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Abstract

Real-world processes often contain intermediate

state that can be modeled as an extremely sparse

tensor. We introduce SPARLING, a new kind of in-

formational bottleneck that explicitly models this

state by enforcing extreme activation sparsity. We

additionally demonstrate that this technique can

be used to learn the true intermediate representa-

tion with no additional supervision (i.e., from only

end-to-end labeled examples), and thus improve

the interpretability of the resulting models. On

our DIGITCIRCLE domain, we are able to get an

intermediate state prediction accuracy of 98.84%,

even as we only train end-to-end.

1. Introduction

A hallmark of deep learning is its ability to learn useful inter-

mediate representations of data from end-to-end supervision

via backpropagation. However, these representations are

often opaque, with components not referring to any seman-

tically meaningful concepts. Many approaches have been

proposed to address this problem by leveraging extra knowl-

edge in the form of additional supervision or handcrafted

constraints on the intermediate representation. For instance,

concept bottlenecks leverage labels for the intermediate con-

cepts (Koh et al., 2020), and information bottlenecks impose

that that the mutual information between the representation

and the input be bounded (Bourlard & Kamp, 1988). Here,

we consider the constraint of extreme sparsity, which, when

applicable, leads to a particularly effective approach to dis-

covering the true underlying structure.

We introduce SPARLING, a novel technique for learning

extremely sparse representations, where ≥99% of the ac-

tivations are sparse for a given input. We are motivated

by settings where components of the intermediate repre-

sentation correspond to spatial concepts—which we call

motifs—that occur in only a small number of locations. For
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instance, in a character recognition task, each motif may

encode whether the center of a given character occurs at a

given position. Since even in the worst case, an image of

pure text, the image has orders of magnitude fewer charac-

ters than pixels, we expect the intermediate representation to

be extremely sparse. This pattern is representative of many

other prediction tasks—e.g., one could predict economic

signals from satellite data by identifying a small number of

building types, or detect bird social behavior from nature

recordings by analyzing bird chirps.

SPARLING directly enforces sparsity by setting activations

below some threshold equal to zero; this threshold is itera-

tively updated to achieve a target sparsity level (e.g., 99%).

A key challenge is that the optimization problem is very

unstable for high sparsity values. To address this issue, our

optimization algorithm anneals the target sparsity over time.

A byproduct of this approach is that we achieve a tradeoff

between sparsity values and accuracies during the course

of training, enabling the user to post-hoc choose a desired

sparsity level.

Example. Figure 1 shows our DIGITCIRCLE task, consist-

ing of noisy images that contain digits placed in a circle.

The goal is to list the digits in counterclockwise order start-

ing from the smallest one. In our framework, each digit is

a motif, and it occurs at a very sparse number of positions

in the input image. The final label can be computed as a

function of these motifs and their positions.

Crucially, we want to learn to predict these motifs given no

labeled supervision about their positions—i.e., the position

of each digit is not provided during training. Despite train-

ing only on end-to-end supervision (i.e., input images and

labels of the form “072634”), our model is able to act as

an effective predictor (up to permutation) of digit positions,

identifying the correct digit 98.84% of the time on average.

Additionally, it is able to achieve high end-to-end accuracy

of 97.42%, while achieving nearly the maximum sparsity

possible (99.9950%; the maximum sparsity possible for

this domain is 99.9955%). Alternate sparsity enforcement

techniques employing L1 and KL-divergence loss cannot

reproduce these results and either do not produce extreme

sparsity or have accuracy close to 0%.
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Figure 1. Example of the DIGITCIRCLE domain. The input x is mapped by the ground truth g∗ function to a map m of the positions of

every digit, which is itself mapped by the ground truth h∗ function to the output y, the sequence of symbols 072634. Only x and y are

available during training.

Contributions. Our main contribution is SPARLING, an

algorithm for learning intermediate representations with

extremely sparse activations, along with an empirical evalu-

ation of the effectiveness of our approach. In particular, we

show that our approach can successfully learn the correct

latent motifs given only end-to-end supervision.

2. Related Work

Concept bottleneck models. There has been work on learn-

ing models with intermediate features that correspond to

known variables. Some techniques, such as Concept Bot-

tleneck Models (Koh et al., 2020) and Concept Embedding-

Models (Zarlenga et al., 2022), involve additional supervi-

sion with existing feature labels. Other techniques, such

as Cross-Model Scene Networks (Aytar et al., 2017), use

multiple datasets with the same intermediate representa-

tion. SPARLING does not require the presence of additional

datasets or annotations.

Neural Input Attribution. SPARLING is useful for identi-

fying the relevant parts of an input. One existing technique

that accomplishes this goal is saliency mapping (Simonyan

et al., 2013; Selvaraju et al., 2016), which uses a backward

propagating algorithm (either the standard backpropaga-

tion automatic differentiation algorithm or a variant) to find

which parts of the input affect the output most. Another

technique, looking at the attention weights of an attention

model (Mnih et al., 2014), only works with a single layer

of attention and also has well known pitfalls in terms of

the validity and completeness of the explanations (Serrano

& Smith, 2019). The main benefit a sparse annotation pro-

vides over these techniques is the property of unconditional

independence. Specifically, when using sparsity, you have

the ability to make the claim “region x[r] of the input is not

relevant to the output prediction, regardless of what happens

in the rest of the input x[r̄]”. This is a direct result of the fact

that if a location is not annotated as a motif, this is a purely

local decision and as 0s are overwhelmingly common, they

thus carry little information. This property is unavailable

using saliency or attention techniques as these techniques

condition on the values you provide for x[r̄].

Latent ground truth. While deep neural networks typi-

cally have inscrutable latent variables that are not intended

to correspond to any understood feature, in other settings,

such as graphical models, latent variables can often repre-

sent real parts of a known system. A commonly used exam-

ple is Hidden Markov Models with known states, which are

commonly used in genomics (Yoon, 2009), where hidden

states represent various hidden features of an observed DNA

or RNA sequence. Our work attempts to accomplish the

same goal of having an interpretable latent variable, but

without having to pre-specify what it means.

Disentangled representations. Disentangled representa-

tions are ones where different components of the repre-

sentation encode independent attributes of the underlying

data (Desjardins et al., 2012). However, these approaches

typically seek to capture all attributes of the data rather

than select the ones specialized to a specific downstream

prediction problem.

Informational bottleneck. Other work also constrains the

information content of the intermediate representation in

a neural network. Intuitively, by limiting the mutual infor-

mation between the input and the the intermediate repre-

sentation, the model must learn to compress the input in

a way that retains performance at the downstream predic-

tion task. Strategies include constraining the dimension

of the representation—e.g., PCA and autoencoders with

low-dimensional representations (Bourlard & Kamp, 1988),

or adding noise—e.g., variational autoencoders (Kingma

& Welling, 2014). However, these approaches are not de-

signed to learn interpretable representations. By reducing
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dimensionality, you increase the chances that multiple differ-

ent concepts will share a given activation, and by injecting

noise, you promote redundancy between neurons and thus

reduce the meaningfulness of any given neuron.

Sparse parameters and sparse activations. One popular

measure of interpretability is sparsity, where models with

fewer nonzero values are considered more interpretable.

Thus, there has been work on constraining the information

content by encouraging the intermediate representation to

have sparse activations—i.e., each component of the repre-

sentation is zero for most inputs. Note that this notion of

sparsity differs from sparse parameters (Tibshirani, 1996;

Scardapane et al., 2017; Ma et al., 2019), where the pa-

rameters themselves are sparse. Strategies for achieving

sparse activations include imposing an L1 penalty on the

representation or a penalty on the mutual information of

the representation with a low-probability Bernoulli random

variable (Jiang et al., 2015). However, these techniques typ-

ically only achieve 50% to 90% sparsity, versus SPARLING,

which achieves 99.995%. As discussed in Section 5.1, we

directly compare with these as baselines.

3. Preliminaries

We are interested in settings where the activations are latent

variables corresponding to semantically meaningful con-

cepts in the prediction problem. To this end, we consider

the case where the ground truth is represented as a function

f∗ : X → Y composed of two functions g∗ : X → M

and h∗ : M → Y —i.e., f∗ = h∗ ◦ g∗. Our goal is to

learn models ĝ and ĥ that model g∗ and h∗ well using only

end-to-end data, i.e., enforcing only that their composition

f̂ = ĥ ◦ ĝ models f∗ well.

We assume that elements of X are tensors (e.g., elements of

R
d1 ,Rd1×d2 , ...), and Y is an arbitrary label space. We typi-

cally think of the last dimension of X representing channels

and the rest corresponding to spatial dimensions (e.g., 2D

images).

We call the latent space M the motif space. We assume it

shares spatial dimensions with X , but may have a different

number of channels. Importantly, we do not assume that M

is known—e.g., we may have little or no labeled data on

which components of M are active.

3.1. Sparse Activations Assumption

Our critical assumptions are that the output of g∗ is sparse

(i.e., its output equals zero on nearly all components), and

that g∗ is local. To formalize sparsity, we first define the

density δ to be the expected fraction of nonzero components

of the output of g∗. Letting

NZ(m) =
1

SC

∑

i,c

1(m[i, c] 6= 0)

be the proportion of nonzero entries of m, where S is the

total number of positions in m and C is the number of

channels, we define

δg = Ex[NZ(g(x))],

where the expectation is taken over the distribution of inputs

x ∈ X . Our Sparse Activations Assumption, parameterized

by δ0, can thus be stated as δg ≤ δ0 ≪ 1. We use δ to

denote δĝ for the rest of this paper.

In addition, locality is the standard property where a compo-

nent only depends on a small number of inputs; for example,

convolution filters are designed to parameterize spatially

local linear functions.

While these constraints may appear strict, they fit problems

where most of the information can be localized to small

regions of the input. In these settings, we can trade a small

amount of accuracy in exchange for being able to tell pre-

cisely what parts of an input are important. Unlike attention

layers, this determination is independent of other parts of

the input.

3.2. Motif Identifiability Hypothesis

We can then pose the Motif Identifiability Hypothesis as If

g∗ and ĝ both satisfy locality and the Sparse Activations

Assumption, and f̂ ≈ f∗, we know that ĝ ≈ g∗. This

hypothesis means that for certain kinds of functions, it is

possible to recover the underlying motif structure with just

end-to-end data. Note that this is a narrower claim than

Identifiability in general, as we only claim to identify the

ground truth (g∗, h∗) functions rather than any individual

parameters of g∗ or h∗.

3.3. Motif Model Equivalence

Evaluating our Motif Identifiability Hypothesis requires a

formal definition of approximate equivalence between motif

models—i.e., what ĝ ≈ g∗ means. For the purposes of this

paper, we work in a synthetic domain where during final

evaluation we can “unseal” M , and thus get a view of the

true motifs. However, we need to deal with two additional

challenges: channel permutations and motif alignment. Per-

mutations are easily handled by taking the minimum of our

error metric over all possible permutations.

Handling motif alignment is more complex. Specifically,

there are many different ways to recognize a given pattern,

some of which correspond to different motif positions. To
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ensure we account for this flexibility when evaluating mod-

els, we only check that the predicted point be within the

footprint of the true motif, which we define as the smallest

cuboid1 covering the points that influence that motif.

We can then define P (m̂) as the set of all predicted motifs,

FPM(m̂,m∗) as the set of predicted motifs that do not

overlap the footprints of any true motifs, and MM(m̂,m∗)
as the set of predicted motifs that overlap a footprint of a

true motif and have greater activation value than all other

motifs overlapping the same footprint.2 We also define

C((̂i, ĉ),m∗) to be the footprint that the predicted motif

at location î, ĉ matches, or ∅ if it does not match any. For

formal definitions of these functions, see Appendix A.

3.4. Evaluation Metrics

Next, we describe the metrics we use to evaluate different

models f̂ = ĝ ◦ ĥ. First, we use the usual end-to-end

evaluation of exact match error:

ENDTOENDD(f̂) = Ex∼D[1(f
∗(x) 6= f̂(x))].

This error metric can be calculated given only end-to-end

supervision in the form of (x, y) pairs, and it is the only

error used in training and validation.

Beyond this basic error metric, we are interested in evaluat-

ing ĝ ≈ g∗ in order to test the Motif Identifiability Hypothe-

sis. We define two motif error metrics.

First, the false positive error (FPE) is the percentage of

motifs that are false positive motifs.

FPED(ĝ) =

∑
x∈D
|FPM(ĝ(x), g∗(x))|∑
x∈D
|P (ĝ(x))|

.

Second, the confusion error (CE) is defined as follows:

(i) permute ĝ’s channels to best align them with g∗, (ii)

compute the percentage of maximal motifs in range of a true

motif that do not correspond to the true motif’s channel:

CED(ĝ) = min
σ∈ΣC

∑
x∈D
|confσ(ĝ(x), g

∗(x))|∑
x∈D
|MM(ĝ(x), g∗(x))|

,

where confσ(m̂,m∗) represents the motifs that do not

match ground truth under permutation σ

confσ(m̂,m∗) = {t ∈ MM(m̂,m∗) : ¬matσ(t, C(t,m∗))}|,

and matσ(t̂, t
∗) is a function that checks whether the two

motif index tuples match under channel permutation σ.

A low FPE implies that the motifs you do see are probably

referring to something real, while a low CE implies that you

can correctly identify which true motif is being referred to.

1For images, the cuboid is a rectangle, as drawn in Figure 1.
2We ignore motifs that are not maximal in a footprint as these

would be trivially ignorable when actually using the intermediate
layer.

Algorithm 1 Train Loop (f̂ ,D,M,B, dT , δupdate)

T0 ← 1
for t = 1 to . . . do

TRAINSTEP(f̂ ,DBt:B(t+1))
Tt ← Tt−1 −BdT
if bt mod M = 0 then

At ← VALIDATE(f̂)
if At > Tt then

f̂ .δ ← f̂ .δ × δupdate
Tt ← At

end if

end if

end for

3.5. Connection to Information Bound

Finally, we establish a connection between SPARLING and

information bottleneck approaches. Sparsity induces an

information bound by limiting the amount of information in

the intermediate representation. Specifically, if we let X be

a random variable for the input, andM = g(X ) be the motif

layer, we have that we can bound the mutual information

between inputs and motifs as I(X ,M) ≤ H(M), where

H(·) is entropy.

Thus, it is sufficient to bound H(M). We first can break it

into per-channel components:

H(M) ≤
∑

i,c

H(M[i, c]),

Then, let δi,c denote the density of channel c at position i,

and η be a bound on the amount of entropy in each nonzero

activation:

η ≥ H(M[i, c]|M[i, c] 6= 0)

Then we apply the chain rule

H(M[i, c]) ≤ H(B(δi,c)) + ηδi,c.

Where B(p) denotes the Bernoulli distribution with param-

eter p. Thus, we have

H(M) ≤
∑

i,c

H(B(δi,c)) + SCηδ,

where S is the size of the image in pixels and C is the num-

ber of channels, and δ is defined as in section 3.1. Finally,

using Jensen’s inequality (as H(B(t)) is concave), we have

H(M) ≤ SC(H(B(δ)) + ηδ).

Section 5.5 discusses techniques to bound η.
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4. Methods

In this section, we introduce SPARLING, which is composed

of two parts: the Spatial Sparsity Layer and the Adaptive

Sparsity Algorithm. The Spatial Sparsity Layer is designed

to achieve the extreme sparsity rates described in Section 3.

This layer is the last step in the computation of ĝ and en-

forces the sparsity of ĝ; we compose ĝ out of convolutional

layers to enforce locality. The Adaptive Sparsity Algorithm

is designed to ensure the Spatial Sparsity Layer can be ef-

fectively trained.

4.1. Spatial Sparsity Layer

We define a spatial sparsity layer to be a layer with a param-

eter t that whose forward pass is computed

Sparset(z) = ReLU(z − t)

Importantly, t is treated as a constant for the purposes of

backpropagation and is not updated by gradient descent.

Instead, we update t using an exponential moving average

of the quantiles of observed training batches:

tn = µtn−1 + (1− µ)q(zn, 1− δ),

where tn is the value of t on the nth iteration, zn is the nth

batch of inputs to this layer, µ is the momentum (we use

µ = 0.9), δ is a target density the layer aims to achieve

(described in section 3.1), and q is the quantile function.

The quantile function q : RB×d1×...×dk×C × R → R
C is

implemented such that

∀c, p ≈
1

BS

∑

b,i

1(z[b, i, c] ≤ q(z, p)[c])

This enforces that each channel must individually have den-

sity δ. Thresholds are set uniformly at all positions in the

input. We refer to this as the multiple thresholds (MT) ap-

proach, as opposed to the single thresholds (ST) ablation we

describe in Section 5.1’s “ablation” paragraph.

Since tn is computed from the data distribution, we can treat

it as the (1− δ)th quantile of the distribution of the outputs

of the previous network over the data, enabling this layer to

set all but a δ fraction of its outputs to 0.

Finally, we always include an affine batch normalization

before this layer. This increases training stability, we believe

by allowing for gradient signal to propagate even to areas

masked by the thresholding of our Sparse layer. We provide

an analysis on the necessity of this addition in Section 5.4.

4.2. Adaptive Sparsity

In practice, we find that applying an extreme sparsity re-

quirement (very low δ) upon initial training of the network

Figure 2. Examples of input/output pairs of the Digit Circle do-

main. The inputs are the images, and outputs are the sequences of

numbers in the title.

leads to bad local minima, with the network being unable

to gain any learning signal on the vast majority of inputs.

Instead, we use a technique inspired by simulated annealing

and learning rate decay, and reduce δ slowly over time.

Specifically, we add a step to our training loop that periodi-

cally checks validation accuracy At and reduces the density

whenever it exceeds a target Tt. The process is as described

in Algorithm 1, with the target accuracy dropping slowly.

When the validation accuracy reaches the target accuracy,

we reduce density and increase the accuracy bar to whatever

our model achieved.

Our experiments use evaluation frequency M = 2 × 105,

batch size B = 10, dT = 10−7, and δupdate = 0.75.

5. Experiments

5.1. Experimental Setup

DIGITCIRCLE domain. To evaluate SPARLING we con-

struct the DIGITCIRCLE domain. The input X is a 100×100
monochrome image with 3-6 unique digits placed in a rough

circular pattern, with some noise being applied to the image

both before and after the numbers are placed. See Figure 2

for examples. The output Y is the sequence of digits in

counterclockwise order, starting with the smallest number.

The latent motifs layer M is the position of each digit: we

can conceptualize this space as a 100×100×10 tensor with

3-6 nonzero entries. Note that the model during training

and validation has no access to the concept of a digit as an

image, nor to the concept of a digit’s position.

Architecture and training. Our neural architecture is

adapted from that of (Deng et al., 2016). We make our

ĝ architecture a convolutional network with a 17× 17 over-

all window, by layering four residual units (He et al., 2016),

each containing two 3×3 convolutional layers. We then map

to a 10-channel bottleneck where our Spatial Sparsity layer
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is placed. (We choose 10 channels to match the 10 digits.)

Our ĥ architecture is a max pooling, followed by a simi-

lar architecture to Deng. We keep the LSTM row-encoder,

but replace the attention decoder with a column-based posi-

tional encoding followed by a Transformer (Vaswani et al.,

2017) whose encoder and decoder have 8 heads and 6 lay-

ers. Throughout, except in the bottleneck layer, we use a

width of 512 for all units. For our experiments, we keep this

structure stable, and only modify the bottleneck layer.

We use an entirely random generation technique for the

dataset, with seeds 1 through 9 for the 9 different training

runs of each model, and seeds -1 and -2 being reserved for

validation and testing. We use a batch size of 10 samples

and a learning rate of 10−5. Our validation and test sets

both contain 104 examples.

Baselines. We consider two other approaches to ensuring

the creation of sparse motifs, both taking the form of auxil-

iary regularization losses. In both cases, we vary loss weight

to see how that affects error and sparsity. First, we consider

L1 loss. In our implementation, we use an affine batch nor-

malization layer followed by a ReLU. The output of the

ReLU is then used in an auxiliary L1 loss. This approach

is discussed in (Jiang et al., 2015). We also consider using

KL-divergence loss as in (Jiang et al., 2015). The approach

is to apply a sigmoid, then compute a KL-divergence be-

tween the Bernoulli implied by the mean activation of the

sigmoid and a target sparsity value (we use 99.995% to per-

form a direct comparison). While this usually is done across

the training data (Ng, 2011), in our case, the overall sparsity

should be similar in all batches, so we instead enforce the

loss per-batch (but across all positions and channels). Our

other modification, in order to induce true sparsity, is to, af-

ter the sigmoid layer (where the loss is computed), subtract

0.5 and apply a ReLU layer.

Ablations. We consider ablations to test three design de-

cisions. First, is the batch normalization we place before

our sparse layer necessary? Second, is the adaptive spar-

sity algorithm we use necessary? Third, we consider the

single threshold (ST) sparsity approach, where we take the

quantile across the entire input (batch axis, dimensional

axes, channel axis). In this case, the channels can have

differing resulting densities that average together to the

target δ. More precisely, we use the quantile function

qST : RB×d1×...×dk×C × R→ R, implemented such that

p ≈
1

BSC

∑

b,i,c

1(z[b, i, c] ≤ qST(z, p)).

5.2. End-to-End Results

End-to-end errors. Figure 3 shows the end-to-end errors

of SPARLING and the ST ablation. At 1.5× the theoretical

minimum density, we consistently perform under 5% error,

Figure 3. End-to-end error (lower is better). Computed on a test

set (different from the validation set used to reduce density). Left

plot is computed at 1.1× the theoretical minimum density (one

non-zero activation per digit), and right plot is computed at 1.5×

the theoretical minimum density. Plotted are 9 separate runs per

model, with a 95% bootstrap confidence interval.

Figure 4. Results of L1 experiment. Note that the x-axis is log-

scaled and the y-axis is error. Our results (same as Figure 3) can

be seen on the bottom left.

whereas at 1.1× theoretical minimum density there is a

much wider variation from run to run, but the minimum

error stays similar, suggesting some instability in SPARLING

as it approaches the theoretical minimum density.

Baselines. Figure 4 shows the results of using L1 as a

method for encouraging sparsity. There are two weight

regimes, where when λ ≤ 1, we end up with low sparsity

(relative to the theoretical minimum) but low error, and when

λ ≥ 2, we end up with a model that never learns anything

at all (near 100% error). Even in the latter case, the L1 loss

does not consistently push density down to the theoretical

minimum or below, suggesting it might be insufficiently

strong as a learning signal to achieve the kind of density

SPARLING can. In our experiments, the KL-divergence was

unable to achieve a density below 0.1%, even when we used

a loss weight as high as λ = 105 and 3× 106 steps (much

more than was necessary for convergence of the L1 model).

Thus, we conclude that it is unsuitable for encouraging the

kind of sparsity we are interested in.
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5.3. Interpretability Results

Figure 5. Inputs annotated with the maximal motifs produced by

the ĝ of the MT model trained with seed=1, at 1.1× the theoret-

ical minimum sparsity. We label our activations A through J to

distinguish them from digits. Stars indicate sites where there are

non-maximal motifs present as well. These examples are represen-

tative and are simply examples 0, 1, 2, and 3 from our dataset.

Examples. Figure 5 shows a few examples for one of our

models’ intermediate layers. As can be seen, all digits are

appropriately identified by our intermediate layer, with very

few dots (in these examples, none) falling away from a

digit. Most of the slack (here, 10% extra) activations are

duplicates on an existing digit. Also, note that the activations

are consistent from sample to sample—for example, C is

used for digit 6 in all three images where it appears.

Confusion matrix. To provide a more quantitative sum-

mary of this effect, consider Figure 6, which shows an

analog of a confusion matrix for that model. Note that our

model rarely produces an incorrect covering motif, and even

more rarely leaves a digit blank.

Motif error. Next, we show our measures of motif error,

FPE and CE, in Figure 7 for all the sparsity models.

Errors for our MT model are usually below 10%, and in the

1.1× density case are all below 1% except for in one train-

ing run out of the 9. Errors are substantially higher when

we have 1.5× minimum density, as our sparsity constraint

is less strict so the model is freer to produce an incorrect

intermediate representation. The generally low errors on

the MT model, despite only having training and validation

performed end-to-end, demonstrate that the Motif Identifia-

bility Hypothesis holds for the DIGITCIRCLE domain.

Predicting motif error. Figure 8 shows the relationship

Figure 6. Confusion Matrix of 10k unseen samples (not in training

or validation sets). We place false positive motifs into the none

row and maximal motifs into the rows corresponding to the digit

they cover. Each row is labeled by the percentage of motifs falling

into the row, and each row’s cells are then normalized to add

to 1. We also record true motifs that do not have any predicted

motifs placed on them as none column. The rest of the columns

correspond to motifs, labeled A through J and permuted to the

permutation that minimizes CE.

Figure 7. Errors. Bar height depicts the mean across 9 seeds, while

individual dots represent the individual values and the error bar

represents a 95% bootstrap CI of the mean. The ST model’s FPE

is so low it does not show up on the chart, all are under 0.012%.

between the motif errors and the overall end-to-end error.

There is no relationship for FPE, but there is a positive

relationship for CE, implying that a strategy where one

trains several models and then chooses the one with the best

validation error is a good way to reduce CE and thereby

improve motif quality.

5.4. Ablation

We compare our approach to ablations to evaluate our de-

sign decisions. First, including a batch normalization before

the sparsity layer is crucial. Without a batch normaliza-

tion layer, over 9 runs, the best MT model gets an error of

99.35%, whereas the best ST model gets an error of 97.07%;

in essence, neither model is able to learn the task at all. We

also analyzed the need for the adaptive sparsity update algo-

rithm (Algorithm 1). When starting from 1.1× or 1.5× the

theoretical minimum density, the model converged to an er-
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Figure 8. Model error versus FPE and CE, at 1.1× the minimum

sparsity. All are log-scaled to highlight the low-error region. Each

dot represents a single model training seed.

Figure 9. Increase in error when binning. Each series represents

a different bin count, as annotated in the legend. Density is log-

scaled and reversed to indicate training progress.

ror above 98%. This result suggests that some technique for

updating sparsity is necessary to avoid bad local minimia.

Next, as seen in Figure 3, the ST ablation is able to achieve

fairly low error end-to-end, but still has a slightly higher

average error than MT. In Figure 7, however, we see that

it performs substantially worse in terms of CE, while per-

forming better with respect to FPE. Without the constraint

that the motifs have equivalent density across each chan-

nel, some motifs are being used to represent multiple digits,

which substantially increases confusion error, but also re-

duces false positives. In general, the MT model is superior

as it has reasonable FPE and substantially lower CE.

5.5. Entropy upper bound

To compute our entropy upper bound, we must first compute

η, as defined in Section 3.5. To compute this, we bin the

nonzero activations into 2k bins by quantile. We set η to be

the smallest value of k that does not substantially affect the

accuracy of the model (we consider 0.5% to be a reasonable

threshold for this purpose). Figure 9 shows the result of this

experiment, averaged across 9 seeds. The general down-

ward trend in error caused by binning as density decreases

demonstrates that reducing the number of motifs reduces

the importance of the precise magnitudes. For the purposes

of entropy bounding, we use η = log(16) = 4b.

5.6. Error metrics vs Entropy Bound

Figure 10. Error metrics used in this project versus entropy per

pixel. Note that the x axis is reversed, this is to indicate training

progression, which starts with high entropy and narrows it over

time. Error region is the 95% confidence interval among 9 seeds.

Figure 10 shows our error metrics plotted against the en-

tropy, with the x-axis reversed to show progression in train-

ing time as we tighten the entropy bound. As expected, as

entropy decreases, FPE decreases, as there are fewer motifs

produced and thus fewer false positives. More interestingly,

we find that as entropy decreases, CE decreases while end-

to-end error increases. This demonstrates a tradeoff between

a more accurate overall model, which benefits from greater

information present and a more accurate motif model, which

benefits from a tighter entropy bound.3

One illuminating result is that even when entropy is about

0.1b/pixel and FPE is very high, CE is still not equivalent

to random (which would be about 88% error). This result

indicates that the model is mostly choosing the correct mo-

tifs to be maximal even at higher levels of entropy, which

may explain why Algorithm 1 works: the newly removed

activations when the threshold is raised are more likely to

be incorrect than not.

6. Conclusion

We have presented SPARLING: a novel spatial sparsity layer

and adaptive sparsity training technique that has the ability

to learn a highly sparse latent motifs layer for dimensional

data, using only an end-to-end training signal. Similar

levels of activation sparsity are unachievable by existing

strategies. Finally, we demonstrate that SPARLING achieves

3While this may seem to contradict the result in Section 5.3, it
in fact does not. Within a single model, tightening the density has
inverse effects on end-to-end error and CE, but separately, some
models are in general more or less accurate.
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interpretable and accurate motifs with zero direct training

supervision on the motifs.
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A. Evaluation Metric Details

We now define our FPM and MM motif sets, along with

the C function.

Predicted motifs. For a given predicted motif tensor m̂,

we define P (m̂) = {(̂i, ĉ) : m̂[̂i, ĉ] > 0} to be the set

of motifs predicted in m̂, where i is over all sequences of

spatial indices (e.g., for images i : N2) and c is over the

channel indices. Typically, we are interested in the set of

motifs P (ĝ(x)) for our estimated motif model ĝ.

Footprint. We can formally define the footprint of a motif

as follows: Let a motif with i in channel c have footprint

i + Fc. Note that Fc depends on the channel of the true

motif—e.g., in the DIGITCIRCLE domain, some digits are

slightly larger than others.

Footprint identification. First, we define a way to deter-

mine which footprint a motif belongs to. Define the footprint

motif function S(̂i,m∗) to be the set of true motifs whose

footprints contain î—i.e.,

S(̂i,m∗) = {(i, c) : m∗[i, c] ∧ î− i ∈ Fc}.

As a simplification, since motif footprints typically do not

heavily overlap, we define C (̂i,m∗) to be our classification

function that gives a relevant true motif center for the input

î.

C (̂i,m∗) = u(S(̂i,m∗)),

where u is a choice function that picks an arbitrary element

of its input if there are multiple and returns the empty set if

there are no entries.

False Positive Motifs. We now have the ability to define

our first class of motifs: false positive motifs. These are

predicted motifs that do not correspond to any real motifs:

FPM(m̂,m) = {(̂i, ĉ) ∈ P (m̂) : C (̂i, g(x)) = ∅}.

We denote the remaining motifs by

P1(m̂,m∗) = P (m̂) \ FPM(m̂,m∗).

Maximal Motifs First, we need to define the set of all pre-

dicted motifs that cover the same footprint as a given pre-

dicted motif. We do so via the Am̂,m∗ function, which takes

a given predicted motif (assumed to overlap some footprint)

and returns all others covering the same footprint:

Am̂,m∗ (̂i, c) = {(̂i′, ĉ′) ∈ P (m̂) : C (̂i′,m∗) = C (̂i,m∗)}

Now we can define maximal motifs are predicted motifs that

are maximal in the footprint they cover:

MM(m̂,m∗)

= {t ∈ P1(m̂,m∗) : m̂[t] = max
t′∈Am̂,m∗ (t)

m̂[t′]}

We can also define non-maximal motifs are predicted motifs

that are non-maximal in the footprint they cover:

NMM(m̂,m∗)

= {t ∈ P1(m̂,m∗) : m̂[t] 6= max
t′∈Am̂,m∗ (t)

m̂[t′]}

However, we ignore non-maximal motifs entirely for the

purposes of our analysis, under the reasoning that these are

trivially removable in practice.


