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Abstract— Electric vehicles are considered a sustainable
mode of terrestrial transport worldwide because of low- or zero-
carbon emissions. Public charging stations, particularly fast and
extra fast, play a crucial role in adopting and developing electric
vehicles. To enable optimum planning of the fast charging
stations, multivariate dependence of electric vehicle charging
variables regarding stochastic nature should be taken into
account. This paper uses multiple Elliptical and Archimedean
copula functions to model the correlation/dependency between
the electric vehicle charging characteristic parameters.
Typically, by employing the multivariate copulas, synthetic
electric vehicle charging data or observations are effectively
generated for accurate simulation of multiple theoretical and
practical applications, such as planning electric vehicle charging
infrastructures while handling inherent variability and complex
dependencies of electric vehicle charging characteristic
parameters. Simulations are carried out in R.

Keywords—Copula, Correlation, Dependency, Electric
vehicle, Fast charging station, Uncertainty.

NOMENCLATURE
A. Abbreviations and Acronyms
AEV All Electric Vehicle
BEV Battery Electric Vehicle
CDF Cumulative Distribution Function
DSO Distribution System Operator
ECS Electric Charging Station
EV Electric Vehicle
EVCI  Electric Vehicle Charging Infrastructure
EVCS  Electric Vehicle Charging Station
FCEV  Fuel Cell Electric Vehicle
FCS Fast Charging Station
GHG Greenhouse Gases
HEV Hybrid Electric Vehcle
IEA International Energy Agency
IEC International Electrotechnical Commission
ICE Internal Combustion Engine
IEEE Institute of Electrical and Electronics Engineers
KS Test Kolmogorove — Smirnov Test
PDF Probability Distribution Function
PEV Plugin Electric Vehicle
PHEV  Plugin Hybrid Electric Vehicle
PM Probabilistic modelling
REEV  Range - Extended Electric Vehicle
RV Random Variable
SoC State of Charge
SAE Society of Automotive Engineers
SST Solid State Transformer
UFCS  Ultrafast Charging Station
XFC Extreme Fast Charging
B. Copula Parameters

) The second parameter in bivariate Archimedean Copulas
n Degrees of freedom for Student-t Copula
D, Standard normal CDF
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@®(u), &'(v) Inverse CDF transformed variables u and v
Y1, W2 Symmetry parameters for the Tawn copula

P Pearson's linear correlation coefficient

0 The parameter for Archimedean copulas

A(w) The Pickands dependence function

C A general copula

Cnp(u, v) Student-t Copula

Cp(u, v) Normal (Gaussian) Copula
Ce(u, v) Archimedean Copula

Ces(u, v) Bivariate Archimedean Copula
F(x), G(y)Two marginal distributions

g(t) Generator function for an Archimedean Copula
H(x,y) A joint distribution

t Data input for an Archimedean's generator function
Tnp T-distribution

T;'(w), T;'(v)  T-distribution inverse transform of u and v
u, v Two marginal distributions with uniform margins after
being transformed via Probability Integral Transform.

I.  INTRODUCTION

Ever-increasing  reduction of oil reserves and
ecological/environmental ~ crisis are global concerns
remarkably caused by fossil fuel consumption, mainly in the
transportation sector worldwide [1]. Transportation is one of
the most demanding sectors to decarbonize [2] and thus, most
nations consider EVs a viable alternative to tackle the
aforementioned serious issues [3]. During the last decade,
transport electrification was the major trend in the car sector.
Based on IEA reports, the sales of electric vehicles (EVs) rose
from 17,000 in 2010 to 6.6 million in 2021 [4]. EVs
registrations/sales share in the recent five years (2016 - 2021),
considering the world's largest EV markets, is illustrated in
Fig. 1, highlighting rapid increase in EV sales. Additionally,
even though the car industry has been primarily impacted by
the COVID19 pandemic and Russia-Ukraine War, 2 million
EVs were sold in the first quarter of 2022, demonstrating a
75% rise compared to the previous year [4]. IEA projects that
the world EV stock will reach fifty million by 2025 and nearly
two hundred million by 2030, representing more than 20% of
vehicles sold globally (11-fold from today's levels) [4].
Interestingly, 450 different EV models are available on the
market, contributing to the EVs' attractiveness to consumers
[4]. It is evident that electrifying the transportation sector has
multiple climate/environmental and private/public benefits
including greenhouse gas (GHG) emission reduction, reduced
noise emissions, decreased O & M costs, human health
benefits, and improved efficiency of EVs in comparison to
their internal combustion engine vehicles (ICEVs) [4].
Despite reducing emissions, electrified transport increases
electricity demand [2]. The EV electricity demand is expected
to reach 1100 TWh in 2030, accounting for about 4% of total
electricity demand [4]. The power system's capacity should be
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expanded to meet the imposed load by mass EV charging. The
uncertainty related to the distribution of disordered charging
loads imposed by increasing EV fleets will probably result in
a significant difference between the peak and light loads on
power grids and waste of finances in electric power
distribution equipment [3].
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Fig. 1. EV registrations/sales in the world's largest EV markets [4]

Even though residences and workplaces have been
considered the main spots to supply EV demand [5], the
maximum home charging power is 5 kW and needs an enough
off-street charging space. So, residents dweling in apartment
blocks and high-density complexes encounter a challenge.
Public EV chargers, especially fast or extra fast charging
stations, FCSs, and XFCSs, are expected to be the first
preferred EV refueling option soon in mature EV markets [2].
It is suggested to expand the public EV chargers by nine-fold,
reaching 15 million EV public chargers in 2030, to meet
charging events [2, 4]. Nearly 1.8 million public charging
spots have been installed worldwide since 2021, including
600000 fast chargers, highlighting the increasing trend in
building fast charging infrastructures [1, 4]. With densely
populated cities, China owes approximately 85% of fast
chargers worldwide, demonstrating leadership in the current
EV sector, followed by Europe and the US [1, 4]. In 2021, the
number of public fast chargers in the US, Germany, the UK,
Norway, France, Spain, and the Netherlands was 22000,
9200, 7700, 6700, 4500, 2600, and 2600, respectively [4]. As
FCSs deployment is costly, it is essential to reach optimal
planning approaches for proliferating these types of stations to
accelerate mass EV adoption [1]. Accurate modeling and
prediction of EVs' electricity demand are critical for
distribution system operators (DSOs) to balance demand-
supply equilibrium at every given moment.

Deterministic modeling approaches are not suitable for
estimating the EV load profile because they lack to represent
the stochastic/probabilistic nature of the critical random
variables. Still, few researchers paied attention on non-
deterministic approaches [2]. To find the optimal site and size
for FCSs, uncertainties/dependencies related to EV charging
behavior should be considered for close-to-real-world
simulations in this regard. Otherwise, if the dependency
structures in the FCS planning problem are not taken into
account, numerous inaccuracies may arise, particularly at the
time of producing synthetic data via the simulation techniques
to be utilized in subsequent steps for FCS planning models.
As the EV penetration level grows in power systems,
modeling the stochastic behavior of EVs becomes vital for
optimal planning and operation. Several research works have
studied the significance of EV charging behavior modeling.
However, they mainly dealt with EV charging behavior that
are mostly based on ICEVs driving patterns and the
corresponding travel survey datasets. In addition, some
research works declared that the EV charging parameters are
independent [3]. But in the present research work, the authors

provide pieces of evidence that such an assumption will result
in a biased calculation. To analyze the EV fleets and FCSs
power consumption for charging infrastructure planning, the
uncertainties of the EV charging events and EV drivers'
behaviors should be considered. Accurate EV charging
modeling is intricated using conventional methods assuming
independent random variables (RVs) parameters expressed as
non-normal multivariate dependencies among EV charging
random variables. Stochastic dependence modeling is
necessary to reach relatively accurate results in FCS planning
problem with regard to this type of dependent / correlated non-
normal datasets. But, very few research works have been
appeared so far regarding these types of complex dependency
structures in EV charging behaviors in FCSs.

To model the complex nature of the dependence structure
of EV charging characteristics, we turn to the copulas. A
copula is defined as a multivariate cumulative distribution
function (CDF) bounded to uniform margins over (0, 1) that
links marginal distributions to their joint distributions. Due to
their versatility, copulas have been used in many applications,
such as actuarial science, finance, hydrology, biomedical, and
engineering [6]. The rest of his manuscript is elaborated in the
following sections: Section II presents a detailed study
background. Section III provides transportation datasets and
methodology. Section IV demonstrates the simulations and
obatined results. Lastly, Section V summarizes conclusions
and future works.

II. BACKGROUND & METHODOLOGY

A. Electric Vehicles

Two major classifications for electric vehicles are
generally considered according to fuel requirement types,
namely, hybrid electric vehicless (HEVs) and all-electric
vehicles (AEVs) [2]. Further, plug-in hybrid electric vehicles
(PHEVs) and range-extended electric vehicles (REEVs) as
two main HEVs are equipped with ICEs and electric motors.
However, the electric motors the only driving force for AEVs
supplied mainly by various green energy sources [1, 5, 7-10]
including fuel cells (i.e., FCEVs) and batteries (i.e., BEVs).

B. EV Charging and Fast Charging Stations

Electric vehicle charging stations (EVCSs) are defined
as the public EVs refueling spots. International
Electrotechnical Commission (IEC) reports that EVs can be
charged under four EV charging modes detailed in Table 1.
Nowadays, fast charging station (FCS) is the most favorable
charging plan for public charging facilities. In recent years,
high-tech FCSs are able to charge EVs up to 80% roughly in
10 - 15 minutes, catching conventional gas refueling stations.
FCSs practically charge EVs up to 80% SoC level because
the last 20% charging power needs a longer time. In addition,
overcharging (SoC > 0.8) and underdischarging (SoC < 0.2),
are avoided to extend the EV battery lifetime [1]. The
progress of off-board extreme FCs (XFCs) is highly needed
for the fast charging of EVs. Recently developed XFCs
provide EVs with charging speed similar to gas stations in
approximately three minutes with voltage and current ratings
above 800V and 400A [11]. Several international EV
charging standards are reported in the literature, namely, (i)
Society of Automotive Engineers (SAE), (ii) Institute of
Electrical and Electronics Engineers (IEEE), and (iii)
International Electrotechnical Commission (IEC), among
others. IEC and SAE are globally on top of agreed standards

[1].
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Table 1. Electrical ratings of the available charging spots [1].

Charging Slow — AC Fast- DC
Methods UltraFast — DC
" AC Level 1 AC Level 2 DC Level 1 DC Level 2 DC Level 3
Charging Type
1ph 1ph
S“pplf\);""age 110120 V(US) | 208-—240 V (US) 438}‘\, 200 — 450 V 200 — 450 V 200 — 600 V >=800V
230 — 240 V (EU) 400 V (EU)
12-20A 32-80 A 80 A
Max. Current (A) |15 16 A ysable | (32 Ausable) | (64 A usable) 80 A 200A 400 A > 4004
1.44 -2.4 kW 7.7-25.6 kW Up to 36 kW Up to 90 kW Up to 240 kW

Max. Power (kW) (on-board) (on-board) (off-board) (off-board) (off-board) 400 -1000 kW

CB Rating (A) 15 A (min.) 40 A (min.) As required As required
frstallaym €t | cost<51000 $2000 < Cost < $10000 $60000 < Cost < $100000 Cost > $100000

Percent of CSs 53% 43% 3% <1%

Charging time 8- 16hr 4-8hr 05-12 hr 20 - 35 min <10 min <3 min

(hr or min.)
Home / Public
Charging Site Private & public outlets Commercial, analogous to a conventional gas station (primary customer
Workplace
of sub-transmission)

C. Uncertainties and Dependencies in EV Charging
As high penetration/large load demand of EVs into power
grids via charging stations, in particular FCSs, is expected
soon, it is essential to accurately estimate the imposed load
by FCSs. The stochastic nature of the inputs fed into the FCS
planning problem requires modeling and data preparation as
complex dependencies exist between the inputs [12]. The
modeling procedure mainly comprises of two phases: (i)
modeling marginal distributions and (ii) obtaining stochastic
dependence. As mentioned previously, only few research
studies employed copulas in EV charging dataset for
dependency modeling [13]. In [14], EVs are all assumed to
start charging simultaneously between 5-10 p.m. In [15], EV
fleet is highly charged at off-peak time. Here, in an
uncontrolled/uncoordinated charging scheme in [15], all EV's
depart home in between 8-9 a.m. and come back in the
afternoon/evening (i.e., 6-9 p.m.). The load demand is often
obtained neglecting EVs' travel patterns. Assuming that EV
s’initial SoC and charging start-time are random variables
(RVs), the daily distance travelled probability distribution
follows a normal distribution [12]. EVs' charging load
demand on many stochastic variables such as the number of
EVs, charging start time, charging end time, charging
duration, daily travelled distance, initial SoC, etc., all are
random variables [12]. This study uses some of the
aforementioned RVs to model EV charging characteristic
parameters.
D. Multivariate and Bivariate Copula Functions
Copulas are defined as multivariate CDFs used to

describe dependencies between RVs, and they are leveraged
to produce synthetic samples from a given joint distribution
[6, 13, 16, 17]. The resulting sample population thereby can
be employed for EV charging model. The name "copula”
highlights how copulas make connections between joint
distribution functions and their correponding univariate
margins [16, 17]. Theoretically, copulas are established based
on Sklar's theorem [18] and multivariate Sklar's theorem
[19]. Accordingly, consider H as an n-dimensional
distribution function described by distribution margins of Fi,
F, ..., Fy, then for all random variables of x in R™and »-
copula C, Eq. (1) holds [6]:

H(xl, X2, ... xn) = C(F](xl), Fz(xZ), Fn(xn)) (1)

The n-copula, i.e., C, is unique when all F1, F3, ..., Fn are
continuous; otherwise, C is uniquely obtained through Ran

FixRan Fax ...x Ran Fu. If F{'1, ..., E;'1 are quasi-inverses
of F1, F», ..., Fy, thus for any u in I", we have:

Clun, ua, ... un)=HFT" (ury, F5 ' (ua), ... By (um) (2)

To produce synthetic observations of X; from the original
RVs of x;, just uniform observations of u; within the uniform
RVs of U; should be generated regarding a joint distribution
function C. The aforementioned uniform observations should
be transformed back into the initial scale. Due to space
limitations, readers are referred to Ref. [19] for extensive
detailed study on the RV generation and copulas.

The steps required for synthetic data generation from
actual samples using the multivariate copula are depicted in
Fig. 2. The final synthetic observations (output dataset) must
have a similar RV dependence structure as the original data.
Some copulas, such as the normal (i.e., Gaussian) and Student-
t, exhibit symmetrical properties along the u = 1-v diagonal
lines. That is why they are called elliptical copulas [20].
Archimedean and Elliptical copulas are widely used types of
copulas in engineering literature [19]. Differently from the
Elliptical copulas, Archimedean copulas leverage generator
functions, g(f), to operate. In the initial form, higher
dimensioned Archimedean copulas (i.e., n > 2) only allow
positive dependencies [6]. However, various multivariate
extensions have been reported for these copulas that allow
negative dependencies via various transformations. Besides
the two above families of copulas, there exist Joe Copula
proposed [21] and BBx copulas. Details on widely used
Elliptical and Archimedean copula functions are presented in
Table 2.

Real-World Data Data Transform
datasets (Input) Preprocess (Uniform Distribution)
|
- Generation of
Multivariate Copula .
e . —» Independent Uniform
Copula Fitting Coefficients T ———

v

Synthetic Uniform Observations

t Dataset:
Back to Original Data Output Datascts

Fig. 2. Required steps for synthetic data generation via copula [22]
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Table 2. Details of Popular Elliptical and Archimedean Copulas [6].

Copula Family Copula Advantages Formulation
Gaussian Easy implementation, Linear correlation, Captures _ 4 Apen.
Elliptical (Normal) some degree of tail dependence between marginals. Colu, VI=@p( P7(w), &7(v); p)
Copulas Easy implementation, Capture extreme value _ 1 Afen.
Student-¢ dependence much better in the tails of the copula. Cap(u, V)=Tnp( Ty (W), Ty (v); P)
1
Simple form, Ease of construction, Models lower | g(t) == (t=% — 1)
Clayton tail dependence very well 6
) Co(u, v)=(u® + v*®-1)1# 6>0
Gumbel Simple form, Ease of construction, Models upper | g(t) = (=Int)?
tail dependence. Co(u, v)=exp(<((-Inu)® + (-Inv)®) /%) 020
. —6t _
Arcck::nlllei::an Simple form, Ease of construction, Do not model g(®) = —ln(:)
P Frank tail dependence. It is more focused on central et — 1( o1y (e,
. -1 ePu-1)(e%-1
dependence or symmetrical dependence. Co(u,v) = - In(1+ T )60
. . git)=—-n(1 -1 -1)9
Simple form, Ease of construction, Models _ P 0 P 01/0
Joe dependency with some upper tail dependence. gi%u' M=1-(A-w’+A-v)"-1-wd-)%

III. TRANSPORTATION DATASETS

Many substantial EV charging uncertainties influence the
FCS planning, such as EV power and energy demand, EV
daily traveled distance, EV charging start time, EV charging
end time, and the EV charging duration, etc. [2]. The FCS's
optimal planning problem should be stochastically solved. In
the present work, we used the following three uncertainties
for the copulas to get the joint probability:
(1) EV charging start time, T,
(2) EV charging end time, 7%,
(3) EV daily distance traveled, Dr.

For this purpose, we used US national household travel
survey, NHTS, [23]. This internationally accepted dataset
covers transport-related data in the years 1995 and 2009. In
the current research, we primarily extracted a specific 2009
NHTS dataset from four large databases, in particular, vehicle
and daily trips data, and then utilized it for simulations in the
"R" software package. Data preprocessing is essential to filter
out irrelevant or erroneous data. Data preprocessing is the
second step in synthetic data generation (See Fig. 2). Thus,
two datasets, VEHV2PUB and DAYV2PUB, previously
obtained from 2009 NHTS synthesized vehicle ID "VEHID"
and person ID "PERSONID" in two CSV files. Each
household may have different cars driven by other family
members. Thus, sorting vehicles versus drivers is a bit time-
consuming task. For the current research simulations, we
randomly selected only 1,000 households out of nearly
250,000. We could effectively utilize the extracted mixed
data for stochastic analyses since it was sufficiently
distributed over a broad portion of the 2009 NHTS dataset.

IV. SIMULATION AND RESULTS

The following steps were taken to model dependent RVs
via copulas:
(1) Find the most appropriate fitting PDF for each RV,
(i1) Transform sample datasets to uniform space,
(iii) Transform obtained unified data through copulas to
select the most promising copula function,
(iv) Obtain RVs correlation,
(v) Use the extracted copula to generate correlated samples.

Histograms of daily distance traveled related to total data
and selected data of the 2009 NHTS dataset are depicted in
Fig. 3. The average daily distance traveled is 32.24 miles,
consistent with the previous reports (i.e., 33 miles) [24]. The
Weibull PDFs fitted best to both histograms. Histograms of
EV charging start time and end time for selected data of the
2009 NHTS dataset (i.e., 1000 samples) are shown in Fig. 4.

There exist different procedures to determine which
distribution  fits  univariate  distribution = marginals.
Conventionally, Kolmogorov-Smirnov (KS) Test is utilized.
However, the p-values of a KS-Test
with estimated parameters can be entirely wrong since the p-
value does not consider the uncertainty of the estimation. In
addition, the test samples would never strictly follow a
specific distribution. Hence, even if p-values from the KS-
Test may be valid (i.e., > 0.05), one cannot rule out that the
data follow a specific distribution. This paper employs the
excellent "fitdistrplus" package in the "R" to fit distributions.
Here, the Skewness-Kurtosis plot proposed by Cullen and Frey
in 1999 is utilized to select the best distribution(s) to fit a sub-
sample data of the 2009 NHTS dataset. Due to space
limitations, only daily distance traveled illustrations are
shown in Fig. 5.

Dally Distance Travelled {2000 NHTS Dataset) Daily Distance Travelied (Selection of 2000 NHTS Dataseq)

ks
1

w

T
W v om ow owm owow

Fig. 3. Histograms of daily traveled distance, Dz, of the 2009 NHTS
dataset.

EV Charging Start Tme. EV Charging End Tme:

Fig.4. Histograms of EV charging start time (7s) and EV charging end time
(Tg) of the 2009 NHTS dataset.

As seen in Fig. 5, Weibull, Gamma, and Lognormal
distributions are appropriate candidates. Fig. 6 depicts the
comparison of the fit of the selected three distributions. The
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Weibull distribution is the best candidate for daily distance
traveled, Dr. Likewise, the most appropriate distributions for
EV charging start and end time were Normal and Weibull,
respectively. The parameters of fitted PDFs for three RVs are
given in Table 3.

Cullen and Frey graph

= = ® Ohgarvation Theoratical dégtributions
o boctstapped values ® normal
& ynifarn
= - ¥ 8 expanential
s + logstc
B + . O peta
- SO 00 ognovmal
- gamma
w st < ooce w g —
-
@
g @
= .
5 @+ -
o 3
o
X
o |
i T T T T
0 2 4 L B

square of skewness

Fig. 5. Cullen and Frey (Skewness vs. Kurtosis) plot employed for determining
the best-fitted distributions.
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Fig. 6. Four Goodness-of-fit plots for selected.

The correlation of RVs (i.e., Dr, Ts,and Tk) is now obtained.
Correlation is a bi-variate study that measures the the
association strength between two RVs and the direction (-/+)
of the relationship. Table 4 provides a correlation of RVs
using different methods of "Kendalls". Pearson and
Spearmen, all correlations bounded to (-1, 1). Regarding the
relationship's strength, the value of correlation coefficient
changes from +1 to -1. A value of +1 demonstrates a complete
association between the two RVs. But, the relationship
between the two RVs will be weaker as the correlation
coefficient value reaches 0. The coefficient sign (- or +)
defines the association direction, that is, "+" and “-“ signs refer
to a positive and negative relationship, respectively. Fig. 7
visualizes the selected 2009 NHTS data correlation to gain
insight into the interpretation. Pearson's and Spearman's

correlation matrices provide similar results to Kendall's
correlation matrix.

Next, copulas are employed to get the best-fitted ones.
Looking at Table 4 and Fig. 7, it is quite clear that a negative
correlation exists between Dr and Ts. Thus, if one selects
among the Elliptical copula family, Gaussian and Student-t,
or Archimedean family, Frank, Gumbel, Clayton, and Joe,
only the Gaussian allows for negative dependence. It should
be mentioned that Gaussian copula can model negative
dependency and Frank copula, which also becomes very
close to Gaussian if the degree of the dependency structures
is small. Based on the obtained results using the selected
copulas for bivariate dependency, the following copulas are
best fitted: Frank Copula (Dr and Ts), Gumbel Copula (Dr
and Tx), and Tawn-Type-2 Copula (7s and Tg). Again, due to
space limitation, the obtained results are illustrated only for
the first best-fitted copula (i.e., Frank Copula). The obtained
simulation results for successfully fitted bivariate copula are
as follows: Frank (par = -0.54, tau = -0.06). Fig. 8 visualizes
PDF, CDF, perspective, and contour plots of multivariate
distributions constructed from Frank Copula (member of the
Archimedean family) for two RVs (i.e., Dt and Ts). Finally,
1000 simulated samples are obtained regarding 1000 selected
samples from the 2009 NHTS dataset, and both are depicted
in a single plot in Fig. 9. At the end, the pair correlation of
generated observation is found to be similar to the results
provided in Table 4, verifying the validity of the obtained

results.
Table 3. The obtained distribution parameters of fitted PDFs

Random variable Fitted distribution | Parameters
. . . a=1.414797
Daily distance traveled (D) | Weibull b=35 432054
EV charging start time (Ts) | Normal (Gaussian) lsv([1:322326‘(l)3;(;
EV charging end time (Tk) Weibull ?;51 ;gé?é s
Table 4. Correlation Coefficients of the EV charging characteristic parameters
Correlation methods RV Dr Ts Te
Kendall rank correlation Dr ! -0.06 0.1
coefficient (7) Ts -0.06 1 0.024
Te 0.1 0.024 1
Pearson correlation Dr ! -0.026 0.125
coefficient (p) Ts -0.026 1 0.124
icient (o) Te 0.125 0.124 1
Spearman rank correlation Dr ! -0.088 0.145
P coeficlent () Ts 20.088 1 0.022
icient (o) Te 0.145 0.022 1

Pair Correlation of RVs

[ ] 5

ot
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Fig. 7. Pair correlation of Dr, Ts, and Tg.
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Fig. 8. Correlation of Dr and Ts, initially observed data samples (blue),

generated observations (red)

V. CONCLUSIONS AND FUTURE WORKS
For the optimal FCS planning, multivariate dependence of

EV charging variables regarding stochastic nature should be
considered. In this paper, several widely-used Elliptical and
Archimedean copula functions are fitted for modeling the

correlation between three EV

charging characteristic

parameters. This paper employed a random selection of
samples from the 2009 NHTS dataset. Simulations were
carried out in the "R" Programming Package. Due to space
limitations, only two RVs correlations were comprehensively
visualized. For future research, the number of RVs and the
size of datasets are increased. In addition, FCS charging will

be

modeled stochastically using the obtained correlations.
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