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General mathematical reasoning is computationally

undecidable, but humans routinely solve new problems.

Moreover, discoveries developed over centuries are

taught to subsequent generations quickly. What

structure enables this, and how might that inform

automated mathematical reasoning? We posit that

central to both puzzles is the structure of procedural

abstractions underlying mathematics. We explore this

idea in a case study on 5 sections of beginning

algebra on the Khan Academy platform. To define

a computational foundation, we introduce Peano,

a theorem-proving environment where the set of

valid actions at any point is finite. We use Peano to

formalize introductory algebra problems and axioms,

obtaining well-defined search problems. We observe

existing reinforcement learning methods for symbolic

reasoning to be insufficient to solve harder problems.

Adding the ability to induce reusable abstractions

(“tactics”) from its own solutions allows an agent

to make steady progress, solving all problems.

Furthermore, these abstractions induce an order

to the problems, seen at random during training.

The recovered order has significant agreement with

the expert-designed Khan Academy curriculum, and

second-generation agents trained on the recovered

curriculum learn significantly faster. These results

illustrate the synergistic role of abstractions and

curricula in the cultural transmission of mathematics.
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1. Introduction

A wide range of important human questions are formulated in the language of mathematics:

problems from physics to economics to computation. Thus, computers that are able to reason

about mathematical problems could have broad impact on scientific questions. Such systems

could be used directly by scientists or could potentially aid in training the next generation

of human scientists and engineers. Existing systems, such as Computer Algebra Systems,

implement procedures for solving important classes of well-known mathematical problems, such

as differential equations or matrix computations. A much more ambitious goal would be to have

computers that can reason about novel types of problems. How could that be done?

There are several computational foundations for expressing mathematics that can serve as

a basis for this endeavour, such as type systems and first-order or higher-order logics. Given

any of these formal systems, we can make new definitions, state propositions and specify rules

of inference. Together, these components pose a well-defined computational problem: given a

mathematical proposition p, determine whether it is provable under the given assumptions.

Unfortunately, no algorithm can decide this for general mathematical propositions: this is

precisely Hilbert’s Entscheidungsproblem, answered in the negative by both Church and Turing

even before modern computers had been invented.

In spite of the impossibility of a general procedure, humans routinely find solutions to

novel mathematical problems — either new to them or to all mathematicians. Moreover, new

generations of mathematicians can reach the frontiers of mathematical knowledge notably faster

than the time it took previous generations to discover them. These puzzles suggest some structure

to human mathematics that makes new problems approachable and their solutions teachable,

even if we might not hope to solve arbitrary mathematical problems.

To investigate this structure, we propose a case study on learning to solve educational

mathematical problems given minimal prior knowledge. More concretely, we set to formalize 5

sections of the algebra curriculum available on the Khan Academy educational platform. We then

aim to automatically solve exercises from those sections in a system with no prior knowledge on

how to find solutions, aside from the basic axioms from which solutions can be formed. Focusing

on this educational domain serves two purposes: It allows us to attack the general problem of

mathematical reasoning from a starting point that must be solvable – even a child can do it! And,

it means that successes at learning to generate human-like solutions have immediate applications

to education.

Many modern theorem-proving languages, such as Lean, Coq or Isabelle, could be use to

represent the axioms and problems we aim to study. However, current languages pose a challenge

in setting up the problem of searching for solutions: they permit an infinite number of valid proof

steps at any given point. To conduct our case study, we start by proposing a theorem-proving

language, called Peano, designed with a companion environment for general proof search. This

environment exposes a space of valid proof steps that is finite at all times, as we describe in

detail in Section 4. Peano uses dependent types to encode mathematical definitions and proofs

in a general fashion using the paradigm of propositions as types, proofs as programs. Using Peano,

we formalize 5 sections of Khan Academy — their axioms and exercises — obtaining a family of

well-defined search problems.

How might we solve these problems in a computer agent? Unguided search can only find the

most trivial solutions because the search space grows rapidly with solution depth, as for most

formal systems. Even short solutions, however, reveal patterns about when axioms are useful,

suggesting we can attempt to learn from past searches to improve our chances of solving harder

problems. More specifically, we can guide search using a policy: a distribution over actions to take

given the current state. A policy can be used to prioritize taking actions that are more likely to lead

to a solution. Learning a policy from experience is the central problem of reinforcement learning.

We can thus use techniques from reinforcement learning to train an agent to solve problems in

our mathematical domain. Indeed, we observe in section 6 that an agent trained using an existing
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reinforcement learning method can learn to solve all problems in the first two Khan Academy

sections. However, it fails to make progress on harder problems beyond the first sections. Indeed,

as we look at later problems in the Khan Academy curriculum, axiomatic solutions become

steadily longer and thus progressively less likely to be found by exploration. This problem would

grow worse were we to continue on the human curriculum, even if we restricted ourselves to later

sections that do not require additional axioms.

This difficulty, however, is certainly not a barrier for human students, who routinely learn this

material and much beyond. What structure in these problems might they use that an agent could

leverage to make progress? We show that adding the ability to abstract patterns in previously

found solution into new atomic, higher-level actions makes the problem tractable. We present a

simple algorithm based on anti-unification in Section 7 for learning tactics — higher-level solution

actions that can invoke axioms or other tactics. Given actions at the right level of abstraction, all

problems we study admit short formal solutions, which can thus be found within a reasonable

search budget. When attempting combinations of existing tactics, success at new problems helps

reveal which new combinations are useful, further suggesting newer tactics. This process allows

the agent to make progress without being given any additional information about the problems

themselves.

Furthermore, we posit that the tactics our agents learn reflect some of the ordering given in the

Khan Academy curriculum, despite that ordering not having been given to the agent during training.

When we re-order problems based on dependencies between the learned tactics that appear in

their solutions, as we describe in Section 8, we find that the recovered order agrees with the order

of problems on Khan Academy to a significant level. We finally observe a virtuous interaction

between tactic learning and curricula. When training a second agent again using tactic learning,

but this time seeing problems as ordered by the curriculum constructed from the first agent, we

find that this second agent learns significantly faster. This experiment paints a computational

account of the role of curricula in cultural transmission of mathematics: abstractions that might

take long to be developed can be efficiently taught when the right ordering of educational

experiences is put together.

In summary, we make the following contributions:

• We introduce Peano, a theorem-proving language based on dependent types along with

an environment for proof search where the action space is finite.

• We formalize 5 sections of the Khan Academy algebra curriculum in Peano, and show

that the resulting search problems are challenging for a reinforcement learning agent.

• We show that a tactic induction algorithm, where patterns in previous successful searches

give rise to new atomic actions, enables an agent to make steady progress through the

Khan Academy problems, eventually learning to solve them all.

• We observe that the tactics our agent learns can be used to largely reconstruct the order

of problems in Khan Academy, and that training an agent on the resulting order enables

faster learning.

2. Related Work

Automated theorem proving was one of the first targets of artificial intelligence research. The

Logic Theorist, a program developed by Newel, Simon and Shaw [19,28], was demonstrated

at the Darthmouth Summer Research Project on Artificial Intelligence in 1956 [18], the meeting

that first coined the name “Artificial Intelligence” for the field. This work pioneered the idea of

formulating mathematical reasoning problems as search in a state graph, where edges correspond

to possible deductions. These ideas were later extended to other richer formal systems, such

as first-order logic and Euclidean geometry [21]. These programs quickly surfaced the need

for search heuristics: even in a simple domain such as propositional logic, unguided search

algorithms can only find solutions to trivial problems because of the combinatorial explosion of
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the search space. While heuristics can push this limit, the need to manually engineer problem-

solving strategies for each problem domain hindered progress and interest on this research

program [27].

These initial efforts on automated reasoning aimed to create programs that solved problems in

general domains by making sequences of human-like deduction steps. Two deviations from this

paradigm led to progress in different directions. First, focusing on constrained problems — such

as satisfiability (SAT), in propositional logic or other theories — led to algorithms such as DP [7]

and DPLL [6]. While even SAT is NP-Complete, these methods and later developments were able

to solve increasingly large practical instances, enabling a range of applications in areas such as

model checking and program verification.

Towards using computers in general mathematics, full automation of reasoning — such as

what SAT and SMT solvers aim to provide — has proved much more difficult [27]. But significant

progress has been made in the development of interactive proof assistants, where humans guide

the proof generation process with potential aid for completing lower level details1. Modern proof

assistants — such as Coq, Lean, Isabelle and HOL Light — have enabled the formalization of large

bodies of complex mathematical results; examples include a formal proof of the Kepler conjecture

[10] in the HOL Light and Isabelle proof assistants, and a proof of the independence of the

continuum hypothesis [11] in Lean. Thus, their logical foundations have been shown to express

and verify complex mathematical results. Even if their power also makes automation difficult in

general, these languages allow users to define tactics: programs that can encode complex proof

strategies, and thus implement domain-specific automation to assist proving theorems in the

target domain.

Concurrently, machine learning methods have advanced substantially over the last decades,

both in supervised learning [16], where a model is trained to fit a given dataset, and in

reinforcement learning (RL), where the learner’s goal is choose actions that maximize reward

signals in a dynamic environment [1,20,29]. In particular, deep neural networks trained via

RL emerged as a tool to learn policies (distributions over actions to take given a state) and

value functions (an estimate of rewards that can be obtained from a given state) from raw

representations, such as strings or pixels. Both policies and value functions can be used to guide

search algorithms, making deep RL suitable for learning to search in large-scale problems such

as finding proofs [2,12,31]. Given the availability of proofs generated by human mathematicians

in large formalization projects, researchers have explored the use of human-written proofs as

supervised training data to guide proof search [2,13,31]. There has been little experience, however,

in having mathematicians use these systems outside of the domains they have been trained on, as

is the case in new formalization projects. To eliminate or mitigate this dependency on pre-existing

training data, research efforts have also focused on the application of deep reinforcement learning

to theorem proving, as a means to learn from experience by interacting with an environment

[14,26,32]. Systems that learn without prior training data, however, have only been demonstrated

in more constrained formal systems, such as first-order logic [14] or a selection of a few tactics in

HOL4 [32].

Finally, another related thread of research that has seen significant progress recently is

the field of program synthesis, where the goal is to generate computer programs that satisfy

a given specification. Programs can be mapped to mathematical proofs by encoding of

mathematical propositions as types, and proofs as programs. This is known as the Curry-Howard

correspondence, which we explore in more depth in Section 4. An important insight of recent

program synthesis systems, such as DreamCoder [8], is that learning to search for programs can

be interspersed with library learning, whereby the synthesizer extracts useful reusable patterns —

abstractions — from programs that it managed to synthesize. When solving a family of related

problems, discovering abstractions can drastically reduce the difficulty of harder problems: even

complex programs can have short implementations in terms of the appropriate library. This

insight has a direct interpretation in the land of mathematical reasoning: the difficulty of a
1In fact, in modern proof assistants such as Isabelle/HOL, SMT solvers can be called to find proofs for sub-problems that are

expressible in a theory they support.
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Figure 1. Illustration of the formalized versions of five sections of the algebra curriculum on the Khan Academy

educational platform.

mathematical problem also heavily depends on the “library” — of existing lemmas or tactics.

Given any starting library, harder problems can require arbitrarily large search depths to be

solved. But if we have a family of related problems of progressive difficulty, learning abstractions

— such as the tactics we induce in Section 7 — is a means to make steady progress.

3. Overview

Consider the five sections from Khan Academy shown in Figure 1. These sections take a student

that knows the basic operations with numbers — addition, subtraction, multiplication, division

— as well as their basic properties — commutativity, associativity, identity elements, and so on

— and teaches them to solving their first equations, such as x+ 5= 8. We aim to solve these

problems in a formal system where each deduction corresponds to a complete solution step, akin

to a line that a student could write on paper. We start this endeavour with two goals in mind.

First, this process might give insight into what ingredients a learning system would need to do

human mathematics (since general mathematical reasoning is undecidable but human students

learn with alacrity). Second, this system can then be used as a foundation for helping students

that routinely need to go through these problems — by checking their work, providing hints, and

creating worked examples, among other pedagogical actions.

To start, we need a computational basis for representing problems and solutions. Modern

theorem-proving languages are a natural option: their logical foundations are powerful enough

to express mathematics even at the research frontier, from definitions to propositions and proofs.

However, when seen as environments for automatically finding solutions, these languages pose

several challenges. First, given a solution in progress, there’s often an infinite number of next steps

that are valid (we dissect the reasons for this in Section 4). This fact implies that agents cannot

learn by choosing actions from a list of valid options – they need to generate their own actions.
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This is typically accomplished by first learning a generative model of likely solution steps from

human-written proofs [26,31]. However, there is little — if any — data from students writing

their solutions in existing theorem-proving languages2. Therefore, we wish to proceed without

this dependency.

To enable learning by selecting actions — rather than generating them — and receiving a

termination signal once a solution has been found, we first need an environment where the set

of valid next moves is finite, while maintaining generality as much as possible. To that end, we

propose Peano, a simple theorem-proving language based on a dependent type system, where

the space of next proof steps is constructed to be finite. We describe Peano in detail in Section 4.

The Peano environment defines states as the sequence of terms constructed so far. A solution is

complete once it constructs a term that satisfies the goal of each of the sections (e.g., an equality

between x and a constant when solving an equation). Peano allows us to easily implement all the

axioms we need to solve problems from the sections in Figure 1. The environment can enumerate

all the ways in which axioms can be applied to the current state, thus giving us a set of actions at

each state. Finally, in section 5, we implement simple problem generators for each of the domains

by taking exercises from Khan Academy and turning them into templates (e.g., assuming the

constants could be chosen at random), which gives a distribution over initial states. Together,

these components (states, actions, a termination criterion, and a distribution over initial states)

yields a well-defined search problem.

While the set of actions at a given state is finite, the combinatorial search space hinders

unguided search algorithms from solving all but the most trivial problems. Thus, to make

progress, we need to guide search using heuristics. To maintain generality, instead of manually

encoding domain-specific heuristics, we would like to learn these heuristics from past searches.

To that end, we start by training an agent using Contrastive Policy Learning (ConPoLe) [25], a

method to learn a policy for guiding search that has been shown to work on similar symbolic

reasoning domains with sparse binary rewards. To sample problems during training, we first

choose one of the sections at random, and then use that section’s problem generator. During

learning, we evaluate the agent on a set of held-out problems from each section.

ConPoLe can learn to solve all problems in the first two sections, where solutions might

have up to 6 formal steps. However, the third section already poses major challenges: solutions

are both longer (requiring up to 9 steps) and require combining a wider range of axioms.

The number of available actions also grows the more steps we add to the solution, making

solutions exponentially less likely to be found by exploration. As a result, ConPoLe fails to

make meaningful progress on the last three sections, only succeeding at solving trivial equations

(x+ 0= k, 1 ∗ x= k)3. This problem would grow even worse were we to continue progressing

throughout the Khan Academy curriculum further. How would an agent possibly learn to solve

problems from the third section and beyond?

A key insight becomes clear once we analyze how students are taught to solve equations in

these sections. When explaining how to solve x+ 1= 10, the instruction begins by observing

one can subtract a constant from both sides of an equality, using that to get (x+ 1)− 1 = 10− 1.

From here, the instructor no longer refers to the base axioms (e.g., commutativity, associativity)

as operations one needs to apply. Instead, they assume that the student can “simplify” each of the

sides to get x= 9. Many examples of how to “simplify” have been seen in the previous sections.

The key observation is that the solution would only have 3 conceptual steps, not 9, if the agent had

a high-level “simplify” action (subtract from both sides, simplify one side, then simplify the other).

With that action in the action space, the probability that the agent would find solutions to learn

from would be non-negligible.

2This would also be the case were we formalizing and exploring a new mathematical domain, a setting where many

researchers hope automated theorem provers could be useful.
3Given a manually written solution, we can estimate the probability that a random agent would generate that solution with a

given action space by multiplying the probabilities of picking the next action to match the solution. For the shortest solution

to x + 1= 2, this probability is approximately 10−12.
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How can the agent learn such an action? Since “simplify” is a generalization of what is learned

from exercises in the first sections, one alternative is to induce that action by abstracting steps

from solutions found so far. In Section 7, we describe a simple method based on anti-unification

[22] which can create high-level actions by finding patterns in Peano solutions. Following other

theorem-proving languages, we call these high-level actions tactics — a procedure that can

perform several operations, including calling other tactics, to manipulate the proof state. Given

the ability to induce tactics from its own solutions, the agent is indeed able to make steady

progress and eventually solve all problems from the 5 sections.

Human mathematics poses another puzzle: after someone has mastered a mathematical

domain, the next generation of students can get to the same point much faster, to then go

beyond. Indeed, mathematical discoveries such as calculus and analysis took hundreds of years

to be developed and perfected; yet high-school and college students today often learn the

core of these topics within semester-long courses. What enables us to transmit mathematical

knowledge so efficiently? We propose that part of the explanation has to do with exploiting the

structure of abstractions that underlie the domain. More specifically, while it may take many

sparse experiences to realize that an abstraction is useful, mathematicians can then collect those

experiences so that the next generation can see it immediately, almost as if the need for a particular

concept was obvious in the first place. The process of selecting and sorting examples for the next

generation is what we understand as developing a curriculum.

We can induce a curriculum from our generated problems by analyzing the agent’s solutions

and what tactics they use. Since tactics can invoke either axioms or other tactics, we can arrange

them in a dependency graph. These dependencies imply a natural partial order on problems

by considering which tactics are present in their solutions, combined with the dependencies

between those tactics. Sorting problems in topological order — respecting the dependencies

between tactics in their solutions — then gives a curriculum. Given an automatically constructed

curriculum, two natural questions arise. First, how similar is that curriculum to the human-

designed ordering present on Khan Academy? Second, can this curriculum serve an analogous

purpose of speeding-up learning of a “second generation” of agents? We explore both questions

in Section 8.

4. Peano: Theorem Proving with a Finite Action Space

In this section, we aim to define a theorem proving environment that presents an agent with a

finite action space, where each such action corresponds to adding a solution step. Our goal is to

obtain (1) a simple yet expressive language to specify mathematical domains (their definitions,

axioms, problems and solutions), and simultaneously (2) an environment where an agent can

solve problems formalized in the language by sequentially choosing among a finite set of valid

solution moves.

Many theorem-proving languages, including Coq, Isabelle/HOL and Lean, would already

fulfill our first requirement. These languages are based on a relatively small core (dependent type

systems in Coq or Lean, or higher-order logic in Isabelle/HOL) and they have been used to fully

formalize extremely high-level mathematical results (e.g., the independence of the Continuum

Hypothesis and the proof of the Kepler Conjecture). But when seen as environments for agents to

find proofs, these languages pose challenges in how a search space with a finite branching factor

might be defined. This is the main challenge we address here.

To overcome the unbounded space of valid solution steps, several prior works have used

generative models trained on datasets of human-written formal proofs as a way to sample

sensible actions in a given context. This approach works in the presence of many existing

formal proofs for training, but here we would like to proceed without this assumption. Thus,

to circumvent the need for the agent to generate valid actions, we want to design an action space

so that solution steps can be simply selected out of a finite set of options.

We start by noticing that simply making a finite and complete action space would be a vacuous

goal if actions do not correspond to complete, valid solution steps. For instance, we could trivially
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Figure 2. Learning curves of (a) a vanilla ConPoLe agent, (b) an agent with tactic induction, and (c) a ConPoLe agent

with tactic induction trained on the curriculum induced from the previous agent.

consider character by character generation of proofs in any existing theorem-proving language,

with a special action to mark the end of the solution. Once that character is chosen, we can

check whether the solution was valid by submitting it to the language’s verifier. While finite,

an untrained agent has virtually no chance of generating valid solutions in this space, making

learning from sparse rewards implausible. Leveraging the language’s grammar improves this

situation by eliminating lexical and syntactical errors. However, since most of the constraints are

imposed by the language’s semantics, sampling from the grammar will still produce ill-formed

solutions with overwhelmingly high probability. Instead, we would like to completely rule out

semantically invalid solutions, and define a space where all steps are always complete and valid,

though they might not necessarily move towards the goal.

(a) Foundation: λ-calculus and dependent types

To define solution steps, we first need a logical foundation to represent definitions, propositions,

axioms and solutions. We find the language of dependent λ-calculus [17] to be a compelling

choice for our purpose. Dependent λ-calculus borrows the three basic constructors of terms

from λ-calculus: a term can be a variable (e.g., x), a function application (e.g., (f t1 · · · tn))

or a λ-abstraction (e.g., λx : T.t). Each term is always associated to a type, which essentially

constrain which terms can be used as arguments in function applications. Most type systems have

separate formation rules for types and for objects of those types. Dependent type systems blur

this distinction, allowing types themselves to be terms that depend on the values of other terms.

As we explain below, this device makes dependent types a rather succinct language to express
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many common patterns of mathematical reasoning in a small foundation. Moreover, having a

type system in our environment will let us drastically narrow down the set of actions available to

an agent by leveraging type constraints. This contrasts to untyped foundations such as first-order

logic or ZFC Set Theory, where the constraints imposed by the formal system itself are mostly

syntactic, and user-defined predicates encode most of the semantic constraints 4.

In a language to represent mathematical reasoning, we wish to represent both typical

mathematical objects (e.g., the number 2) and propositions about those objects (e.g., that 2 is even).

Dependent types can encode both notions (of kinds of objects and propositions about those objects)

in a unified manner. Two base types are provided in Peano, called type and prop. Regular types,

such as the natural numbers, are themselves terms of type type, while propositions are encoded

as terms of type prop5. In a dependent type system, terms can themselves be (part of) types

of other terms. For example, suppose we define a type nat to represents natural numbers. The

proposition that a natural number n might be even can be encoded as a function with input type

nat (the number n) and output type prop (the proposition that n is even)6. Constructors for

proposition types, such as the types produced by even, define how proofs of those propositions

can be created. Note that there is a distinction of creating the proposition “n is even” and an object

of type “n is even” — the former does not imply that the latter is possible. Indeed, we would like

the system to never allow a construction of an object of type “3 is even”. In this language, proofs

are represented as programs: to prove a proposition, we must give a program that constructs

an object of corresponding type when given objects of the hypothesis types. For example, when

given a natural number n and an object of type “n is even”, we might be able to construct an

object of type “n2 is even”. This encoding of propositions as types and proofs as programs is the

well-known Curry-Howard correspondence.

Typically, a type system is designed to enable the implementation of a type-checker for a formal

language: given a program P , the type-checker verifies whether P satisfies the type constraints.

When P encodes a proof, this corresponds to checking the validity of the proof. Our main use of

a type system is different: we’ll use the rules of the system to define an action space to generate

valid programs. This will also let us easily check the validity of proofs, however, by sequentially

checking whether each step could have been generated from the action space.

(b) Defining a background library

When using interactive theorem proving environments, we usually have a distinction between a

global background library, which has axioms and other theorems that we might use and is fixed

while proving a particular theorem, and a local, dynamic state which the solution steps can

operate on. Both the library and the state can be represented as sets of typed objects. In Peano, we

can write:

nat : type.

z : nat.

succ : [nat -> nat].

one : nat = (succ z).

This syntax is inspired by Elf [23]. These statements declare a type called nat, then an object

of type nat called z, a function called succ which receives one nat and gives another nat, and

4For instance, classical first-order logic assumes a single underlying universe of objects. In an interpretation where objects

include both numbers and sets, if we introduce a function symbol U(s1, s2) for the union between two sets, it is in principle

valid to consider the union of two numbers.
5In our current implementation of Peano, the type of both type and prop is type itself. This does lead to Girard’s paradox,

but this is not a practical issue for our experimental investigation. Lean and Coq circumvent this issue by defining an infinite

sequence of types type i where each type i is of type type (i + 1), a solution we can also apply.
6Note that dependent types allow for more than simple parametric polymorphism, where types can depend on other types

but not on regular objects. A typical example of the latter would be the polymorphic type List<T> where each other type T

yields a different list type.
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an object called one, again of type nat, which is defined as an alias for the application of succ

to z. At this point, our library would have 4 objects. Note that succ is an uninterpreted function:

all we know is its type signature, but we do not need to provide an implementation.

These same constructs can be used to define properties about nats, such as the “less than or

equal to” (leq) relation:

leq : [nat -> nat -> prop].

z_leq_n : [(’n : nat) -> (leq z ’n)].

n_leq_sn : [(’n : nat) -> (leq ’n (s ’n))].

Thus, (leq one z) is a proposition (which doesn’t imply it is true, since we have not

constructed any object of that type). z_leq_n is an axiom: if we apply it to any natural number

’n, it outputs an object of type (leq z ’n). Here, we named the parameter (as ’n) since the

output type depends on it. A single quote is used to prefix bound variables, in order to easily

distinguish them from variables coming from the background library. Parameter types can also

introduce variables that are defined at the time of function application by unification:

leq_trans : [(leq ’a ’b) -> (leq ’b ’c) -> (leq ’a ’c)].

Thus, if we have proofs that a≤ b and that b≤ c for some a, b and c, this axiom of transitivity

would let us obtain a proof that a≤ c. We could also have written this axiom in a longer form,

by taking three nat parameters separately and then the two mentioned proof objects. This choice

is not merely syntactical: while the two versions will allow the same actions, the version where

a, b and c must be inferred will enable much more efficient action enumeration (Algorithm X,

described below).

In addition to user-defined types and axioms, Peano provides a built-in dependent equality

type and three axioms to handle equality: eq_refl encoding reflexivity (from any type T and

object t of type T , we can construct evidence that t= t), eq_symm encoding symmetry (from

two objects a and b and evidence that a= b, we can construct evidence that b= a) and rewrite

encoding congruence (for any object of a proposition type P and an equality a= b, we can

construct an object of type P [a 7→ b], i.e. the result of substituting one free occurrence of a by b

in P ).

(c) Problems, states and goals

Having defined a background library, we would like to pose problems and construct solutions to

them. In Peano, the solution state consists of a set of objects that have been constructed so far —

including proofs of intermediate propositions. A problem is defined as a set of starting objects —

for example, two nats a and b and a hypothesis (leq a b) — and a goal. Our main deviation

here from other proof assistants is in how goals are specified.

In most interactive proof assistants, the prover typically starts by writing down a proposition

to be proven — a type, which is taken as an open goal. Then, a series of proof steps will follow,

each might change the proof state or the open goals; the prover is done once there are no more

open goals. Essentially, these systems close an open goal once they construct an object of the goal

type. Once no more open goals remain, the proof assistant has enough information to construct

an object of the original proposition type.

Several common classes of educational exercise do not fit into this paradigm in a

straightforward manner. In particular, many exercises, such as CLT in Figure 1, involve

manipulating an expression until a syntactic condition is met — for instance, until we obtain

an equivalent expression that is simplified, or an equation with a variable on the left-hand side

and a constant on the right side. These problems require checking assertions about syntactic

forms, rather than the objects they represent (e.g., an expression is simplified, or an equation is

solved). To reason about properties of expressions in the type system, we would need to reify the
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expressions themselves, and model the relation between expressions and the objects they denote.

This is certainly possible within a dependent type system, and brings conceptual clarity to what

exactly are the problems at hand, but requires adding another layer to the encoding of problems

and solutions in the formal system.

To circumvent this complexity in the context of simple educational domains, we allow a more

flexible approach of simply having a small program, written outside of the formal system, that

checks if the given solution meets the goal. This program receives the state — all constructed

objects and their types — and returns a binary reward signal. Under this flexible model, the usual

goal of constructing an object of a certain type — a proof of a proposition — is trivial to check with

a program that searches the state for an object that has the goal type. But syntactic conditions also

become easier to test. For example, to check if “an equation is solved”, a verifier can check if

the type of any of the constructed objects is an equality between x and a constant. If the prover

managed to produce such an equality, then we can say it managed to “solve the equation”, since

the formal system will guarantee that all steps that have been taken leading to this equality were

valid.

Thus, in Peano, the state consists of a set of typed objects, a problem specifies the starting

state and the goal of a problem is to modify the state until it satisfies a known verifier. In other

words, the prover has the information of whether the goal is to “solve the equation” or to “prove a

particular proposition”. We now look at which actions the prover can take to change the solution

state.

(d) Finite action space

In modern dependently-typed proof assistants, such as Lean or Coq, the proof writing process

typically enables an infinite set of valid proof steps at any given point. We first identify the sources

of infiniteness, and then describe how we constrain this space to be finite.

When processing a proof, existing proof assistants typically keep a state consisting of a set S of

objects that have been constructed or are assumed to exist (starting with the hypotheses) and a set

G of goals. The goals gi ∈G are propositions — thus, types — and we can complete our proof once

S contains objects of each of the types in G. A proof step can therefore have effects in either S or

G. Changes to S are forward reasoning steps: they typically construct a new object, which is added

to S. The two essential means of constructing objects come from λ-calculus: function application

and lambda abstraction.

Proof steps might also change G: these are backward reasoning steps. These proof steps also

essentially consist of applying an existing function fb, but this time in reverse to a goal gi. In this

case, fb must output the goal type, and its argument types then replace gi in G as new sub-goals to

be closed. If we eventually satisfy the sub-goals by constructing objects of the appropriate types,

an object of type gi — to satisfy the original goal — could be produced by applying fb in the

forward direction.

Both the sets of forward and backward steps might be infinite. The number of valid forward

steps — either function application or lambda abstraction — is unbounded because a single

step can construct arbitrarily deep objects. For example, if we have the natural number 0 and

the successor function S :N→N, a single forward step might construct any natural number7.

Similarly, a lambda abstraction can have an arbitrarily complex body. We can easily constrain

function application steps without sacrificing generality by forcing each step to apply a single

function to a combination of already existing arguments. Deep objects can still be incrementally

constructed in multiple steps. A similar — but more subtle — idea could be applied to allow the

construction of lambda abstractions with a finite set of actions at each step. Our current version

of Peano does not include the additional actions needed to inline lambda abstraction. This limits

our current action space to only produce proofs that don’t require auxiliary functions (or lemmas).

When using Peano, one can still prove theorems that require lemmas by stating and proving the

7In Lean, one could write let n : nat := (s (s (... z))).
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lemmas separately (i.e., not inline in the main proof). This makes some proofs unnatural to write8,

but does not impact the educational mathematical domains we study in the present work.

Our relaxation of goals into general verifiers (that determine if a state is “done” beyond

the existence of objects of certain types) complicates the specification of backward steps.

However, though backward steps add flexibility to how one can construct a proof, they do not

fundamentally enable new proofs — any proof that contains backward steps can be mechanically

translated into a proof that only uses forward steps. Furthermore, human students typically start

using backward steps at a later level of education than we consider in our algebra domains. Thus,

we also limit ourselves to forward steps. Together with the above constraint on forward steps,

this makes the action space finite. We note that a strategy similar to how we constrained forward

steps could also be used to arrive at a finite set of backward steps while still retaining generality9.

In summary, the action space in Peano contains all valid forward steps that apply a function

to a combination of existing objects, thereby creating a new object. The type system determines

which objects are allowed as arguments, and this constraint lets us efficiently enumerate all of

the finitely many available actions. Algorithm 1 describes this procedure more concretely. The

algorithm is essentially a backtracking search for all ways to fill in arguments of a chosen function

(e.g., an axiom) with objects coming from a given collection S. Because of dependent types,

choosing a value for an argument might change the expected type of later arguments (e.g., a

function could first take a number n and then a proof that n is even; filling in a concrete value

for n thus determines a concrete type for the other argument). To perform one step in a solution,

the agent first chooses a function to apply. Then, we invoke Algorithm 1 to enumerate the results

that can be obtained with the chosen function. Finally, if the result set was not empty, the agent

chooses one of those results to add to its current solution.

Algorithm 1 Action enumeration in Peano

1: procedure ENUMERATEACTIONS(S, f ) ⊲ Computes all results of applying the given

2: return FILLNEXTARGUMENT(S, f, 〈〉, f.param_types()) ⊲ function f with parameters

3: end procedure ⊲ coming from the set S.

4: procedure FILLNEXTARGUMENT(S, f, a, param_types)

5: if |a|= f .number_of_arguments() then

6: return {f(a1, · · · , an)}

7: end if

8: next_type← param_types[|a|]

9: results←∅

10: for all obj ∈ S do

11: mgu← unify(obj.type, next_type)

12: if mgu 6= null then ⊲ Check if obj can be used as the next argument.

13: a′←〈a, obj〉

14: new_param_types← param_types

15: for all (var, assignment)∈mgu do ⊲ Make substitutions in later parameter types.

16: new_param_types← σ(new_param_types, var 7→ assignment)

17: end for

18: results← results ∪ FILLNEXTARGUMENT(S, f, a′, new_param_types)

19: end if

20: end for

21: return results

22: end procedure

8For example, in a proof by induction, each of the branches is a lemma that currently has to be outlined.
9Specifically, we could allow a backward step when all the produced sub-goals can be expressed with already existing objects.

Multiple steps might then be needed to construct the necessary objects to apply a backward step. This would overcome the

fact that, in proof assistants, backward steps typically allow the immediate, arbitrary instantiation of existential quantifiers as

long as the result type-checks, thus allowing infinite options.
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Figure 3. Axioms in Peano used to formalize the sections of Khan Academy that we study.

5. Case study: solving Khan Academy problems in Peano

The main design goal of Peano is to provide a flexible representation for educational mathematical

domains, both to let us understand how learning in this domains can take place and to facilitate

applications in computer-assisted education. We now describe at our main case study in this

direction: the formalization of the algebra sections of Khan Academy illustrated in Figure 1. These

sections assume a student who starts with the knowledge of how to evaluate the basic operations

with known real numbers, as well as various properties of these operations (e.g., commutativity

and associativity). From there, they teach this student to solve simple linear equations with one

unknown.

To describe our formulation of these sections in Peano, we must specify the basic definitions

— types and axioms — how we generate problems and finally how we specify goals.

Definitions and axioms Figure 3 shows the full Peano representation of the axioms we use. All

axioms here output equalities relating terms in their inputs. Most parameters to the axioms are

real numbers, but their values in most cases need to be the result of an expression of some form.

For instance, the parameter to +_comm, the commutativity of addition, is a number of the form (+

a b) for some a and b. When applied to an argument of the necessary form, the output type of

+_comm will be the equality type (= (+ a b) (+ b a)). Note that we can equally formalize

this (and all other) axioms without pattern matching on syntactic forms, but rather by taking

any numbers a and b and returning an equality (= (+ a b) (+ b a)). While this latter form

would more faithfully represent the property of commutativity of addition, it would also generate

more actions during proof search, since it applies to any real numbers regardless of whether we’re
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Section Syntactic forms used in problem generator

SEE (= x (+ 1 2)), (= x (* (+ 1 2) 3)),

(= x (+ 1 (* 2 3))), (= x (/ (* 1 2) (- 3 4)))

CLT (= answer (+ (- x 1) 2)), (= answer (- (+ x 1) 2))

(= answer (* (/ x 1) 2)), (= answer (/ (* x 1) 2))

OAE (= (+ x 1) 2), (= (- x 1) 2)

OME (= (* x 1) 2), (= (* 2 x) 3)

(= (/ x 2) 4)

TSE (= (+ (* x 2) 1) 3), (= (- (* x 2) 1) 3),

(= (+ (/ x 2) 1) 3), (= (- (/ x 2) 1) 3)

Table 1. Syntactic forms used in our problem generators for each of the Khan Academy sections. Each problem is

generated by picking one syntactic form uniformly at random and then randomizing constants. Furthermore, in Substitution

and Evaluating Expressions (SEE), all operations are resampled from {+,−, ∗, /}.

already considering their sum. Thus, the form we write these axioms reflects both the properties

we need and the fact that we tend to apply these properties once we already have an object that

suggests they will be useful. In practice, this narrows down the action space without ruling out

natural solutions.

Evaluating expressions The four binary operations on reals are declared as uninterpreted

functions. To focus on algebraic reasoning, we add an additional axiom eval, implemented

outside of the formal system, which can be used to “execute” these operations when their

arguments are known. From the agent’s perspective, eval is an axiom which takes an object of

type real as its only parameter and, if that real is of the form (op a b), where op ∈ {+,−, ∗, /}

and both a and b are constants, eval returns an equality proof between (op a b) and the result

of evaluating the expression (for example: (eval (+ 1 2)) would have output type (= (+ 1

2) 3)). If we were to fully formalize the content on Khan Academy, it would be more faithful

to not have an atomic evaluation procedure, but rather break it down into more basic steps,

corresponding to how students are taught arithmetic. For our current case study, however, we

assume evaluation is given as atomic.

Generating problems For each of the sections in Figure 1, we create random problem generators

by creating syntactic templates with placeholders that are then replaced with random numbers.

We list these templates in Table 1. Some of these templates come directly from exercises from Khan

Academy — for example, the “one-step equation” x+ 10= 27 turns into the template (= (+ x

n1) n2), where n1 and n2 can be replaced by any constant. Since the pool of exercises on Khan

Academy is fixed and small (4 to 7 exercises in each practice section), we add a few templates to

increase the diversity of problems generated and ensure that they employ all axioms. We generate

integer constants by rounding samples from a Gaussian N (0, 25), and ensure that we do not

sample divisions by zero or absurd equations such as 0x= 1. For problems that involve solving

an equation, we declare a real number named x and an object named equationwhose type is the

equality type corresponding to the equation to be solved. For the first two sections, which involve

simplifying an expression in some way, we declare a real number named answer and encode the

problem by assuming an equality between answer and the expression to be simplified.

Goals Having problems and axioms, the last step in formalizing the domains we study is to

define what it means for a solution to be complete. For the first two sections, where the goal is to
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Figure 4. Example of state and action sequences solving a problem from the Combining Like Terms section. Here, the

goal, represented in the state by a short line, is to find a simplified form for the variable a. At each state, the agent needs

to either select one axiom from the library or choose one the results from that axiom to be added to the state. The solution

proceeds by applying the appropriate associativity rule, then using that to rewrite a, then evaluating the resulting operation

with constants, and doing a final rewrite to arrive at a solution state.

simplify the expression, our solution checker searches the state for an equality between answer

and an expression in a simplified form (we enumerate a few forms that cover the exercises we

formalize: c (a constant), x, x + c with c 6= 0, and variants where x is multiplied by a constant

that is neither 0 nor 1). When the goal is to solve for x, our checker searches for an equality of the

form x= c for some constant c. Once the solution state satisfies the check corresponding to the

problem, the solution is taken as complete.

Example Figure 4 shows an example of solving a problem generated in the Combining Like

Terms section. The solution uses 4 axiom applications: first the applicable case of associativity,

then rewrite (the equality axiom corresponding to congruence), followed by evaluation and a

final rewrite. At that point the goal is satisfied, since the state contains an equality between the

“answer” variable and a fully simplified expression. The probability that this solution would be

generated by an agent picking a sequence of actions at random is 9.64× 10−7, which we compute

by multiplying the inverse of the number of available choices at each state. Thus, even simple

problems have a non-trivial search space when a modestly-sized library is available.

6. Learning to solve mathematical reasoning problems

Given the ability to sample problems, enumerate and apply actions, and to detect solution states,

the problems from Khan Academy yield a family of well-specified search problems.

Any search algorithm can be applied to attempt to find a solution state given a problem. But

general, domain-agnostic search methods are constrained to finding extremely short solutions, as

illustrated by the example in Figure 4. This explosion grows worse the deeper we explore, since

each action adds objects to the state, which in turn enable a growing number of new objects to be

constructed by applying axioms. Thus, to be able to find solutions to harder problems, we need

to leverage heuristics to guide search.

How can we encode problem-solving heuristics? One option is to manually design some of

these search strategies, such as preferences for certain actions given some features of the state.

But this approach involves significant engineering that must be repeated for every new domain
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we wish to formalize. Moreover, we still risk missing cases and developing incomplete strategies:

even in simple-looking domains such as equation solving, expert-written heuristics for finding

solutions in this step-by-step fashion risk reaching failure cases when tested more widely, as

demonstrated in [25].

Instead of relying on domain-specific design, we aim to learn search heuristics, bootstrapping

from easy to hard problems by learning from past searches. One form of encoding search

heuristics is through a policy: a function that takes states and gives a probability distribution

over actions. A search algorithm can then leverage a policy as a heuristic to prune unlikely

actions during search. To learn a good policy, Expert Iteration (ExIt; [1]) provides a simple general

paradigm: we can alternate between running search on batches of problems using our current

policy and training the policy by imitating decisions made during previous successful searches.

When applied to deterministic problems with a binary reward signal, it is typical to ignore

unsuccessful attempts and train only on data from successful searches [25,26].

One instance of this paradigm that we can directly apply to our current setup is Contrastive

Policy Learning (ConPoLe; [25]). ConPoLe was introduced as a method for policy learning

to solve symbolic reasoning problems from the Common Core environments, which include

equation solving and fraction simplification. The Common Core environments include domain-

specific representations for states and actions which make them a less general setting than

Peano. For example, they embed the assumption that, when solving a single equation, one can

forget about all steps except for the last. This assumption severely reduces the state space, but

does not generalize (e.g., even to systems of equations, where we often change which equation

we’re working on). Nevertheless, these environments also present the challenge of learning from

unstructured text representations and sparse binary rewards, making ConPoLe a natural choice

to try on the Khan Academy problems.

The main idea of ConPoLe is to apply a search algorithm that can use a policy π(a|s) to

prioritize search nodes — for instance, beam search — to a sampled batch of problems. Then,

the solutions found (typically few and short at the beginning) are used to train π by a reduction to

contrastive learning: ConPoLe learns a representation φ(s) for states that attempts to align each

state with a successor leading to a solution, using all other successor states available during search

as negative examples. Thus, ConPoLe is compatible with our setting, where the state and action

spaces are unbounded, the set of available actions depends on the state, the effects of actions are

deterministic and only a sparse, binary reward signal is given once a solution state is reached.

To apply ConPoLe to the Peano formalization of Khan Academy problems, we simply need

to represent states and actions as strings, and define a differentiable neural architecture for the

embedding function φ. To represent φ, we use a character-level, two-layer bidirectional GRU

network [4]. We encode states by first formatting the initial objects given in the problem (e.g., the

given equation), then formatting the objects constructed by each action taken so far. We truncate

the state at the beginning to bound the number of characters the state embedding function

might receive at 200 characters. For actions, we found that enumerating and running all possible

applications of axioms through φ to be slow, as deeper states can have hundreds of such actions

available. To mitigate this problem, we decomposed the solution generation process into pairs of

actions: first, the agent chooses which axiom to apply; then, the Peano runtime enumerates the

valid applications of that axiom in the current state, and the agent chooses between one of the

achievable results to add to the current state.

(a) Result: learning to solve by pure policy learning

Figure 2 (red curve, “Bare agent”) shows the results we obtained when applying ConPoLe to the

Khan Academy problems in Peano. Here, the agent is being trained by sampling and attempting

problems in a random order, following the setup from [25]; after every batch of 500 problems,

we train the policy using ConPoLe on examples generated from successful training episodes, and

evaluate it on held-out problems from each of the Khan Academy sections.
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ConPoLe makes steady progress in learning the first two sections (Substitution and Evaluating

Expressions and Combining Like Terms), eventually learning to solve all problems in them.

However, it stagnates in the equation solving sections. We note two difficulties that are unique

to our current setup when compared to the Mathematics Common Core environments, in which

ConPoLe succeeds in finding solutions to similar equations [25].

First, the action space in Peano is significantly larger; a problem that compounds when

solutions get longer and thus more constructions are possible given all the constructed objects.

To give a sense of scale, the likelihood of a random policy solving a “one-step addition equation”

from Khan Academy in the Common Core equations environment is 2× 10−5. In contrast, in

our Peano formalization, this likelihood drops to 10−12. This difference alone severely affects the

probability that any given policy will succeed when solving new problems, since those require

exploration in a large, combinatorial space.

Lastly, we observe that representation learning, to which ConPoLe reduces policy learning, has

an additional challenge in Peano. Since states accumulate the results of previous steps, it’s much

rarer to arrive at the same state twice. In contrast, in the Common Core environments, since an

action operates directly on the equation at hand, actions might directly bring us to equations

that we have seen before. For example, once we simplify the right-hand side in x+ 1= 1 + 2

and arrive at x+ 1= 3, it might be possible that our existing policy recognizes this new equation

and can lead to a solution. In Peano, this recognition that we can follow a previously discovered

strategy is more difficult, since the new state will also include the equality 1 + 2= 3 as well as

the previous equation. Thus, the representation of the new state might not immediately tell us

that we’re essentially at a problem we have seen before. In short, some domain-specific state

abstraction is present in the Common Core environments that instead has to be learned in Peano,

making policy learning significantly more challenging.

7. Tactic Induction

Given any starting set of axioms, the number of deductions that can be made from them typically

grows exponentially as we enumerate longer sequences of steps. Using higher-level axioms to

attempt to make solutions shorter only delays this challenge, but does not eliminate it. Long

chains of reasoning are also unwieldy for humans, but the deductions that interest us can be

typically factored into higher-level steps, so that even solutions to hard problems are made

succinct in terms of lemmas or procedures at an adequate level of abstraction. To allow users to

encode these abstract actions, interactive theorem-proving languages often provide a language for

tactics: programs that manipulate the proof state or goals that can encode higher-level proof steps

for a given domain. A tactic can take parameters and invoke axioms, theorems or other tactics,

ultimately generating a potentially long sequence of actions in the underlying formal system.

To operationalize the idea that agents should learn high-level actions from experience, we

propose a simple tactic language for Peano. A Peano tactic t is a sequence of n= |t| actions t
(i)
a ,

along with action arguments t
(i)
p . Each action t

(i)
a is either an axiom or another tactic (tactics do

not yet support recursion). Each t
(i)
p is a list of arguments passed to action t

(i)
a . In turn, each one

of t
(i1)
p , · · · , t

(ik)
p might be either a concrete value or a symbol that references one of the formal

parameters of t itself.

A tactic t can be executed given a set of objects S, producing a set of traces. Each trace

corresponds to one valid combination of arguments for t. To compute the set of traces that t

can generate given S, we execute each of the actions in t in sequence and lazily decide which

arguments for t are possible given the objects that each action generates. More precisely, for each

action ai, we first compute the set of valid arguments and results that it can generate — this will

either call Algorithm 1 for invoking axioms or call the tactic execution procedure recursively when

t
(i)
a is itself another tactic. Then, for each choice of list of arguments that we can invoke ai with,

we unify that list with the existing assignments for parameters of t in the current trace. If we find

inconsistencies, we give up on the current trace. If there are multiple possible assignments, then
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Figure 5. Example of two Peano tactics: tactic003 simplifies an expression by invoking the axiom that asserts that

0 is the identity element of addition, then using that equality to rewrite the original expression; tactic007 is being

induced by generalizing two segments of solutions to problems in Combining Like Terms.

we branch the trace and continue execution in each branch. After all actions, each of the resulting

traces will correspond to one way of invoking t, potentially producing multiple possible results.

Figure 5 shows an example of two solutions in Peano invoking a tactic named tactic004.

Here, this tactic represents the simplifying action of applying the axiom that 0 is the identity of

addition, and then using the resulting equality, p0+ 0= p0 for some parameter p0, to rewrite

p0+ 0 to p0 in some other object p1. Just like axiomatic actions, a tactic might generate one,

multiple, or no results given the current state: when the state consists of the inequality ex+0 <

y + 0, tactic004 generates two results; and none in x+ 9= 4. When present in the action space,

a tactic can be used by the agent like any other action, as we described in Section 4: the agent

might first decide to invoke the tactic, and then decides which of the possible results to add to its

solution.

One important difference between executing a tactic compared to directly executing its

underlying sequence of actions is that a tactic only exposes a single result: the result of its last

action. This scoping boundary helps constrain future actions by limiting how many arguments

are available for invoking them in the current solution.

(a) Inducing tactics from solutions

To learn tactics, we take an inductive approach: we aim to extract useful tactics by generalizing

segments of previous solutions. Our goal is to find tactics that would have simplified several of

those solutions had those tactics been available to the agent.

Suppose we have a set S of solutions. In Peano, each solution can be seen as a straight-line

program10 that executes actions until the domain verifier determines that the solution satisfies

the goal. To find candidate tactics, we first extract each contiguous subsequence si:j of length

at least 2 from each s∈ S. Then, we take all pairs of same-length subsequences and compute

the tactic that is the least general generalization of each pair. In our restricted tactic language, this

is a simple case of anti-unification: if the two sequences call different actions, then there is no

generalization available in our language11; if they call the same actions, then there’s always a

tactic that generalizes those sequences, and we can compute the most specific argument structure

10More generally, the dependency structure between the actions, which are implied by the parameters, generates a directed

acyclic graph, but for simplicity we assume actions are fully ordered.
11In a more powerful tactic language, for instance with loops and conditionals, we could aim to encode more complex patterns

into tactics. These extensions are interesting directions for future work, where several techniques for inductive program

synthesis could be applied.
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Figure 6. Solution found by the agent to a “One-step Addition Equation”. In terms of the tactics at this moment of training,

the solution can be expressed with 3 steps. These steps have a probability of 1.28× 10−6 to be generated by an agent

taking random actions when the action space contains the axioms and the 18 tactics learned so far. In contrast, given just

the axioms, the probability of finding the equivalent solution at random is 10−12.

of their generalization by only introducing new parameters if strictly necessary12. This yields one

tactic that, had it been available, could have simplified at least the two input sequences of actions.

The procedure above gives us a set of candidate tactics T that generalize solution spans from

S. To determine which of these candidates are worth making into new actions, we first compute

the number of segments in S that ti ∈ T generalizes, denoted by m(ti,S). Multiplying that by

|ti| − 1 gives us how many actions in S would ti have saved if we replaced |ti| actions by a single

invocation of ti. In other words, m(ti,S)(|ti| − 1) is a measure of how much can ti compress the

solutions in S. We take that quantity and divide it by the number of parameters of ti to compute

the utility of ti:

u(ti) =
m(ti,S)(|ti| − 1)

p(ti)
.

Essentially, we seek tactics that are the least general explanation of the most solution steps in S.

During learning, tactic induction can be introduced by alternating between the standard

learning loop of ConPoLe — where it attempts to solve problems and improve its policy —

with learning tactics from existing solutions. At each round, we add discovered tactics with an

utility above a threshold Umin to the agent’s action space. Furthermore, before policy training,

we rewrite all of the agent’s solutions found so far using the new tactics, everywhere they apply.

In this way, the policy is always trained on solutions that are irreducible given the tactics induced

up to that moment.

(b) Result: learning with tactic induction

Figure 2 shows the success rate across iterations of the ConPoLe agent trained with a tactic

induction step after each batch of problems. While ConPoLe alone fails to make progress in the

later three sections, only managing to solve degenerate equations (e.g., x+ 0= 10 or 1× x+ 0=

5), tactic induction allows the agent to make progress and eventually solve all problems.

In addition to enabling the agent to solve the harder problems, we find that the hierarchy

of tactics induced during training reflects how the Khan Academy sections conceptually build

on each other. Figure 6 shows the solution found to equation from the One-Step Addition and

Subtraction Equations section, the first section that ConPoLe alone does not manage to solve.

Tactics constructed from previous solutions allows this problem to be solved within 3 steps:

first, applying the axiom introduced in this section of adding a constant to both sides, and then

applying two induced tactics that each simplify one of the sides of the equation. The left-hand

side has an expression involving x, and thus requires “combining like terms”; the right-hand side

is a simple expression with constants which can be fully evaluated.

12We can see all sequences that invoke the same actions as forming a bounded lattice, and this anti-unification procedure as

computing the meet of two sequences, which might introduce new tactic parameters. ⊤ is a sequence where all arguments

in the tactic’s body come from parameters. This structure is analogous to the subsumption lattice of first-order predicate

calculus [24]
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After enough examples of equations like this are seen, the agent induces a tactic that

solves them in one step. In terms of that tactic, together with others learned in the “One-step

Multiplication and Division Equation”, the “Two-step Equations” can indeed be solved with two

steps, as the section name suggests. However, that is only true when steps have the appropriate

conceptual level. Tactic induction enables to agent to construct those steps and successfully

exploit how exercises build on previously developed concepts.

8. Curriculum Construction from Abstractions

Our results suggest that our ability to construct abstraction is key in the acquisition of

mathematical knowledge: it’s only possible to reason about advanced results once we have

developed the necessary abstractions. But when learning mathematics, humans do not start from

scratch: we follow carefully constructed sequences of pedagogical experiences (i.e., curricula)

developed by previous generations. Following a well-designed curriculum has an unusual

effectiveness in mathematics: even discoveries that took many generations of bright individuals

to emerge and develop, such as calculus or complex analysis, later become part of traditional

high-school or college-level classes. What makes a sensible curriculum for a learner, and why can

this structure speed-up learning so effectively?

We hypothesize that the abstractions underlying the domains of interest can shed light on

these questions. Abstractions — such as our tactics — can be built by composition of simpler

abstractions. This structure suggests a partial order ≺T on tactics ti ∈ T where t1 ≺ t2 if t2
depends on t1. If abstractions are induced, i.e. extracted from concrete experiences (such as

solutions), then a teacher that wants to help a learner induce t2 would naturally place the learning

experiences leading to t1 first. Moreover, clustering the learning experiences that suggest an

abstraction is necessary might catalyze that process. Two natural questions related to this induced

curriculum arise. How well does it agree with the curriculum designed by human educators? And

how effective would that ordering be in accelerating the learning of a second agent?

Our setup allows us to empirically explore these questions in the case study of formalized

Khan Academy sections. Let P be the set of training problems seen by an agent, and suppose

T is the set of all of the agent’s induced tactics at the end of training. From T , we can compute

each tactic’s dependency set DS(ti) by taking all tactics on which ti depends directly or indirectly;

this corresponds to all tactics that precede ti in the transitive closure of ≺T . This partial order on

tactics lets us infer a corresponding partial order ≺P on problems by comparing the tactics that

their solutions use. More precisely, suppose (pa, Ta) and (pb, Tb) are two problem/tactic set pairs,

where Ta (resp. Tb) is the set of tactics invoked in the solution found for pa (resp. pb). We would

like to decide which of these problems should come first in a curriculum for a learner. A natural

choice is to consider that pa ≺P pb whenever pa depends on strictly less tactics than pb, i.e.

pa ≺P pb ⇐⇒
⋃

i

DS(T
(i)
a )⊂

⋃

i

DS(T
(i)
b

) .

Given ≺P , any topological ordering of the problems P would yield a curriculum that is

compatible with the structure of abstractions induced from solving P . Since ≺P is partial — two

problems are incomparable if each uses tactics not present in the solution to the other —, multiple

orders might agree with≺P
13. We first ask: how do these orders compare to the human-designed

order of Khan Academy sections?

To answer this question, we first sample multiple orderings ofP by running a simple stochastic

topological sorting algorithm that respects ≺P but otherwise chooses which element to put next

at random from the set of candidate next problems. Then, for each problem in the resulting order,

we take the index of the section of Khan Academy where the problem originated from (1 to 5),

13It is also possible in principle to find two solutions to the same problem that use different sets of tactics. This is rare in our

setup in practice, but more generally many consistent ways to aggregate the sets of tactics associated to a problem would still

yield a valid partial order.
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induction trained on problems seen in a random order. Bars indicate the average number of inversions — adjacent swaps

needed to make the curricula agree — with 99% confidence intervals (averaged over a random sample of topological

orderings). For comparison, we show the number of inversions that a random permutation of the problems produces.

Figure 8. Sample induced curriculum from agent’s learned abstractions.

and compute the Kendall tau distance [15] to the Khan Academy order (which, in this case, is

simply the number of inversions in the generated list of integers).

Figure 7 compares the curricula we obtain by topological orderings that respect ≺P with

random orderings of problems. In each case, we sample 100 curricula and compute the

normalized Kendall tau distances to the Khan Academy ordering, and compute 99% bootstrapped

confidence intervals. Curricula induced from ≺P are significantly closer to the Khan Academy

ordering, indicating that the underlying abstractions capture part of what makes a curriculum

pedagogically sensible.

Figure 8 shows a sample induced curriculum, comparing it to the order from Khan Academy.

The ordering of Khan Academy sections is partly recovered by the abstractions, though the

induced curricula have a much more fine-grained dependency structure. For example, the

abstractions alone suggest that the degenerate “one-step equation” x+ 0= 2 can be solved

directly from the axioms. After specific cases of combining like terms have been learned, the

induced curriculum already allows the equations depending on those cases to come.

Identifying fine conceptual dependencies at a problem level could be useful for automated

tutoring systems, which might use them to suggest problems or give worked examples to a

particular student in a personalized manner. On the other hand, Khan Academy sections have

instructional content in addition to exercises. Thus, their section structure also needs to take into

account which concepts are most easily taught together, a preference that our model does not

have.
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(a) Result: the synergy between tactic induction and curricula

We now evaluate whether this induced curriculum would help a second agent learn faster.

Intuitively, when solving problems in a random order, the first agent takes many samples to

accumulate evidence that a certain abstraction is useful, and time is wasted attempting problems

that are either too hard (require abstractions several levels above its current tactics) or too easy

(e.g., solved within a single step given its current tactics). Thus, the fact that the learner is

performing tactic induction provides a strong reason why a curriculum might be helpful.

To train a second agent using a curriculum, we first sample one of the valid topological orders

on all problems solved by the first agent. Then, we split the resulting sequence of problems into

3 blocks. When sampling problems for the second agent, we initially only sample problems from

the first block, until training success rate reaches a minimum of 90%, at which point we include

the second block in the pool of problems, and again include the third block once the agent reaches

a success rate of 90% when solving the last batch of problems. This schema matches a well-known

definition of a training curriculum [3]: a function that assigns weights to training examples at each

iteration in such a way that, at the end of training, sampling from the reweighted distribution is

equivalent to sampling from the original target distribution, but examples might be gradually

introduced throughout training.

With this setup, we observe marked benefits from training using a curriculum. In Figure 2,

we observe that agents trained on a curriculum induced from abstractions (green) indeed learn

faster than the agent that discovered the abstractions without a curriculum (blue) — in particular,

the second agent learns to solve the last section significantly earlier. Even our simple curriculum

scheme allows the agent to learn useful abstractions much faster, avoiding problems that are too

hard (i.e., would require much higher abstractions than those constructed so far). We’d expect

this effect to get even more pronounced if we were formalizing a markedly larger domain, where

only a small fraction of all new problems could be reasonably solved given the available tactics.

As this fraction diminishes, so does the likelihood of randomly selecting a problem from which

an agent like ours — trained on its successful searches — can learn productively.

This result suggests a computational account of a cultural ratchet [30] effect of mathematics:

once one generation makes mathematical discoveries, captured in a hierarchy of new abstractions

and relations between them, the next generation learns from a carefully constructed order so that

it can reach the same point of understanding much faster. In our case, our agents learned until

they reached ceiling performance in the domains we modelled. But if each of our agents had a

limited budget compared to how long it would take to fully learn the target domains — much like

humans have limited lifetimes — we would still observe an inter-generational speed-up. In this

case, the first agent would not reach mastery of all domains, but would still be able to construct

a curriculum from its experiences. A second agent would learn to reach the same performance in

much less time, and would be able to productively explore further in it’s lifetime.

9. Discussion and Conclusion

We introduced Peano, a language for expressing mathematical reasoning and an associated

environment for solving problems formally in a finite action space. Using Peano, we formalized 5

sections of the algebra curriculum from the Khan Academy educational platform. Search alone is

unable to find solutions to non-trivial problems because of a combinatorial explosion of the search

space. Reinforcement learning provides a means to learn from past searches and make progress,

but even then, longer solutions are unreachable. But combining reinforcement learning with

abstraction learning — in the form of tactic induction, where we learn useful reusable components

from solutions found so far — allows an agent to make progress, learning to solve all problems

across our 5 sections of algebra.

In addition to enabling an agent to solve problems more effectively, we have found

abstraction learning to match our intuition about which higher-level skills students need to

master when learning basic algebra. This was reflected in the fact that reordering problems using
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the dependencies between abstractions in their solutions largely recovers the Khan Academy

curriculum ordering. Note that human curricula are designed with more than problem ordering

in mind: they also aim to facilitate instruction, where conceptual cohesion is important. These

aspects are irrelevant for our agents, since they only learned from attempting problems. Even so,

the dependencies implied by the learned abstractions recovered some of the structure present in

the human-designed curriculum, suggesting that they capture a key aspect of curriculum design.

Moreover, ordering problems based on abstractions interacts favorably with our model of

inductive learning of abstractions. Such an ordering can focus the agent on problems that

elicit new abstractions which are concisely expressed in terms of the agent’s already learned

abstractions. This focus allows the agent to quickly accumulate examples from which the new

abstractions can be induced, avoiding both too easy or too hard problems. Indeed, we have

observed this reconstructed curriculum to accelerate learning of a “second-generation” agent.

Together, these results provide a computational account of the importance of abstraction

learning for human mathematics. On the one hand, tactic induction dramatically helps an

individual learner in leveraging experience gained in easier problems to solve harder ones. On

the other, after a certain domain has been mastered, the hierarchical structure of the learner’s

induced abstractions allow it to structure the learning of future generations, helping them arrive

faster at the point the first learner left off.

We believe these experiments bring an important insight towards the goal of having artificial

agents to perform human-like mathematical reasoning. Much of the past research in this direction

has been devoted to making search methods more effective through search heuristics — either

hand-crafted, learned, or a combination of both. But given any set of initial axioms, many

problems will inevitably be out of reach of search14. Abstraction learning provides a means to

progress much beyond the limit of search methods.

Several avenues for future work naturally arise. First, the Peano environment has limitations: it

does not allow the prover to create intermediate lambda terms (that is, sub-lemmas), and does not

support backwards reasoning. Both these capabilities would be needed to allow natural solutions

to problems arising in some educational domains we have not yet tackled. For instance, proofs

by induction essentially require the prover to produce one lemma per inductive case, which

corresponds to a lambda abstraction (e.g., in the case of natural numbers, the lambda would

be a function that takes n and a proof of the proposition for n, and outputs a proof of the

proposition for n+ 1). Similarly, in the case of induction, the first step is typically backwards:

when one realizes that one must prove a proposition for all natural numbers, it is natural to

start by claiming the proof will be by induction; then, the necessary “lemmas” are proved. One

challenge is extending Peano to support these natural moves while maintaining a finite action

space.

Second, the tactics we were able to learn in Section 7 are rather simple, consisting of short

straight-line programs. Our tactic language cannot express natural high-level actions involving

repetitions and conditions, such as “apply commutativity and associativity until you group x and

−x” or “evaluate all operations you can”. Extending our tactic language along with the tactic

induction algorithm will be necessary to extend our method to more complex domains. Tactic

induction becomes more challenging, but potentially more powerful, as the environment itself

becomes more expressive. Many techniques from inductive program synthesis can be potentially

helpful for that direction.

Third, our approach to library learning involves learning tactics, but not new theorems. Tactics

can give hints at useful auxiliary theorems to be proven. For example, a tactic that produces proofs

that n2 > 0 when given several integers n suggests that there is a general procedure for producing

14The analogy to program synthesis makes this point clear: if the base programming language is x86 Assembly, synthesizing

a simple list-sorting algorithm would be an enormous challenge. One would certainly not hope the synthesizer to stumble

upon a correct implementation of merge sort in the search space of sequences of x86 instructions. But in a high-level domain-

specific language with convenient operations for list processing (e.g., a function to merge two sorted lists), even merge sort

becomes short and much less surprising. This insight carries over to mathematical reasoning when we see solutions (or

proofs) as programs.
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such proofs, and that therefore ∀n, n2 > 0 is a theorem. As we move towards covering more

complex mathematical domains, we believe this notion of library learning — of useful results

in addition to solution strategies — will be important.

Finally, our approach to learning tactics relies on first encountering many examples of its use:

a tactic is deemed useful if it would have been helpful in solving many past problems. But human

mathematician are often able to perform this inductive leap after just a single example. For an

example, consider Erdös’ lower bound on the Ramsey number R(s); see [9] for a discussion of

this result and its significance. This is a result to a purely combinatorial problem that applies

a probabilistic argument in a surprising way. This single example is most often enough for

human mathematicians to realize a potentially fruitful new tactic; this has indeed turned into

the Probabilistic Method, now widely used in combinatorics. The fact that this tactic stands out

so clearly when one reads about this result poses several puzzling questions. What makes such a

solution so surprising, and certain parts of it especially interesting? Answers for these questions

would help us understand a core notion in the human practice mathematics: not only some

statements are true and some are false, but some are more interesting than others. Computationally

characterizing what interestingness means might be an important goal towards having computers

be able to provide insights into human mathematics [5]. After all, that would imply not just

proving new results, but also recognizing which ones are significant.
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