thus we defer discussion to the appendix.

1.2 RELATED WORK

Dynamic structures vs. linear sketching. Non-private algorithms in the streaming model generally
follow one of two main approaches. The first main approach is the transformation from static data
structures to dynamic structures using the framework of (Bentley & Saxe, 1980). Although the
approach has been a useful tool for many applications (Dwork et al., 2010; Chan et al., 2011; 2012;
Larsen et al., 2020), it does provide a mechanism to handle the implicit deletion of updates induced
by the sliding window model. The second main approach is the use of linear sketching (Blocki et al.,
2012; Bassily & Smith, 2015; Bun et al., 2019; Bassily et al., 2020; Huang et al., 2022), where the
data x is multiplied by a random matrix A to create a small-space “sketch” Ax of the original dataset.
Note that sampling can fall under the umbrella of linear sketching in the case where the random
matrix only contains a single one as the nonzero entry in each row. Unfortunately, linear sketching
again cannot handle the implicit deletions of the sliding window model, since it is not entirely clear
how to “undo” the effect of each expired element in the linear sketch Azx.

Adapting insertion-only streaming algorithms to the sliding window model. Algorithms for the
sliding window model are often adapted from the insertion-only streaming model through either the
exponential histogram framework (Datar et al., 2002) or its generalization, the smooth histogram
framework (Braverman & Ostrovsky, 2007). These frameworks transform streaming algorithms for
either an additive function (in the case of exponential histograms) or a smooth function (in the case of
smooth histograms) into sliding window algorithms by maintaining a logarithmic number of instances
of the streaming algorithm, starting at various timestamps during the stream. Informally, a function is
smooth if once a suffix of a data stream becomes a (1 + /3)-approximation of the entire data stream for
the function, then the suffix is always a (1 + «/)-approximation, regardless of the subsequent updates
in the stream. Thus at the end of the stream of say length m, two of the timestamps must “sandwich”
the beginning of the window, i.e., there exists timestamps ¢ and ¢ such thatt; < m — W + 1 < t,.
The main point of the smooth histogram is that the streaming algorithm starting at time ¢; must output
a value that is a good approximation of the function on the sliding window due to the smoothness of
the function. Therefore, the smooth histogram is a cornerstone of algorithmic design in the sliding
window model and handles many interesting functions, such as L,, norm estimation (and in particular
the sum), longest increasing subsequence, geometric mean, distinct elements estimation, and counting
the frequency of a specific item.

On the other hand, there remain interesting functions that are not smooth, such as clustering (Braver-
man et al., 2016; Borassi et al., 2020; Epasto et al., 2022), submodular optimization (Chen et al.,
2016; Epasto et al., 2017), sampling (Jayaram et al., 2022), regression and low-rank approxima-
tion (Braverman et al., 2020; Upadhyay & Upadhyay, 2021), and crucially for our purposes, heavy
hitters (Braverman et al., 2014; 2018; Upadhyay, 2019; Woodruff & Zhou, 2021). These problems
cannot be handled by the smooth histogram framework and thus for these problems, sliding windows
algorithms were developed utilizing the specific properties of the objective functions.

Previous work in the DP setting. The work most related to the subject of our study is (Upadhyay,
2019) who proposed the study of differentially private L-heavy hitter algorithms in the sliding
window. Although (Upadhyay, 2019) gave a continual release algorithm, which was later improved
by (Huang et al., 2022), the central focus of our work is the “one-shot” setting, where the algorithm
releases a single set of statistics at the end of the stream, because permitting a single interaction with
the data structure can often achieve better guarantees for both the space complexity and the utility
of the algorithm. Indeed, in this paper we present Lo-heavy hitter algorithms for both the continual
release and the one-shot settings, but the space/accuracy tradeoffs in the latter are much better than
the former. (Upadhyay, 2019) also proposed a “one-shot” algorithm, which empirically performs
well, but lacks the theoretical guarantees claimed in the paper, i.e., see Section 1.3.

Privately releasing heavy-hitters in other big data models has also received significant attention.
(Dwork et al., 2010) introduced the problem of L -heavy hitters and other problems in the pan-privacy
streaming model, where the goal is to preserves differential privacy even if the internal memory
of the algorithm is compromised, while (Chan et al., 2012) considered the problem of continually
releasing L-heavy hitters in a stream. The heavy-hitter problem has also been extensively studied
in the local model (Bassily & Smith, 2015; Ding et al., 2017; Acharya & Sun, 2019; Bun et al.,
2019; Bassily et al., 2020), where individual users locally add privacy to their data, e.g., through
randomized response, before sending their private information to a central and possibly untrusted
server to aggregate the statistics across all users.

1.3 OVERVIEW OF OUR TECHNIQUES

In this section, we give a brief overview of our techniques and the various challenges that they
overcome. We defer full proofs to the supplementary material. We first use the smooth histogram
to obtain a constant factor approximation to the L, norm of the sliding window similar to existing
heavy-hitter non-DP algorithms in the sliding window model (Braverman et al., 2014; 2018). We
maintain a series of timestamps t; < ty < ... < ts for s = O (logn), such that Lo(t; : m) >
Lo(ta :m) > ... > Lo(ts : m)and t; < m — W + 1 < ty. Hence, La(t; : m) is a constant
factor approximation to Lo(m — W + 1 : m), which is the Ly norm of the sliding window. For each
timestamp ¢; with ¢ € [s], we also run an Lo-heavy hitter algorithm COUNTSKETCH;, which outputs
a list £; of size at most O (%) that contains the Lo-heavy hitters of the suffix of the stream starting
at time ¢;, as well as approximations to each of their frequencies. It might be tempting to simply
output a noisy version of the list £; output by COUNTSKETCH,, since t; and to sandwich the start
of the sliding window, m — W + 1. Indeed, this is the approach by (Upadhyay, 2019), although they
only consider the L;-heavy hitter algorithm COUNTMIN because they study the weaker L;-heavy
hitter problem and they do not need to run a norm estimation algorithm because L; can be computed
exactly. However, (Braverman et al., 2014; 2018) crucially note that £ can also include a number
of items that are heavy-hitters with respect to the suffix of the stream starting at time ¢; but are
not heavy-hitters in the sliding window because many or even all of them appeared before time
m — W + 1. Thus although £; can guarantee that all the Lo-heavy hitters are reported by considering
a lower threshold, say 3, the frequencies of each reported heavy-hitter can be arbitrarily inaccurate.

Observe it does not suffice to instead report the Ly-heavy hitters starting from time ¢5. Although
this will remove the false-positive issue of outputting items that are not heavy-hitters, there is now a
false-negative issue; there may be heavy-hitters that appear after time m — W + 1 but before time
to that will not be detected by COUNTSKETCH;. Hence, there may be heavy-hitters of the sliding
window that are not reported by Lo. See Figure 1 for an example.

Approximate counters. The fix by (Braverman et al., 2014; 2018) that is missed by (Upadhyay,
2019) is to run approximate counters for each item k € [n] reported by some heavy-hitter algorithm
COUNTSKETCH, i.e., there exists ¢ € [s] such that k& € £;. An approximate counter is simply
a sliding window algorithm that reports a constant factor approximation to the frequency of a
specific item k € [n]. One way to achieve an approximate counter is to use the smooth histogram
framework (Braverman & Ostrovsky, 2007), but we show that an improved accuracy can be guaranteed
if the maintenance procedure instead considers additive error rather than multiplicative error. Given

the approximate counter that reports an estimate fk as the frequency for an item k& € [n], we can then

compare fj, to the estimated Ly norm of the sliding window to determine whether & could possibly
be an Lo-heavy hitter. This rules out the false positives that can be returned in £; without incurring
false negatives omitted by L.

|
T

Stream: I

Active elements (sliding window)

Fig. 1: Informally, we start a logarithmic number of streaming algorithms (the grey rectangles) at
different points in time. We call the algorithm with the shortest substream that contains the active
elements at the end of the stream (the blue rectangle). The challenge is that there may be heavy-hitters
with respect to the blue rectangle that only appear before the active elements and therefore may be
detected as heavy-hitters of the sliding window even though they are not.

Large sensitivity of subroutines. So far we have only discussed the techniques required to release
Ly-heavy hitters in the non-DP setting. In order to achieve differential privacy, a first attempt might
be to add Laplacian noise to each of the procedures. Namely, we would like to add Laplacian noise
to the estimate of the Ly norm of the sliding window and the frequency of each reported heavy-
hitter. However, since both the estimate of the Ly norm of the sliding window and the frequency
of each reported heavy-hitter is governed by the timestamps ¢1, . . ., s, then the sensitivity of each
quantity can be rather large. In fact, if the frequency of each reported heavy-hitter has sensitivity
a - Lao(m — W + 1 : m) through the approximate counters, then with high probability, the Laplacian
noise added to the frequency of some reported heavy-hitter will completely dominate the actual
frequency of the item to the point where it is no longer possible to identify the heavy-hitters. Thus the
approximate counters missed by (Upadhyay, 2019) actually pose a significant barrier to the privacy
analysis of the algorithm.

Noisy timestamps. A natural idea might be to make the timestamps in the histogram themselves
noisy, e.g., by adding Laplacian noise to each of the timestamps. Unfortunately, we would no longer
have sketches that correspond to the noisy timestamps in the sense that if the smooth histogram
maintains a heavy-hitter algorithm COUNTSKETCH; starting at a time ¢; and prior to releasing the
statistics, we add noise to the value of ¢; and obtain a noisy timestamp ;, then we do not actually
have a streaming algorithm starting at a time ;.

Lower smooth sensitivity through better approximations. Instead, we guarantee differential
privacy using the notion of smooth sensitivity (Nissim et al., 2007). The idea is the following —
given an c-approximation algorithm .4 for a function with sensitivity A ¢, we would like to intuitively
say the approximation algorithm has sensitivity oA ;. Unfortunately, this is not true because A(X)
may report o - f(X) and A(Y) may report L - f(Y") for adjacent datasets X and Y. However, if A
is instead a (1 + «)-approximation algorithm, then difference of the output of A on X and Y can
be bounded by o - f(X) 4+ - f(Y) + Ay through a simple triangle inequality, conditioned on the
correctness of A. In other words, if « is sufficiently small, then we can show that the local sensitivity
of A is sufficiently small, which allows us to control the amount of Laplacian noise that must be added
through existing mechanisms for smooth sensitivity. Unfortunately, if A is not correct, then even
the local sensitivity could be quite large; we handle these cases separately by analyzing the smooth
sensitivity of an approximation algorithm that is always correct and then arguing indistinguishability
through statistical distance. Therefore, we can set the accuracy of the L, norm estimation algorithm,
each Ly-heavy hitter algorithm, and each approximate counter algorithm to be sufficiently small and
finally we can add Laplacian noise to each procedure without significantly impacting the final check
of whether the estimated frequency for each item exceeds the heavy-hitter threshold.

Pure differential privacy for L;-heavy hitters in the sliding window model. Due to the linearity
of L;, our algorithm for differentially private L;-heavy hitters in the sliding window model is
significantly simpler than the Lo-heavy hitters algorithm. For starters, each set of ¢ updates must
contribute exactly c to the L; norm, whereas their contribution to the Lo norm depends on the
particular coordinates they update. Therefore, not only do we not require an algorithm to approximate
the L1 norm of the active elements of the sliding window, but also we can fix a set of static timestamps
in the smooth histogram, so we do not need to perform the same analysis to circumvent the sensitivity
of the timestamps. Instead, it suffices to initialize a deterministic L,-heavy hitter algorithm at each
timestamp and maintain deterministic counters for each reported heavy-hitter. Pure differential

privacy then follows from the lack of failure conditions in the subroutines, which was not possible for
Lo-heavy hitters.

2 PRELIMINARIES

For an integer n > 0, we use the notation [n] := {1, ...,n}. We use the notation poly(n) to represent
a constant degree polynomial in n and we say an event occurs with high probability if the event holds

. oy 1
with probability 1 — Doy (n) -

Differential privacy. In this section, we first introduce simple or well-known results from differential

privacy. We say that streams & and &’ are neighboring, if there exists a single update i € [m] such
that u; # u}, where ug, ..., u,, are the updates of & and uj, ..., u,, are the updates of &’.

Definition 2.1 (L, sensitivity). The L, sensitivity of a function f : U* — RF is defined by A =
maxg yeu*|,||e—y|l1=1 Hf(m) - f(y)Hl

The L, sensitivity of a function f bounds the amount that f can change when a single coordinate
of the input to f changes and is often used to parameterize the amount of added noise to ensure
differential privacy. We define the following notion of local L; sensitivity for a fixed input, which
can be much smaller than the (global) L; sensitivity.

Definition 2.2 (Local sensitivity). For f : U* — R and x € U*, the local sensitivity of f at x is
defined as LSy (x) = maxy:|q—y|,=1 ||f(2) — f(¥) |1

Unfortunately, the local sensitivity can behave wildly for specific algorithms. Thus we have the
following definition that smooths such behavior for local sensitivity.

Definition 2.3 (Smooth upper bound on local sensitivity). For 3 > 0, a function S : U* — Risa
B-smooth upper bound on the local sensitivity of f : U* — R if

(1) Forall x € U*, we have S(z) > LSy(x).
(2) Forall x,y € U* with ||z — y||y = 1, we have S(x) < e” - S(y).

Even though the local sensitivity can be much smaller than the global L; sensitivity, the Laplace
mechanism adds noise scaling with the global L, sensitivity. Hence it seems natural to hope for a
mechanism that adds less noise. The following result shows that this is indeed possible.

Theorem 2.4 (Corollary 2.4 in (Nissim et al., 2007)). Let f : U* — Rand S : U* — R be

a B-smooth upper bound on the local sensitivity of f. If 5 < m and 6 € (0,1), then the
25 (x)

mechanism that outputs f(x) + X, where X ~ Lap (T) is (¢,¢)-differentially private, for

0 = % (1 + exp (%))

Heavy hitters. We now formally introduce the L,-heavy hitter problem and the algorithm
COUNTSKETCH, which is commonly used to find the L,-heavy hitters.
Definition 2.5 (L,-heavy hitter problem). Given an accuracy/threshold parameter o € (0,1), p > 0,

and a frequency vector f € R™, report all coordinates k € [n] such that fi, > a L,(f) and no
coordinates j € [n] such that f; < § L,(f). For each reported coordinate k € [n], also report an

estimated frequency fy, such that |ﬁ — ful <G Lp(f).

Theorem 2.6 (Heavy-hitter algorithm COUNTSKETCH (Charikar et al., 2004)). Given an accuracy
parameter o« > 0 and a failure probability 6 € (0, 1), there exists a one-pass streaming algo-
rithm COUNTSKETCH for the Lo-heavy hitter problem that uses O (% log %) words of space and
o (log %) update time.

Sliding window model. In this section, we introduce simple or well-known results for the sliding
window model.

Definition 2.7 (Sliding window model). Given a universe U of items, which we associate with [n),
let a stream & of length m consist of updates uy, . .., Uy, to the universe U, so that u; € [n] for
each i € [m). After the stream, a window parameter W is given, which induces the frequency vector
feR"sothat fr, = |{i : u; = kANi>m — W + 1}| for each k € [n]. In other words, each
coordinate k of the frequency vector is the number of updates to k within the last W updates.

We say A and B are adjacent substreams of a stream S of length m if A consists of the updates
U, ..., u; and B consists of the updates w;11, ..., uy for some i, j, k € [m]. We have the following
definition of a smooth function for the purposes of sliding window algorithms, not to be confused
with the smooth sensitivity definition for differential privacy.

Definition 2.8 (Smooth function). Given adjacent substreams A and B, a function g : U* — R is
(a, B)-smooth if (1 — B)g(A U B) < g(B) implies (1 — a)g(AU BU C) < g(B U C) for some
parameters 0 < 5 < o < 1 and any adjacent substream C.

Smooth functions are a key building block in the smooth histogram framework by (Braverman &
Ostrovsky, 2010), which creates a sliding window algorithm for a large number of functions using
multiple instances of streaming algorithms starting at different points in time. See Algorithm 1 for
more details on the smooth histogram.

Theorem 2.9 (Smooth histogram (Braverman & Ostrovsky, 2010)). Given accuracy parameter
a € (0,1), failure probability § € (0,1) and an («, B)-smooth function g : U™ — R, suppose
there exists an insertion-only streaming algorithm A that outputs a (1 + «)-approximation to g
with high probability using space S(a, 6, m,n) and update time T (c, §, m, n). Then there exists a
sliding window algorithm that outputs a (1 + «)-approximation to g with high probability using

space O (%(S(B, d,m,n) + logm)log m) and update time O (%(T(ﬂ, d,m,n)) log m).

Algorithm 1 Smooth histogram (Braverman & Ostrovsky, 2010)

Input: Stream &, accuracy parameter p € (0, 1), streaming algorithm A for (p, 5(p))-smooth
function

Output: (1 + p)-approximation of predetermined function with probability at least 1 — &

cH<« 0

: for each update u; with ¢ € [m] do

H«+— HU{t}

for each time t, € H do
Let x; be the output of A with failure probability

at time ¢.
if 2,1 < (1-22) 2,41 then

Dhwn

poly () Starting at time ts and ending

Delete ¢, from H and reorder the indices in H
Let s be the smallest index such that ¢, € H andt, < m — W + 1.
Let x4 be the output of A starting at time ¢, at time t.
return x

SV X I D

We slightly tweak the smooth histogram framework to achieve a deterministic algorithm COUNTER

that can be parametrized to give an additive M -approximation to the estimated frequency ﬁ of a
particular element 7 € [n] in the sliding window model.

Lemma 2.10. There exists a deterministic algorithm COUNTER that outputs an additive M approx-
imation to the frequency of an element i € [n] in the sliding window model. The algorithm uses

O (% log m) bits of space.

3 DIFFERENTIALLY PRIVATE HEAVY-HITTERS IN THE SLIDING WINDOW
MODEL

In this section, we give a private algorithm for Ls-heavy hitters in the sliding window model. Our
algorithm will initially use a smooth histogram approach by instantiating a number of Ls norm
estimation algorithm starting at various timestamps in the stream. Through a sandwiching argument,
these Lo norm estimation algorithms will provide a constant factor approximation to the Lo norm of
the sliding window, which will ultimately allow us to determine whether elements of the stream are
heavy-hitters. Moreover, by using a somewhat standard smooth sensitivity argument, we can show
that these subroutines can be maintained in a way that preserves differential privacy.

To identify a subset of elements that can be heavy-hitters, we also run a private Lo-heavy hitters
algorithm starting at each timestamp. Unfortunately, because the timestamps do not necessarily

coincide with the beginning of the sliding window, it may be possible that depending on our approach,
we may either output a number of elements with very low, possibly even zero, frequency, or we may
neglect to output a number of heavy-hitters. To overcome this issue, we maintain a private algorithm
COUNTER that outputs an estimated frequency for each item that is reported by our private Lo-heavy
hitters algorithms, which allows us to rule out initially reported false positives without incurring false
negatives. We give the algorithm in full in Algorithm 2.

Algorithm 2 Differentially private sliding window algorithm for Ly-heavy hitters

Input: Stream &, accuracy parameter « € (0, 1), differential privacy parameters ¢, 6 > 0, window
parameter W > 0, size n of the underlying universe, upper bound m on the stream length
Output: A list £ of Lo-heavy hitters with approximate frequencies
1: Process the stream &, maintaining timestamps ¢4, . . ., ¢s at each time ¢ € [m] so that for each

i € [s], eitheri = s, t;01 = t; + 1 or La(t;,t) < (1 + (m)) Lo(tis1,t) through a
smooth histogram with failure probability #
2: Implement heavy-hitter algorithm COUN TSKETCH on the substream starting at ¢; for each i € [s]

with threshold m and failure probability 2m2
3: Seta =max{i € [s] : t; < m — W + 1} on window query W > 0

4: Set Z/L; to be an (1+

Wogm -approximation to Ls(t,,t) from the smooth histogram and

N
X Lap (g5 L2

5: for each heavy-hitter & € [n] reported by COUNTSKETCH starting at t, do

6: Run COUNTER with additive error WLQ for each reported heavy-hitter
7: Let fj be the approximate frequency reported by COUNTER

8: YkeLap(%logng) 7, « Lap (m@),ﬁ:ﬁ+zk

9: if fr, > 32 (Ly + X) + Y}, then

10 L+ LU{(k, fr)}

11: return £

We first describe the procedure for the approximate frequency estimation for each reported heavy-
hitter. Let COUNTSKETCH,, be an Ly-heavy hitter algorithm starting at timestamp t,, where a =
max{i € [s] : t; < m — W + 1} on window query W > 0. For a coordinate k € [n] that is reported
by COUNTSKETCH,, from times ¢ through m, we use COUNTER to maintain a number of timestamps
such that the frequency of k on the suffixes induced by the timestamps are arithmetically increasing
by roughly o Ly(f)/16. We emphasize that we run the COUNTER for each reported heavy-hitter in
the same pass as the rest of the algorithm.

Lemma 3.1. Let £ be the event that (1) the smooth histogram data structure does not fail, (2) all
instances of COUNTSKETCH do not fail, and (3) X < Li%f) and max ¢, (Yj, Z;) < aLfO(f) Let
COUNTSKETCH,, be the instance of COUNTSKETCH starting at time t,. Conditioned on &, thenfoAr
each reported heavy- hitter k by COUNTSKETCH,, Algorithm 2 outputs an estimated frequency fy,

such that | fi, — fk| < st bgn La(f). The algorithm uses O (==
update time per instance of COUNTSKETCH.

log2 m

) space and O (ey

We first show that the list £ output by Algorithm 2 does not contain any items with “low” frequency.
Lemma 3.2 (Low frequency items are not reported). Let € be the event that (1) the smooth histogram
data structure does not fail, (2) all instances of COUNTSKETCH do not fail, and (3) X < Lz(f) and

mMax;e|pn] (Y;,Z;) < aL2(f). Let f be the frequency vector induced by the sliding window parameter
W and suppose fr < § Lg(f) Then conditioned on &, k ¢ L.

We then show that the heavy-hitters are reported and bound the error in the estimated frequency for
each reported item.

Lemma 3.3 (Heavy-hitters are estimated accurately). Let f be the frequency vector induced by the
sliding window parameter W. Let € be the event that (1) the smooth histogram data structure does

not fail, (2) all instances of COUNTSKETCH do not fail, and (3) X < Li—gf) and max ;e (Yy, Zj) <
aLz(f) . Conditioned on &, then k € L for each k € [n] with fi, > o La(f). Moreover, for each item
kE‘C |fk_fk‘<5001ogm LZ(f)

We show that the event £ conditioned by Lemma 3.1, Lemma 3.2, and Lemma 3.3 occurs with high
probability.

Lemma 3.4. Let £ be the event that (1) the smooth histogram data structure does not fail on either
stream, (2) all instances ofCOUNTSKETCH do not fail, and (3) X < LQ(f) and max e, (Y;, Z;) <
%O(f). ThenPr[E] > 1 — W S——

Before analyzing the privacy guarantees of Algorithm 2, we must analyze the local sensitivity of its
subroutines. We first show a 3-smooth upper bound on the local sensitivity of the frequency moment.
We defer this statement to the supplementary material and also show the similar following 5-smooth
upper bound on the local sensitivity for each estimated frequency output by Algorithm 2.

Lemma 3.5 (Smooth sensitivity of the estimated frequency). Let & be a data stream of length m

that induces a frequency vector [and let fk be the estimate of the frequency of a coordinate k € [n)
output by the smooth histogram. Define the function h(f) by

fe. if fi = W32(f) < i< f WL2(f)
h(f) =4 fr — WLQ(JC)’ lffk<fk m 2(f); a
fk+mL2(f)a lffk > fk“‘ml@()-

Then the function S(f) = % h(f) + 2 is a B-smooth upper bound on the local sensitivity of

h(f) for 8 > 15010gm € > 10\(}%0@” and sufficiently large W.

With the structural results on smooth sensitivity in place, we show that Algorithm 2 is (e, d)-
differentially private.

Lemma 3.6. There exists an algorithm (see Algorithm 2) that is (e, d)-differentially private for

6(0,1),6>%,and§>%

Since Algorithm 2 further adds Laplacian noise Z ~ Lap (ﬁ f;(f)) to each ﬁ with k € L,
then Lemma 3.3 implies that the additive error to [y is 5510, L2(f) + Lap (75 Togm L2 (f)) for

each reported coordinate k € [n].

Thus through Lemma 3.6 (privacy), Lemma 3.2 and Lemma 3.3 (heavy-hitters/accuracy), and a
simple analysis for space complexity, we have Theorem 1.2, our main result for differentially private
Ly-heavy hitters in the sliding window model.

Pure differential privacy for L;-heavy hitters and continual release for L,-heavy hitters in the
sliding window model. To achieve pure differential privacy, we use a deterministic L;-heavy hitter
algorithm MISRAGRIES at each timestamp and maintain deterministic counters for each reported
heavy-hitter. Due to the linearity of L1, the global L sensitivity of our algorithm is at most 2 and
thus it suffices to use the Laplace mechanism to guarantee pure differential privacy.

To achieve continual release of Ly-heavy hitters in the sliding window model, our algorithm consists
of L := O (logW) = O (logn) levels of subroutines. In each level £ € [L], we split the stream

into continuous blocks of length S, := 2¢72 . 10%‘1{}3‘/ Given a threshold parameter o > 0, for

each block in level ¢, we run MISRAGRIES with threshold 2,+1 T At the end of the stream, we stitch
together a sketch of the underlying dataset represented by the sliding window through a binary tree
mechanism. Due to a sharper balancing argument and analysis than previous work for continual
release of L;-heavy hitters, we obtain more accurate estimates of each item, which translates to
sufficiently small error to catch the Lo-heavy hitters. We defer full details of both procedures to the
supplementary materials.

ACKNOWLEDGEMENTS

We would like to thank Sofya Raskhodnikova for clarifying discussions about smooth sensitivity.
Jeremiah Blocki was supported in part by NSF CCF-1910659, NSF CNS-1931443, and NSF CAREER
award CNS-2047272. Seunghoon Lee was supported by NSF CAREER award CNS-2047272.
Tamalika Mukherjee was supported in part by Purdue Bilsland Dissertation Fellowship, NSF CCF-
1910659, and NSF CCF-2228814. Work done in part while Samson Zhou was at Carnegie Mellon
University and supported by a Simons Investigator Award of David P. Woodruff and by the National
Science Foundation under Grant No. CCF-1815840.

REFERENCES

Jayadev Acharya and Ziteng Sun. Communication complexity in locally private distribution estimation
and heavy hitters. In Proceedings of the 36th International Conference on Machine Learning,
ICML, pp. 51-60, 2019. 4

Miklés Ajtai, Vladimir Braverman, T. S. Jayram, Sandeep Silwal, Alec Sun, David P. Woodruff,
and Samson Zhou. The white-box adversarial data stream model. In PODS ’22: International
Conference on Management of Data,, pp. 15-27,2022. 2

Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for adversarial streaming
via differential privacy and difference estimators. In /4th Innovations in Theoretical Computer
Science Conference, ITCS, pp. 8:1-8:19, 2023. 2

Dmitrii Avdiukhin, Slobodan Mitrovic, Grigory Yaroslavtsev, and Samson Zhou. Adversarially robust
submodular maximization under knapsack constraints. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD, pp. 148-156, 2019. 2

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to
data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702-732, 2004. 2

Raef Bassily and Adam D. Smith. Local, private, efficient protocols for succinct histograms. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC, pp.
127-135, 2015. 3,4

Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Thakurta. Practical locally private heavy
hitters. J. Mach. Learn. Res., 21:16:1-16:42, 2020. 3, 4

Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and Uri
Stemmer. Dynamic algorithms against an adaptive adversary: generic constructions and lower
bounds. In STOC °22: 54th Annual ACM SIGACT Symposium on Theory of Computing, pp.
1671-1684, 2022. 2

Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming via dense-sparse
trade-offs. In 5th Symposium on Simplicity in Algorithms, SOSA@SODA 2022, pp. 214-227,
2022a. 2

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adversari-
ally robust streaming algorithms. J. ACM, 69(2):17:1-17:33, 2022b. 2

Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: static-to-dynamic
transformation. J. Algorithms, 1(4):301-358, 1980. 3

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss transform
itself preserves differential privacy. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pp. 410-419, 2012. 2, 3

Jeremiah Blocki, Anupam Datta, and Joseph Bonneau. Differentially private password frequency

lists. In 23rd Annual Network and Distributed System Security Symposium, NDSS. The Internet
Society, 2016. 2

10

Michele Borassi, Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghad-
dam. Sliding window algorithms for k-clustering problems. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS,

2020. 2,3

Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), Proceedings, pp. 283-293, 2007.
2,3,4

Vladimir Braverman and Rafail Ostrovsky. Effective computations on sliding windows. SIAM J.
Comput., 39(6):2113-2131, 2010. 7

Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch Lo-heavy-hitters on sliding
windows. Theor. Comput. Sci., 554:82-94, 2014. 2, 3, 4

Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering problems
on sliding windows. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pp. 1374-1390, 2016. 2, 3

Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou. Nearly
optimal distinct elements and heavy hitters on sliding windows. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pp. 7:1-7:22,
2018. 2, 3,4

Vladimir Braverman, Harry Lang, Enayat Ullah, and Samson Zhou. Improved algorithms for time
decay streams. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM, pp. 27:1-27:17, 2019. 2

Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay, David P.
Woodruff, and Samson Zhou. Near optimal linear algebra in the online and sliding window models.
In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 517-528, 2020.
2,3

Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, and
Samson Zhou. Adversarial robustness of streaming algorithms through importance sampling. In
Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems, NeurlPS, pp. 3544-3557, 2021a. 2

Vladimir Braverman, Viska Wei, and Samson Zhou. Symmetric norm estimation and regression on
sliding windows. In Computing and Combinatorics - 27th International Conference, COCOON,
Proceedings, pp. 528-539, 2021b. 2

Mark Bun, Jelani Nelson, and Uri Stemmer. Heavy hitters and the structure of local privacy. ACM
Trans. Algorithms, 15(4):51:1-51:40, 2019. 3, 4

Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the multi-party
communication complexity of set disjointness. In /8th Annual IEEE Conference on Computational
Complexity, pp. 107-117, 2003. 2

Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring for graph
streams. In 13th Innovations in Theoretical Computer Science Conference, ITCS, pp. 37:1-37:23,
2022. 2

T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM
Trans. Inf. Syst. Secur., 14(3):26:1-26:24, 2011. 3

T.-H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. Differentially private continual
monitoring of heavy hitters from distributed streams. In Privacy Enhancing Technologies - 12th
International Symposium, PETS. Proceedings, pp. 140-159, 2012. 3, 4

Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams.
Theor. Comput. Sci., 312(1):3-15, 2004. 6

11

Jiecao Chen, Huy L. Nguyen, and Qin Zhang. Submodular maximization over sliding windows.
CoRR, abs/1611.00129, 2016. 3

Edith Cohen and Martin J. Strauss. Maintaining time-decaying stream aggregates. J. Algorithms, 59
(1):19-36, 2006. 2

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over
sliding windows. SIAM J. Comput., 31(6):1794-1813, 2002. 2, 3

Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems, pp. 3571-3580, 2017. 4

Itai Dinur, Uri Stemmer, David P. Woodruff, and Samson Zhou. On differential privacy and adaptive
data analysis with bounded space. CoRR, abs/2302.05707, 2023. 2

Cynthia Dwork. Differential privacy. In Automata, Languages and Programming, 33rd International
Colloguium, ICALP, Proceedings, Part II, pp. 1-12, 2006. |

Cynthia Dwork, Moni Naor, Toniann Pitassi, Guy N. Rothblum, and Sergey Yekhanin. Pan-private
streaming algorithms. In Innovations in Computer Science - ICS. Proceedings, pp. 66-80, 2010. 3,
4

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitivity
in private data analysis. J. Priv. Confidentiality, 7(3):17-51, 2016. |

Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghaddam. Submodular
optimization over sliding windows. In Proceedings of the 26th International Conference on World
Wide Web, WWW, pp. 421-430, 2017. 3

Alessandro Epasto, Mohammad Mahdian, Vahab S. Mirrokni, and Peilin Zhong. Improved sliding
window algorithms for clustering and coverage via bucketing-based sketches. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 3005-3042, 2022. 3

Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: randomized aggregatable privacy-
preserving ordinal response. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, pp. 1054-1067, 2014. 1

Facebook. https://www.facebook.com/policy.php. |
Google. https://policies.google.com/technologies/retention. |

Andy Greenberg. Apple’s ‘differential privacy’is about collecting your data—but not your data.
Wired, June, 13, 2016. 1

Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adversarially
robust streaming algorithms via differential privacy. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS, 2020. 2

Ziyue Huang, Yuan Qiu, Ke Yi, and Graham Cormode. Frequency estimation under multiparty

differential privacy: One-shot and streaming. Proc. VLDB Endow., 15(10):2058-2070, 2022. 2, 3,

4

Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers for data streams and
sliding windows. In PODS ’22: International Conference on Management of Data, pp. 29-40,
2022. 2,3

Matthew Joseph, Aaron Roth, Jonathan R. Ullman, and Bo Waggoner. Local differential privacy for
evolving data. J. Priv. Confidentiality, 10(1), 2020. 2

Tsvi Kopelowitz and Ely Porat. Improved algorithms for polynomial-time decay and time-decay with
additive error. Theory Comput. Syst., 42(3):349-365, 2008. 2

12

Kasper Green Larsen, Tal Malkin, Omri Weinstein, and Kevin Yeo. Lower bounds for oblivious
near-neighbor search. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA, pp. 1116-1134, 2020. 3

Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, and Rebecca N. Wright. Pan-private
algorithms via statistics on sketches. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS, pp. 37-48, 2011. 2

Thong T. Nguyén, Xiaokui Xiao, Yin Yang, Siu Cheung Hui, Hyejin Shin, and Junbum Shin.
Collecting and analyzing data from smart device users with local differential privacy. CoRR,
abs/1606.05053, 2016. 1

Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth sensitivity and sampling in
private data analysis. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
pp. 75-84, 2007. 5, 6

Shang-Yu Su, Pei-Chieh Yuan, and Yun-Nung Chen. How time matters: Learning time-decay
attention for contextual spoken language understanding in dialogues. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT, pp. 2133-2142, 2018. 2

Jalaj Upadhyay. Sublinear space private algorithms under the sliding window model. In Proceedings
of the 36th International Conference on Machine Learning, ICML, pp. 6363-6372, 2019. 1, 2, 3,
4,5

Jalaj Upadhyay and Sarvagya Upadhyay. A framework for private matrix analysis in sliding window
model. In Proceedings of the 38th International Conference on Machine Learning, ICML, pp.
10465-10475, 2021. 2,3

David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and sliding
windows via difference estimators. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 1183-1196. IEEE, 2021. 2, 3

13

	Introduction
	Our Contributions
	Related Work
	Overview of Our Techniques

	Preliminaries
	Differentially Private Heavy-Hitters in the Sliding Window Model

