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Abstract— Electric vehicles are considered a sustainable 

mode of terrestrial transport worldwide because of low- or zero-

carbon emissions. Public charging stations, particularly fast and 

extra fast, play a crucial role in adopting and developing electric 

vehicles. To enable optimum planning of the fast charging 

stations, multivariate dependence of electric vehicle charging 

variables regarding stochastic nature should be taken into 

account. This paper uses multiple Elliptical and Archimedean 

copula functions to model the correlation/dependency between 

the electric vehicle charging characteristic parameters. 

Typically, by employing the multivariate copulas, synthetic 

electric vehicle charging data or observations are effectively 

generated for accurate simulation of multiple theoretical and 

practical applications, such as planning electric vehicle charging 

infrastructures while handling inherent variability and complex 

dependencies of electric vehicle charging characteristic 

parameters. Simulations are carried out in R. 

Keywords—Copula, Correlation, Dependency, Electric 

vehicle, Fast charging station, Uncertainty. 

NOMENCLATURE 
A. Abbreviations and Acronyms 
AEV  All Electric Vehicle 
BEV Battery Electric Vehicle  
CDF Cumulative Distribution Function 
DSO Distribution System Operator 
ECS  Electric Charging Station 

EV Electric Vehicle  
EVCI Electric Vehicle Charging Infrastructure 
EVCS Electric Vehicle Charging Station  
FCEV  Fuel Cell Electric Vehicle  
FCS Fast Charging Station 
GHG Greenhouse Gases  
HEV Hybrid Electric Vehcle 
IEA International Energy Agency  
IEC  International Electrotechnical Commission 

ICE Internal Combustion Engine  
IEEE Institute of Electrical and Electronics Engineers 
KS Test Kolmogorove – Smirnov Test 
PDF  Probability Distribution Function 
PEV Plugin Electric Vehicle  
PHEV Plugin Hybrid Electric Vehicle  
PM Probabilistic modelling 
REEV  Range - Extended Electric Vehicle   
RV Random Variable 
SoC State of Charge 
SAE  Society of Automotive Engineers   

SST  Solid State Transformer 
UFCS Ultrafast Charging Station  
XFC Extreme Fast Charging 

B. Copula Parameters 
δ The second parameter in bivariate Archimedean Copulas 

η Degrees of freedom for Student-t Copula 

Φρ Standard normal CDF 

Φ-1(u), Φ-1(v) Inverse CDF transformed variables u and v 

Ψ1, Ψ2 Symmetry parameters for the Tawn copula 

ρ Pearson's linear correlation coefficient 

θ The parameter for Archimedean copulas 

A(ω) The Pickands dependence function  
C  A general copula 

Cηρ(u, v)  Student-t Copula 

Cρ(u, v)  Normal (Gaussian) Copula 

Cθ(u, v) Archimedean Copula 

Cθδ(u, v)  Bivariate Archimedean Copula 
F(x), G(y)Two marginal distributions 
g(t) Generator function for an Archimedean Copula 
H(x, y)  A joint distribution 
t Data input for an Archimedean's generator function 

Tηρ T-distribution  


, 

  T-distribution inverse transform of u and v 

u, v Two marginal distributions with uniform margins after 
being transformed via Probability Integral Transform. 

 

I. INTRODUCTION 
Ever-increasing reduction of oil reserves and 

ecological/environmental crisis are global concerns 
remarkably caused by fossil fuel consumption, mainly in the 
transportation sector worldwide [1]. Transportation is one of 
the most demanding sectors to decarbonize [2] and thus, most 
nations consider EVs a viable alternative to tackle the 
aforementioned serious issues [3]. During the last decade, 
transport electrification was the major trend in the car sector. 
Based on IEA reports, the sales of electric vehicles (EVs) rose 
from 17,000 in 2010 to 6.6 million in 2021 [4]. EVs 
registrations/sales share in the recent five years (2016 - 2021), 
considering the world's largest EV markets, is illustrated in 
Fig. 1, highlighting rapid increase in EV sales. Additionally, 
even though the car industry has been primarily impacted by 
the COVID19 pandemic and Russia-Ukraine War, 2 million 
EVs were sold in the first quarter of 2022, demonstrating a 
75% rise compared to the previous year [4]. IEA projects that 
the world EV stock will reach fifty million by 2025 and nearly 
two hundred million by 2030, representing more than 20% of 
vehicles sold globally (11-fold from today's levels) [4]. 
Interestingly, 450 different EV models are available on the 
market, contributing to the EVs' attractiveness to consumers 
[4]. It is evident that electrifying the transportation sector has 
multiple climate/environmental and private/public benefits 
including greenhouse gas (GHG) emission reduction, reduced 
noise emissions, decreased O & M costs, human health 
benefits, and improved efficiency of EVs in comparison to 
their internal combustion engine vehicles (ICEVs) [4]. 
Despite reducing emissions, electrified transport increases 
electricity demand [2]. The EV electricity demand is expected 
to reach 1100 TWh in 2030, accounting for about 4% of total 
electricity demand [4]. The power system's capacity should be 
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expanded to meet the imposed load by mass EV charging. The 
uncertainty related to the distribution of disordered charging 
loads imposed by increasing EV fleets will probably result in 
a significant difference between the peak and light loads on 
power grids and waste of finances in electric power 
distribution equipment [3]. 

 
Fig. 1. EV registrations/sales in the world's largest EV markets [4] 

 
 Even though residences and workplaces have been 
considered the main spots to supply EV demand [5], the 
maximum home charging power is 5 kW and needs an enough 
off-street charging space. So, residents dweling in apartment 
blocks and high-density complexes encounter a challenge.  
Public EV chargers, especially fast or extra fast charging 
stations, FCSs, and XFCSs, are expected to be the first 
preferred EV refueling option soon in mature EV markets [2]. 
It is suggested to expand the public EV chargers by nine-fold, 
reaching 15 million EV public chargers in 2030, to meet 
charging events [2, 4]. Nearly 1.8 million public charging 
spots have been installed worldwide since 2021, including 
600000 fast chargers, highlighting the increasing trend in 
building fast charging infrastructures [1, 4]. With densely 
populated cities, China owes approximately 85% of fast 
chargers worldwide, demonstrating leadership in the current 
EV sector, followed by Europe and the US [1, 4]. In 2021, the 
number of public fast chargers in the US, Germany, the UK, 
Norway, France, Spain, and the Netherlands was 22000,  
9200, 7700, 6700, 4500, 2600, and 2600, respectively [4]. As 
FCSs deployment is costly, it is essential to reach optimal 
planning approaches for proliferating these types of stations to 
accelerate mass EV adoption [1]. Accurate modeling and 
prediction of EVs' electricity demand are critical for 
distribution system operators (DSOs) to balance demand-
supply equilibrium at every given moment. 
 Deterministic modeling approaches are not suitable for 
estimating the EV load profile because they lack to represent 
the stochastic/probabilistic nature of the critical random 
variables. Still, few researchers paied attention on non-
deterministic approaches [2]. To find the optimal site and size 
for FCSs, uncertainties/dependencies related to EV charging 
behavior should be considered for close-to-real-world 
simulations in this regard. Otherwise, if the dependency 
structures in the FCS planning problem are not taken into 
account, numerous inaccuracies may arise, particularly at the 
time of producing synthetic data via the simulation techniques 
to be utilized in subsequent steps for FCS planning models. 
As the EV penetration level grows in power systems, 
modeling the stochastic behavior of EVs becomes vital for 
optimal planning and operation. Several research works have 
studied the significance of EV charging behavior modeling. 
However, they mainly dealt with EV charging behavior that 
are mostly based on ICEVs driving patterns and the 
corresponding travel survey datasets. In addition, some 
research works declared that the EV charging parameters are 
independent [3]. But in the present research work, the authors 

provide pieces of evidence that such an assumption will result 
in a biased calculation. To analyze the EV fleets and FCSs 
power consumption for charging infrastructure planning, the 
uncertainties of the EV charging events and EV drivers' 
behaviors should be considered. Accurate EV charging 
modeling is intricated using conventional methods assuming 
independent random variables (RVs) parameters expressed as 
non-normal multivariate dependencies among EV charging  
random variables. Stochastic dependence modeling is 
necessary to reach relatively accurate results in FCS planning 
problem with regard to this type of dependent / correlated non-
normal datasets. But, very few research works have been 
appeared so far regarding these types of complex dependency 
structures in EV charging behaviors in FCSs. 

To model the complex nature of the dependence structure 
of EV charging characteristics, we turn to the copulas. A 
copula is defined as a multivariate cumulative distribution 
function (CDF) bounded to uniform margins over (0, 1) that 
links marginal distributions to their joint distributions. Due to 
their versatility, copulas have been used in many applications, 
such as actuarial science, finance, hydrology, biomedical, and 
engineering [6]. The rest of his manuscript is elaborated in the 
following sections: Section II presents a detailed study 
background. Section III provides transportation datasets and 
methodology. Section IV demonstrates the simulations and 
obatined results. Lastly, Section V summarizes conclusions 
and future works.    

 
II. BACKGROUND & METHODOLOGY 

A. Electric Vehicles 
Two major classifications for electric vehicles are 

generally considered according to fuel requirement types, 
namely, hybrid electric vehicless (HEVs) and all-electric 
vehicles (AEVs) [2]. Further, plug-in hybrid electric vehicles 
(PHEVs) and range-extended electric vehicles (REEVs) as 
two main HEVs are equipped with ICEs and electric motors. 
However, the electric motors the only driving force for AEVs 
supplied mainly by various green energy sources [1, 5, 7-10] 
including fuel cells (i.e., FCEVs) and batteries (i.e., BEVs).  

 
B. EV Charging and Fast Charging Stations 

Electric vehicle charging stations (EVCSs) are defined 
as the public EVs refueling spots. International 
Electrotechnical Commission (IEC) reports that EVs can be 
charged under four EV charging modes detailed in Table 1. 
Nowadays, fast charging station (FCS) is the most favorable 
charging plan for public charging facilities. In recent years, 
high-tech FCSs are able to charge EVs up to 80% roughly in 
10 - 15 minutes, catching conventional gas refueling stations. 
FCSs practically charge EVs up to 80% SoC level because 
the last 20% charging power needs a longer time. In addition, 
overcharging (SoC > 0.8) and underdischarging (SoC < 0.2), 
are avoided to extend the EV battery lifetime [1]. The 
progress of off-board extreme FCs (XFCs) is highly needed 
for the fast charging of EVs. Recently developed XFCs 
provide EVs with charging speed similar to gas stations in 
approximately three minutes with voltage and current ratings 
above 800V and 400A [11].  Several international EV 
charging standards are reported in the literature, namely, (i) 
Society of Automotive Engineers (SAE), (ii) Institute of 
Electrical and Electronics Engineers (IEEE), and (iii) 
International Electrotechnical Commission (IEC), among 
others. IEC and SAE are globally on top of agreed standards 
[1]. 
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Table 1. Electrical ratings of the available charging spots [1]. 

Charging 

 Methods 

Slow – AC Fast - DC 

UltraFast – DC 
AC Level 1 AC Level 2 DC Level 1 DC Level 2 DC Level 3 

Charging Type 

Supply Voltage 

(V) 

1ph 
110 – 120 V (US) 
230 – 240 V (EU) 

1ph 
208 – 240 V (US) 

400 V (EU) 

3ph 
400 V 

200 – 450 V 200 – 450 V 200 – 600 V >= 800 V 

Max. Current (A) 
12 – 20 A 

(12 – 16 A usable 
32 – 80 A 

(32 A usable) 
80 A 

(64 A usable) 
80 A 200A 400 A > 400A 

Max. Power (kW) 
1.44 – 2.4 kW 

(on-board) 
7.7 – 25.6 kW 

(on-board) 
Up to 36 kW  
(off-board) 

Up to 90 kW 
 (off-board) 

Up to 240 kW 
 (off-board) 

400 – 1000 kW 

CB Rating (A) 15 A (min.) 40 A (min.) As required As required 

Installation Cost 

($) 
Cost < $1000 $2000 < Cost < $10000 $60000 < Cost < $100000 Cost > $100000 

Percent of CSs 53% 43% 3% < 1% 

Charging time  

(hr or min.) 
8 – 16 hr 4 – 8 hr 0.5 – 1.2  hr 20 – 35 min < 10 min <3 min 

Charging Site 
Home / 

Workplace 
Private & public outlets Commercial, analogous to a conventional gas station 

Public 
(primary customer 

of sub-transmission) 

C. Uncertainties and Dependencies in EV Charging  

As high penetration/large load demand of EVs into power 
grids via charging stations, in particular FCSs, is expected 
soon, it is essential to accurately estimate the imposed load 
by FCSs. The stochastic nature of the inputs fed into the FCS 
planning problem requires modeling and data preparation as 
complex dependencies exist between the inputs [12]. The 
modeling procedure mainly comprises of two phases: (i) 
modeling marginal distributions and (ii) obtaining stochastic 
dependence. As mentioned previously, only few research 
studies employed copulas in EV charging dataset for 
dependency modeling [13]. In [14], EVs are all assumed to 
start charging simultaneously between 5-10 p.m. In [15], EV 
fleet is highly charged at off-peak time. Here, in an 
uncontrolled/uncoordinated charging scheme in [15], all EVs 
depart home in between 8-9 a.m. and come back in the 
afternoon/evening (i.e., 6-9 p.m.). The load demand is often 
obtained neglecting EVs' travel patterns. Assuming that EV 
s’initial SoC and charging start-time are random variables 
(RVs), the daily distance travelled probability distribution 
follows a normal distribution [12]. EVs' charging load 
demand on many stochastic variables such as the number of 
EVs, charging start time, charging end time, charging 
duration, daily travelled distance, initial SoC, etc., all are 
random variables [12]. This study uses some of the 
aforementioned RVs to model EV charging characteristic 
parameters. 

D. Multivariate and Bivariate Copula Functions 

Copulas are defined as multivariate CDFs used to 
describe dependencies between RVs, and they are leveraged 
to produce synthetic samples from a given joint distribution 
[6, 13, 16, 17]. The resulting sample population thereby can 
be employed for EV charging model. The name "copula" 
highlights how copulas make connections between joint 
distribution functions and their correponding univariate 
margins [16, 17]. Theoretically, copulas are established based 
on  Sklar's theorem [18] and multivariate Sklar's theorem 
[19]. Accordingly, consider H as an n-dimensional 
distribution function described by distribution margins of F1, 

F2, …, Fn, then for all random variables of x in and n-
copula C , Eq. (1) holds [6]: 
 

H(x1, x2, …  xn) = C(F1(x1), F2(x2), …  Fn(xn))  (1) 
 

The n-copula, i.e., C, is unique when all F1, F2, …, Fn are 
continuous; otherwise, C is uniquely obtained through Ran 

F1 × Ran F2 × …× Ran Fn. If 
, … , 

 are quasi-inverses 
of F1, F2, …, Fn, thus for any u in In, we have: 
 

C(u1, u2, …  un) = H(
 (u1), 

 (u2), …  
 (un)) (2) 

 

To produce synthetic observations of Xi from the original 
RVs of xi, just uniform observations of ui within the uniform 
RVs of Ui should be generated regarding a joint distribution 
function C. The aforementioned uniform observations should 
be transformed back into the initial scale. Due to space 
limitations, readers are referred to Ref. [19] for extensive 
detailed study on the RV generation and copulas. 
 The steps required for synthetic data generation from 
actual samples using the multivariate copula are depicted in 
Fig. 2. The final synthetic observations (output dataset) must 
have a similar RV dependence structure as the original data. 
Some copulas, such as the normal (i.e., Gaussian) and Student-
t, exhibit symmetrical properties along the u = 1–v diagonal 
lines. That is why they are called elliptical copulas [20]. 
Archimedean and Elliptical copulas are widely used types of 
copulas in engineering literature [19]. Differently from the 
Elliptical copulas, Archimedean copulas leverage generator 
functions, g(t), to operate. In the initial form, higher 
dimensioned Archimedean copulas (i.e., n > 2) only allow 
positive dependencies [6]. However, various multivariate 
extensions have been reported for these copulas that allow 
negative dependencies via various transformations. Besides 
the two above families of copulas, there exist Joe Copula 
proposed [21] and BBx copulas. Details on widely used 
Elliptical and Archimedean copula functions are presented in 
Table 2. 
 
 
 
 
 
 
 
 
 
 
  
 
 

 

Fig. 2. Required steps for synthetic data generation via copula [22] 

 

Real-World 

datasets (Input) 

Data  

Preprocess 

Data Transform 

(Uniform Distribution) 

Multivariate 
Copula Fitting 

Copula 
Coefficients 

Generation of 
Independent Uniform 

Observations by Copula 

Synthetic Uniform Observations 

Back to Original Data 
Output Datasets 
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Table 2. Details of Popular Elliptical and Archimedean Copulas [6]. 

Copula Family Copula Advantages Formulation 

Elliptical  

Copulas 

Gaussian 

(Normal) 

Easy implementation, Linear correlation, Captures 
some degree of tail dependence between marginals.  

Cρ(u, v)=Φρ( Φ-1(u), Φ-1(v); ρ) 

Student-t 
Easy implementation, Capture extreme value 
dependence much better in the tails of the copula. 

Cηρ(u, v)=Tηρ( Tη
-1(u), Tη

-1(v); ρ) 

Archimedean 

Copulas 

Clayton 
Simple form, Ease of construction, Models lower 
tail dependence very well. 

 =
1


 − 1 

Cθ(u, v)=( u-θ + v-θ-1)-1/θ θ>0 

Gumbel 
Simple form, Ease of construction, Models upper 
tail dependence. 

 = − 

Cθ(u, v)=exp(-((-lnu)θ + (-lnv)θ) 1/θ)  θ ≥0 

Frank 

Simple form, Ease of construction, Do not model 
tail dependence. It is more focused on central 
dependence or symmetrical dependence. 

 = −ln 
 − 1

 − 1
 

,  =



ln 1 +




 θ≠0 

Joe 
Simple form, Ease of construction, Models 
dependency with some upper tail dependence. 

 = − 1 − 1 −  

,  = 1 −  1 −  + 1 −  − 1 − 1 − / 

θ≥0 

III. TRANSPORTATION DATASETS  
Many substantial EV charging uncertainties influence the 

FCS planning, such as EV power and energy demand, EV 
daily traveled distance, EV charging start time, EV charging 
end time, and the EV charging duration, etc. [2]. The FCS's 
optimal planning problem should be stochastically solved. In 
the present work, we used the following three uncertainties 
for the copulas to get the joint probability: 
(1) EV charging start time, TS,  
(2) EV charging end time, TE, 
(3) EV daily distance traveled, DT. 

For this purpose, we used US national household travel 
survey, NHTS, [23]. This internationally accepted dataset 
covers transport-related data in the years 1995 and 2009. In 
the current research, we primarily extracted a specific 2009 
NHTS dataset from four large databases, in particular, vehicle 
and daily trips data, and then utilized it for simulations in the 
"R" software package. Data preprocessing is essential to filter 
out irrelevant or erroneous data. Data preprocessing is the 
second step in synthetic data generation (See Fig. 2). Thus, 
two datasets, VEHV2PUB and DAYV2PUB, previously 
obtained from 2009 NHTS synthesized vehicle ID "VEHID" 
and person ID "PERSONID" in two CSV files. Each 
household may have different cars driven by other family 
members. Thus, sorting vehicles versus drivers is a bit time-
consuming task. For the current research simulations, we 
randomly selected only 1,000 households out of nearly 
250,000. We could effectively utilize the extracted mixed 
data for stochastic analyses since it was sufficiently 
distributed over a broad portion of the 2009 NHTS dataset.  

 

IV. SIMULATION AND RESULTS 

The following steps were taken to model dependent RVs 
via copulas:  
(i) Find the most appropriate fitting PDF for each RV, 
(ii) Transform sample datasets to uniform space, 
(iii) Transform obtained unified data through copulas to 
select the most promising copula function, 
(iv) Obtain RVs correlation, 
(v) Use the extracted copula to generate correlated samples. 
     Histograms of daily distance traveled related to total data 
and selected data of the 2009 NHTS dataset are depicted in 
Fig. 3. The average daily distance traveled is 32.24 miles, 
consistent with the previous reports (i.e., 33 miles) [24]. The 
Weibull PDFs fitted best to both histograms. Histograms of 
EV charging start time and end time for selected data of the 
2009 NHTS dataset (i.e., 1000 samples) are shown in Fig. 4. 

There exist different procedures to determine which 
distribution fits univariate distribution marginals. 
Conventionally, Kolmogorov-Smirnov (KS) Test is utilized. 
However, the p-values of a KS-Test 
with estimated parameters can be entirely wrong since the p-
value does not consider the uncertainty of the estimation. In 
addition, the test samples would never strictly follow a 
specific distribution. Hence, even if p-values from the KS-
Test may be valid (i.e., > 0.05), one cannot rule out that the 
data follow a specific distribution. This paper employs the 
excellent "fitdistrplus"  package in the "R" to fit distributions. 
Here, the Skewness-Kurtosis plot proposed by Cullen and Frey 

in 1999 is utilized to select the best distribution(s) to fit a sub-
sample data of the 2009 NHTS dataset. Due to space 
limitations, only daily distance traveled illustrations are 
shown in Fig. 5.  
 

 
Fig. 3. Histograms of daily traveled distance, DT, of the 2009 NHTS 

dataset. 

 

 
Fig.4. Histograms of EV charging start time (TS) and EV charging end time 

(TE) of the 2009 NHTS dataset. 
 

     As seen in Fig. 5, Weibull, Gamma, and Lognormal 
distributions are appropriate candidates. Fig. 6 depicts the 
comparison of the fit of the selected three distributions. The 
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Weibull distribution is the best candidate for daily distance 
traveled, DT. Likewise, the most appropriate distributions for 
EV charging start and end time were Normal and Weibull, 
respectively. The parameters of fitted PDFs for three RVs are 
given in Table 3. 

 
Fig. 5. Cullen and Frey (Skewness vs. Kurtosis) plot employed for determining 

the best-fitted distributions. 

 
Fig. 6. Four Goodness-of-fit plots for selected. 

 

     The correlation of RVs (i.e., DT, TS, and TE) is now obtained. 
Correlation is a bi-variate study that measures the the 
association strength between two RVs and the direction (-/+) 
of the relationship. Table 4 provides a correlation of RVs 
using different methods of "Kendalls". Pearson and 
Spearmen, all correlations bounded to (-1, 1). Regarding the 
relationship's strength, the value of correlation coefficient 
changes from +1 to -1. A value of ±1 demonstrates a complete 
association between the two RVs. But, the relationship 
between the two RVs will be weaker as the correlation 
coefficient value reaches 0. The coefficient sign (- or +) 
defines the association direction, that is, "+" and “-“ signs refer 
to a positive and negative relationship, respectively. Fig. 7 
visualizes the selected 2009 NHTS data correlation to gain 
insight into the interpretation. Pearson's and Spearman's 

correlation matrices provide similar results to Kendall's 
correlation matrix. 

Next, copulas are employed to get the best-fitted ones. 
Looking at Table 4 and Fig. 7, it is quite clear that a negative 
correlation exists between DT and TS. Thus, if one selects 
among the Elliptical copula family, Gaussian and Student-t, 
or Archimedean family, Frank, Gumbel, Clayton, and Joe, 
only the Gaussian allows for negative dependence. It should 
be mentioned that Gaussian copula can model negative 
dependency and Frank copula, which also becomes very 
close to Gaussian if the degree of the dependency structures 
is small. Based on the obtained results using the selected 
copulas for bivariate dependency, the following copulas are 
best fitted: Frank Copula (DT and TS), Gumbel Copula (DT 
and TE), and Tawn-Type-2 Copula (TS and TE). Again, due to 
space limitation, the obtained results are illustrated only for 
the first best-fitted copula (i.e., Frank Copula). The obtained 
simulation results for successfully fitted bivariate copula are 
as follows: Frank (par = -0.54, tau = -0.06).  Fig. 8 visualizes 
PDF, CDF, perspective, and contour plots of multivariate 
distributions constructed from Frank Copula (member of the 
Archimedean family) for two RVs (i.e., DT and TS). Finally, 
1000 simulated samples are obtained regarding 1000 selected 
samples from the 2009 NHTS dataset, and both are depicted 
in a single plot in Fig. 9. At the end, the pair correlation of 
generated observation is found to be similar to the results 
provided in Table 4, verifying the validity of the obtained 
results. 

Table 3. The obtained distribution parameters of fitted PDFs 

Random variable Fitted distribution Parameters 

Daily distance traveled (DT) Weibull 
a=1.414797 
b=35.432054 

EV charging start time (TS) Normal (Gaussian) 
M=32.24670 
Sd=23.60427 

EV charging end time (TE) Weibull 
a=5.94262 
b=18.36185 

   

Table 4. Correlation Coefficients of the EV charging characteristic parameters  

Correlation methods RV DT TS TE 

Kendall rank correlation 

coefficient (τ) 

DT 1 -0.06 0.1 

TS -0.06 1 0.024 

TE 0.1 0.024 1 

Pearson correlation 

coefficient (ρ) 

DT 1 -0.026 0.125 

TS -0.026 1 0.124 

TE 0.125 0.124 1 

Spearman rank correlation 

coefficient (ρ) 

DT 1 -0.088 0.145 

TS -0.088 1 0.022 

TE 0.145 0.022 1 
 

 
Fig. 7. Pair correlation of DT, TS, and TE. 
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Fig. 8. Multivariate distribution plots of DT and TS from Frank Copula 

 
Fig. 8. Correlation of DT and TS, initially observed data samples (blue), 

generated observations (red) 
 

V. CONCLUSIONS AND FUTURE WORKS 
For the optimal FCS planning, multivariate dependence of 

EV charging variables regarding stochastic nature should be 
considered. In this paper, several widely-used Elliptical and 
Archimedean copula functions are fitted for modeling the 
correlation between three EV charging characteristic 
parameters. This paper employed a random selection of 
samples from the 2009 NHTS dataset. Simulations were 
carried out in the "R" Programming Package. Due to space 
limitations, only two RVs correlations were comprehensively 
visualized. For future research, the number of RVs and the 
size of datasets are increased. In addition, FCS charging will 
be modeled stochastically using the obtained correlations.  
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