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Abstract: While reinforcement learning (RL) has become a more popular ap-
proach for robotics, designing sufficiently informative reward functions for com-
plex tasks has proven to be extremely difficult due their inability to capture hu-
man intent and policy exploitation. Preference based RL algorithms seek to
overcome these challenges by directly learning reward functions from human
feedback. Unfortunately, prior work either requires an unreasonable number of
queries implausible for any human to answer or overly restricts the class of re-
ward functions to guarantee the elicitation of the most informative queries, re-
sulting in models that are insufficiently expressive for realistic robotics tasks.
Contrary to most works that focus on query selection to minimize the amount
of data required for learning reward functions, we take an opposite approach:
expanding the pool of available data by viewing human-in-the-loop RL through
the more flexible lens of multi-task learning. Motivated by the success of meta-
learning, we pre-train preference models on prior task data and quickly adapt
them for new tasks using only a handful of queries. Empirically, we reduce the
amount of online feedback needed to train manipulation policies in Meta-World
by 20×, and demonstrate the effectiveness of our method on a real Franka Panda
Robot. Moreover, this reduction in query-complexity allows us to train robot poli-
cies from actual human users. Videos of our results and code can be found at
https://sites.google.com/view/few-shot-preference-rl/home.
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1 Introduction

The success of deep reinforcement learning (RL) methods in game-playing and simulated domains
[1] has inspired recent work applying RL-based techniques to real-world robot control to middling
success. Integral to the success of deep RL methods is the reward function, which describes the
desired behavior of the learning agent. While training robots via trial and error holds great promise,
designing suitable reward functions remains challenging. For example, consider teaching a robot
to open a door. The simplest reward function would be sparse – providing the robot with a positive
reward only when the door has been opened. However, such sparse signals offer little learning
signal, hampering exploration and enlarging sampling complexity. Conversely in designing a dense
reward function, practitioners are tasked with summarizing multiple objectives like door angle or
proximity to the handle into a single scalar. Such reward functions have proven to be difficult to
design [2] and can even cause agents to learn unintended behaviors. Hand-designed dense reward
functions often do not directly parallel the goal-conditions humans want them to capture, causing
RL agents to exploit them and potentially leading to hazardous policies that do not align with
human intent [3]. All of these problems are exacerbated in more realistic, multi-task scenarios with
large state and action spaces [4] where we might wish to teach agents how to complete a variety of
tasks in their environment. A robot that can only open doors provides little utility in the real world.
Given the effort required to design a single reward function, constructing reward functions for an
entire family of tasks is impractical.

Recent works attempt to circumvent the basic challenges of reward design by learning reward
functions directly from human preferences. This paradigm has numerous advantages: learned
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reward functions are dense [5, 6], easily aligned with human intent [7], and can be adapted [8].
While demonstrations are often difficult to provide due to expensive data collection [9] and large
domain gaps [10, 11], human preferences can often be elicited solely through simple pairwise
comparisons. However, given the large continuous state and action settings of robotics problems,
learning a high-performance reward function from only a handful of noisy user generated binary
labels seems hopeless [12]. Consequently, methods from active learning maximize feedback
efficiency by attempting to ask the most informative queries with simplistic or linear reward
models [13, 14]. The constraints these methods place on the reward function class make them
unable to scale to complex domains that necessitate expressive reward models [15]. Moreover,
such methods are not significantly more data efficient than random sampling in practice [16, 17].
On the other hand, recent works using general function approximators still require thousands to
tens-of-thousands of artificially labeled queries to learn sufficiently accurate reward functions
[18, 19, 15]. This is far too onerous for real human labelers to provide, even in the single task
setting. In order to train effective reward functions from actual humans, we need need a paradigm
shift. Instead of optimizing for the most informative query, we take an orthogonal perspective that
maximizes the amount of overall data by leveraging pre-training on realistic multi-task settings, and
fine-tuning on a small and manageable amount of human queries online.

In the multi-task setting, significantly more data is available from previously known tasks which can
be used to accelerate reward function learning. In fact, the shared structure of many real-world tasks
has already been shown to accelerate policy learning [20]. The same structure can be exploited to
learn complex reward functions for new tasks with only a handful of queries. This is largely because
most tasks have rewards that are non-trivial compositions of other tasks. For example, data collected
on opening windows and drawers could help us learn a reward function for door-opening with fewer
human queries. Our key insight is to use multi-task data in order to meta-learn reward functions for
preference based RL. Pre-training reward functions on a large dataset enables them to quickly adapt
to new preferences with only a handful of queries.

Our core contributions are as follows. First we introduce a method for efficiently training RL policies
from human-feedback using a meta-learned reward function. Second, we demonstrate its effective-
ness across a number of standard robotics benchmarks, reducing query usage by a factor of 20 on
robotic benchmarks in comparison to previous state-of-the-art methods. This increase in efficiency
allows us to learn manipulation policies from real human feedback unlike prior work. Finally, we
demonstrate the effectiveness of our method in the real-world using a Franka Panda robot.

2 Related Work

Our work builds on top of a number of prior works spanning RL, preference-learning, and meta-
learning. Here we review the areas most relevant to our method.

Reward Learning. As hand-designed reward functions are difficult to tune, easily mis-specified
[3, 21], and challenging to implement in the real world [2, 22], many recent works have lever-
aged human-collected data in order to learn reward functions. A large body of work focuses
on using inverse RL, where a reward function is learned from approximately expert human
collected demonstrations [23, 24, 25, 26]. However, demonstration collection is often expensive
[27, 9, 28, 10, 29] and collected demonstrations are sometimes not even aligned with true human
preferences [30, 31, 32]. Alternative strategies for learning reward functions utilize physical
corrections [33], natural language instructions [34], human-provided scalar scores [35, 36] or partial
[37] or complete [38, 39] rankings . While physical corrections and language may be easier for
the user, it is generally unclear how they translate to reward updates. Stronger signals are provided
by scalar scores or multiple rankings, but they are harder for users to provide [40]. We thus use
pairwise comparisons as they are the simplest and generally refer to this approach as preference
learning. Many recent works have studied active preference-based learning from human feedback,
however such approaches often make restrictive assumptions of the reward function, like linearity
in predefined features [13, 41, 42, 14, 43]. These assumptions make such methods too inexpressive
to scale to modern robot learning with complex objectives [14]. While recent methods combining
preference learning with deep RL make no assumptions on the structure of the reward function, they
are far too feedback inefficient to be effectively used by humans [15, 18, 44, 45, 46]. Other works
that use preferences with deep imitation learning [47] still require demonstrations. Most related
to our work, PEBBLE [18] combines the SAC off-policy RL algorithm [48] with an ensemble
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Figure 1: An overview of our method. Pre-training (left): In the pre-training phase we generate
trajectory segment comparisons using data from a family of previously learned tasks and use them to
train a reward model. Online-Adaptation (Right): After pre-training the reward model, we adapt
it to new data from human feedback use it to train a policy for a new task in a closed loop manner.

of learned reward functions for sampling informative comparisons. Unfortunately, PEBBLE still
requires an impractical number of queries to learn just a single task (25k for drawer opening).
Distinct from prior work, we consider the more realistic multi-task setting that enables us to tap
into a large amount of diverse data for for pre-training to increase query-efficiency.

Meta Learning. Meta-learning methods [49, 50] address the few-shot learning problem, where pre-
dictions on new tasks are made with a limited amount of data. Inspired by their success in supervised
learning problems, we adopt the MAML algorithm [49] for learning new reward functions based on
a limited number of human queries. Though supervised meta-learning has been previously used to
infer reward classifiers [8] or in learning from heterogeneous demonstrators [51] to our knowledge it
has not been applied to reward learning from preferences. Instead of adapting the reward function to
new tasks, other related work in meta-RL directly adapts the policy network after a few exploratory
episodes [52, 53, 54, 55]. As the RL problem is much more difficult than supervised reward learning,
policy adaptation approaches are likely to be less query efficient.

3 Few-Shot Preference Learning for RL

In this section we formally describe the problem of meta-learning for preference based RL, then
detail how our algorithm leverages multi-task pre-training for online few-shot adaptation.

Problem Setup. In standard RL, an agent maximizes its cumulative expected reward in a Markov
decision process (MDP). Unlike standard RL, we assume the reward function r(s, a) to be unknown
and instead must be estimated from human feedback. Distinct from prior works in preference based
RL, we focus on the multi-task regime and thus additionally assume the existence of a distribution
of tasks p(T ). Each task τ corresponds to a unique MDP where the state space S, action space A,
and discount factor γ are held constant, but the unknown ground-truth reward function r(s, a) and
sometimes transition function P , vary. Thus, we write that τi = (Pi, ri) ∼ p(T ).
Within this setting, we define the few-shot preference-based RL problem. Given access to a dataset of
N previous tasks, {τi}Ni=1, the agents goal is to learn a policy πnew(a|s) for a new task τnew ∼ p(T )
from human feedback with as few user queries as possible. We make no explicit assumption on
the form of prior data for each of the N prior tasks, only that it contains sufficient information to
learn an estimate of the reward ri. After the pre-training phase, depicted in the left half of Figure 1,
we learn policies from online human feedback (right half of Figure 1). This setting is a significant
departure from past work in preference-based RL, as we do not assume that new tasks are learned in
isolation. More realistically, there are multiple tasks that have been completed within the same state
and action space. Next we explain the major components of our approach.

Preference Learning. In order to learn the policy πnew(a|s) for a new task from human preferences,
we choose to learn the new tasks’ reward function rnew(s, a). While alternative approaches might
seek to directly adapt the policy π −→ πnew using human feedback, such meta-RL style approaches
often entail the difficult optimization challenges known to plague policy gradients and dynamic pro-
gramming [56]. Instead, we directly model the reward using supervised learning techniques. We
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denote r̂ψ(s, a) to be a learned estimate of an unknown ground-truth reward function r(s, a), pa-
rameterized by ψ. As in Wilson et al. [57] we consider preferences over partial trajectory segments
σ = (st, at, st+1, at+1, ..., st+k−1, st+k−1) of k states and actions, as they provide more infor-
mation than single states [57, 15]. We then define a preference predictor over segments using the
Bradley-Terry model of paired comparisons [58]:

P [σ1 ≻ σ2] =
exp

∑︁
t r̂ψ(s

1
t , a

1
t )

exp
∑︁
t r̂ψ(s

1
t , a

1
t ) + exp

∑︁
t r̂ψ(s

2
t , a

2
t )

In the above, σ1 ≻ σ2 indicates the event that segment 1 is preferred to segment 2, as shown in Figure
1. For a given dataset D comprised of labeled queries (σ1, σ2, y) where y = {1, 2} corresponds to
whether σ1 or σ2 is preferred, we optimize the following objective to learn r̂ψ .

Lpref(ψ,D) = −E(σ1,σ2,y)∼D [y(1) log(P [σ1 ≻ σ2]) + y(2) log(1− P [σ1 ≻ σ2])] (1)

In practice, this is just the standard binary cross-entropy objective where logits are determined
by the sum of the learned reward function σ over k timesteps. Intuitively, this objective seeks
to maximize the logits, and consequently predicted reward values, of the preferred segment in
comparison to the unpreferred one.

Algorithm 1 Few-Shot Preference-based RL

Require: Teacher freqK, Queries per sessionM
1: ψ ← argminψ

∑︁
i L (ψ − α∇ψL(ψ,Di),Di)

2: for t = 1, 2, 3, ... do
3: if t%K == 0 then
4: for m = 1, 2, ...M do
5: (σ1, σ2) ∼ Disagreement
6: y ← user preference
7: Dnew ← Dnew ∪ (σ1, σ2, y)
8: end for
9: ψ′ ← ψ Re-initialize reward model

10: for each gradient step do
11: ψ′ ← ψ′ − α∇ψ′Lpref(ψ

′,Dnew)
12: end for
13: end if
14: Collect st+1 by taking at ∼ π(at|st)
15: Store transition B ← B ∪ (st, at, st+1)
16: Sample batch {(st, at, st+1)}Bj=1 ∼ B
17: Assign rewards rt ← rψ′(st, at))
18: Optimize π via SAC with

{(st, at, st+1, rψ′(st, at))}Bj=1
19: end for

Pre-training for Preference Learning. To es-
timate the reward function of a new task rnew in
as few queries as possible, we want to pre-train
a reward function r̂ψ that can quickly adapt
to new tasks with only a handful of compar-
isons (σ1, σ2, y). Tapping into offline data can
help exploit shared task structure and poten-
tial accelerate learning on new tasks. We pro-
pose extending the meta-learning framework to
preference learning across different tasks. Our
approach is agnostic to the choice of meta-
learning algorithm, but we choose Model Ag-
nostic Meta-Learning (MAML) [49] for its sim-
plicity. Concretely, MAML searches for param-
eters ψ that attain high performance on a new
task after only a few gradient steps by train-
ing on a set of previous tasks. In our setting,
data for previous tasks can come from offline
datasets, simulated policies, or actual humans.
In conjunction with our preference loss from
Equation (1), we use the following pre-training
update:

ψ ←− ψ−β∇ψ
N∑︂
i=1

Lpref(ψ−α∇ψLpref(ψ,Di),Di).

(2)
Here α and β are the inner and outer learning rates respectively. Each dataset Di is comprised of
known queries for each of the N tasks τi ∼ p(T ). When we start training for a new task, we can
quickly adapt the reward function using the new queries as ψ′ ←− ψ − α∇ψLpref(ψ,Dnew). As ψ
is explicitly optimized for performance on Lpref after only a handful of updates, we significantly
reduce query complexity.

Training r̂ψ using Equation (2) however, requires access to query datasets Di for each task.
While pre-training can be accomplished through several objectives, like reward regression, we use
preference-based pre-training for consistency and its generality. Pairwise comparison data can be
extracted from a wide variety of sources. If reward values are present in offline data, artificial la-
bels y for trajectory segments σ1, σ2 can easily be generated via the comparison

∑︁
t r(s

1
t , a

1
t ) >∑︁

t r(s
2
t , a

2
t ) as is common practice in prior works [15, 18]. If reward values for previous tasks are

unknown but policies are, reward values can be recovered via inverse-RL, or comparisons can be
derived from direct behavior comparison. For example, when generating queries for task i, behav-
iors from πi(a|s) would be preferred to behaviors generated from π ̸=i(a|s). The left half of Figure
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Figure 2: Results on MetaWorld tasks. The title of each subplot indicates the task and number of
artificial feedback queries used in training. Results for each method are shown across five seeds.

1 shows the process of extracting query data from offline data for pre-training, which corresponds
to line 1 in Algorithm 1. In our experiments, we use the artificial reward labeling scheme described
first for consistency with prior work [15].

Few-Shot Preference-based RL. Our pre-trained preference function can then be used for few-shot
preference based RL during an online adaptation phase, depicted in the right half of Figure 1. We
modify the standard Soft-Actor Critic RL algorithm [48] to relabel transitions using our learned
reward function before performing a standard actor-critic update (Algorithm 1 lines 17-18). Every
K steps, we ask a user to answer queries and provide feedback labels y as shown in lines 5-7 of
Algorithm 1. Informative queries are selected using the disagreement of an ensemble of reward
functions over the preference predictors. Specifically, comparisons that maximize std(P [σ1 ≻ σ2])
are selected each time feedback is collected [59]. After new feedback is collected, we re-initialize
the reward model r̂ψ to its pre-trained weights. Subsequently, we re-adapt it using the updated
dataset Dnew for the new task as shown in Algorithm lines 9-11.

To our knowledge, we are the first to leverage multi-task data for preference-based RL. The shift
to the multi-task setting necessitates critical algorithmic changes in comparison with prior work.
First, we pre-train the reward function from prior data instead of using other warm-start methods
like unsupervised exploration used in PEBBLE. Second, we crucially reset the reward model for
adaptation. Our setting provides a novel framework that leverages pre-training on a range of tasks
for data-efficient adaptation on new tasks enabling human users to provide this data without making
any structural assumptions on the reward function.

4 Experiments

In this section we seek to answer the following questions: First, does few-shot preference learning
improve the query efficiency of preference-based RL? Second, is our method efficient enough to
learn robot policies from real human feedback? Finally, can few-shot preference learning be used in
the real world? Dataset, architecture, and hyperparameter details are available in the Appendix.
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4.1 How query-efficient is few-shot preference-based RL?

To test the query-efficiency of few-shot preference based RL for realistic robotic tasks, we adopt
the Meta-World benchmark from Yu et al. [20]. Agent tasks include household activities like
opening doors or closing windows, and standard manipulation problems like block pushing. Some
Meta-World tasks are particularly difficult for human-in-the-loop learning as they are sequential:
feedback on the second part of the task, like where an agent should move a block, can only be
provided once the agent learns the first part of the task, like how to grasp a block. Additionally,
different objects introducing different manipulation dynamics across tasks. To evaluate the
raw-performance of our approach, we use the artificial queries induced by the task ground truth
reward function. Previous works in preference based RL have required up to fifty-thousand artificial
queries in order to solve some of the Meta-world tasks [18]. Our approach generally achieves the
same performance using 20× fewer queries. Our reward models are pre-trained using only 10 prior
tasks and evaluate query-efficiency on six previously unseen tasks. We compare our method, which
we refer to as Few-Shot, to three baselines:

1. SAC: The Soft-Actor Critic RL algorithm trained from ground truth rewards. This repre-
sents “oracle” performance.

2. PEBBLE: The PEBBLE algorithm from Lee et al. [18], which does not use any prior data.

3. Init: This baseline demonstrates the importance of our adaptation procedure during train-
ing. Instead of re-adapting the reward model each time new feedback is collected, we
initialize the reward model with the pretrained weights, and then perform standard updates
with the Adam optimizer [60] as in PEBBLE.

For each environment, we reduce the total feedback budget by a factor of 20 in comparison to the
maximum value used in PEBBLE. Full results are shown in Figure 2. Overall, we find that despite
the 20× reduction in feedback our method is able to solve almost all of the tasks with a near 100%
success rate. In the Appendix, we directly compare to Lee et al. [18] with using their amount of
feedback. In all tasks, except Button Press, we achieve the same asymptotic performance as SAC
with 20× less feedback than originally used for PEBBLE in Lee et al. [18] which is unable to learn
a meaningful policy under a reduced feedback budget. In Appendix A we directly compare to PEB-
BLE with the feedback schedules from Lee et al. [18]. While the Init baseline generally performs
better than PEBBLE, it still falls short of our method, indicating that re-adaptation is important.
Unlike in other pretraining and finetuning paradigms, preference learning is done online, causing
the optimal reward function induced by the data to shift. Re-adapting weights each time feedback is
collected ensures that we get the full benefits of MAML by considering all data points. Locomotion
experiments and ablations on feedback and query selection are included in the Appendix.

4.2 Can few-shot preference learning be used with humans?

While no human could be sensibly be expected to provide thousands of pieces of feedback, around
a hundred or less not too daunting a task. Given the lower query-complexity of few-shot preference-
based RL, we use it to learn complex robot manipulation policies from real-human feedback for the
first time. In the process of doing so, we encountered a few challenges. First, humans often have
a difficult time answering queries asked by preference based RL algorithms. Queries sampled by
maximizing disagreement across an ensemble of reward functions often look identical to humans.
Such queries at the margin may be maximally informative, but are more difficult to answer (See
Figure 5). For example, it is unlikely that humans can accurately compare two behavior segments
that only have slight variations in the robot joint positions. While this is not explicitly examined
in prior work that largely uses artificially generated queries, it is important when considering the
abilities of humans and our desired to adapt reward functions with a handful of data points, making
everything more sensitive to errors.

To address this, we add the ability for human users to “skip” difficult queries instead of providing
noisy answers and increased the number of uniform queries used to reduce the likelihood that
difficult queries were presented. Second, despite these mitigations, humans still make mistakes in
labeling resulting in query labels that are possibly inconsistent. We thus allowed policies to train for
longer periods of time between feedback sessions in hopes of collecting more data on the current
policy’s belief over the reward.
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Figure 3: Results on training DM Control and Meta-World tasks from real human feedback. The
vertical dashed black line indicates the point at which feedback was stopped. The horizontal bars at
the bottom show the proportion of times users provided feedback that “correctly” agreed with the
tasks ground-truth reward function, “incorrectly” disagree with the ground-truth reward function, or
skipped the comparison.

After making the aforementioned changes, we examined the performance of few-shot preference-
based RL on two of the MetaWorld environments and two additional environments based on the DM
Control benchmark [61]. We take the point mass and reacher environments from DM Control [61]
and change the reward function to be the negative L2 distance to an unknown goal. Reward models
are pre-trained on random data and evaluated on unknown goal positions. The MetaWorld environ-
ments are as described in Section 4.1. Our full results are shown in Figure 3. As the ground-truth
reward value for DM control correspond to the cumulative distance to the goal, the higher reward
values of our method indicate that it can better communicate the human’s objective with fewer
queries. While PEBBLE was completely unable to solve Window-Close from human feedback, it
made non-trivial progress on Door Close. This is likely because Door Close can be trivially solved
by slamming the robot arm into the door instead of first grasping the handle and then closing the
door as is encourage by our reward-function prior. Moreover, we find that in the Meta-World envi-
ronments, users have an easier time answering queries from our method in comparison to PEBBLE.
This is likely because the reward function prior guides agents towards interacting with objects,
leading to more distinguishable behaviors. Results with more users on Reacher are in Appendix A.

Figure 4: Push rollouts

Reach Block Push
Goal Position (.55, .35) (.45,−.3) (.35, .3) (0.35,−0.3)
Few-Shot .061 ± .041 .056 ± .009 .188 ± .175 .056 ± .035
PEBBLE .105 ± .056 .129 ± .067 .280 ± .065 .173 ± .097

Table 1: Results for the real-robot tasks. Performance is measured in
meters to the desired goal position, lower is better. The z targets for reach
were 0.125 and 0.25, respectively. Results are averaged across multiple
initial environment configurations. Best method is bolded.

4.3 Can Few-Shot preference-based RL be used in the real world?

Finally, we investigate the use of few-shot preference-based RL in real world settings using a Franka
Panda Robot. We design two basic tasks: reaching and block pushing where the robot moves its arm
or the block, respectively, to an unknown goal location communicated only via the learned reward
function. We pre-train reward models with artificial queries and learn policies in simulation. We
then transfer the learned policies to the real world and test on unseen goal locations. Table 1 contains
our results. Performance is measured in meters to the true goal. Again, few-shot preference learning
consistently outperforms PEBBLE despite the large sim-to-real gap. One additional benefit of our
approach in real-world settings is that it potentially requires less instrumentation, as measurements
previously needed to functionally compute reward are not required when using human feedback.
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5 Discussion

Limitations and Future Work. While few-shot preference learning has several benefits, it has its
limitations. Here we list the most salient ones, and possible means of overcoming them:

Query Complexity. Despite our gains in query-efficiency, the most complex tasks still require more
feedback than we would like. Future work could examine how to expand the set of pre-training data.

Pre-training Methods . We investigate pre-training with artificial query data due to its generality,
though our method could be used in combination with other pre-training objectives, like direct re-
ward regression, to further boost performance.

Pre-training Data. While meta-learning methods have proven to be somewhat robust to changing
dynamics in the real world [62], the efficacy of reward adaptation under larger distribution shifts
induced by sub-optimal users, new tasks, or sim-to-real transfer remains in question. For example,
if a new task is significantly out of distribution, we would expect training a reward function from
scratch to perform better than adapting. Furthermore, pre-training can occasionally over-regularize
the learned reward model, as exhibited in the Door Close experiment in Section 4.2.

Query Difficulty. Many queries asked by preference learning algorithms are too difficult for humans
to answer, as shown in Figure 5. In fact, we find in Section 4.2 that active query schemes often result
in queries that are too difficult for users to answer. Future work should explicitly consider how easy
it is for a human to answer a query and not just its theoretical information content.

User Inconsistency. Unlike reward oracles, humans will inconsistently label queries. This challenge
is only exacerbated when attempting to crowd source data from many users with differing styles.
Future work can investigate additionally modeling human users.

Conclusion. We shift the paradigm of human-in-the-loop RL from the single-task to the multi-
task setting, unlocking additional data sources that can be used to boost the query-efficiency of
preference-based RL Algorithms. We believe our work’s change in perspective to be a crucial step-
ping stone towards training robots with human feedback. Our novel few-shot preference-based
RL method is able to effectively minimize the number of human queries required to train com-
plex manipulation policies as demonstrated by our 20X improvement on standard benchmarks and
effectiveness at real-human training.
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A Additional Results

A.1 Ablations

In this section we provide a number of additional ablations on the parameters of our method in the
MetaWorld environments. Specifically, we vary the amount of total feedback available for both our
method and PEBBLE. We train models with PEBBLE using the original amount of feedback in Lee
et al. [18], or 20× the amount of feedback used in Section 4.1 and Figure 2. Even with 20× less
feedback, our method is at par with PEBBLE. We also train models with our method using only half
of the feedback used in Figure 2, and attain nearly the same performance in Window Close, Door
Unlock, and Sweep-Into. This indicates that with better parameter tuning, our method could be even
more query efficient. Next, we investigate the effects of the disagreement query selection scheme
in Figure 7. Disagreement sampling leads to performance improvements in some environments,
particularly in Drawer Open, but makes no difference in others.
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Figure 6: In this ablation, we very the amount of feedback used during training, as indicated by the
number in the legend next to each method’s name. The “*” indicates the original amount of feedback
used in Figure 2. We display results using the same amount of feedback as in [18] for PEBBLE,
and using half the amount of feedback for our method. Here we can clearly see that our few-shot
method performs better than PEBBLE, even though it uses 20× less feedback. In many tasks, we
can half the amount of feedback given to our few-shot method, and still attain the same performance
at convergence.

A.2 Plots of Feedback versus Performance

We originally chose to display environment steps on the X-axis of Figures 2 and 3 as was done in
prior work [18, 15]. Plotting the environment steps shows the ultimate convergence behavior of
each method, as feedback is stopped before the end of training. It also allows us to show SAC on
the same graph. Here, we provide versions of Figures 2 and 3 that have the amount of total feedback
given on the X-axis. These plots display the same overall trends – our few-shot method out-performs
baselines for the amount of feedback provided.

A.3 Locomotion Experiments

We evaluate our few-shot preference learning method on a locomotion task, Cheetah Velocity, from
Finn et al. [49] to show its broad applicability, particularly in settings where the agent’s goal is
temporal and cannot be encapsulated by an environment configuration. The agent is rewarded for
moving at a particular unseen target velocity, 1.5m/s. We use 10 other velocities for pretraining. Fig-
ure 10 shows our method and PEBBLE using different feedback schedules, with the total feedback
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Figure 7: Here we compare using the disagreement query sampling technique versus uniform ran-
dom query sampling in the MetaWorld environments. We see that for some environments, disagree-
ment sampling is important, but for others it does not have a large effect.
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Figure 8: Learning curves for the MetaWorld environments where the x-axis is chosen to be the
total feedback given to the agent over the course of training. Note that policies were trained for a bit
after all feedback was given, and thus final convergence is not demonstrated as well in this figure, as
in Figure 2. In environments where policies obtained decent performance before all feedback was
given we were able to further reduce the amount of feedback in the ablation shown in Figure 6.

provided on the X-axis. Each plot corresponds to training over five-hundred thousand environment
steps. We find that our method converges after only around 100 queries independent of the feed-
back schedule, while PEBBLE is unable to attain close to the same performance even with 1000
queries. The “init” baseline described in Section 3 performs similarly, but has slightly worse asymp-
totic convergence for 2 of 3 feedback schedules. We do minimal hyper-parameter tuning in these
environments, and believe the performance of our approach could be further improved. Overall, we
find that trends from manipulation environments hold, our few-shot method is able to quickly learn
the ground truth reward function.

14



10 20 30

Total Feedback

700

600

500

400

300

200

100

R
ew

ar
d

Point Mass, 36

10 20 30 40 50

Total Feedback

120

100

80

60

40

20

R
ew

ar
d

Reacher, 48

20 40 60

Total Feedback

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Su
cc

es
s 

R
at

e

Window Close, 64

20 40 60 80 100

Total Feedback

0.25

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s 

R
at

e

Door Close, 100
Human Experiments

Few-Shot (Ours) PEBBLE

Figure 9: Learning curves for the human user experiments where the x-axis is chosen to be the total
feedback given to the agent over the course of training. Again for final convergence, please refer to
Figure 3.
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Figure 10: Learning curves for the Cheetah Velocity experiment. The X-axis is given as the amount
of feedback provided over 500k environment steps. Each subplot corresponds to a different feedback
schedule.

A.4 Comparison with Example Based Methods

One proposed alternative to inferring reward functions via preferences, is inferring them using ex-
amples of “success” states to learn reward functions [8] or directly develop new RL algorithms [63].
While such methods have shown success in their chosen domains, they have a number of drawbacks
in comparison to preference based methods. First, example based methods often implicitly assume
that the underlying reward function for a task is reaching a goal state. While this is amendable to
some tasks, it can preclude objectives that cannot easily be classified as satisfying a goal condition.
This is particularly evident for tasks that are temporal in nature, like driving, where we might care
about intermediate safety and comfort, not just the final destination. For the aforementioned cheetah
locomotion task, it might be difficult for humans to provide examples of successful “running” states
without a pre-existing oracle policy. While we can easily provide a target velocity, it is difficult
to provide target joint positions etc. for a different embodiment. Second, example based methods
often optimize sparse-like rewards given for satisfying some learned condition, causing optimiza-
tion difficulties as horizon scales. This is not the case for preference based methods, which provide
consistent dense rewards.

In order to examine these tradeoffs, we compare our Few-Shot method to Recursive Classification
of Examples (RCE) from Eysenbach et al. [63] on two environments using 200 examples or 200
pieces of feedback, though in practice it may be harder to collect examples than preferences. In the
Cheetah environment, we examine the effect of example quality on performance by training RCE
with states from an expert policy pre-trained with SAC and states from a random policy relabeled to
have the target velocity. In a sparse Point Mass Barrier environment, we investigate the impact of
horizon and sparsity on example based methods. Results can be found in Figure 11. In the Cheetah
Velocity environment, we find that even with access to an expert trajectory, RCE does not attain
the same asymptotic performance as our method and takes longer to converge. Having access to
such data is unrealistic in the real world, as it is impossible to generate success states from a policy
if we have not yet solved the task. Even if we had expert demonstrations, it would then perhaps
make more sense to directly apply Inverse RL techniques. When we try to train RCE with just states
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that have been relabeled to the target velocity and do not contain hard-to-specify joint information,
performance completely collapses. In the sparse Point Mass Barrier task, we see that despite the
4-dimensional state space RCE is unable to overcome the difficult exploration and long horizon of
the task. As our method uses dense rewards learned from preferences, it is almost able to match the
oracle SAC policy. While these tasks may be somewhat toy in nature, they demonstrate key areas
in which preference based learning excels: when it may be hard to specify temporal behavior via
examples, or when tasks are extremely sparse in nature.
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Figure 11: Learning curves for the Cheetah Velocity and Point Maze environment using 200 queries
for preference methods and 200 queries for RCE. For the Cheetah environment “expert” denotes
that examples were generated using a pretrained oracle policy, otherwise examples were generated
by relabeling existing data with the target velocity.

A.5 Human Feedback

In order to better understand the effects of different human users on few-shot preference learning, we
compare the performance of four different users on the DM Control reacher task. Each user trained
one policy using our Few-Shot method and one policy using PEBBLE. The results are shown in
Figure 12. Each users provided 48 preferences for each policy. We find that across all users, our
few-shot method out performs PEBBLE. Consistent with results in Figure 3, we did not find a
significant difference in the difficulty of providing feedback for this task between our method and
PEBBLE, unlike in the MetaWorld tasks. Results on the right hand side of Figure 12 show that when
users preferences do not agree with the ground truth reward function as often, performance declines
as expected. Our method is relatively robust until query accuracy, or the amount of time the users
preferences agreed with the ground truth reward, dropped below 75%. At this point, performance
began to decline. While these results indicate that our method is robust to human users, it shows a
limitation of our work: if users are unable to accurately provide feedback, reward adaptation will
suffer.

A.6 Franka Panda Experiments

Figure 13 shows the learning curves for the Franka Panda models that could not be fit in the main
paper due to space constraints.

B Experiment Details

In this section, we enumerate the specifics of the experiments we use to evaluate few-shot preference
based RL. As our method requires generating datasets from past experience, we include dataset
generation specifics in addition to environment and evaluation details.

B.1 Meta-World

Environments. For the MetaWorld experiments, we adopt the ML10v2 Benchmark for MetaWorld
[20]. We keep environments in the “goal unobserved” mode, where the agents must infer the final
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Figure 12: A study of four different users on the DM Control Reacher task. Left: The per-
formance of policies trained by each user expressed as a normalized score between a random
policy and a fully trained SAC policy on the task. This is computed as (method reward −
random reward)/(SAC reward−random reward). Center: The percentage of each users preferences
that aligned with the ground truth reward function for the task. This information was unavailable to
the users and is designed to indicate how accurate the human users were. Right: A comparison of
final ground truth reward against the alignment of the users preferences with the ground truth reward
function.
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Figure 13: Learning Curves for the Panda experiments in simulation.

desired position of an object (i.e. door handle) from the reward function alone. MetaWorld envi-
ronments have both parametric and non-parametric task variations. Parameteric variations refer to
changes in the initial and final object positions. Non-parametric variations refer to changes in the
objects and their desired conditions, like open door vs close window. Because we wanted to directly
compare with the hardest environments used in PEBBLE (Sweep Into, Drawer Open, Button press),
we slightly modified the set of environments used in ML10 . This amounts to collecting pre-training
data on the 10 tasks shown at the top of Figure 2.

Dataset. The datasets for Metaworld are generated by running ground-truth policies from the 10
prior tasks with some additional Gaussian noise. For each of the 10 tasks, we consider 25 param-
eteric variations, amounting to 250 different reward functions in the training set, though they each
belong to one of only 10 overarching categories. For each of these variations, we collect a dataset
of (s, a, s′, r) tuples by running different policies in the given tasks environment with 0 mean, 0.1
standard deviation Gaussian action noise. Specifically, we run 15 episodes with actions from the ex-
pert policy, 25 episodes with actions from parametric variations of the same task family, 10 episodes
with actions from the expert policy of completely different task family, and 2 episodes with com-
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pletely uniform random actions. In order to do this we use the scripted policies provided with the
MetaWorld benchmark. From each of these datasets, we sample 6000 queries uniformly at random
and assign them labels using the ground truth reward. In summary, we use 10 tasks, each with 25
variations of 6000 queries each.

Evaluation. For MetaWorld, we report the success rate as defined by the MetaWorld benchmark.
The test environments are obtained in the same way as PEBBLE, using the standalone versions
from MetaWorld. These environments have some parametric variations not included in the prior
task environments which makes the test setting slightly more difficult.

B.2 DM Control

Environments. We created custom versions of the standard Point Mass and Reacher environments
in DM Control [61]. The default Point Mass environment has a randomly initialized agent attempt
to reach the center of a square environment. We modify the point mass environment so that the goal
position is randomly chosen, and use the negative L2 distance to the goal as the ground truth reward
function. The default sigmoid style reward function would assign zero reward to a large part of the
state space, making artificial query generation difficult. For the reacher environment we mask the
goal from the observation space an also use the negative L2 distance as the reward function. All
other aspects of the state and action space are left the same. The point mass environment terminates
when the agent reaches the goal position, and the default time limit of the reacher environment was
halved to make learning easier. In both of these environments the task distribution is given by the
distribution of unknown goal locations. Additionally when comparing to example-based methods
we develop a custom Point Mass Barrier environment on top of the standard point mass. We double
the size of the point mass environment in both x and y directions, then place a horizontal barrier
at y = 0. The task distribution is also given by different goal locations. The ground truth reward
is given by the decrease in L2 distance to the barrier crossing point and then the goal location in
sequence (max < 2 across the whole trajectory) in addition to a sparse reward of three for reaching
the goal. Consequently, the task is considered solved if the agent receives a reward larger than 3.
The task distribution is given by goal locations at y > 0.

Dataset. For the Point Mass and Reacher DM control environments we use completely randomly
generated dataset. For the Point Mass environment we collect 25,000 random time-steps of the envi-
ronment 16 X-Y goal positions, which include permutations values in the set {0, 0.5,−0.5, 1,−1}2.
For reacher environment we also collect 25,000 random time-steps of the environment, but over 12
goals each defined by different angle θ and radius r values, include goals at radius one for each of
the four cardinal directions, goals at radius 0.66 for the cardinal directions rotated by 45 degrees,
and goals at radius 0.33 for the cardinal directions shifted by 22.5 degrees. From each of the tasks
datasets we generate 4000 artificial queries for pre-training uniformly at random. For the Point Mass
Barrier task we use 10 pretraining tasks. We then sample 40k queries uniformly at random from the
replay buffers of agents train with SAC for 100k steps.

Evaluation. We evaluate the point mass environment on the unseen goal of (-0.75, 0.8) and the
reacher environment on the unseen goal of (5.5, 0.8). The Point Mass Barrier task is evaluated on
the goal (0, 1) at the top middle of the environment.

B.3 Franka Panda

Environments. We design two tasks for the Franka robot. For both tasks we use end-effector delta
control, ie the agent chooses x, y, z deltas for the end effector to move to. The first task is the Reach
task, where the robot is tasked with simply moving its end-effector towards a target goal position g.
The reward function is again the negative L2 distance to the goal position, or −||e− g||22 where e is
the absolute position of the end effector. The second task is a block pushing task where the agent
wants to push a block from a randomized starting location to a fixed goal position g. The reward
function for this task is −0.1||e− b||22 − ||b− g||22 where e is defined as before and b is the absolute
position of the center of the block. The goal positions always have a z value of half the block’s
height. The agent observes the (x, y) position of the block, but does not know the goal location. The
block is 5cm across. Again the task distribution for both environments is given by the distribution
of unknown goal locations. We use the PyBullet simulator for our training environments. When
transferring the policies to the real world, use two Intel Realsense cameras and OpenCV Aruco tag
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tracking to compute the estimated (x, y) position of the center of the block. An image of our setup
can be found in Figure 14. We also add zero mean, 0.001 standard deviation noise to the state to aid
in sim to real transfer. For the Reach task we define success as being within 2.5cm of the goal and
for the Block push task we define it to be within 5 cm.

Figure 14: Depiction of the real world robot setup
with a Franka Panda arm. We use ArUco tags
for tracking the position of objects in combina-
tion with Intel RealSense cameras. For the reach
task, the robot just needs to move its end effect
to a target position. For the block push task, the
marked block must be moved to a specific loca-
tion. The blocks position is computed using two
Intel RealSense Cameras.

Dataset. We generate behavior datasets for the
reach task by simply collecting random roll-
outs of 10,000 timesteps for 75 randomly sam-
pled goals. We generate behavior datasets for
the block push task by training polices to push
blocks to 16 different locations, then applying
a similar strategy to the MetaWorld environ-
ments: for each task we run 8 random episodes,
50 expert episodes, and 5 episodes using ac-
tions from each of the other tasks (80 total), all
with zero mean standard deviation 0.3 Gaus-
sian noise. Unlike in meta-world, we did not
spend time tuning data generation for the Panda
experiments. We then generated 6000 artifi-
cial queries for each of the 75 reach tasks, and
20,000 artificial queries for each of the 16 block
pushing tasks, leaving one out for validation.

Evaluation. We evaluate each of the policies
by transferring them from simulation to a real
Franka-Panda robot. For control, we use the
PolyMetis library [64]. We train policies on two
different unseen goal positions, which are listed
in Table 1. We evaluate each run of the reach
task using four initial robot configurations and
each run of the Block Push task using four ini-
tial block locations. Results are reported in final
meters to the goal. We found that the second
block push location of (0.35, -0.3) was much
easier for the robot regardless of method. This
is likely because block state estimation was more accurate on that side of the table due to the camera
setup.

B.4 Locomotion

Environments. We take the Cheetah Velocity environment from Finn et al. [49], but use a horizon
of length 500. The ground truth reward function is given by −|v − target| − ||a||22, where “target”
is a target velocity. Thus, the agent is rewarded for running at a certain speed, and we vary the
target speed across tasks. Unlike in manipulation environments, reward functions for locomotion
environments cannot be specified through any type of “goal condition” as behavior across time
matters.

Dataset. We generate behavior datasets by taking the replay buffers of policies trained with SAC
for 150k environment steps using different target velocities in increments of 0.25m/s, starting with
0.25m/s and ending with 2.75 m/s. We leave out 1.5m/s for the test , making for 10 total training
tasks, which is far less than the upwards of 100 training tasks used in Finn et al. [49]. We generate
40k artificial queries uniformly at random from each replay buffer for the training dataset.

Evaluation. We evaluate all approaches on the unseen velocity of 1.5m/s.

B.5 Human Experiments

Here we provide an overview of the procedure used in our human experiments in Section 4.2. We use
a single expert human subject for experiments in Figure 3, who was familiar with preference based
RL and both the MetaWorld and DM Control benchmarks. The user completed experiments on
PointMass, Reacher, Window Close, and Door Close in that order. The human results in Figure 12
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are from three additional users familiar with learning for robotics, who followed the same procedure.
Each environment required training four policies – two for PEBBLE and two for our Few-Shot
method. The user trained all four policies in parallel on a single computer with a user interface that
looked similar to the query visualizations shown in Figure 5. As feedback was elicited intermittently
through the course of training, we cannot fully separate the time it took for users to answer queries
with the time used to train the policy. However, we know that the total time before all queries
were answered was around 22 minutes for Point Mass, around 28 minutes for Reacher, around 45
minutes for Window Close, and around 1 hour for Door Close. Whenever the user could not make a
determination about the query, they were asked to skip it. We count skip queries in the total feedback
budget and measured the practicality of the user interactions by the number of such skip queries as
shown in Figure 3. There we see that human users did not need to skip queries that frequently, and
were able to be relatively accurate with respect to the ground truth reward function. Moreover, we
found that in the more difficult environments, the human user skipped fewer queries and was more
accurate when training a policy using our few-shot method. This is backed up by the visualizations
in Appendix D, which qualitatively demonstrates that the few-shot method asks easier to distinguish
queries in the robotics environments, likely due to pretraining.

C Hyperparameters

In this section, we detail the hyper-parameters used for our method and baselines. We first give
hyperparameters used in pre-training, then provide the hyperparameters used for online experiments.
In the following tables we use MW for MetaWorld, DM for DM Control, and FP for Franka Panda.
For MetaWorld artificial feedback experiments, we run five random seeds for each method. For
human feedback experiments we run two seeds for each method, as it takes a large amount of time
to collect human feedback. For real world experiments, we run four seeds for each reaching task,
and two seeds for each block pushing task for 8 and 4 seeds total, respectively.

Pretraining. We use the MAML algorithm in combination with the Adam Optimizer. We used
learned inner learning rates as in Antoniou et al. [65].

Table 2: Hyperparameters used for pre-training with the MAML Algorithm.
Parameter Value
Outer LR 0.0001
Inner LR 0.001

Support Set Size 32
Query Set Size 32
Task Batch Size 4
Learn Inner LR True
Ensemble Size 3
Reward Arch 3x 256 Dense

Activation ReLU
Output Activation Tanh

Segment Size 25 (MW, FP, C), 10 (DM)

Online Adaptation. Here we list the hyperparameters and network architectures used for SAC,
PEBBLE, and our method in Table 3. In comparison to the original PEBBLE algorithm, we change
the segment size to 25 and increased the reward frequency. We found that these changes improved
performance for PEBBLE as well. We also train reward models until they achieve 95% accuracy,
instead of training them for a fix number of epochs or until they reach 97% accuracy as done in the
PEBBLE codebase. We run a maximum of 40 MAML adaptation steps. If at that point the reward
model has not reached 95% accuracy, we train it again with the Adam Optimizer. For all methods we
did not run unsupervised exploration prior to beginning training. While unsupervised exploration
leads to improvements in locomotion environments as shown in Lee et al. [18], we found that it did
not offer a large improvement in robotics environments. This is likely because a sufficient portion
of the state space can be explored quickly in locomotion environments like Cheetah and Quadruped,
but not in MetaWorld, where task are longer horizon and require both reaching and interacting with
specific parts of the state space. For all runs we use a constant feedback schedule, ie the same
amount of feedback each session. We list the exact feedback specifications in Table 4. Feedback
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schedules used in the ablation experiments in Appendix A were constructed by multiplying the “Max
Feedback” and “Feedback per Session” values by 20 for PEBBLE and 0.5 for our method.

RCE. For our comparisons against RCE in Figure 11, we left all parameters at their defaults. Ex-
ample states for the Cheetah Velocity environment were given via an expert demonstration, or by
relabeling random states with the target velocity. Example states for the Point Mass Barrier environ-
ment were created by sampling positions within the target location with feasible velocities.

Table 3: Hyper-parameters for preference learning algorithms.
Parameter Artificial Feedback Human Feedback
Init Temp 0.1 0.1
Discount 0.99 0.99
EMA τ 0.995 0.995
Learning Rate 0.0003 0.0003
Target Update Freq 2 2
(β1, β2) 0.9, 0.999 0.9, 0.999
Actor and Critic Arch 3x 256 Dense MW, FP, C 2x 256 DM, 3x 256 Dense MW
Actor and Critic Activation ReLU ReLU
SAC Batch Size 512 512
Reward Net Batch Size 256 256
Disagreement Sample Multiplier 10 10

Table 4: Specific feedback schedule for each environment. For all environments, the first session
always sampled queries at uniform. For the MetaWorld human experiments, the first half of all
queries were asked uniformly at random.

Environment(s) Max Feedback Feedback Per Session Session Frequency (K)
Window Close, Door Close 200 8 5000
Door Unlock, Button Press 500 8 5000
Drawer Open 1000 10 5000
Sweep Into 2500 20 5000
Point Mass (Human) 36 6 20000
Reacher (Human) 48 8 20000
Window Close (Human) 64 8 10000
Door Close (Human) 100 10 10000
Reach Panda 200 8 5000
Block Push Panda 2000 20 5000
Cheetah Velocity (vs. RCE) 200 4 6000
Cheetah Velocity 250 3 5000
Cheetah Velocity 500 5 5000
Cheetah Velocity 1000 10 5000
Point Mass Barrier 200 5 10000

D Additional Visualizations

Here we provide select queries shown to users when training from real human feedback using our
Few-Shot method. We compare queries asked by each method at the same point in training. The
set of nearly all queries used to train agents from human feedback is included in the supplementary
material download on OpenReview. Note that the segment size used in MetaWorld was 25, but we
showed users every other frame as the changes between individual frames were minimal. In each
figure the trajectory segment with the check mark was selected by the user.
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Few-Shot (Ours), 28th Query

PEBBLE, 28th Query

t = 1 t = 2 t = 3 t = 4 t = 5 t = 10

Figure 15: A depiction of the 28th query asked to users when training the Point Mass Agent from
human feedback. The winning query was chosen based on proximity of the agent (yellow) to the
goal position (red). At this point in training, our Few-Shot method sampled queries closer to the
goal position than PEBBLE.
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…

Few-Shot (Ours), 35th Query

PEBBLE, 35th Query

t = 1 t = 2 t = 3 t = 4 t = 5 t = 10

Figure 16: A depiction of the 35th query asked to users when training the reacher from human
feedback. Our method’s query (top) was easier to answer because the top trajectories’ arm was
clearly closer to the target position.
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Few-Shot (Ours), 62nd Query

PEBBLE, 62nd Query

t = 1 t = 5 t = 9 t = 13 t = 17 t = 25

Figure 17: This shows one of the last queries asked for the Window Close environment. Here we
see that our method’s query asks the user to choose between a closed and unclosed window (top),
while PEBBLE asked the user to choose between two different, hard to distinguish, arm positions.
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…

…

Few-Shot (Ours), 56th Query

PEBBLE, 56th Query

t = 1 t = 5 t = 9 t = 13 t = 17 t = 25

Figure 18: This shows a query towards the middle of training for the Door Close environment.
At this point, the few-shot method is asking the user to compare a completely closed door (better)
versus an open one, while PEBBLE’s query only includes a partially closed door.
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