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Abstract

Online bipartite-matching platforms are ubiquitous and find
applications in important areas such as crowdsourcing and
ridesharing. In the most general form, the platform consists
of three entities: two sides to be matched and a platform op-
erator that decides the matching. The design of algorithms for
such platforms has traditionally focused on the operator’s (ex-
pected) profit. Since fairness has become an important con-
sideration that was ignored in the existing algorithms a col-
lection of online matching algorithms have been developed
that give a fair treatment guarantee for one side of the market
at the expense of a drop in the operator’s profit. In this paper,
we generalize the existing work to offer fair treatment guaran-
tees to both sides of the market simultaneously, at a calculated
worst case drop to operator profit. We consider group and in-
dividual Rawlsian fairness criteria. Moreover, our algorithms
have theoretical guarantees and have adjustable parameters
that can be tuned as desired to balance the trade-off between
the utilities of the three sides. We also derive hardness results
that give clear upper bounds over the performance of any al-
gorithm.

1 Introduction
Online bipartite matching has been used to model many
important applications such as crowdsourcing (Ho and
Vaughan 2012; Tong et al. 2016; Dickerson et al. 2019b),
rideshare (Lowalekar, Varakantham, and Jaillet 2018; Dick-
erson et al. 2021; Ma, Xu, and Xu 2021), and online ad al-
location (Goel and Mehta 2008; Mehta 2013). In the most
general version of the problem, there are three interacting
entities: two sides of the market to be matched and a plat-
form operator which assigns the matches. For example, in
rideshare, riders on one side of the market submit requests,
drivers on the other side of the market can take requests, and
a platform operator such as Uber or Lyft matches the rid-
ers’ requests to one or more available drivers. In the case of
crowdsourcing, organizations offer tasks, workers look for
tasks to complete, and a platform operator such as Ama-
zon Mechanical Turk (MTurk) or Upwork matches tasks to
workers.

Online bipartite matching algorithms are often designed
to optimize a performance measure—usually, maximizing
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overall profit for the platform operator or a proxy of that
objective. However, fairness considerations were largely ig-
nored. This is troubling especially given that recent reports
have indicated that different demographic groups may not
receive similar treatment. For example, in rideshare plat-
forms once the platform assigns a driver to a rider’s re-
quest, both the rider and the driver have the option of reject-
ing the assignment and it has been observed that member-
ship in a demographic group may cause adverse treatment
in the form of higher rejection. Indeed, (Cook 2018; White
2016; Wirtschafter 2019) report that drivers could reject rid-
ers based on attributes such as gender, race, or disability.
Conversely, (Rosenblat et al. 2016) reports that drivers are
likely to receive less favorable ratings if they belong to cer-
tain demographic groups. A similar phenomenon exists in
crowdsourcing (Galperin and Greppi 2017). Moreover, even
in the absence of such evidence of discrimination, as algo-
rithms become more prevalent in making decisions that di-
rectly affect the welfare of individuals (Barocas, Hardt, and
Narayanan 2019; Dwork et al. 2012), it becomes important
to guarantee a standard of fairness. Also, while much of our
discussion focuses on the for-profit setting for concreteness,
similar fairness issues hold in not-for-profit scenarios such
as the fair matching of individuals with health-care facili-
ties, e.g., in the time of a pandemic.

In response, a recent line of research has been concerned
with the issue of designing fair algorithms for online bipar-
tite matching. (Lesmana, Zhang, and Bei 2019; Ma and Xu
2022; Xu and Xu 2020) present algorithms which give a
minimum utility guarantee for the drivers at a bounded drop
to the operator’s profit. Conversely, (Nanda et al. 2020) give
guarantees for both the platform operator and the riders in-
stead. Finally, (Sühr et al. 2019) shows empirical methods
that achieve fairness for both the riders and drivers simul-
taneously but lacks theoretical guarantees and ignores the
operator’s profit.

Nevertheless, the existing work has a major drawback in
terms of optimality guarantees. Specifically, the two sides
being matched along with the platform operator constitute
the three main interacting entities in online matching and de-
spite the significant progress in fair online matching none of
the previous work considers all three sides simultaneously.
In this paper, we derive algorithms with theoretical guar-
antees for the platform operator’s profit as well as fairness
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guarantees for the two sides of the market. Unlike the previ-
ous work we not only consider the size of the matching but
also its quality. Further, we consider two online arrival set-
tings: the KIID and the richer KAD setting (see Section 3
for definitions). We consider both group and individual no-
tions of Rawlsian fairness and interestingly show a reduc-
tion from individual fairness to group fairness in the KAD
setting. Moreover, we show upper bounds on the optimality
guarantees of any algorithm and derive impossibility results
that show a conflict between group and individual notions
of fairness. Finally, we empirically test our algorithms on a
real-world dataset.

2 Related Work
It is worth noting that similar to our work, (Patro et al. 2020)
and (Basu et al. 2020) have considered two-sided fairness
as well, although in the setting of recommendation systems
where a different model is applied—and, critically, a sepa-
rate objective for the operator’s profit was not considered.

Fairness in bipartite matching has seen significant interest
recently. The fairness definition employed has consistently
been the well-known Rawlsian fairness (Rawls 1958) (i.e.
max-min fairness) or its generalization Leximin fairness.*
We note that the objective to be maximized (other than the
fairness objective) represents operator profit in our setting.

The case of offline and unweighted maximum cardinal-
ity matching is addressed by (Garcı́a-Soriano and Bonchi
2020), who give an algorithm with Leximin fairness guar-
antees for one side of the market (one side of the bipartite
graph) and show that this can be achieved without sacrific-
ing the size of the match. Motivated by fairness consider-
ation for drivers in ridesharing, (Lesmana, Zhang, and Bei
2019) considers the problem of offline and weighted match-
ing. Specifically, they show an algorithm with a provable
trade-off between the operator’s profit and the minimum util-
ity guaranteed to any vertex in one-side of the market.

Recently, (Ma, Xu, and Xu 2020) considered fairness for
the online part of the graph through a group notion of fair-
ness. In particular, the utility for a group is added across the
different types and is minimized for the group worst off, in
rough terms their notion translates to maximizing the mini-
mum utility accumulated by a group throughout the match-
ing. Their notion of fairness is very similar to the one we
consider here. However, (Ma, Xu, and Xu 2020) considers
fairness only on one side of the graph and ignores the oper-
ator’s profit. Further, only the matching size is considered to
measure utility, i.e. edges are unweighted.

A new notion of group fairness in online matching is con-
sidered in (Sankar et al. 2021). In rough terms, their group
fairness criterion amounts to establishing a quota for each
group and ensuring that the matching does not exceed that
quota. This notion can be seen as ensuring that the system is
not dominated by a specific group and is in some sense an
opposite to max-min fairness as the utility is upper bounded

*Leximin fairness maximizes the minimum utility like max-
min fairness. However, it proceeds to maximize the second worst
utility, and so on until the list is exhausted.

instead of being lower bounded. Further, the fairness guar-
antees considered are one-sided as well.

On the empirical side of fair online matching, (Mat-
tei, Saffidine, and Walsh 2017) and (Lee et al. 2019) give
application-specific treatments in the context of deceased-
donor organ allocation and food bank provisioning, respec-
tively. More related to our work is that of (Sühr et al.
2019; Zhou, Marecek, and Shorten 2021) which consider the
rideshare problem and provide algorithms to achieve fair-
ness for both sides of the graph simultaneously, however
both papers lack theoretical guarantees and in the case of
(Sühr et al. 2019) the operator’s profit is not considered.

3 Online Model & Optimization Objectives
Our model follows that of (Mehta 2013; Feldman et al.
2009; Bansal et al. 2010; Alaei, Hajiaghayi, and Liaghat
2013) and others. We have a bipartite graph G = (U, V,E)
where U represents the set of static (offline) vertices (work-
ers) and V represents the set of online vertex types (job
types) which arrive dynamically in each round. The online
matching is done over T rounds. In a given round t, a ver-
tex of type v is sampled from V with probability pv,t with∑
v∈V pv,t = 1, ∀t ∈ [T ] the probability pv,t is known

beforehand for each type v and each round t. This arrival
setting is referred to as the known adversarial distribution
(KAD) setting (Alaei, Hajiaghayi, and Liaghat 2013; Dick-
erson et al. 2021). When the distribution is stationary, i.e.
pv,t = pv, ∀t ∈ [T ], we have the arrival setting of the
known independent identical distribution (KIID). Accord-
ingly, the expected number of arrivals of type v in T rounds
is nv =

∑
t∈[T ] pv,t, which reduces to nv = Tpv in the

KIID setting. We assume that nv ∈ Z+ for KIID (Bansal
et al. 2010). Every vertex u (v) has a group membership,†
with G being the set of all group memberships; for any vertex
u ∈ U , we denote its group memberships by g(u) ∈ G (sim-
ilarly, we have g(v) for v ∈ V ). Conversely, for a group g,
U(g) (V (g)) denotes the subset of U (V ) with group mem-
bership g. A vertex u (v) has a set of incident edges Eu (Ev)
which connect it to vertices in the opposite side of the graph.
In a given round, once a vertex (job) v arrives, an irrevoca-
ble decision has to be made on whether to reject v or assign
it to a neighbouring vertex u (where (u, v) ∈ Ev) which
has not been matched before. Suppose, that v is assigned to
u, then the assignment is not necessarily successful rather it
succeeds with probability pe = p(u,v) ∈ [0, 1]. This models
the fact that an assignment could fail for some reason such
as the worker refusing the assigned job. Furthermore, each
vertex u has patience parameter ∆u ∈ Z+ which indicates
the number of failed assignments it can tolerate before leav-
ing the system, i.e. if u receives ∆u failed assignments then
it is deleted from the graph. Similarly, a vertex v has pa-
tience ∆v ∈ Z+, if a vertex v arrives in a given round, then
it would tolerate at most ∆v many failed assignments in that
round before leaving the system.

†For a clearer representation we assume each vertex belongs to
one group although our algorithms apply to the case where a vertex
can belong to multiple groups.



For a given edge e = (u, v) ∈ E, we let each entity as-
sign its own utility to that edge. In particular, the platform
operator assigns a utility of wOe , whereas the offline vertex u
assigns a utility ofwUe , and the online vertex v assigns a util-
ity of wVe . This captures entities’ heterogeneous wants. For
example, in ridesharing, drivers may desire long trips from
nearby riders, whereas the platform operator would not be
concerned with the driver’s proximity to the rider, although
this maybe the only consideration the rider has. Similar mo-
tivations exist in crowdsourcing as well. We finally note that
most of the details of our model such the KIID and KAD
arrival settings as well as the vertex patience follow well-
established and pratically motivated model choices in online
matching, see Appendix (A) for more details.

LettingM denote the set of successful matchings made in
the T rounds, then we consider the following optimization
objectives:

• Operator’s Utility (Profit): The operator’s expected
profit is simply the expected sums of the profits across the
matched edges, this leads to E[

∑
e∈M wOe ].

• Rawlsian Group Fairness:

– Offline Side: Denote byMu the subset of edges in the
matching that are incident on u. Then our fairness cri-
terion is equal to

min
g∈G

E[
∑
u∈U(g)(

∑
e∈Mu

wUe )]

|U(g)|
.

this value equals the minimum average expected utility
received by a group in the offline side U .

– Online Side: Similarly, we denote byMv the subset of
edges in the matching that are incident on vertex v, and
define the fairness criterion to be

min
g∈G

E[
∑
v∈V (g)(

∑
e∈Mv

wVe )]∑
v∈V (g) nv

.

this value equals the minimum average expected utility
received throughout the matching by any group in the
online side V .

• Rawlsian Individual Fairness:

– Offline Side: The definition here follows from the
group fairness definition for the offline side by
simply considering that each vertex u belongs to
its own distinct group. Therefore, the objective is
min
u∈U

E[
∑
e∈Mu

wUe ].

– Online Side: Unlike the offline side, the definition does
not follow as straightforwardly. Here we cannot obtain
a valid definition by simply assigning each vertex type
its own group. Rather, we note that a given individual
is actually a given arriving vertex at a given round t ∈
[T ], accordingly our fairness criterion is the minimum
expected utility an individual receives in a given round,
i.e. min

t∈[T ]
E[
∑
e∈Mvt

wVe )], where vt is the vertex that

arrived in round t.

4 Main Results
Performance Criterion: We note that we are in the on-
line setting, therefore our performance criterion is the com-
petitive ratio. Denote by I the distribution for the instances
of matching problems, then OPT(I) = EI∼I [OPT(I)]
where OPT(I) is the optimal value of the sampled in-
stance I . Similarly, for a given algorithm ALG, we de-
fine the value of its objective over the distribution I by
ALG(I) = ED[ALG(I)] where the expectation ED[.] is
over the randomness of the instance and the algorithm. The
competitive ratio is then defined as minI

ALG(I)
OPT(I) .

In our work, we address optimality guarantees for each of
the three sides of the matching market by providing algo-
rithms with competitive ratio guarantees for the operator’s
profit and the fairness objectives of the static and online side
of the market simultaneously. Specifically, for the KIID ar-
rival setting we have:

Theorem 4.1. For the KIID setting, algorithm
TSGFKIID(α, β, γ) achieves a competitive ratio of
( α2e ,

β
2e ,

γ
2e )† simultaneously over the operator’s profit, the

group fairness objective for the offline side, and the group
fairness objective for the online side, where α, β, γ > 0 and
α+ β + γ ≤ 1.

The following two theorems hold under the condition that
pe = 1, ∀e ∈ E. Specifically for the KAD setting we have:

Theorem 4.2. For the KAD setting, algorithm
TSGFKAD(α, β, γ) achieves a competitive ratio of
(α2 ,

β
2 ,

γ
2 ) simultaneously over the operator’s profit, the

group fairness objective for the offline side, and the group
fairness objective for the online side, where α, β, γ > 0 and
α+ β + γ ≤ 1.

Moreover, for the case of individual fairness whether in
the KIID or KAD arrival setting we have:

Theorem 4.3. For the KIID or KAD setting, we can achieve
a competitive ratio of (α2 ,

β
2 ,

γ
2 ) simultaneously over the op-

erator’s profit, the individual fairness objective for the of-
fline side, and the individual fairness objective for the online
side, where α, β, γ > 0 and α+ β + γ ≤ 1.

We also give the following hardness results. In particular,
for a given arrival (KIID or KAD) setting and fairness crite-
rion (group or individual), the competitive ratios for all sides
cannot exceed 1 simultaneously:

Theorem 4.4. For all arrival models, given the three objec-
tives: operator’s profit, offline side group (individual) fair-
ness, and online side group (individual) fairness. No algo-
rithm can achieve a competitive ratio of (α, β, γ) over the
three objectives simultaneously such that α+ β + γ > 1.

It is natural to wonder if we can combine individual and
group fairness. Though it is possible to extend our algo-
rithms to this setting. The follow theorem shows that they
can conflict with one another:

Theorem 4.5. Ignoring the operator’s profit and focusing
either on the offline side alone or the online side alone.

†Here, e denotes the Euler number, not an edge in the graph.



With αG and αI denoting the group and individual fairness
competitive ratios, respectively. No algorithm can achieve
competitive ratios (αG, αI) over the group and individ-
ual fairness objectives of one side simultaneously such that
αG + αI > 1.

Finally, we carry experiments on real-world datasets in
Section 6.

5 Algorithms and Theoretical Guarantees
Our algorithms use linear programming (LP) based tech-
niques (Bansal et al. 2010; Nanda et al. 2020; Xu and Xu
2020; Brubach et al. 2016b) where first a benchmark LP is
set up to upper bound the optimal value of the problem, then
an LP solution is sampled from to produce an algorithm with
guarantees. Due to space constraints, all proofs and the tech-
nical details of Theorems (4.4 and 4.5) are in Appendix (B).

5.1 Group Fairness for the KIID Setting:

Before we discuss the details of the algorithm, we note
that for a given vertex type v ∈ V , the expected arrival
rate nv could be greater than one. However, it is not dif-
ficult to modify the instance by “fragmenting” each type
with nv > 1 such that in the new instance nv = 1 for
each type. This can be done with the operator’s profit, of-
fline group fairness, and online group fairness having the
same values. Therefore, in what remains for the KIID set-
ting nv = 1, ∀v ∈ V and therefore for any round t, each
vertex v arrives with probability 1

T . It also follows that for a
given group g,

∑
v∈V (g) nv =

∑
v∈V (g) 1 = |V (g)|.

For each edge e = (u, v) ∈ E we use xe to denote the ex-
pected number of probes (i.e, assignments from u to type v
not necessarily successful) made to edge e in the LP bench-
mark. We have a total of three LPs each having the same set
of constraints of (4), but differing by the objective. For com-
pactness we do not repeat these constraints and instead write
them once. Specifically, LP objective (1) along with the con-
straints of (4) give the optimal benchmark value of the op-
erator’s profit. Similarly, with the same set of constraints (4)
LP objective (2) and LP objective (3) give the optimal group
max-min fair assignment for the offline and online sides, re-
spectively. Note that the expected max-min objectives of (2)
and (3), can be written in the form of a linear objective. For
example, the max-min objective of (2) can be replaced with
an LP with objective max η subject to the additional con-

straints that ∀g ∈ G , η ≤
∑

u∈U(g)

∑
e∈Eu

wU
e xepe

|U(g)| . Having
introduced the LPs, we will use LP(1), LP(2), and LP(3) to
refer to the platform’s profit LP, the offline side group fair-
ness LP, and the online side group fairness LP, respectively.

max
∑

e∈E w
O
e xepe (1)

max min
g∈G

∑
u∈U(g)

∑
e∈Eu

wU
e xepe

|U(g)| (2)

max min
g∈G

∑
v∈V (g)

∑
e∈Ev

wV
e xepe

|V (g)| (3)

s.t ∀e ∈ E : 0 ≤ xe ≤ 1 (4a)
∀u ∈ U :

∑
e∈Eu

xepe ≤ 1 (4b)

∀u ∈ U :
∑

e∈Eu
xe ≤ ∆u (4c)

∀v ∈ V :
∑

e∈Ev
xepe ≤ 1 (4d)

∀v ∈ V :
∑

e∈Ev
xe ≤ ∆v (4e)

Now we prove that LP(1), LP(2) and LP(3) indeed pro-
vide valid upper bounds (benchmarks) for the optimal solu-
tion for the operator’s profit and expected max-min fairness
for the offline and online sides of the matching.
Lemma 5.1. For the KIID setting, the optimal solutions of
LP (1), LP (2), and LP (3) are upper bounds on the expected
optimal that can be achieved by any algorithm for the op-
erator’s profit, the offline side group fairness objective, and
the online side group fairness objective, respectively.

Our algorithm makes use of the dependent rounding sub-
routine (Gandhi et al. 2006). We mention the main prop-
erties of dependent rounding. In particular, given a frac-
tional vector ~x = (x1, x2, . . . , xt) where each xi ∈ [0, 1],
let k =

∑
i∈[t] xi , dependent rounding rounds xi (possi-

bly fractional) to Xi ∈ {0, 1} for each i ∈ [t] such that
the resulting vector ~X = (X1, X2, X3, . . . , Xt) has the fol-
lowing properties: (1) Marginal Distribution: The proba-
bility that Xi = 1 is equal to xi, i.e. Pr[Xi = 1] = xi
for each i ∈ [t]. (2) Degree Preservation: Sum of Xi’s
should be equal to either bkc or dke with probability one,
i.e. Pr[

∑
i∈[t]Xi ∈ {bkc , dke}] = 1. (3) Negative Cor-

relation: For any S ⊆ [t], (1) Pr[∧i∈SXi = 0] ≤
Πi∈SPr[Xi = 0] (2) Pr[∧i∈SXi = 1] ≤ Πi∈SPr[Xi = 1].
It follows that for any xi, xj ∈ ~x, E[Xi = 1|Xj = 1] ≤ xi.

Going back to the LPs (1,2,3), we denote the optimal so-
lutions to LP (1), LP (2), and LP (3) by ~x∗,~y∗ and ~z∗ respec-
tively. Further, we introduce the parameters α, β, γ ∈ [0, 1]
where α+β+γ ≤ 1 and each of these parameters decide the
”weight” the algorithm places on each objective (the opera-
tor’s profit, the offline group fairness, and the online group
fairness objectives). We note that our algorithm makes use
of the subroutine PPDR (Probe with Permuted Dependent
Rounding) shown in Algorithm 1.

Algorithm 1: PPDR(~xv)

1: Apply dependent rounding to the fractional solution ~xv
to get a binary vector ~Xv .

2: Choose a random permutation π over the set Ev .
3: for i = 1 to |Ev| do
4: Probe vertex π(i) if it is available and ~Xv(π(i)) = 1
5: if Probe is successful (i.e., a match) then
6: break

The procedure of our parameterized sampling algorithm
TSGFKIID is shown in Algorithm 2. Specifically, when a
vertex of type v arrives at any time step we run PPDR

(
~x∗v
)
,

PPDR
(
~y∗v
)
, or PPDR

(
~z∗v
)

with probabilities α, β, and γ, re-
spectively. We do not run any of the PPDR subroutines and
instead reject the vertex with probability 1−(α+β+γ). The
LP constraint (4e) guarantees that ∀v ∈ V :

∑
e∈Er

s∗e ≤



∆v where ~s∗ could be ~x∗, ~y∗, or ~z∗. Therefore, when PPDR
is invoked by the degree preservation property of depen-
dent rounding the number of edges probed will not exceed
∆v , i.e. it would be within the patience limit.

Algorithm 2: TSGFKIID(α, β, γ)

1: Let v be the vertex type arriving at time t.
2: With probability α run the subroutine, PPDR

(
~x∗v
)
.

3: With probability β run the subroutine, PPDR
(
~y∗v
)
.

4: With probability γ run the subroutine, PPDR
(
~z∗v
)
.

5: Reject the arriving vertex with probability 1− (α+β+
γ).

Now we analyze TSGFKIID to prove Theorem 4.1. It
would suffice to prove that for each edge e the expected
number of successful probes is at least αx

∗
e

2e , β y
∗
e

2e and γ z
∗
e

2e .
And finally from the linearity of expectation we show that
the worst case competitive ratio of the proposed online al-
gorithm with parameters α, β and γ is at least ( α2e ,

β
2e ,

γ
2e )

for the operator’s profit and group fairness objectives on the
offline and online sides of the matching, respectively.

A critical step is to lower bound the probability that a ver-
tex u is available (safe) at the beginning of round t ∈ [T ].
Let us denote the indicator random variable for that event by
SFu,t. The following lemma enables us to lower bound for
the probability of SFu,t.

Lemma 5.2. Pr[SFu,t] ≥
(

1− t−1
T

)(
1− 1

T

)t−1

.

Now that we have established a lower bound on
Pr[SFu,t], we lower bound the probability that an edge e
is probed by one of the PPDR subroutines conditioned on
the fact that u is available (Lemma 5.3). Let 1e,t be the indi-
cator that e = (u, v) is probed by the TSGFKIID Algorithm
at time t. Note that event 1e,t occurs when (1) a vertex of
type v arrives at time t and (2) e is sampled by PPDR( ~xv),
PPDR( ~yv), or PPDR(~zv).

Lemma 5.3. Pr[1e,t | SFu,t] ≥ α
x∗e
2T ,Pr[1e,t | SFu,t] ≥

β
y∗e
2T , Pr[1e,t | SFu,t] ≥ γ z

∗
e

2T

Given the above lemmas Theorem 4.1 can be proved.

5.2 Group Fairness for the KAD Setting:

For the KAD setting, the distribution over V is time depen-
dent and hence the probability of sampling a type v in round
t is pv,t ∈ [0, 1] with

∑
v∈V pv,t = 1. Further, we assume

for the KAD setting that for every edge e ∈ E we have
pe = 1. This means that whenever an incoming vertex v
is assigned to a safe-to-add vertex u the assignment is suc-
cessful. This also means that any non-trivial values for the
patience parameters ∆u and ∆v become meaningless and
hence we can WLOG assume that ∀u ∈ U, ∀v ∈ V,∆u =
∆v = 1. From the above discussion, we have the following
LP benchmarks for the operator’s profit, the group fairness
for the offline side and the group fairness for the online side:

max
∑
t∈[T ]

∑
e∈E

wOe xe,t (5)

max min
g∈G

∑
t∈[T ]

∑
u∈U(g)

∑
e∈Eu

wU
e xe,t

|U(g)| (6)

max min
g∈G

∑
t∈[T ]

∑
v∈V (g)

∑
e∈Ev

wV
e xe,t∑

v∈V (g)

nv
(7)

s.t ∀e ∈ E, ∀t ∈ [T ] : 0 ≤ xe,t ≤ 1 (8a)
∀u ∈ U :

∑
t∈[T ]

∑
e∈Eu

xe,t ≤ 1 (8b)

∀v ∈ V, ∀t ∈ [T ] :
∑
e∈Ev

xe,t ≤ pv,t (8c)

Lemma 5.4. For the KAD setting, the optimal solutions of
LP (5), LP (6) and LP (7) are upper bounds on the expected
optimal that can be achieved by any algorithm for the op-
erator’s profit, the offline side group fairness objective, and
the online side group fairness objective, respectively.

Note that in the above LP we have xe,t as the probabil-
ity for successfully assigning an edge in round t (with an
explicit dependence on t), unlike in the KIID setting where
we had xe instead to denote the expected number of times
edge e is probed through all rounds. Similar to our solution
for the KIID setting, we denote by x∗e,t, y

∗
e,t, and z∗e,t the

optimal solutions of the LP benchmarks for the operator’s
profit, offline side group fairness, and online side group fair-
ness, respectively.

Having the optimal solutions to the LPs, we use algorithm
TSGFKAD shown in Algorithm 3. In TSGFKAD new pa-
rameters are introduced, specifically λ and ρe,t where ρe,t
is the probability that edge e = (u, v) is safe to add in
round t, i.e. the probability that u is unmatched at the be-
ginning of round t. For now we assume that we have the
precise values of ρe,t for all rounds and discuss how to ob-
tain these values at the end of this subsection. Now con-
ditioned on v arriving at round t and e = (u, v) being
safe to add, it follows that e is sampled with probability
α
x∗e,t
pv,t

λ
ρe,t

+ β
y∗e,t
pv,t

λ
ρe,t

+ γ
z∗e,t
pv,t

λ
ρe,t

which would be a valid
probability (positive and not exceeding 1) if ρe,t ≥ λ. This
follows from the fact that α, β, γ ∈ [0, 1] and α+β+γ ≤ 1

and also by constraint (8c) which leads to
∑

e∈Ev
xe,t

pv,t
≤

1. Further, if ρe,t ≥ λ then by constraint (8c) we have∑
e∈Ev

(
α
x∗e,t
pv,t

λ
ρe,t

+β
y∗e,t
pv,t

λ
ρe,t

+ γ
z∗e,t
pv,t

λ
ρe,t

)
≤ 1 and there-

fore the distribution is valid. Clearly, the value of λ is impor-
tant for the validity of the algorithm, the following lemma
shows that λ = 1

2 leads to a valid algorithm.

Lemma 5.5. Algorithm TSGFKAD is valid for λ = 1
2 .

We now return to the issue of how to obtain the values
of ρe,t for all rounds. This can be done by using the simula-
tion technique as done in (Dickerson et al. 2021; Adamczyk,
Grandoni, and Mukherjee 2015). To elaborate, we note that
we first solve the LPs (5,6,7) and hence have the values of
x∗e,t, y

∗
e,t, and z∗e,t. Now, for the first round t = 1, clearly

ρe,t = 1, ∀e ∈ E. To obtain ρe,t for t = 2, we simulate
the arrivals and algorithm a collection of times, and use the
empirically estimated probability. More precisely, for t = 1



Algorithm 3: TSGFKAD(α, β, γ)

1: Let v be the vertex type arriving at time t.
2: if Ev,t = φ then
3: Reject v
4: else
5: With probability α probe e with probability

x∗e,t
pv,t

λ
ρe,t

.

6: With probability β probe e with probability
y∗e,t
pv,t

λ
ρe,t

.

7: With probability γ probe e with probability
z∗e,t
pv,t

λ
ρe,t

.
8: With probability [1− (α+ β + γ)] reject v .

we sample the arrival of vertex v from pv,t with t = 1 (pv,t
values are given as part of the model), then we run our al-
gorithm for the values of α, β, γ that we have chosen. Ac-
cordingly, at t = 2 some vertex in U might be matched. We
do this simulation a number of times and then we take ρe,t
for t = 2 to be the average of all runs. Now having the val-
ues of ρe,t for t = 1 and t = 2, we further simulate the
arrivals and the algorithm to obtain ρe,t for t = 3 and so on
until we get ρe,t for the last round T . We note that using the
Chernoff bound (Mitzenmacher and Upfal 2017) we can rig-
orously characterize the error in this estimation, however by
doing this simulation a number of times that is polynomial
in the problem size, the error in the estimation would only
affect the lower order terms in the competitive ration anal-
ysis (Dickerson et al. 2021) and hence for simplicity it is
ignored. Now, with Lemma 5.5 Theorem 4.2 can be proved
(see Appendix (B)).

5.3 Individual Fairness KIID and KAD Settings:
For the case of Rawlsian (max-min) individual fairness, we
consider each vertex of the offline side to belong to its own
distinct group and the definition of group max-min fairness
would lead to individual max-min fairness. On the other
hand, for the online side a similar trick would not yield a
meaningful criterion, we instead define the individual max-
min fairness for the online side to equal min

t∈[T ]
E[util(vt)] =

min
t∈[T ]

E[
∑
e∈Mvt

wVe )] where util(vt) is the utility received

by the vertex arriving in round t. If we were to denote by
xe,t the probability that the algorithm would successfully
match e in round t, then it follows straightforwardly that
E[util(vt)] =

∑
e∈Evt

wVe xe,t. We consider this definition
to be the valid extension of max-min fairness for the on-
line side as we are now concerned with the minimum utility
across the online individuals (arriving vertices) which are T
many. The following lemma shows that we can solve two-
sided individual max-min fairness by a reduction to two-
sided group max-min fairness in the KAD arrival setting:

Lemma 5.6. Whether in the KIID or KAD setting, a given
instance of two-sided individual max-min fairness can be
converted to an instance of two-sided group max-min fair-
ness in the KAD setting.

The above Lemma with algorithm TSGFKAD can be used

to prove Theorem 4.3 as shown in Appendix (B).

6 Experiments
In this section, we verify the performance of our algorithm
and our theoretical lower bounds for the KIID and group
fairness setting using algorithm TSGFKIID (Section 5.1).
We note that none of the previous work consider our three-
sided setting. We use rideshare as an application example
of online bipartite matching (see also, e.g., Dickerson et al.
2021; Nanda et al. 2020; Xu and Xu 2020; Barann, Beverun-
gen, and Müller 2017). We expect similar results and perfor-
mance to hold in other matching applications such as crowd-
sourcing.

Experimental Setup: As done in previous work, the
drivers’ side is the offline (static) side whereas the rid-
ers’ side is the online side. We run our experiments
over the widely used New York City (NYC) yellow cabs
dataset (Sekulić, Long, and Demšar 2021; Nanda et al. 2020;
Xu and Xu 2020; Alonso-Mora, Wallar, and Rus 2017)
which contains records of taxi trips in the NYC area from
2013. Each record contains a unique (anonymized) ID of the
driver, the coordinates of start and end locations of the trip,
distance of the trip, and additional metadata.

Similar to (Dickerson et al. 2021; Nanda et al. 2020), we
bin the starting and ending latitudes and longitudes by divid-
ing the latitudes from 40.4◦ to 40.95◦ and longitudes from
−73◦ to −75◦ into equally spaced grids of step size 0.005.
This enables us to define each driver and request type based
on its starting and ending bins. We pick out the trips between
7pm and 8pm on January 31, 2013, which is a rush hour with
10,814 drivers and 35,109 trips. We set driver patience ∆u to
3. Following (Xu and Xu 2020), we uniformly sample rider
patience ∆v from {1, 2}.

Since the dataset does not include demographic informa-
tion, for each vertex we randomly sample the group mem-
bership (Nanda et al. 2020). Specifically, we randomly as-
sign 70% of the riders and drivers to be advantaged and the
rest to be disadvantaged. The value of pe for e = (u, v)
depends on whether the vertices belong to the advantaged
or disadvantaged group. Specifically, pe = 0.6 if both ver-
tices are advantaged, pe = 0.3 if both are disadvantaged,
and pe = 0.1 for other cases.

In addition to this, a key component of our work is the
use of driver and rider specific utilities. We follow the work
of (Sühr et al. 2019) to set the utilities. We adopt the Manhat-
tan distance metric rather than the Euclidean distance metric
since the former is a better proxy for length of taxi trips in
New York City. We set the operator’s utility to the rider’s
trip length wOe = tripLength(v)—a rough proxy for profit.
In addition, the rider’s utility over an edge e = (u, v) is set
to wVe = −dist(u, v) where dist(u, v) is the distance be-
tween the rider and the driver. The driver’s utility is set to
wUe = tripLength(v) − dist(u, v). Whereas the trip length
tripLength(v) is available in the dataset, the distance be-
tween the rider and the driver dist(u, v) is not. We there-
fore simulate the distance, by creating an equally spaced
grid with step size 0.005 around the starting coordinates of
the trip. This results in 81 possible coordinates in the vicin-



Figure 1: Competitive ratios for TSGFKIID over the operator’s profit, offline (driver) fairness objective, and online (rider)
fairness objective with different values of α, β, γ. Note that “Matching” refers to the case where driver and rider utilities are set
to 1 across all edges. The experiment is run with α = {0, 0.1, 0.2, ..., 1}, and β = γ = 1−α

2 . Higher competitive ratio indicates
better performance.

ity of the starting coordinates of the trip. We then randomly
choose one of these 81 coordinates to be the location of the
driver when the trip was requested. Then dist(u, v) is the
distance between this coordinate to the start coordinate of
the trip. This is a valid approximation since the platform
would not assign drivers unreasonably far away to pickup
a rider. Lastly, we scale the utilities by a constant to prevent
them from being negative.

We run TSGFKIID at the scale of |U | = 49, |V | = 172 for
100 trials. During each trial, we randomly sample 49 drivers
and 172 requests between 7 and 8pm, and run TSGFKIID
100 times to measure the expected competitive ratios of this
trial. We then averaged the competitive ratios over all trials,
and the results are reported in figure 1. Code to reproduce
our experiments is available in the blinded format‡; we will
release that code in deblinded form upon acceptance.

Performance of TSGFKIID with Varied Parameters:
Figure 1 shows the performance of our algorithm over the
three objectives: operator’s profit, offline (driver) group fair-
ness, and online (rider) group fairness. It is clear that the
algorithm behaves as expected with all objectives being
steadily above their theoretical lower bound. More impor-
tantly, we see that increasing the weight for an objective
leads to better performance for that objective. I.e., a higher
weight for β leads to better performance for the offline side
fairness and similar observations follow in the case of α for
the operator’s objective and in the case of γ for the online-
fairness. This also indicates the limitation in previous work
which only considered fairness for one-side since their al-
gorithms would not be able to improve the fairness for the
other ignored side.

Furthermore, previous work (e.g., Nanda et al. 2020; Xu
and Xu 2020; Ma and Xu 2022) only considered the match-
ing size when optimizing the fairness objective for the of-
fline (drivers) or online (riders) side. This is in contrast to
our setting where we consider the matching quality. To see
the effect of ignoring the matching quality and only con-
sidering the size, we run the same experiments with wUe =
wVe = 1, ∀e ∈ E, i.e. the quality is ignored. The results are
shown shown in the graph labelled “Matching” in figure 1,

‡https://github.com/anonymousUser634534/TSGF

Table 1: Competitive ratios of TSGFKIID with Greedy
heuristics on the NYC dataset at |U | = 49, |V | = 172.
Higher competitive ratio indicates better performance.

Profit Driver
Fairness

Rider
Fairness

Greedy-O 0.431 0.549 0.503
TSGFKIID (α = 1) 0.595 0.398 0.384

Greedy-D 0.371 0.609 0.563
TSGFKIID (β = 1) 0.517 0.571 0.44

Greedy-R 0.316 0.504 0.513
TSGFKIID (γ = 1) 0.252 0.353 0.574

it is clear that ignoring the match quality leads to noticeably
worse results.

Comparison to Heuristics: We also compare the perfor-
mance of TSGFKIID against three other heuristics. In par-
ticular, we consider Greedy-O which is a greedy algorithm
that upon the arrival of an online vertex (rider) v picks the
edge e ∈ Ev with maximum value of pewOe until it either
results in a match or the patience quota is reached. We also
consider Greedy-R which is identical to Greedy-O except
that it greedily picks the edge with maximum value of pewVe
instead, therefore maximizing the rider’s utility in a greedy
fashion. Moreover, we consider Greedy-D which is a greedy
algorithm that upon the arrival of an online vertex v, first
finds the group on the offline side with the lowest average
utility so far, then it greedily picks an offline vertex (driver)
u ∈ Ev from this group (if possible) which has the maxi-
mum utility until it either results in a match or the patience
limit is reached. We carried out 100 trials to compare the per-
formance of TSGFKIID with the greedy algorithms, where
each trial contains 49 randomly sampled drivers and 172 re-
quests and is repeated 100 times. The aggregated results are
displayed in table 1. We see that TSGFKIID outperforms the
heuristics with the exception of a small under-performance
in comparison to Greedy-D. However, using Greedy-D we
cannot tune the weights (α, β, and γ) to balance the objec-
tives as we can in the case of TSGFKIID.



7 Conclusion
In this paper, we considered the problem of two-sided fair-
ness in online matching platforms where there are three
participating entities: the platform and the two sides to be
matched. Unlike previous work where the fairness guaran-
tees are provided for one particular entity, we give fairness
guarantees to both offline and online sides of the matching
simultaneously at a bounded drop to the platform opera-
tor’s profit. We considered both group and individual fair-
ness objectives. Our algorithms have theoretical guarantees
and involve three tunable parameters which can be adjusted
according to the utility trade-off desired. In addition, we
showed hardness results which impose upper bounds on the
achievable competitive ratios of any algorithm.
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aware method for mapping movement-based and place-
based regions from spatial flow networks. Transactions in
GIS, 25(4): 2104–2124.
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A Online Matching Model Details
A.1 Arrival Setting (KIID and KAD):
The modelling choices we have made follow standard set-
tings in online matching (Mehta 2013; Alaei, Hajiaghayi,
and Liaghat 2013). To elaborate further, the initial semi-
nal paper on online matching (Karp, Vazirani, and Vazirani
1990) does not assume any prior knowledge on the arrival
of the online vertices of V and follows adversarial analysis
to establish theoretical guarantees on the competitive ratio.
In addition to overly pessimistic theoretical results, the lack
of prior knowledge is often an unrealistic assumption. Most
decision makers in online matching settings are able to gain
knowledge on the arrival rates of the online vertices and this
knowledge can be used to build more realistic probabilistic
knowledge of the arrival.

Specifically, the Known Independent and Identically Dis-
tributed KIID model is an established model in online
matching (Feldman et al. 2009; Mehta 2013; Bahmani and
Kapralov 2010; Manshadi, Gharan, and Saberi 2012; Dick-
erson et al. 2019b). In this model, the collection of arriving
vertices on the online side belong to a finite set of known
types where the type of a vertex v decides the edge connec-
tions Ev it has to the vertices of U along with the weights
we, ∀e ∈ Ev of those edges. Further, a given vertex of type
v arrives with the same probability pv in every round. These
arrival probabilities can be estimated easily from historical
data based on previous matchings.

While the KIID model utilizes prior knowledge which is
frequently available in practical applications, it is still re-
strictive since it assumes that the probabilities do not vary
through time. The Known Adversarial Arrival KAD model
(also known as prophet inequality matching) on the other
hand, takes into account the dynamic variation in the proba-
bilities. Therefore, the probability a vertex of type v arrives
in round t is pv,t instead of being constant for every round
t. This model is also well-established in the matching lit-
erature and has been used in a collection of papers such as
(Alaei, Hajiaghayi, and Liaghat 2012; Brubach et al. 2016a;
Dickerson et al. 2021, 2019a). Despite the fact that the KAD
model is well-motivated and richer than the KIID model it
was not used in the one-sided online fair matching papers of
(Nanda et al. 2020; Xu and Xu 2020).

A.2 Patience:
The patience parameter of a vertex ∆u (or ∆v) for an of-
fline vertex u (or an online vertex v) models its tolerance
for unsuccessful probes (match attempts) before leaving the
system. We note that this is an important detail in the on-
line matching model since it is frequently the case that
the vertices in the online matching applications (such as
advertising, crowdsourcing, and ridesharing) represent hu-
man participants who would only tolerate a fixed number
of failed matching attempts before leaving the system. Like
the KIID and KAD arrival models, the patience parameter
is also well-established in online matching, see for example
(Mehta 2013; Bansal et al. 2010; Adamczyk, Grandoni, and
Mukherjee 2015). Despite the importance of this parameter,
the previous work in fair online matching did not consider

the patience issue for both sides simultaneously (Nanda et al.
2020; Xu and Xu 2020), handling both parameters at the
same time is more challenging and leads to more tedious
derivations.

We further elaborate on the meaning of the patience for
both the online and offline sides, we note again that this is
following the research literature on online matching:

Offline Patience: Consider a vertex u with patience ∆u,
then vertex u will remain on the offline side U unless it is
successfully matched or it receives ∆u many failed match-
ing attempts. As a concrete example, consider a vertex u1

with patience ∆u1
= 2. Clearly, in the first round (t = 1) u1

will be in the offline side U , suppose an unsuccessful match-
ing attempt (unsuccessful probe) is made in this round, then
in the next round u1 will still be there. Suppose that the next
round when u1 is probed is in the fifth round (t = 5), then
if the probe is successful then u1 is matched and will be re-
moved from the offline side in the next rounds (t > 5), but
also if the match is unsuccessful then u1 will not be matched
but will still be removed for all of the next rounds (t > 5)
since it has a patience ∆u1

= 2 and therefore can only take
two failed matching attempts before leaving.

Online Patience: Unlike the offline side, an online ver-
tex v would arrive in a round t and must be matched or re-
jected in that given round. While in a round t we can at most
match one online vertex (which is the arriving vertex v) to
some offline vertex u, we can make multiple match attempts
(probes) from v to the vertices it is connected to in U in that
round t. The patience ∆v of v decides the upper limit on the
number of failed attempts we can make in round t before v
leaves the system and can no longer be matched even if a
possible match was still not attempted. As a concrete exam-
ple, suppose vertex of type v1 with ∆v1

= 3 arrives in round
t = 7 and that v1 is connected to a total of four vertices
{u1, u2, u3, u4} in U all of which are still available (i.e. un-
matched and still have not ran out of patience), suppose we
make match attempts (probes) to u1 then u2 then u3, it fol-
lows since ∆v1 = 3 that v1 has left the system and we can
no longer even attempt to match it to u4 despite that fact that
its available. Further, if at any probe attempt v1 was matched
then no further probe attempts are made to v1, e.g. if the first
probe (v1 to u1) in the above discussion was successful, then
v1 and u1 are matched to each other and we cannot attempt
to match v1 to u2, u3, or u4.

B Proofs
Here we include the missing proofs. Each lemma/theorem is
restated followed by its proof.

B.1 Proofs for Section 5.1
Lemma 5.1. For the KIID setting, the optimal solutions of
LP (1), LP (2), and LP (3) are upper bounds on the expected
optimal that can be achieved by any algorithm for the op-
erator’s profit, the offline side group fairness objective, and
the online side group fairness objective, respectively.

Proof. We follow a similar proof to that used in (Bansal
et al. 2010). We shall focus on the operator’s profit objec-



tive since the other objectives follow by very similar argu-
ments. First, we note that LP(1) uses the expected values of
the problem parameters, i.e. if we consider a specific graph
realization G, then let NG

v be the number of arrival for ver-
tex type v, then it follows that LP(1) uses the expected values
since EI [NG

v ] = 1, ∀v ∈ V where EI [.] is an expectation
over the randomness of the instance. We shall therefore refer
to the value of LP(1) as LP (EI [G]).

To prove that LP (EI(G)) is a valid upper bound it
suffices to show that LP (EI [G[) ≥ EI [LP (G)] where
LP (G) is the optimal LP value of a realized instance G and
EI [LP (G)] is the expected value of that optimal LP value.
Let us then consider a specific realizationG′, its correspond-
ing LP would be the following:

max
∑

e′∈E′ w
O
e′pe′xe′ (9)

s.t ∀e′ ∈ E′ : 0 ≤ xe′ ≤ 1 (10a)
∀u ∈ U :

∑
e′∈E′u

xe′pe′ ≤ 1 (10b)

∀u ∈ U :
∑

e′∈E′u
xe′ ≤ ∆u (10c)

∀v′ ∈ V ′ :
∑

e′∈E′
v′
xe′pe′ ≤ 1 (10d)

∀v′ ∈ V ′ :
∑

e′∈E′
v′
xe′ ≤ ∆v′ (10e)

where V ′ is the realization of the online side. It is clear that
for a given realization G′ = (U, V ′, E′) the above LP(9)
is an upper bound on the operator’s objective value for that
realization.

Now we prove that LP (EI [G]) ≥ EI [LP (G)]. The dual
of the LP for the realization G′ is the following:

min
∑

u∈U (αu +∆uβu) +
∑

v′∈V ′(αv′ + ∆v′βv′) +
∑

(u,v′) γu,v′

(11)

s.t. ∀u ∈ U, ∀v′ ∈ V ′ :

βu + βv′ + p(u,v′)(αu + αv′) + γ(u,v′) ≥ wO
(u,v′)p(u,v′) (12a)

αu, αv′ , βu, βv′ , γ(u,v′) ≥ 0 (12b)

Consider the graph with the expected number of arrival
EI(G) it would have a dual of the above form, let ~α∗, ~β∗, ~γ∗
be the optimal solution of its corresponding dual. Then it
follows by the strong duality of LPs that solution ~α∗, ~β∗, ~γ∗
would have a value of LP (EI [G]). Now for the instanceG′,

we shall use the following dual solution ~̂α, ~̂β, ~̂γ which is set
as follows:

• ∀u ∈ U : α̂u = α∗u, β̂u = α∗u.

• ∀v′ ∈ V ′ of type v: α̂v′ = α∗v, β̂v′ = β∗v .
• ∀u ∈ U, ∀v′ ∈ V ′ of type v: γ̂(u,v′) = γ∗(u,v).

Note that the new solution ~̂α, ~̂β, ~̂γ is a feasible dual solution
since it satisfies constraints 12a and 12b. By weak duality

the value of the solution ~̂α, ~̂β, ~̂γ upper bounds LP (G′). Now
if we were to denote the number of vertices of type v that
arrived in instance G′ by nG

′

v , then the value of the solution

~̂α,
~̂
β, ~̂γ satisfies:∑

u∈U
(α̂u +∆uβ̂u) +

∑
v′∈V ′

(α̂v′ + ∆v′ β̂v′) +
∑

(u,v′)

γ̂u,v′

=
∑
u∈U

(α∗u +∆uβ
∗
u) +

∑
v∈V

nG
′

v (α∗v + ∆vβ
∗
v) +

∑
(u,v)

nG
′

v γ
∗
u,v

≥ LP (G′)

Now taking the expectation, we get:
EI [LP (G′)]

≤ EI
[∑
u∈U

(α̂u +∆uβ̂u) +
∑
v′∈V ′

(α̂v′ + ∆v′ β̂v′) +
∑

(u,v′)

γ̂u,v′
]

= EI
[∑
u∈U

(α∗u +∆uβ
∗
u) +

∑
v∈V

nG
′

v (α∗v + ∆vβ
∗
v) +

∑
(u,v)

nG
′

v γ
∗
u,v

]
=
∑
u∈U

(α∗u +∆uβ
∗
u) +

∑
v∈V

EI [nG
′

v ](α∗v + ∆vβ
∗
v) +

∑
(u,v)

EI [nG
′

v ]γ∗u,v

=
∑
u∈U

(α∗u +∆uβ
∗
u) +

∑
v∈V

(α∗v + ∆vβ
∗
v) +

∑
(u,v)

γ∗u,v

= LP (EI [G])

For the offline and online group fairness objectives, we use
the same steps. The difference would be in the constraints of
the dual program, however following a similar assignment

as done from ~α∗, ~β∗, ~γ∗ to ~̂α, ~̂β, ~̂γ is sufficient to prove the
lemma for both fairness objectives.

Before we prove Lemma 5.2 for the lower bound on the
probability of SFu,t. We have to first introduce the following
two lemmas. Specifically, letAu,t be the number of success-
ful assignments that u received and accepted before round t.
Then the following lemma holds.
Lemma B.1. For any given vertex u at time t ∈ [T ] ,

P [Au,t = 0] ≥
(

1− 1
T

)t−1

.

Proof. Let Xe,k be the indicator random variable for u re-
ceiving an arrival request of type v where e ∈ Eu and k < t.
Let Ye,k be the indicator random variable that the edge e
gets sampled by the TSGFKIID(α, β, γ) algorithm at time
k < t. Let Ze,k be the indicator random variable that assign-
ment e = (u, v) is successful (a match) at time k < t. Then
Au,t =

∑
k<t

∑
e∈Eu

Xe,kYe,kZe,k.
Pr[Au,t = 0] = Πk<tPr

[ ∑
e=(u,v)∈Eu

Xe,kYe,kZe,k = 0
]

= Πk<t

(
1− Pr

[ ∑
e∈Eu

Xe,kYe,kZe,k ≥ 1
])

≥ Πk<t

(
1−

∑
e∈Eu

1

T
·
(
αx∗e + β

y∗e
qv

+ γ
z∗e
qv

)
· pe
)

= Πk<t

(
1− 1

T
·
(
α
∑
e∈Eu

x∗epe + β
∑
e∈Eu

y∗epe + γ
∑
e∈Eu

z∗epe
))

≥ Πk<t

(
1− 1

T
·
(
α · 1 + β · 1 + γ · 1

))
≥ Πk<t

(
1− 1

T

)
=
(

1− 1

T

)t−1



Now we lower bound the probability that u was probed
less than ∆u times prior to t. Denote the number of probes
received by u before t by Bu,t, then the following lemma
holds:

Lemma B.2. Pr[Bu,t < ∆u] ≥ 1− t−1
T .

Proof. First it is clear that Bu,t =
∑
k<t

∑
e∈Eu

Xe,kYe,k.

E[Bu,t] =
∑
k<t

∑
e∈Eu

E[Xe,kYe,k]

≤
∑
k<t

∑
e∈Eu

1

T

(
αx∗e + βy∗e + γz∗e

)
≤
∑
k<t

1

T

(
α
∑
e∈Ed

x∗e + β
∑
e∈Eu

y∗e + γ
∑
e∈Eu

z∗e

)
≤
∑
k<t

∆u

T
(α+ β + γ) ≤ (t− 1)∆u

T

The inequality before the last follows from (α+β+γ) ≤ 1.
Now using Markov’s inequality: Pr[Bu,t < ∆u] ≥ 1 −
E[Bu,t]

∆u
, we get =⇒ Pr[Bu,t < ∆u] ≥ 1− t−1

T .

Now we restate Lemma 5.2 and prove it.

Lemma 5.2. Pr[SFu,t] ≥
(

1− t−1
T

)(
1− 1

T

)t−1

.

Proof. Consider a given edge e ∈ Eu where k < t

E[Xe,kYe,k | Au,t = 0] = E[Xe,kYe,k | Au,k = 0]

=
Pr[Xe,k = 1, Ye,k = 1, Ze,k = 0]

Pr[Au,k = 0]

≤
1
T ·
(
αx∗e + βy∗e + γz∗e

)
· (1− pe)

1−
∑
e∈Ed

1
T ·
(
αx∗e + βy∗e + γz∗e

)
· pe

=
1
T ·
(
αx∗e + βy∗e + γz∗e

)
· (1− pe)

1− pe + pe

(
1−

∑
e∈Ed

1
T ·
(
αx∗e + βy∗e + γz∗e

))
≤ 1

T
·
(
αx∗e + βy∗e + γz∗e

)
·

The above inequality is due to the fact that
∑
e∈Eu

1
T

(
αx∗e+

βy∗e + γz∗e
)
≤ ∆u

T < 1.

E[Bu,t|Au,t = 0] =
∑
k<t

∑
e∈Eu

E[Xe,kYe,k|Au,k = 0]

≤
∑
k<t

∑
e∈Eu

1

T

(
αx∗e + βy∗e + γz∗e

)
≤
∑
k<t

1

T

(
α
∑
e∈Eu

x∗e + β
∑
e∈Eu

y∗e + γ
∑
e∈Eu

z∗e

)
≤
∑
k<t

1

T

(
α ·∆u + β ·∆d + γ ·∆u

)
=
∑
k<t

∆u

T
(α+ β + γ) ≤ (t− 1)∆u

T

Therefore the expected number of assignments (probes) to
vertex u until time t is at most (t−1)∆u

T . Therefore, we have:

Pr[Bu,t < ∆u|Au,t = 0] ≥ 1− E[Bu,t|Au,t = 0]

∆d

≥ 1− (t− 1)∆u

T∆u
≥ 1− t− 1

T

It is to be noted that Bu,t is the total number of probes
u received before round t. Thus, we have that the events
(Bu,t < ∆u) and (Au,t = 0) are positively correlated.
Therefore,

Pr[SFu,t] ≥ Pr[(Bu,t < ∆u) ∧ (Au,t = 0)]

≥ Pr[Bu,t < ∆d|Au,t = 0]Pr[Au,t = 0]

Pr[SFu,t] ≥
(

1− t− 1

T

)(
1− 1

T

)t−1

.

Lemma 5.3. Pr[1e,t | SFu,t] ≥ α
x∗e
2T ,Pr[1e,t | SFu,t] ≥

β
y∗e
2T , Pr[1e,t | SFu,t] ≥ γ z

∗
e

2T

Proof. In this part we prove that the probability that edge e is
probed at time t is at least α x

∗
e

2T . Note that the probability that
a vertex of type v arrives at time t and that Algorithm 2 calls
the subroutine PPDR( ~xr) is α 1

T . LetEv,ē be the set of edges
in Ev excluding e = (u, v). For each edge e′ ∈ Ev,ē let Ye′
be the indicator for e′ being before e in the random order
of π (in algorithm 1) and let Ze′ be the probability that the
assignment is successful for e′. It is clear that E[Ye′ ] = 1/2
and that E[Ze′ ] = pe′ . Now we have:

Pr[1e,t | SFu,t] (13)

≥ α 1

T
Pr[Xe = 1]Pr

[ ∑
e′∈Er,ē

Xe′Ye′Ze′ | Xe = 1
]

(14)

= α
Pr[Xe = 1]

T

(
1− Pr

[ ∑
e′∈Ev,ē

Xe′Ye′Ze′ ≥ 1 | Xe = 1
])

(15)

≥ αPr[Xe = 1]

T

(
1− E

[ ∑
e′∈Ev,ē

Xe′Ye′Ze′ ≥ 1 | Xe = 1
])

(16)

≥ αPr[Xe = 1]

T

(
1−

∑
e′∈Ev,ē

E
[
Xe′Ye′Ze′ ≥ 1 | Xe = 1

])
(17)

≥ αx
∗
e

T

(
1−

∑
e′∈Ev,ē

x∗e′
1

2
pe′
)

(18)

≥ αx
∗
e

T

(
1− 1

2

)
= α

x∗e
2T

(19)

Applying Markov inequality we get the inequality (16). By
linearity of expectation we get inequality (17). Since Xe

and Xe′ are negatively correlated to each other from the



Negative Correlation property of Dependent Rounding we
have E[Xe′ | Xe = 1] ≤ x∗e and we get (18). The last
inequality (19) is due the fact that for any feasible solu-
tion {x∗e} the constraints imply that

∑
e∈Ev

x∗epe ≤ 1 for
all v ∈ V . Using similar analysis we can also prove that
Pr[1e,t | SFu,t] ≥ β y

∗
e

2T and Pr[1e,t | SFu,t] ≥ γ z
∗
e

2T .

Now we restate and prove Theorem 4.1.
Theorem 4.1. For the KIID setting, algorithm
TSGFKIID(α, β, γ) achieves a competitive ratio of
( α2e ,

β
2e ,

γ
2e )† simultaneously over the operator’s profit, the

group fairness objective for the offline side, and the group
fairness objective for the online side, where α, β, γ > 0 and
α+ β + γ ≤ 1.

Proof. Denote the expected number of probes on each edge
e ∈ E resulting from PPDR

(
~x∗v
)

by nxe . It follows that:

nxe ≥
T∑
t=1

Pr[1e,t] =
T∑
t=1

Pr[1e,t | SFu,t]Pr[SFu,t]

≥
T∑
t=1

(
1− 1

T

)t−1(
1− t− 1

T

)(
α
x∗e
2T

)
T→∞−−−−→ αx∗e

2e

Denote the optimal solution for the operator’s profit LP
by OPTO. Let ALGO be operator’s profit obtained by
our online algorithm. Using the linearity of expectation we
get: ALGO = E

[∑
e∈E w

O
e n

x
epe

]
≥
∑
e∈E w

O
e pe

αx∗e
2e ≥∑

e∈E w
O
e pe

(
1
e

)
αx∗e

2 ≥ α
2e (OPTO). Similarly, we can ob-

tain β
2e and γ

2e competitive ratios for the expected max-min
group fairness guarantees on the offline and online sides, re-
spectively.

B.2 Proofs for Section 5.2
Lemma 5.4. For the KAD setting, the optimal solutions of
LP (5), LP (6) and LP (7) are upper bounds on the expected
optimal that can be achieved by any algorithm for the op-
erator’s profit, the offline side group fairness objective, and
the online side group fairness objective, respectively.

Proof. We shall consider only the operator’s profit objective
as the other objectives follow through an identical argument.
Let 1v,t be the indicator random variable for the arrival for
vertex type v in round t. Then we can obtain a realization
and solve the corresponding LP and then take the expected
value of LP as an upper bound on the operator’s profit ob-
jective, i.e. the value EI [LP (G)] where EI is an expectation
with respect to the randomness of the problem. This means
replacing 1v,t by its realization in the LP below:

max
∑
t∈[T ]

∑
e∈E

wOe xe,t (20)

s.t ∀e ∈ E, ∀t ∈ [T ] : 0 ≤ xe,t ≤ 1 (21a)
∀u ∈ U :

∑
t∈[T ]

∑
e∈Eu

xe,t ≤ 1 (21b)

∀v ∈ V, ∀t ∈ [T ] :
∑
e∈Ev

xe,t ≤ 1v,t (21c)

†Here, e denotes the Euler number, not an edge in the graph.

If we were to replace the random variables 1v,t by
their expected value, then we would retrieve LP(5) where
EI [1v,t] = pv,t. It suffices to show that the value of LP(5)
which is the LP value over the “expected” graph (the pa-
rameters replaced by their expected value) which we now
denote by LP (EI [G]) is an upper bound to EI [LP (G)],
i.e. LP (EI [G]) ≥ EI [LP (G)]. Let x∗,Ge,t be the optimal
solution for a given realization G and 1Gv,t be the realiza-
tion of the random variables over the instance, then we
have that

∑
e∈Ev

x∗,Ge,t ≤ 1Gv,t. It follows that EI [x∗,Ge,t ]

is a feasible solution for LP(5), since EI [
∑
e∈Ev

x∗,Ge,t ] ≤
EI [1Gv,t] = pv,t and the rest of the constraints are satisfied
as well since they are the same in every realization. How-
ever, we have that EI [LP (G)] = EI [

∑
t∈[T ]

∑
e∈E

wOe x
∗,G
e,t ] =∑

t∈[T ]

∑
e∈E

wOe EI [x∗,Ge,t ] ≤
∑
t∈[T ]

∑
e∈E

wOe x
∗
e,t = LP (EI [G])

where x∗e,t is the optimal solution for LP(5) over the “ex-
pected” graph. The inequality followed since a feasible so-
lution to a problem cannot exceed its optimal solution.

Lemma 5.5. Algorithm TSGFKAD is valid for λ = 1
2 .

Proof. We prove the validity of the algorithm for λ = 1
2 by

induction. For the base case, it is clear that ∀e ∈ E, ρe,t = 1,
hence ρe,t ≥ λ = 1

2 . Assume for t′ < t, that ρe,t′ ≥ λ = 1
2 ,

then at round t we have:

1− ρe,t = Pr[e is not available at t]
= Pr[e is matched in [T − 1]]

≤
∑
t′<t

Pr[e is matched in t′]

=
∑
t′<t

Pr[(e is chosen by the algorithm)

∧ (u is unmatched at the beginning of t)
∧ (v arrives at t)]

=
∑
t′<t

pv,tρe,t(α
x∗e,t
pv,t

λ

ρe,t
+ β

y∗e,t
pv,t

λ

ρe,t
+ γ

z∗e,t
pv,t

λ

ρe,t
)

=
∑
t′<t

λ(αx∗e,t′ + βy∗e,t′ + γz∗e,t′)

≤ λ
∑
t′<t

(αx∗e,t′ + βy∗e,t′ + γz∗e,t′)

≤ λ(α+ β + γ) ≤ λ ≤ 1

2

where we used the fact that x∗e,t′ , y
∗
e,t′ , z

∗
e,t′ ≤ 1 from con-

straint (8a) and the fact that α+β+ γ ≤ 1. From the above,
it follows that ρe,t ≥ 1

2 ≥ λ.

Now we restate and prove Theorem 4.2 using Lemma 5.5:

Theorem 4.2. For the KAD setting, algorithm
TSGFKAD(α, β, γ) achieves a competitive ratio of
(α2 ,

β
2 ,

γ
2 ) simultaneously over the operator’s profit, the

group fairness objective for the offline side, and the group



fairness objective for the online side, where α, β, γ > 0 and
α+ β + γ ≤ 1.

Proof. For an edge e the probability that it is matched (suc-
cessfully probed) is the following:

Pr[e is successfully probed in round t]
= Pr[(e is chosen by the algorithm)

∧ (u is unmatched at the beginning of t) ∧ (v arrives at t)]

= pv,tρe,t(α
x∗e,t
pv,t

λ

ρe,t
+ β

y∗e,t
pv,t

λ

ρe,t
+ γ

z∗e,t
pv,t

λ

ρe,t
) =

= αλx∗e,t + βλy∗e,t + γλz∗e,t

Setting λ = 1
2 , it follows from the above that e is suc-

cessfully matched with probability at least 1
2αx

∗
e,t, at least

1
2βy

∗
e,t, and at least 1

2γz
∗
e,t. Hence, the guarantees on the

competitive ratios follow by linearity of the expectation.

B.3 Proofs for Section 5.3
We restate Lemma 5.6 and give its proof:

Lemma 5.6. Whether in the KIID or KAD setting, a given
instance of two-sided individual max-min fairness can be
converted to an instance of two-sided group max-min fair-
ness in the KAD setting.

Proof. Given an instance with individual fairness, define
G = {g1, . . . , gT } ∪ {g′1, . . . , g′|U |} as the set of all groups,
thus |G| = T + |U |, i.e. one group for each time round and
one group for each offline vertex. Further given the online
side types V , create a new online side V ′ where |V ′| = T |V |
and V ′ = V ′1 ∪ V ′2 · · · ∪ V ′t · · · ∪ V ′T where V ′t consists of
the same types as V . Moreover, ∀v′ ∈ V ′t , pv′,t = pv,t and
pv′,t̄ = 0, ∀t̄ ∈ [T ] − {t}, finally ∀v′ ∈ V ′t , g(v′) = gt. For
the offline side U , we let each vertex have its own distinct
group membership, i.e. for vertex ui ∈ U , g(ui) = g′i.

Based on the above, it is not difficult to see that both
problems have the same operator profit, and that the indi-
vidual max-min fairness objectives of the original instance
equal the group max-min fairness objectives of the new in-
stance.

From the above Lemma, applying algorithm TSGFKAD
to the reduced instance leads to the following corollary:

Corollary B.1. Given an instance of two-sided individual
max-min fairness, applying TSGFKAD(α, β, γ) to the re-
duction from Theorem 5.6 leads to a competitive ratio of
(α2 ,

β
2 ,

γ
2 ) simultaneously over the operator’s profit, the indi-

vidual fairness objective for the offline side, and the individ-
ual fairness objective for the online side, where α, β, γ > 0
and α+ β + γ ≤ 1.

The proof of Theorem 4.3 is immediate from the above
corollary.

B.4 Proofs for Theorems 4.4 and 4.5
We now restate and prove the hardness result of Theorem
4.4:

Theorem 4.4. For all arrival models, given the three objec-
tives: operator’s profit, offline side group (individual) fair-
ness, and online side group (individual) fairness. No algo-
rithm can achieve a competitive ratio of (α, β, γ) over the
three objectives simultaneously such that α+ β + γ > 1.

Proof. We prove it for group fairness in the KIID setting,
since the KIID setting is a special case of the KAD setting,
then this also proves the upper bound for the KAD setting.

Consider the graphG = (U, V,E) which consists of three
offline vertices and three online vertex types, i.e. |U | =
|V | = 3. Each vertex in U (V ) belongs to its own distinct
group. The time horizon T is set to an arbitrarily large value.
The arrival rate for each v ∈ V is uniform and independent
of time, i.e. KIID with pv = 1

3 . Further, the bipartite graph
is complete, i.e. each vertex of U is connected to all of the
vertices of V with pe = 1 for all e ∈ E. We also let ∆u = 1
for each u ∈ U , nv = T

3 and ∆v = 1 for each v ∈ V . We
represent the utilities on the edges of E with matrices where
the (i, j) element gives the utility of the edge connecting
vertex ui ∈ U and vertex vj ∈ V . The utility matrices for
the platform operator, offline, and online sides are following,
respectively:

MO =

[
1 0 0
0 1 0
0 0 1

]
,MU =

[
0 0 1
1 0 0
0 1 0

]
,MV =

[
0 1 0
0 0 1
1 0 0

]
.

It can be seen that the utility assignments in the above ex-
ample conflict between the three entities.

Let OPTO,OPTU , and OPTV be the optimal values
for the operator’s profit, offline group fairness, and online
group fairness, respectively. It is not difficult to see that
OPTO = 3, OPTU = 1, and OPTV = 1. Now, denote
byA,B, and C the edges with values of 1 forMO,MU , and
MV in the graph, respectively. Further, for a given online al-
gorithm, let aj , bk, and c` be the expected number of probes
received by edges j ∈ A, k ∈ B, and ` ∈ C, respectively.
Moreover, denote the algorithm’s expected value over the
operator’s profit, expected fairness for offline vertices, and
expected fairness for online vertices by ALGO,ALGU , and
ALGV , respectively. We can upper bound the sum of the
competitive ratios as follows:

ALGO

OPTO
+

ALGU

OPTU
+
ALGV
OPTV

≤
∑
j∈A aj

3
+

mink∈B bj
1

+
min`∈C cj

1

≤
∑
j∈A ai

3
+

(∑
k∈B bi

)
/3

1
+

(∑
`∈C ci

)
/3

1

≤
∑
j∈A ai +

∑
k∈B bi +

∑
`∈C ci

3
≤ 3

3
= 1

in the above, the second inequality follows since the min-
imum value is upper bounded by the average. The last in-
equality follows since ∆u = 1 and therefore the expected



number of probes any offline vertex receives cannot exceed
1 and we have |U | = 3 many vertices.

To prove the same result for individual fairness we use
the same graph. We note that the arrival of vertices in V is
KAD instead with the ith vertex vi having pvi,i = 1 and
pvi,t = 0, ∀t 6= i. Then we follow an argument similar to
the above.

The following proves Theorem 4.5 therefore showing that
there is indeed a conflict between achieving group and indi-
vidual fairness even if we were to consider only one side of
the graph.

Theorem 4.5. Ignoring the operator’s profit and focusing
either on the offline side alone or the online side alone.
With αG and αI denoting the group and individual fairness
competitive ratios, respectively. No algorithm can achieve
competitive ratios (αG, αI) over the group and individ-
ual fairness objectives of one side simultaneously such that
αG + αI > 1.

Proof. Let us focus on the offline side, i.e. we consider αG
and αI that are the competitive ratios for the group and in-
dividual fairness of the offline side.

Consider a graph which consists of two offline vertices
and one online vertex, i.e. |U | = 2 and |V | = 1. Further,
there is only one group. Let pe = 1, ∀e ∈ E and ∀u ∈
U, ∀v ∈ V : ∆u = ∆v = 1. U has two vertices u1 and u2

both connected to the same vertex v ∈ V . For edge (u1, v),
we let wU(u1,v) = 1 and for edge (u2, v), we let wU(u2,v) = L

where L is an arbitrarily large number. Note that both of
these weights are for the utility of the offline side. Finally,
we only have one round so T = 1.

Let θ1 and θ2 be the expected number of probes edges
(u1, v) and (u2, v) receive, respectively. Note that θ1 = 1−
θ2. It follows that the optimal offline group fairness objective
is OPTUG = max

θ1,θ2
(θ1 + Lθ2) = max

θ2
((1 − θ2) + Lθ2) =

L. Further, the optimal offline individual fairness objective
is OPTUI = min{θ1, Lθ2}, it is not difficult to show that
OPTUI = L

L+1 . Now consider the sum of competitive ratios,
we have:

ALGU
G

OPTUG
+

ALGU
I

OPTUI
=
θ1 + Lθ2

L
+

min{θ1, Lθ2}
L
L+1

≤ θ1 + Lθ2

L
+
θ1(L+ 1)

L

=
(L+ 2)θ1 + Lθ2

L

= (θ1 + θ2) +
2θ1

L

≤ 1 +
2θ1

L

L→∞−−−−→ 1

this proves the result for the offline side of the graph.
To prove the result for the online side, we reverse the

graph construction, i.e. having one vertex in U and two ver-
tex types in V which arrive with equal probability. It now
holds that OPTVI = min{θ1, Lθ2} and by setting T to an

arbitrarily large value OPTVG = L. Then we follow an iden-
tical argument to the above.

C Additonal Experimental Results
As mentioned before one of the major contributions of our
work is that we consider the operator’s profit and fairness
for both sides simultaneously instead of fairness for only one
side. To further see the effects of ignoring one side, we run
TSGFKIID with one side ignored (see table 2). It is clear that
the fairness objective for the ignored side is indeed lower
in comparison to what can be achieved in figure 1. More
precisely, we can see that the Offline (Driver) and Online
(Rider) fairness can be simultaneously improved to around
0.5 by setting α = 0.5, β = γ = 0.25 (figure 1) whereas
their values when their optimization weight is set to zero is
0.387 and 0.41 , respectively (see table 2).

Table 2: Results of running TSGFKIID on the NYC dataset
with the fairness on one side ignored, i.e. its optimization
weight set to 0: (Top Row) Offline (Driver) fairness ignored
(α = γ = 0.5, β = 0) and (Bottom Row) Online (Rider)
fairness ignored (α = 0.5, β = 0.5, γ = 0).

Profit Driver Fairness Rider Fairness
α = γ = 0.5, β = 0 0.43 0.387 0.509
α = β = 0.5, γ = 0 0.564 0.498 0.41


