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Abstract

Corpus data suggests that frequent words have lower rates
of replacement and regularization. It is not clear, however,
whether this holds due to stronger selection against innovation
among high-frequency words or due to weaker drift at high fre-
quencies. Here, we report two experiments designed to probe
this question. Participants were tasked with learning a sim-
ple miniature language consisting of two nouns and two plural
markers. After exposing plural markers to drift and selection of
varying strengths, we tracked noun regularization. Regulariza-
tion was greater for low- than for high-frequency nouns, with
no detectable effect of selection. Our results therefore suggest
that lower rates of regularization of more frequent words may
be due to drift alone.
Keywords: Zipf; language change; artificial-language experi-
ment; selection; drift; cultural evolution; language evolution

Over 70 years ago, Zipf (1949, p. 116) observed that
less frequent words are more likely to be recent borrow-
ings or coinages. Some recent studies have also found evi-
dence that frequently occurring words tend to have lower re-
placement or regularization rates (Pagel, Atkinson, & Meade,
2007; Lieberman, Michel, Jackson, Tang, & Nowak, 2007;
Gray, Reagan, Dodds, & Danforth, 2018). It is not clear,
however, why such a relationship should hold. Pagel et al.
(2007) speculated that cultural selection against regulariza-
tion and replacement might be stronger on high-frequency
words, thereby driving the pattern. Another possibility is that
the pattern is simply driven by drift, with infrequent words
having higher rates of replacement and regularization due to
sampling error, which is greater at lower frequencies (Reali
& Griffiths, 2010; Newberry, Ahern, Clark, & Plotkin, 2017).

There are, to our knowledge, no experimental studies on
this question. The existing empirical studies are based on cor-
pus data, which provide high ecological validity but do not
allow us to track the entire trajectory of a language or con-
trol the factors involved in change. They also run up against
methodological challenges, being sensitive to such factors as
data binning (Karjus, Blythe, Kirby, & Smith, 2018; Kars-
dorp, Manjavacas, Fonteyn, & Kestemont, 2020).

We conducted a preregistered experiment to investigate
whether the negative correlation between frequency and regu-
larization might be due to drift (understood as non-directional
bias in acquisition, processing, and production of language)
or selection (understood as directional bias). Based on the re-
sults of this experiment, we conducted a preregistered repli-
cation with an identical design but an adjusted analysis plan.

In both experiments, participants were tasked with learning
a miniature artificial language that consisted of two nouns and
two plural markers. To implement drift of different strengths,
we varied noun frequency; to implement selection of differ-
ent strengths, we varied the frequency of one plural ending
relative to the other. We then measured noun regularization
as the fraction of nouns that came to be used with one end-
ing only. This allowed us to test three main hypotheses: that
greater regularization of low-frequency words results from
stronger selection on high-frequency terms (Hypothesis 1),
from stronger drift on low-frequency terms (Hypothesis 2),
or from both (Hypothesis 3).

Experiment 1

Experiment 1 was pre-registered (https://osf.io/ryc3j).

Method

Participants We recruited 400 native-English-speaking
participants (207 female; 183 male; four non-binary;
five chose not to report their gender) through Prolific
(www.prolific.co). 324 reported being 18–40 years old,
71 reported being 40 years old or older, and five chose not to
report their age. Participants were paid $1.00 for participat-
ing. As motivation they were also told that they would receive
a 50% bonus based on the accuracy of their answers; in real-
ity, all participants who completed the study were given the
bonus and thus received $1.50 in total.

Artificial Language To ensure learnability we constructed
a miniature artificial language of the smallest size needed to
test our hypotheses. The language consisted of two nouns
and two plural endings. Each noun referred to one of two
different referents (hand and book). Word forms similar to
their English counterparts were chosen to facilitate learning:
“hudo” meaning hand and “buko” meaning book, and words
were presented embedded in English sentences. Participants
were exposed to a singular and a plural form for each noun.
The singular consisted in the unmarked root; the plural was
formed by adding a suffixed marker to the root with two pos-
sible variants, “-fip” and “-tay” (cf. Smith & Wonnacott,
2010). Plural markers were randomly assigned to roots be-
tween participants. Nouns were randomly assigned to a fre-
quency class.
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Procedure Experiment software was created using Pen-
nController for Ibex (Zehr & Schwarz, 2018) and hosted on
the PCIbex Farm (expt.pcibex.net). The experiment be-
gan with a training phase in which participants were exposed
to the artificial language (henceforth the input language).
Then, in the testing phase, participants were asked to produce
the language (henceforth output language).

The training phase consisted of two subphases. In noun
training trials participants saw a picture of a single object
with the caption “Here is one NOUN” (where NOUN was
the target noun). Participants could click Next to advance to
the next trial. Each picture was shown once in random or-
der, with a 300 ms break between trials. Participants were
then shown the same pictures twice more, alternating be-
tween a trial in which they were again shown an object with
a sentence caption and a trial in which they were shown an
object and asked to complete a sentence of the form “Here
is one ”. Participants had to enter the correct noun
to proceed. Noun training was followed by plural training,
which resembled noun training except that each image had
three overlapping instances of the same object and the caption
text read “Here are several NOUN+MARKER”. Depending
on frequency class, each picture was shown either six or 18
times. At random intervals, participants were also shown im-
ages of a single object and asked to provide the correct noun.

The testing phase was similar to plural training. Partic-
ipants were shown pictures depicting three instances of the
same object, each with the same frequency as in the previ-
ous phase. At random intervals, they were shown pictures of
single objects. Now, however, they were asked to type the
corresponding noun to complete the sentence. In the case of
plurals, participants were told that their form was correct if
it was seven characters long and contained one of the plu-
ral markers at the end. Otherwise, they were asked to try
again. In the singular case, participants were told that any
four-character form was correct. Otherwise, they were asked
to try again.

Figure 1: Training and Testing.

Conditions There were two conditions. In the Drift Condi-
tion, nouns occurred with both plural markers at a 1:1 ratio;
in the Selection Condition, nouns occurred with plural mark-
ers at a 5:1 ratio (see Table 1). But low- and high-frequency
nouns differed with respect to which marker was more com-
mon. For example, if the low-frequency noun occurred more
often with “-fip”, the high-frequency noun occurred more of-
ten with “-tay”.

In the Drift Condition, we expected no directional pres-
sure for regularization in favor of one or the other plural

Table 1: Drift and Selection Conditions. Indicated are the
number of trials for the two nouns (N1 and N2) and the two
plural makers (M1 and M2).

Drift M1 M2 Total
N1 3 3 6
N2 9 9 18

Sel. M1 M2 Total
N1 1 5 6
N2 15 3 18

marker. Regularization could therefore be due to drift, but
not selection. In the Selection Condition, we expected direc-
tional pressure for regularization in favor of the more com-
mon marker. Since drift is also present in any finite number
of trials, regularization could be due to drift or selection.

In the Selection Condition, we call the more common
marker for each noun the “primary” marker and the less com-
mon marker the “secondary” marker for that noun. To fa-
cilitate comparison across conditions, we arbitrarily labeled
half of the markers as “primary” and the other half as “sec-
ondary” for each noun in the Drift Condition as well. In both
conditions, nouns that occur at least once with both markers
are termed “irregular”; nouns that occur only with a single
marker are termed “regular”. The binary coding of nouns
may appear to be too stringent but it was necessary for our
binomial logistic regression model, described below.

Statistical Analysis Following Lieberman et al. (2007), we
defined a Regularization Index (RI) as the change in the pro-
portion of irregular nouns between the input and output lan-
guages. We used RI to make simple comparisons of regu-
larization across conditions: If Hypothesis 1 is correct, then
RI should be higher in the low- than the high-frequency class
only in the Selection Condition; if Hypothesis 2 is correct,
then RI should be higher in the low-frequency class in both
conditions; and if Hypothesis 3 is correct, then the difference
in RI between the low- and the high-frequency classes should
be greater in the Selection than in the Drift Condition.

To further test our hypotheses, we used a binomial logistic
model. The dependent dichotomous variable was noun reg-
ularity (i.e., regular or irregular). The independent dichoto-
mous variables were frequency (i.e., low or high frequency)
and selection (i.e., presence or absence). The logistic model
took the following form:

ln
(

p
1− p

)
= b0 +b1I( f )+b2I(s) (1)

where p is the proportion of regular nouns, I( f ) indicates
drift (low: 0; high: 1), and I(s) indicates selection (absence: 0;
presence: 1).

As a manipulation check, we used a Wright-Fisher model
with selection to represent the change between input and out-
put languages (cf. Reali & Griffiths, 2010). The Wright-
Fisher model represents change in a population of two in-
dividual types as a draw from a binomial distribution with
parameters n and f (n,s), where n is the population size and
f (n,s) is given by:
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f (n,s) =
i(1+ s)

i(1+ s)+(n− i)
(2)

where i is the number of individuals of a particular type and s
is the selection coefficient.

In our experiment, a Wright-Fisher population corresponds
to the ensemble of noun tokens in a given frequency class;
the individual types correspond to the different plural markers
that nouns can take. Accordingly, n = 6 in the low-frequency
class and n = 18 in the high-frequency class. We took the
focal type to be the secondary marker.

To estimate the selection coefficient against the secondary
marker, we computed the likelihood of transitions from the
input language to every possible output language given dif-
ferent values of s. The maximum-likelihood estimate of ŝ is
then given by the value of s that maximizes the sum of the
log-likelihoods for all participants. In other words, ŝ is given
by the following expression:

ŝ = argmax
s∈[−1,1]

N

∑
j=1

log

(
P
(

i j|Bin
(
n, f (n,s)

)))
(3)

where i j is the secondary marker count in the output of par-
ticipant j, P(i j|Bin(n, f (n,s))) is the likelihood of i j given
the Wright-Fisher model, and the sum is over all partici-
pants. Two-tailed 95% confidence intervals were given by
`(s)− `(ŝ) ≤ 1.92, where `(s) is the sum of log-likelihoods
given s.

A positive estimate would indicate that selection favored
the secondary marker, while a negative estimate would indi-
cate selection against it. An estimate of 0 would indicate the
absence of selection.

Results of Experiment 1
Mean completion time in minutes was 8.9 (s.d. = 5.2) and
8.6 (s.d. = 4.6) for the Drift and Selection Conditions. Data
from 12 participants whose completion time was more than
two standard deviations from the mean were excluded.

Regularization as measured by RI was higher for low- than
for high-frequency nouns in both the Drift (N = 193) and the
Selection conditions (N = 195), with RI estimates for low-
and high-frequency equal to 0.51± 0.07 and 0.46± 0.07 in
the Drift Condition and equal to 0.79±0.06 and 0.79±0.06
in the Selection Condition (Figure 2). We then estimated
the strength of selection using our maximum-likelihood al-
gorithm. Surprisingly, our estimates of selection for both
frequency classes in the Selection condition had roughly the
same positive value: ŝ was equal to 0.33± (0.16,0.2) and
0.35± (0.1,0.1) for low- and high-frequency nouns (Fig-
ure 3). This was surprising because a positive value indicates
selection in favor of the secondary marker, contrary to a cen-
tral assumption of our experiment and analysis plan.

Our regression model indicates that frequency class had a
negative effect on noun regularity (−0.65±0.15; p< 0.0001;
Table 2). In contrast, selection had a positive effect on noun
regularity (0.98± 0.15; p < 0.0001). However, the presence

of selection for the secondary marker makes it difficult to an-
alyze these results according to our original analysis plan.

Table 2: Logit regression model: ln( p
1−p ) = b0 + b1I( f ) +

b2I(s); see Method for variable definitions. Significant results
at the 0.05 level are marked with ‘*’.

β SE p
intercept (b0) -0.083878 0.126405 0.5070
frequency (b1) -0.651267 0.150075 < 0.0001*
selection (b2) 0.981622 0.150078 < 0.0001*

Figure 2: Marker Counts and Regularization Index (RI)
for Experiment 1. Frequency of irregular marker counts. In-
sets: mean change in proportion of regular nouns between
input and output languages (RI) with 95% confidence inter-
val. Drift: N = 193. Selection: N = 195.

Discussion of Experiment 1
Closer inspection of the data suggested that selection for the
secondary marker may be an artifact of the learning task. As
Figure 2 shows, the distribution of marker counts had a sin-
gle peak and a long tail in the Selection Condition. This sug-
gests that most participants chose the secondary marker with
probability equal to or less than its initial frequency but that
many also randomized their choice of markers. When partic-
ipants choose markers at random, the frequency of the sec-
ondary marker increases. As our algorithm was designed to
detect selection alone, an increase in the frequency of the sec-
ondary marker could only be interpreted as positive selection.
In the Drift Condition, on the other hand, the distribution of
marker counts was trimodal: most participants randomized
their choice of markers (central mode) but some chose either
one of the markers exclusively (left and right modes).

We therefore sought to account for these findings with a
single model, which worked as follows. In both conditions,
we assume that proportion r of participants chooses the pri-
mary marker according to the Wright-Fisher model. We also
assume that the population has proportion q of “simplifiers”
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Figure 3: Sum of log-likelihoods for Experiment 1. Curves
show sum of log-likelihoods given selection coefficient for
regularizers in population model; error bars show maximum-
likelihood values with 95% confidence intervals, indicating
selection for the secondary marker.

who always choose a single marker and proportion 1− r− q
of “randomizers” who randomize their choice of marker.

The model fits the data for Experiment 1 well (Figure 4).
But as this model was not included in our analysis plan, we
designed a second experiment taking the model into account.
Experiment 2 was therefore designed to replicate the main
finding of Experiment 1 that regularization is higher for low-
than for high-frequency nouns, and to account for the pos-
sibility that the behavior of different participant types might
interfere with our algorithm’s ability to detect selection. We
also expanded the logistic model to include an interaction
term between frequency class and presence of selection. We
describe Experiment 2 in the next section.

Experiment 2
Experiment 2 was pre-registered (https://osf.io/72kqa).

Method
We used the same language and the same learning and test-
ing procedures in Experiment 2 as in Experiment 1. The two
conditions in Experiment 2 were also identical to the ones in
Experiment 1. However, Experiment 2 was conducted with a
different analysis plan from Experiment 1.

Participants We again recruited 400 participants (189 fe-
male; 200 male; five non-binary; one other; six did not report
their gender) through Prolific. Of these 180 reported being
between 18-30 years old, 92 reported being between 30-40,
78 reported being between 40-50, 38 reported being between
50-60, 10 reported being 60 years old or older and two did
not report their age. Eligibility criteria, instructions, compen-
sation, and data exclusion protocol were as in Experiment 1.
To be eligible for Experiment 2, participants were in addition
not allowed to have already taken part in Experiment 1.

Statistical Analysis We built a model to allow for hetero-
geneity in the participant pool. The model assigns probability
r that participants choose markers according to the Wright-
Fisher model with selection (“regularizers”). However, the

Figure 4: Population Composition for Experiment 1.
Filled black circles show maximum-likelihood composition
in population model with proportion p, q, and 1− p− q of
randomizers, simplifiers, and regularizers, indicating that the
participant pool was heterogeneous and variable across con-
ditions (areas show 95% confidence regions).

Wright-Fisher model described above is optimal when the
selection coefficient is close to zero. To allow for arbitrar-
ily high or low levels of selection, we therefore represent the
transition to the output language as a draw from a binomial
distribution with parameters n and f (n,s), where n is again
population size but f (n,s) is now given by:

f (N,s) =
i · es

i · es +(n− i)
, (4)

where quantities are defined as before.
Our model also assigns probability q that participants

choose a single plural marker regardless of input language
(“simplifiers”), and probability 1− q− r that participants
choose plural markers according to a binomial distribution
with parameters n and 0.5 (“randomizers”). The best-fit val-
ues of q, r, and s for our experimental sample were estimated
by selecting the parameter values that maximize the sum of
the log-likelihoods of the data.

Note that we did not determine who is a regularizer, sim-
plifier, or randomizer on a subject-by-subject basis. Rather,
we determined the most likely frequency of these three types
(together with the value of s among regularizers) given all the
data. In this way, we were able to simultaneously estimate
the selection coefficient among regularizers and the compo-
sition of the participant pool. Two-tailed 95% confidence in-
tervals for ŝ and (r̂, q̂) were given by `(s)− `(ŝ) ≤ 1.92 and
`(r,q)− `(r̂, q̂)≤ 3.98, respectively.
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To test for the effect of drift and selection on noun regular-
ization, we used the following regression model:

ln
(

p
1− p

)
= b0 +b1I( f )+b2I(s)+b3I( f )I(s) (5)

where p is again the proportion of regular nouns, I( f ) indi-
cates drift (low: 0; high: 1), I(s) indicates selection (absence:
0; presence: 1), and I( f )I(s) represents the interaction be-
tween drift and selection. In this model, b1 measures the main
effect of frequency class, b2 measures the main effect of se-
lection, and b3 measures the interaction effect of frequency
class and selection on noun regularisation. Hence, if b1 is sig-
nificantly less than zero but b3 is not, the model supports the
hypothesis that the greater regularisation of low-frequency
terms is due to weaker drift in the high frequency class (Hy-
pothesis 1); if b3 is significantly less than zero but b1 is not,
the model supports the hypothesis that the greater regularisa-
tion of low-frequency terms is due to stronger selection in the
high frequency class (Hypothesis 2); and if both b1 and b3 are
significantly less than zero, the model supports the hypothesis
that the greater regularisation of low-frequency terms is due
to weaker drift and stronger selection in the high-frequency
class (Hypothesis 3).

Results of Experiment 2
Mean completion time in minutes was 8.3 (s.d. = 5.8) and
8.4 (s.d. = 5.6) for the Drift and Selection Conditions. Data
from 10 participants whose completion time was more than
two standard deviations from the mean were excluded.

Regularization was higher for low- than for high-frequency
nouns in both conditions (Figure 5), with RI estimates for
low- and high-frequency equal to 0.51±0.07 and 0.48±0.07
in the Drift Condition (N = 194) and equal to 0.75± 0.06
and 0.73± 0.06 in the Selection Condition (N = 196). As
expected, selection was negative in the Selection Condition:
among regularizers, ŝ was equal to −2.3± (0.9,0.6) and
−2.1± (0.3,0.4) for low- and high-frequency nouns (Fig-
ure 6). Estimates for low- and high-frequency nouns had
roughly the same value.

In the Drift Condition, selection was null among regular-
izers in the low-frequency class (Figure 6). However, selec-
tion among regularizers was negative in the high-frequency
class: ŝ was 1.97± (0.4,0.71). This could indicate that se-
lection was present in the Drift Condition, but this was likely
not the case. In the Drift Condition, the proportion of sim-
plifiers was 0.37 and 0.31, that of randomizers was 0.56 and
0.6, and regularizers made up just 0.07 and 0.09 in low- and
high-frequency classes (Figure 7). It is thus most likely that
we detected positive selection among regularizers in the high-
frequency class simply due to noise, as there were few regu-
larizers in our sample and maximum-likelihood estimation is
known to be unreliable in small samples.

In the Selection Condition, on the other hand, the propor-
tion of simplifiers was 0.2 and 0.17, that of randomizers was

0.24 and 0.35, and regularizers made up 0.54 and 0.48 in the
low- and high-frequency class. This further corroborates the
finding that selection was negative in the Selection Condition
and likely absent in the Drift Condition.

Since regularization was higher among low-frequency
nouns in both conditions but selection was constant across
frequency classes, our results support the hypothesis that
low-frequency nouns regularize more because of drift alone.
Our regression model provides further support for this find-
ing. Frequency class had a positive effect on noun regular-
ity (0.61± 0.21; p = 0.003; Table 3). In contrast, selec-
tion had a negative effect on noun regularity (−1.05± 0.21;
p < 0.0001). But no interaction between frequency class and
selection was detected (0.04± 0.3; p = 0.9). Our regression
model therefore also supports the hypothesis that regulariza-
tion was driven by drift alone.

Figure 5: Marker Counts and Regularization Index (RI)
for Experiment 2. Distribution of irregular marker counts.
Insets: mean change in proportion of regular nouns between
input and output languages (RI) with 95% confidence inter-
val. Drift: N = 194. Selection: N = 196.

Figure 6: Sum of log-likelihoods for Experiment 2. Curves
show sum of log-likelihoods given selection coefficient for
regularizers in population model; error bars show maximum-
likelihood values with 95% confidence intervals, indicating
selection against the secondary marker.
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Figure 7: Population Composition for Experiment 2. Dots
show maximum-likelihood composition in population model
with proportion p, q, and 1− p− q of randomizers, simpli-
fiers, and regularizers, indicating that the participant pool was
heterogeneous and variable across conditions (areas show
95% confidence regions).

Table 3: Logit regression model: ln( p
1−p ) = b0 + b1I( f ) +

b2I(s)+b3I( f )I(s); see Method for variable definitions. Sig-
nificant results at the 0.05 level are marked with ‘*’.

β SE p
intercept (b0) 0.160343 0.141876 0.2584
frequency (b1) 0.616502 0.208025 0.003*
selection (b2) -1.05572 0.210654 < 0.0001*

freq. × sel. (b3) 0.0377174 0.296332 0.9

Discussion of Experiment 2
In keeping with Experiment 1, we found that regularization
was indeed higher for low- than for high-frequency nouns in
both conditions of Experiment 2. We also found that selec-
tion for the primary marker was present in the Selection Con-
dition but absent in the Drift Condition, as expected. In the
Selection Condition, we further found that the intensity of se-
lection was about the same for both frequency classes. Since
selection was constant across frequency classes in the Selec-
tion Condition but drift was stronger at low frequencies, our
results therefore support the hypothesis that low-frequency
nouns underwent more regularization due to drift alone.

Moreover, the participant pool was far from homogeneous
with respect to the experimental task. While most participants
behaved as expected in regularizing the use of markers in the
Selection Condition, many participants did not. Instead, they

either randomized their choice of markers or simplified the
task by using a single marker. In the Drift Condition, most
participants behaved as expected and randomized their choice
of markers. But a non-negligible portion of the participants
also simplified the task by using a single marker.

General Discussion

Our results show that the difference in regularization between
low- and high-frequency nouns observed in Experiments 1
and 2 was due to drift alone. The same might hold for reg-
ularization and replacement in natural languages. Our study
thus adds to a growing body of evidence suggesting that drift
drives this pattern. Our study also highlights the risk of
assuming—rather than showing—that participants approach
an experimental task as a single homogeneous population.

Some limitations should be noted. First, selection was con-
stant across frequency classes. This means selection could
not be responsible for the difference in regularization between
frequency classes. In natural languages, however, selection
against replacement and regularization may be stronger on
high-frequency words if common words function as anchors
during language acquisition (cf. Frost, Monaghan, & Chris-
tiansen, 2019). Second, factors such as morpheme length or
phonological complexity might affect selection strength as
well. Even if drift is the primary mechanism of regulariza-
tion, it may therefore be modulated by selection depending
on context. Third, the social context in which language is use
is another potential source of selection that was absent in our
study. Social meaning and identity, as well as communica-
tive interaction, can also influence which linguistic forms are
used and affect the cultural evolution of language (cf. Roberts
& Fedzechkina, 2018; Sneller & Roberts, 2018; Galantucci,
2009; Wade & Roberts, 2020). The absence of a social con-
text could therefore explain some of our results, such as the
presence of simplifiers. Finally, the artificial language em-
ployed in this study was the smallest possible for our pur-
poses. Despite obvious advantages, this also meant that it
differed radically from natural languages.

Future work on frequency of use and rates of regulariza-
tion and replacement might therefore employ more complex
languages, incorporate more complex social contexts, and in-
clude direct communication between participants (Wade &
Roberts, 2020; Sneller & Roberts, 2018) or simulated com-
munication (cf. Buz, Tanenhaus, & Jaeger, 2016). Future
work might also implement selection of different strengths
across frequency classes or compare different sources of se-
lection (cf. Tamariz, Ellison, Barr, & Fay, 2014). Finally,
the integration of natural-language observation, experimen-
tal linguistic data, and mathematical models from biology is
a strength of our approach, and we are pleased that this has
been typical of related research (cf. Karjus, Blythe, Kirby, &
Smith, 2020; Newberry et al., 2017). We hope that this kind
of interdisciplinary approach be increasingly pursued in the
future (cf. Roberts & Sneller, 2020).
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tural Evolution of Language Lab, and the Social and Cultural
Evolution Working Group for helpful comments on early ver-
sions of this study and to Mitchell Newberry for advice on
analysis.

References
Buz, E., Tanenhaus, M. K., & Jaeger, T. F. (2016). Dynami-

cally adapted context-specific hyper-articulation: Feedback
from interlocutors affects speakers’ subsequent pronuncia-
tions. Journal of Memory and Language, 89, 68–86.

Frost, R. L. A., Monaghan, P., & Christiansen, M. H. (2019).
Mark my words: High frequency marker words impact
early stages of language learning. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 45(10),
1883.

Galantucci, B. (2009). Experimental semiotics: A new ap-
proach for studying communication as a form of joint ac-
tion. Topics in Cognitive Science, 1(2), 393–410.

Gray, T. J., Reagan, A. J., Dodds, P. S., & Danforth, C. M.
(2018). English verb regularization in books and tweets.
PloS one, 13(12), e0209651. (Publisher: Public Library of
Science San Francisco, CA USA)

Karjus, A., Blythe, R. A., Kirby, S., & Smith, K.
(2018). Challenges in detecting evolutionary forces in lan-
guage change using diachronic corpora. arXiv preprint
arXiv:1811.01275.

Karjus, A., Blythe, R. A., Kirby, S., & Smith, K. (2020).
Quantifying the dynamics of topical fluctuations in lan-
guage. Language Dynamics and Change, 10, 86–125.

Karsdorp, F., Manjavacas, E., Fonteyn, L., & Kestemont, M.
(2020). Classifying evolutionary forces in language change
using neural networks. Evolutionary Human Sciences, 2,
1–40.

Lieberman, E., Michel, J.-B., Jackson, J., Tang, T., & Nowak,
M. A. (2007). Quantifying the evolutionary dynamics of
language. Nature, 449(7163), 713.

Newberry, M. G., Ahern, C. A., Clark, R., & Plotkin, J. B.
(2017). Detecting evolutionary forces in language change.
Nature, 551(7679), 223.

Pagel, M., Atkinson, Q. D., & Meade, A. (2007). Frequency
of word-use predicts rates of lexical evolution throughout
Indo-European history. Nature, 449(7163), 717–720. (Pub-
lisher: Nature Publishing Group)

Reali, F., & Griffiths, T. L. (2010). Words as alleles: connect-
ing language evolution with Bayesian learners to models of
genetic drift. Proceedings of the Royal Society B: Biologi-
cal Sciences, 277(1680), 429–436.

Roberts, G., & Fedzechkina, M. (2018). Social biases modu-
late the loss of redundant forms in the cultural evolution of
language. Cognition, 171, 194–201.

Roberts, G., & Sneller, B. (2020). Empirical foundations
for an integrated study of language evolution. Language
Dynamics and Change, 10(2), 188–229.

Smith, K., & Wonnacott, E. (2010). Eliminating unpre-
dictable variation through iterated learning. Cognition,
116(3), 444–449.

Sneller, B., & Roberts, G. (2018). Why some behaviors
spread while others don’t: A laboratory simulation of di-
alect contact. Cognition, 170, 298–311.

Tamariz, M., Ellison, T. M., Barr, D. J., & Fay, N. (2014).
Cultural selection drives the evolution of human communi-
cation systems. Proceedings of the Royal Society B: Bio-
logical Sciences, 281(1788), 20140488.

Wade, L., & Roberts, G. (2020). Linguistic convergence
to observed versus expected behavior in an alien-language
map task. Cognitive Science, 44(4), e12829.

Zehr, J., & Schwarz, F. (2018). PennController for Internet
Based Experiments (IBEX).

Zipf, G. K. (1949). Human Behavior and the Principle of
Least Effort: An Introduction to Human Ecology. Cam-
bridge: Addison-Wisley.

1541




