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ABSTRACT

With more videos being recorded by edge sensors (cameras) and analyzed by computer-vision deep neural nets

(DNNs), a new breed of video streaming systems has emerged, with the goal to compress and stream videos to

remote servers in real time while preserving enough information to allow highly accurate inference by the server-

side DNNs. An ideal design of the video streaming system should simultaneously meet three key requirements:

(1) low latency of encoding and streaming, (2) high accuracy of server-side DNNs, and (3) low compute overheads

on the camera. Unfortunately, despite many recent efforts, such video streaming system has hitherto been elusive,

especially when serving advanced vision tasks such as object detection or semantic segmentation.

This paper presents AccMPEG, a new video encoding and streaming system that meets all the three requirements.

The key is to learn how much the encoding quality at each (16x16) macroblock can influence the server-side DNN

accuracy, which we call accuracy gradient. Our insight is that these macroblock-level accuracy gradient can be

inferred with sufficient precision by feeding the video frames through a cheap model. AccMPEG provides a suite

of techniques that, given a new server-side DNN, can quickly create a cheap model to infer the accuracy gradient

on any new frame in near realtime. Our extensive evaluation of AccMPEG on two types of edge devices (one Intel

Xeon Silver 4100 CPU or NVIDIA Jetson Nano) and three vision tasks (six recent pre-trained DNNs) shows that

AccMPEG (with the same camera-side compute resources) can reduce the end-to-end inference delay by 10-43%

without hurting accuracy compared to the state-of-the-art baselines.

1 INTRODUCTION

Empowered by modern computer vision, video analytics

applications running on edge/mobile devices are poised to

transform businesses (retail, industrial logistics, home assis-

tance, etc), and public policies (traffic management, urban

planning, etc) (TrafficVision, 2021; TrafficTechnologyTo-

day, 2019; GoodVision, 2021; intuVision, 2021; VisionZero;

Microsoft, 2019). These emerging video applications use

deep neural networks (DNNs) to analyze massive videos

from edge video sensors, resulting in an explosive growth

of video data (SecurityInfoWatch, 2012; 2016) that serve

analytical purposes rather than being watched by human

users for entertainment (SecurityInfoWatch, 2016; Grand-

ViewResearch, 2018; Slate, 2019).

A key component of these video analytics applications is an

efficient video compression1 algorithm, which compresses

videos in realtime while preserving enough information for

accurate inference by the final DNN running on a remote

(cloud) server (StreamingMedia, 2019). An ideal video com-

pression algorithm should meet three requirements that are

key to edge video analytics applications: (1) high inference

1University of Chicago. Correspondence to: Kuntai Du <kun-
tai@uchicago.edu>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
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1We use video compression and encoding interchangeably.

accuracy by the final DNN, (2) low end-to-end delay of

encoding and streaming the video to the analytical server,

and (3) low compute overhead on the camera. There have

recently been many proposals of such analytics-oriented

video compression algorithms; for instance, they leverage

the spatial heterogeneity of the final DNNs (Du et al., 2020;

Liu et al., 2019), such as object detection and semantic seg-

mentation: only in a small fraction of regions (e.g., which

contain important details), lowering encoding quality tends

to lower inference accuracy and renders it useless.

Unfortunately, none of the existing solutions can simultane-

ously meet all three requirements, especially when serving

advanced tasks such as object detection or semantic seg-

mentation. For instance, using camera-side heuristics to

filter out (or lower the encoding quality of) unuseful pixels

quality is sensible (Zhang et al., 2015; Li et al., 2020; Canel

et al., 2019), but existing designs cannot precisely lower

the encoding quality of unuseful pixels without affecting

useful ones, unless the heuristics themselves are almost as

compute-intensive as the final DNNs. In response, some pro-

posals achieve high accuracy and low camera-side overhead

by sending the content to the server-side DNN first to ex-

tract feedback (Du et al., 2020; Liu et al., 2019; Zhang et al.,

2021) from the server, based on which the camera can then

encode the video near-optimally or run local inference (e.g.,

object tracking), causing high end-to-end delay. Other solu-

tions extract and encode feature maps on the camera (Duan
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et al., 2020; Xia et al., 2020; Emmons et al., 2019; Kang

et al., 2017b; Matsubara et al., 2019), and they work well

for classification models but not for advanced DNNs (object

detection and segmentation models), whose feature maps

are orders of magnitude larger than those of classification

DNNs.

This paper presents a new video streaming system called Ac-

cMPEG that meets the three aforementioned requirements.

At a high level, AccMPEG runs a cheap quality selector

logic (a shallow neural net, MobileNet-SSD (Howard et al.,

2017; Sandler et al., 2018)) that determines a near-optimal

encoding scheme for any frame—the encoding quality at

each (16x16) macroblock, and encodes the frames using

popular video codecs like H.26x with region-of-interest

(RoI) encoding. The insight underpinning the cheap quality

selector is that inferring the influence of the encoding quality

of each macroblock on the final DNN accuracy, which we

call accuracy gradient or AccGrad, is much simpler than

semantic segmentation (a common vision task) for multiple

reasons (§3.2): for instance, assigning high or low quality

to macroblocks of a 720p frame (1280x720) is equivalent to

assigning binary labels on an 80x45 image (a 720p frame

has 80x45 macroblocks), which can be much simpler than

most modern vision tasks.

AccMPEG’s quality selection also strikes a favorable

accuracy-delay balance. Prior techniques assign encod-

ing quality at coarser granularities, such as encoding en-

tire bounding boxes in high quality and entire background

in low quality. In contrast, AccMPEG’s macroblock-level

quality selection could outperform them by encoding some

background macroblocks in high quality (e.g., to provide

necessary context that improves accuracy) and some inside

the bounding boxes in low quality (e.g., if encoding other

macroblocks of a large object in high quality is sufficient to

achieve high accuracy).

Finally, one must be able to quickly customize the quality

selector based on the need of any new final DNN. Tradition-

ally, training such a quality selector requires running though

an entire pipeline (quality selection, encoding, and infer-

ence) over many training images. In contrast, AccMPEG

decouples the final DNN from the training of the quality

selector (§5). To this end, we directly derive the AccGrad

per macroblock by treating the final DNN as a differen-

tiable blackbox, and then train the quality selector as a

standalone (low-dimensional) segmentation model to infer

these AccGrad, which also reduces the number of training

iterations and training images.

Using videos of three different genres, three typical vision

tasks (object detection, semantic segmentation, and keypoint

detection), and five recent off-the-shelf vision DNNs, we

show that on two types of edge devices (one CPU or a Jetson

Nano) AccMPEG can reduce the inference delay by 10-43%
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Figure 1. Example results of the accuracy-delay tradeoffs of AccM-

PEG and baselines. AccMPEG achieves 10-30% smaller end-to-

end delay without sacrificing accuracy, or 1-5% higher inference

accuracy than state-of-the-art solutions.

without hurting accuracy compared to various state-of-the-

art baselines. Figure 1 shows an example improvement of

AccMPEG’s accuracy-delay tradeoffs over the baselines

(See Figure 7 for the complete results). AccMPEG’s encod-

ing speed (30fps with one Intel Xeon Silver 4100 CPU) is

only marginally slower than basic video encoding and is

much faster than the baselines that achieve similar compres-

sion efficiency. Moreover, an AccMPEG encoder for a new

DNN can be created within only 8 minutes.

Admittedly, not all techniques of AccMPEG are exactly new:

it uses standard video codec libraries (Wiegand et al., 2003;

Coding & Rec, 2013) that support RoI encoding, and many

proposals in this space (e.g., (Wang et al., 2017; Mnih et al.,

2014)) use the the spatially uneven distribution of DNN

attention. Nonetheless, AccMPEG strikes a unique balance

among encoding/streaming delay, inference accuracy, and

low compute overhead in advanced vision tasks (e.g., object

detection, segmentation). Our contribution is two-fold:

• A cheap quality selector that infers accuracy gradient

(how sensitive a DNN’s output is to the encoding quality

of each macroblock) on each frame and selects encoding

quality per macroblock, with a compute overhead only on

par with video encoding.

• Fast training (within several minutes) of the quality selec-

tor for any given final DNN, which degrades gracefully

when the final DNN changes.

2 MOTIVATION

We begin by motivating the three performance requirements

that drive our design (low accuracy, low encoding and

streaming delay, and low camera-side compute overhead).

We then elaborate on why prior solutions struggle to simul-

taneously meet the three requirements.

2.1 Video encoding for edge video analytics

Distributed video analytics: As accurate analytics requires

compute-intensive DNNs that cheap video sensors cannot

afford, the video frames are often compressed by a video

encoder and then sent to a remote server for accurate DNN-

based analytics (Figure 2). We refer to the server-side DNN
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Figure 2. Illustration of video encoding as part of the video analyt-

ics pipelines for three example tasks

as the final DNN. In this work, we focus on three video

analytics tasks: object detection (one labeled bounding box

for each object), semantic segmentation (one label for each

pixel), and keypoint detection (17 keypoints such as hand

and elbow on a human body).

There are two types of video analytics. In live analytics, the

video frames are continuously encoded and sent to a remote

server which runs the final DNN to analyze the video in

an online fashion (Du et al., 2020; Liu et al., 2019; Zhang

et al., 2015; Chen et al., 2015; Li et al., 2020; Zhang et al.,

2021; 2018; Kang et al., 2017a; Zhang et al., 2017). In

retrospective analytics, the encoded video is first stored

locally on the camera, and an operator can choose to fetch

part of the video for DNN-based analytics (Keahey et al.,

2019; Kang et al., 2018; Hsieh et al., 2018).

Performance requirements: In both live and retrospective

analytics, a key component is the video encoding algorithm.

An ideal video encoding algorithm for distributed video

analytics should meet three goals:2

• High accuracy: The encoded video must preserve enough

information for the final DNN to return nearly identical

inference results as if it runs on the original video frames.3

• Low delay: The delay of encoding the video (encoding

2Different video analytics applications may have different ob-
jectives in terms of inference accuracy and delay (e.g., augmented
reality is more delay sensitive than traffic monitoring, and vehi-
cle collision detection is more sensitive to accuracy than vehicle
counting). Instead of evaluating performance of a video analytics
pipeline in the context of a particular application, this work focuses
on the relative improvement in accuracy, delay, and camera-side
compute overhead, and we leave application-specific interpretation
of the performance to future work.

3To calculate the accuracy of an inference result on a com-
pressed frame, we obtain the “ground truth” results by running
the final DNN on the high-quality video frames (rather than using
the human-annotated labels). Thus, any inaccuracy will be due to
the video stack (e.g., video compression, DNN distillation), rather
than errors made by the final DNN itself. This is consistent with
recent work (e.g., (Zhang et al., 2018; 2015; 2017; Keahey et al.,
2019; Mullapudi et al., 2019; Kang et al., 2017a)).

delay) and streaming the video to the server (streaming

delay) should be low.

• Low camera cost: The encoding algorithm should be

cheap enough to run at 30fps with only marginal extra

compute overhead compared to encoding videos using

popular codecs such as h.26x.

2.2 Limitations of previous work

Here, we categorize previous work in four general ap-

proaches and explain why they cannot meet all performance

requirements simultaneously.

Local frame-filtering schemes: One of the popular tech-

niques is to let the camera run a simple logic to identify

which frames are irrelevant to the vision task and thus can

be discarded (Li et al., 2020; Canel et al., 2019; Chen et al.,

2015) or encoded in low quality (Zhang et al., 2018). This

approach works well when the video content is relatively

stationary, where the incidents/objects of interest are rare

and easy to detect; e.g., in wildlife camera feeds, animals are

rare and readily detectable since they are the only moving

objects on a static background. However, for frames that

are not discarded, this approach encodes the entire frames

with uniform quality, which can be suboptimal, since the

objects of interest often occupy only a small fraction of each

frame (Du et al., 2020; Liu et al., 2019), leading to higher

streaming delays than necessary.4

Local heuristics to lower background quality: Since

objects of interest often account for a small fractions of

each frame, some work (e.g., (Zhang et al., 2015; Dai et al.,

2021)) uses local heuristics to filter out (or lower the quality

of) the background pixels and sends the remaining object-

related pixels in high quality to the server-side final DNN.

However, these local heuristics are constrained by the lim-

ited camera-side compute resources, giving rise to false

negatives—object-related pixels are treated as background

and thus filtered out or sent in low quality, causing the DNN

to miss objects of interest. For instance, to detect potential

object-related regions, Vigil (Zhang et al., 2015) relies on

a low-accuracy non-convolutional Haar-cascade-classifier-

based object detector, and CiNet (Dai et al., 2021) uses a

very shallow convolutional network (with only 2 convolu-

tional layers, 1 average pooling layer and 2 fully-connect

layers) designed to handle only few objects per frame. There

are also deeper NNs such as MobileNet-SSD (Howard et al.,

2017) that run on resource-constrained cameras, but they

have to downsize frames to low resolutions (e.g., 300×300)

for real-time inference, thus prone to missing small objects.

Server-driven compression: To overcome the camera-

side resource constraints, another approach (Du et al., 2020;

4Although CloudSeg (Wang et al., 2019b) does not perform
frame filtering at the camera side, it also shares the limitation since
it compresses entire frames in same encoding quality.
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Liu et al., 2019; Zhang et al., 2021) leverages the abundant

server-side compute resources to generate feedback on how

videos should be encoded. This approach generally com-

presses videos efficiently while achieving high accuracy, but

it suffers from a high inference delay. DDS (Du et al., 2020),

for instance, sends a low-quality video to the server-side

DNN which returns to the camera which regions must be

encoded in high quality, but under high network latency,

getting such server-driven feedback can take at least two

network round-trip times before the camera can actually

encode the video for final DNN inference, causing high

inference delay on each frame.

Local DNN compression: Instead of encoding videos on

the camera, some proposals also extract the final DNN’s

feature maps on the camera and compress the feature maps

which might contain less information than the original raw

frames (Duan et al., 2020; Xia et al., 2020; Emmons et al.,

2019; Kang et al., 2017b; Matsubara et al., 2019). While this

approach has shown promise with classification or action

recognition DNNs (Kang et al., 2017b; Emmons et al., 2019;

Duan et al., 2020), these tasks do not require the spatial loca-

tions of objects, allowing aggressive aggregation of feature

maps over an entire frame. In contrast, the vision tasks that

we focus on (e.g., object detection, semantic segmentation)

are sensitive to object locations, making the intermediate

feature maps much larger and much more difficult to be

compressed efficiently. For example, many state-of-the-art

object detectors (e.g., (Detectron2)) use expensive feature

extractors such as ResNet101 (He et al., 2016), and if we

feed a 720p (1280 × 720) frame through even parts (e.g.,

90) of its convolution layers, the feature map still contains

2 × 107 floating-point numbers per frame, 20x more than

the number of pixels in the original frame.

There are also proposals to train DNN autoencoders that

compress video to a smaller size than the popular video

codecs do, but these DNNs are much more compute-

intensive than the video codecs and even the final DNN.

For example, NLAM (Liu et al., 2020) requires performing

expensive 3D convolutions on videos for more than 30 times,

while an object detector backbone (e.g., ResNet34 (He et al.,

2016)) only performs 2D convolution for 34 times.

3 OVERVIEW OF ACCMPEG

In this section, we present AccMPEG, a new video encoding

algorithm that uses a cheap camera-side model to decide

which regions should be encoded in higher quality. Here,

we introduce AccMPEG’s workflow and its challenges, and

then present the key idea that addresses these challenges.

3.1 Workflow and challenges of AccMPEG

Figure 3 depicts the workflow of AccMPEG. When a

video frame arrives, AccMPEG first feeds it through a

cheap quality selector model, called AccModel, to obtain

a macroblock-level quality selection—which macroblocks

(16x16 blocks, which many modern video codecs (Wiegand

et al., 2003) use as the basic encoding unit) should be en-

coded in high quality and which should be in low quality.

The camera then encodes the video frames according to

the quality selection and sends the encoded video to the

server for the final DNN inference. The quality selector

(AccModel) is trained for each final DNN offline, such that

when the video frames are encoded in its selected quality, the

DNN can return accurate inference results. As we will see

in §5, the quality selector can also be re-used among DNNs

of similar tasks with only marginal performance penalty.

Challenges: The key component of AccMPEG is the qual-

ity selector (AccModel) that selects the encoding quality

per macroblock. It has three challenges: (i) How to opti-

mally assign encoding quality at the fine spatial granularity

of macroblocks to achieve better accuracy-delay tradeoffs

than baselines? (ii) How to minimize the per-frame com-

pute overhead of AccModel to allow real-time video en-

coding on the camera side? And (iii) how to quickly train

AccModel for each server-side DNN?

3.2 Key idea: Accuracy Gradient

The key idea to address these challenges of AccModel is

to obtain the Accuracy Gradient (hereinafter AccGrad) of

each macroblock, which measures how much the encoding

quality at the macroblock can affect the DNN inference

accuracy. Mathematically, the AccGrad of macroblock B

in a given frame is defined as:

AccGradB =
∑

i∈B

∥

∥

∥

∥

∂Acc
(

D(X);D(H))

∂Xi

∣

∣

∣

∣

X=L

∥

∥

∥

∥

1

· ∥Hi − Li∥1,

(1)
where i, L, and H denote a pixel within B, the low-quality

encoded frame, and the high-quality encoded frame, respec-

tively. D denotes the server-side DNN inference function,

Acc (D(X);D(H)) is the accuracy of inference result on

X (i.e., its similarity with the inference result on the high-

quality frame D(H)), and ∥ · ∥1 is the L1-norm.

Intuitively, the encoding quality of the macroblocks with

higher AccGrad values have a greater influence on the

DNN accuracy, so these macroblocks should be encoded in

high quality. We will present the AccGrad-based quality

assignment logic in §4. Appendix B gives the mathematical

reasoning behind Equation 1.

AccGrad enables a series of system optimizations that help

address the challenges in §3.1.

Advantage over prior region-based compression: We

begin with the benefit of AccGrad-based quality selection

over the traditional region-based quality selection (Du et al.,

2020; Liu et al., 2019; Zhang et al., 2021), which identi-

fies regions with greater impact on DNN inference (e.g.,

via region proposals (Ren et al., 2015)) and then use high
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Figure 3. Overview of AccMPEG.

Figure 4. Examples of inefficiencies of object-based encoding

(high quality in the object bounding box): (a) Objects not de-

tected unless nearby pixels are in high quality; and (b) Objects

still detected even if just parts are in high quality.

quality to encode some region proposals in their entirety

and low quality to encode the whole background. These

coarse-grained encoding schemes can be inefficient. On

one hand, some surrounding pixels of the object bounding

boxes can still be crucial for the final DNN to accurately

detect/classify objects and demarcate their boundaries from

the background. For instance, to detect the car in Figure 4(a),

one must encode not only its bounding box in high quality

but also some neighboring macroblocks too. On the other

hand, some pixels inside an object’s bounding box (e.g.,

the smooth surface of a car in Figure 4(b)) have similar

RGB values regardless of the encoding quality, so it is safe

to compress them in low quality without hurting inference

accuracy.

In contrast, AccGrad by definition can capture such fine

distinctions among macroblocks. For instance, the mac-

roblocks surrounding the car’s bounding box (Figure 4(a))

will have high AccGrad values in Equation 1, because

Acc
(

D(L);D(H)) will have a high derivative with respect

to the pixels in these macroblocks. Similarly, the smooth sur-

face of the car in Figure 4(b) is likely to have low AccGrad

(despite being part of the car object), because ∥Hi − Li∥1
will be small on the pixels i in these macroblocks.5

5AccGrad may look similar to the saliency maps in computer
vision, but there is a key distinction. While saliency captures which
pixel values have more influence on the DNN output, AccGrad
captures how much changing a macroblock’s encoding quality
changes the DNN inference accuracy.

AccModel might not be compute-intensive: AccModel

can be seen as a segmentation problem, but unlike normal

segmentation models that are compute-intensive, a cheaper

model might suffice for AccModel for three reasons.

First, unlike traditional image segmentation that gives one

label per pixel, AccModel returns one label per 16x16 mac-

roblock (i.e., all pixels in a macroblock share the same DNN

output). Therefore, unlike traditional convolutional opera-

tions which scan the image pixel by pixel, AccModel only

needs to scan the image macroblock by macroblock (saving

upto 162 = 256x on convolutional operations).

Second, AccModel only needs to do a binary classification

on each macroblock (either high quality or low quality),

rather than multi-class segmentation, which further reduces

the complexity of AccModel.

Third, while accurate segmentation must minimize both

false positives (e.g., pixels misclassified as objects) and false

negatives (e.g., pixels misclassified as background), AccM-

PEG has more tolerance towards false positives (e.g., mac-

roblocks mislabeled with high AccGrad). Encoding a few

more macroblocks in high quality has marginal impact on

the delay-accuracy tradeoff, because the intra-frame encod-

ing commonly used in video codecs makes the compressed

video size grow only sublinearly with more high-quality

regions. Appendix C provides the empirical evidence.

Fast training of AccModel: Training AccModel naively

can be prohibitively expensive, because it requires run-

ning numerous forward/backward propagations on the final

DNN to calculate losses and obtain gradients. Fortunately,

AccGrad can be directly derived from the final DNN (Equa-

tion 1) using only two forward propagations and one back-

ward propagation. As we will see in §5, this allows us to

separate the compute-intensive final DNN from AccModel

training. This can save 10× overhead, as AccMPEG trains

AccGrad for 15 epochs (see §5 for details), each requiring

only three propagations through the final DNN.

4 ONLINE ENCODING

We now describe AccMPEG’s online encoding process, in-

cluding the architecture of AccModel and how AccMPEG
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assigns encoding quality to each macroblock.

Architecture of AccModel: We leverage the pretrained

MobileNet-SSD feature extractor (Howard et al., 2017), a

widely-used feature extractor for cheap edge devices, as the

feature extractor of AccModel. We resize these features

so that one macroblock corresponds to one feature vector,

and append three convolution layers to classify which mac-

roblock should be in high quality.

Compute cost of AccModel: Our model is much more

compact than other commonly-used feature extractors. To

put it into perspective, our AccModel uses 12 GFLOPs,

about 3× less than a typical cheap convolutional model such

as ResNet18 which uses 33 GFLOPs. In addition, since the

architecture consists only of convolutional layers (except

for batch normalization and activation), its computational

overhead is proportional to the size of the input frame (e.g.,

4× faster when the frame size halved in both dimensions).

AccGrad-based quality assignment: Given macroblock-

level AccGrad of a frame, AccMPEG then uses a thresh-

old α to determine which macroblocks should be in high

quality—all blocks B with AccGradB ≥ α will be encoded

in high quality. After a set of blocks are selected, AccM-

PEG then expands these selected blocks to each direction

by γ (by default 5) blocks (if they are not already selected).

Intuitively, a lower α increases the accuracy at the expense

of encoding more macroblocks with high AccGrad.

Frame sampling for cheap inference: We further reduce

AccModel’s compute overhead by running it once every

k frames and using its output to encode the next k frames

(by default, k = 10). Empirically, it significantly reduces

the camera-side overhead (Figure 9) without much impact

on accuracy. The intuition is that although the AccGrad of

a macroblock fluctuates over time, its value will not shift

dramatically across consecutive frames to change its quality

selection.

To empirically verify this intuition, we use frame distance

(the absolute delta between the frame numbers of two

frames) to measure the temporal distance between two

frames and examine how the encoding quality assignment

(we measure this change by the percentage of macroblocks

that the encoding quality remains the same) varies with

greater frame distance. Figure 6 shows that on the quality

assignment generated by running AccModel on images of

the dashcam dataset (see §6 for the detail of the dataset), the

encoding quality assignment of at least 84% of macroblocks

remains unchanged within 10 consecutive frames.

5 OFFLINE TRAINING

AccModel customizes the video encoding for near-optimal

accuracy-delay tradeoffs of a given final DNN model. So

a natural question is how to quickly create the AccModel

for a new DNN. Here, we describe how we speed up the

(a) Conventional training pipeline

(b) Decoupling the final DNN from training
using AccGrad

Figure 5. Contrasting the conventional approach to AccModel

training with AccMPEG. We separate the final DNN from training

by first generating the ground-truth AccGrad from the final DNN,

and then training AccModel to minimize the loss with the ground-

truth AccGrad, which significantly speeds up the training.
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Figure 6. The encoding quality of over 84% of the macroblocks

remains to be the same when the frame distance is less than 10.

training of AccModel by separating the final DNN from the

training process, and then explain why reusing AccModel

may also lead to decent performance.

Conventional training process: Before describing how

AccMPEG trains AccModel, we first explain the straight-

forward approach to training AccModel (depicted in Fig-

ure 5a) which sets up the entire pipeline of encoding and

inference and minimizes the end-to-end loss (we will define

the training loss soon). For each input image, it first feeds

the high-quality version H through the AccModel to get the

AccGrad matrix M = AccModel(H), creates the encoded

image X = M×H+(1−M)×L by linearly combining the

low-quality version L and H using M6, feeds it through the

final DNN to get result D(X), and finally calculates the ac-

curacy (loss) of D(X) with D(H) as the ground truth using

Acc. This training process is actually widely used in com-

puter vision (e.g., (Goodfellow et al., 2014; Johnson et al.,

2016; Ledig et al., 2017)) and video analytic systems (Wang

et al., 2019b). However, it is prohibitively expensive: each

forward or backward propagation of the pipeline must run

6We make the elements in M to be between 0 and 1 by applying
a softmax filter on the output of AccModel.
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the expensive D, in addition to AccModel and Acc each

once. Thus, the compute overhead of AccModel training is

dominated by running the forward/backward propagations

on D (caching AccModel results does not help, since the

AccModel output changes after each update).

Separating final DNNs from training via AccGrads: In

contrast, AccMPEG calculates the AccGrads on each train-

ing image first (using Equation 1), which requires only one

forward and backward propagation of D on the high-quality

version of the image. Once the AccGrads of each training

image is generated, the training can be reformulated

as minAccModel CrossEntropy
(

AccModel(H),M∗
)

,

where M∗ is the “ground truth” AccGrad matrix of size

w · h generated by Equation 1 (not to be confused with

the ground-truth inference output of a final DNN) and

the cross-entropy loss (with 4x weight on those blocks

that should be in high quality) commonly used in deep

learning to measure the discrepancies between two vectors.

Training AccModel thus requires only one forward and one

backward propagation on AccModel. Thus, by generating

the ground truth first and then training AccModel, we can

train the AccModel within 8 minutes using 8 GPUs (§6.4).

Using pre-trained models: Instead of training AccModel

from scratch, we initialize AccModel with a pretrained

MobileNet-SSD backbone and then fine-tune the model. It

has the similar benefit of model fine-tuning widely used

in industry: the training can converge with fewer training

epochs on fewer training images (Gao et al., 2021). Specifi-

cally, we train AccModel on a 10× randomly downsampled

training set of the final DNN model (e.g., COCO dataset)

for 15 training epochs and pick the model with lowest loss

on cross validation set as our final AccModel. The total

training time of AccGrad is about 8 minutes (§6.4).

Reusing AccModel: Ideally, any new server-side final

DNN requires a (slightly) different AccModel. However,

when the new final DNN is trained on the same dataset

(same images and same labels) as another final DNN (whose

AccModel is already trained), it is possible to reuse the

AccModel. This is because the macroblocks with high

AccGrads are typically those related to small, partially oc-

cluded, or darkly lit objects in the dataset. Thus, training

the new AccModel based on the AccGrads of the old fi-

nal DNN on the same dataset would likely yield a similar

AccModel. Since DNN models are sometimes trained on

popular datasets (such as the COCO dataset (COCO, 2017)),

AccModel can sometimes be re-used among different final

DNNs (we will empirically evaluate it in Figure 11).

6 EVALUATION

Finally, our evaluation of AccMPEG shows that:

• AccMPEG achieves better accuracy-delay tradeoffs: 10-

43% lower delay while maintaining comparable accuracy

Name Vision task # Videos # Frames

Driving object detection 5 9000
Dashcam object detection 7 12600

Surf semantic segmentation
keypoint detection

6 6598

Table 1. Summary of our datasets.

as the baselines. The improvement remains similar on

three vision tasks and five final DNN models with a vari-

ety of architectures and backbones (§6.2).

• AccMPEG has the lowest camera-side overhead com-

pared to all the baselines that deploy customize logic at

the camera side and achieve comparable accuracy, and

the extra compute overhead due to AccModel is less than

the popular video codecs (§6.3).

• Given a final DNN, an AccModel can be created within

8 minutes using 8 GPUs. Even if a final DNN changes

without updating the AccModel, AccMPEG still achieves

better accuracy-delay tradeoffs if the new vision model is

trained on the same dataset as the previous one (§6.4).

6.1 Setup

Source code: Our source code is publicly available (see

appendix A for the details).

Dataset: Table 1 summarizes the 3 video datasets we used

to evaluate AccMPEG: 5 driving videos and 7 dashcam

videos for object detection, and 6 surfing videos for key-

point detection and semantic segmentation. All videos are

obtained by searching on YouTube. We search keywords

(such as “highway dashcam hd”) in incognito mode to avoid

customization bias. All videos and collection details are

available in this anonymous link (AccMPEG).

Device setting: We create a 30fps video source where

different methods can read raw (1280×720) frames one

by one. To achieve real-time video streaming, we let the

camera stream out the video in the form of short video

chunks (this aligns with previous work (Du et al., 2020;

Zhang et al., 2018)), each consisting of 10 frames. To

fairly compare the encoding delay of different methods, we

benchmark the encoding delay on one Intel Xeon Silver

4100 CPU and run the encoding of AccMPEG and baselines

everytime the camera reads 10 frames for its current video

chunk (we also benchmark the performance of AccMPEG

on baselines on Jetson Nano, a cheap GPU device (with one

128-core Maxwell GPU, one Quad-core ARM A57 CPU

and 4GB memory (ChameleonHardware, 2021)))7 provided

in the Chameleon testbed (Keahey et al., 2020)). We use

openVINO to accelerate8 all camera-side DNNs on CPUs.

7A Jetson nano developer board is only 60$ (Amazon).
8This acceleration will not reduce floating point precision, and

thus will not alter the inference result of AccMPEG.
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We also make minor modifications to the H.264 codec to

enable macroblock-level region-of-interest encoding.

Server: We train AccModel offline on the server with 8

GeForce RTX 2080 SUPER GPU. In the online encoding

phase, we run the decoding on Intel Xeon Silver 4100 CPU

and run the inference on GeForce RTX 2080 SUPER GPU.

Video analytics tasks and DNNs: We test AccMPEG on

three tasks: object detection, semantic segmentation and

keypoint detection. Here we list the DNNs we use for these

tasks (We use italic to show the DNN that we use to deliver

AccModel for that vision task. All DNNs are pretrained

from COCO dataset (COCO, 2017)). We pick three object

detection models that represent three types of different ar-

chitectures: FasterRCNN (Ren et al., 2015) (a two-stage

detector with features from different resolutions (Lin et al.,

2017a)), YoLov5 (Redmon & Farhadi, 2017) (a single-

stage detector), and EfficientDet (Tan et al., 2020) (a de-

tector with machine-optimized architecture (Zoph & Le,

2016)). We pick FCN-ResNet50 (PyTorch) for semantic

segmentation. We also pick two keypoint detection models:

Keypoint-ResNext101 (He et al., 2017; Xie et al., 2017) and

Keypoint-ResNet50 (He et al., 2017),

Setting of AccMPEG: For the encoding quality, we use

(30, 40) as the QP value for high quality and low quality

for object detection and (30, 51) for keypoint detection. By

default, we use α = 0.2 as the AccGrad threshold.

Baselines: We use baselines from five categories:

• Uniform quality: AWStream (Zhang et al., 2018) tunes

the encoding parameters of the underlying codec (resolu-

tion, QP, and frame rate), though unlike AccMPEG, they

use the same configuration for all frames in each time win-

dow (on the timescale of minutes)9. (VStore (Xu et al.,

2019) shares a similar idea.) To show their limitation,

we use an “idealized” version where the parameters are

set such that the size reduction is maximized while its

accuracy is almost the same to AccMPEG.

• Server-driven approach: DDS (Du et al., 2020) and

EAAR (Liu et al., 2019) belong to this type and they

share the idea of encoding different regions with different

quality levels. By default, we use QP = (40, 30) as the

low quality and high quality settings.10

• Frame filtering: We choose Reducto (Li et al., 2020), one

of the most recent proposals along this line. We use the

implementation from (Github, b).

• Autoencoder: We pick a pre-trained autoencoder (Github,

a) (introduced in (Theis et al., 2017)).

9We assume that AWStream can obtain the accuracy-delay
profile without extra cost, which makes AWStream strictly better.

10Instead of letting EAAR predict the region proposal on new
incoming frames through tracking, we directly let EAAR obtain
the new region proposal, which makes EAAR strictly better.

We do not include CloudSeg (Wang et al., 2019b) in our

evaluation, because it augments the server-side DNN by

a super-resolution model, which is complementary to the

camera-side video encoding schemes above. We also does

not apply AccMPEG’s 10% frame sampling (§4) to these

baselines to reduce their camera-side overhead, because only

Reducto and Autoencoder have heavy camera-side over-

head, but with 10% frame sampling, they will simply ignore

90% of frames and thus have significantly lower accuracy,

whereas AccMPEG still encodes every frame (though with

slightly outdated AccGrad) and can deliver high accuracy.

Metrics: Following the definitions in §2.2, we compare

different techniques along three key metrics: delay, infer-

ence accuracy, and camera-side compute cost (the cost is

measured by camera-side encoding delay and overheads).

In particular, we use F1 score as the accuracy metric in ob-

ject detection, IoU in semantic segmentation, and distance-

based accuracy in keypoint detection. These metrics all

values in [0,1], with higher values the better. We calculate

the camera-side delay on one Intel Xeon Silver 4110 CPU.

We assume there are 5 video streams sharing a network link

with 2.5Mbps bandwidth upload speed (the average upload

speed of Sprint LTE connection (OpenSignal, 2018)) and

100ms latency (Wang et al., 2019a). We do not include the

server-side inference delay, since AccMPEG does not put

extra compute cost on the server side, and the optimization

of server-side delay is not our contribution either.

6.2 Better accuracy-delay tradeoffs

Figure 7 compares AccMPEG’s performance distributions

with those of the baselines on the three tasks (on their per-

spective default full DNNs) and various datasets11. We can

see that AccMPEG outperforms the baselines: in terms of

delay, AccMPEG has 10-43% smaller encoding delay than

the best baselines with comparable accuracy. Vigil has lower

streaming delay than AccMPEG, but it has low accuracy

(many small objects are missed). AccMPEG is also 0.5-

2% more accurate when compared to the non-server-driven

baselines with lower streaming delay. Though some server-

driven techniques have higher accuracy than AccMPEG on

region-proposal-based DNNs like FasterRCNN, they are not

applicable to DNNs that lack explicit region proposals like

Yolo and EfficientDet.

We also evaluate AccMPEG’s performance on semantic

segmentation with FCN (PyTorch) as the final DNN. We

find that AccMPEG has 20% higher accuracy than Reducto

with lower streaming delay, or 5% lower streaming delay

while maintaining higher accuracy than AWStream. This

improvement may seem marginal, but the actual improve-

11We do not evaluate region-proposal-based approaches like
EAAR and DDS on EfficientDet and Yolo since these DNNs have
no region proposal (except that we evaluate DDS on Yolo since
DDS develops specific heuristics to handle Yolo).
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Figure 7. The delay vs. inference accuracy of AccMPEG and several baselines on various video datasets (in parentheses) and different

DNN models (the three object detection models use different backbones). AccMPEG achieves high accuracy with 10-43% delay reduction

on object detection and 17% on keypoint detection. Ellipses show the 1-σ range of results.
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Figure 8. Delay breakdowns of AccMPEG and baselines. AccM-

PEG achieves minimum streaming delay and has marginally higher

encoding delay than codec encoding (used in AWStream, EAAR).

ment of AccMPEG will be higher, since AWStream streams

the highest-quality video whenever bandwidth permit to the

server to identify the best video encoding decision, which

can incur a high delay.

Autoencoder: We also compare AccMPEG to the autoen-

coder (Theis et al., 2017) for object detection on the highway

dashcam videos. AccMPEG achieves an accuracy of 85%,

but the autoencoder only achieves 62%. Moreover, the en-

coded frame size of AccMPEG is about 7KB, much less

than that of autoencoder (240KB (Github, a) per frame).

As a result, the streaming delay of autoencoder is over 38

seconds. Thus, AccMPEG has a much better accuracy-delay

tradeoff.

6.3 Encoding and streaming delays

Delay breakdown: Figure 8 shows the video codec en-

coding delay, camera-side extra compute delay, and the

streaming delay of AccMPEG and those of the baselines

based on the settings of Figure 7e (other settings have simi-

lar delay comparisons). We can see that AccMPEG has the

lowest end-to-end delay on both camera-side hardware set-

tings compared to all baselines except Vigi (whose accuracy

is much lower than AccMPEG in Figure 7).

Camera-side compute cost: We then zoom in on the

camera-side compute cost, which consists of encoding de-

lay and the camera-side overhead delay. Figure 8 shows

that AccMPEG’s camera-side AccModel is cheaper than

H264-based video encoding on the CPU, and is 20x cheaper

than encoding on Jetson Nano. Moreover, AccMPEG’s

camera-side compute cost is lower than existing camera-

side heuristics, such as Vigil and Reducto. Compared to

Vigil, AccMPEG has lower compute cost, because it only

runs the camera-side AccModel inference once every 10

frames, whereas Vigil performs camera-side inference on

every frame. Compared to Reducto, AccMPEG does have

higher encoding delay (since Reducto discards some frames

and only encodes the remaining ones), but Reducto runs

expensive camera-side logic on every frame12 and thus has

a much higher camera-side overhead than AccMPEG.

As a reference point, we also test the camera-side overhead

of running the expensive DNN on the camera: the camera-

12Reducto performs Harris feature extraction, which contains
several convolution filters and per-pixel eigen value decomposition
and contributes 70% of the camera-side ovehead.
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Figure 9. Breakdowns of camera-side delay: the delay of running

AccModel is marginal (more so after the frame sampling opti-

mization), compared to encoding delay of H.264 and VP9.
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Figure 10. The delays of AccMPEG and baselines under varying

network bandwidth.

side delay is almost 7 seconds on CPU, and the expensive

DNN cannot fit into the GPU memory of Jetson Nano.

Delay vs. bandwidth: Next, we benchmark the impact of

network bandwidth on the video-analytics delay, we calcu-

late the delay of AccMPEG and various baselines (except

for Vigil, which has accuracy lower than 80% for most of

the cases) under increasing network bandwidth. From Fig-

ure 10, we see that AccMPEG consistently achieves the

lowest delay under different network bandwidth, though

with more gains under low bandwidth.

Delay optimizations of AccMPEG: AccMPEG uses two

techniques to speed up its AccGrad-based encoding: (1)

using region-of-interest encoding to encode the video (rather

than encoding video twice as in DDS (Du et al., 2020)),

and (2) running the AccModel model once per 10 frames.

Figure 9 shows their incremental reductions on AccMPEG’s

camera-side delay. The figure breaks down the encoding

delay of AccMPEG into AccGrad prediction (AccModel)

and the actual codec encoding, and as a reference point, it

also shows the encoding delay of H.264, DDS and VP913.

As AccMPEG uses the AccModel (a shallow DNN) for

its accuracy gradient model, the delay of accuracy gradient

prediction is much smaller than prior work such as DDS

which needs to actually run the final DNN. That said, it

is sizable compared with the encoding delay. AccMPEG

further reduces the delay by running AccModel on one

frame every 10 frames, which allows AccMPEG to encode

frames at 30fps on one Intel Xeon Silver 4100 CPU.
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Figure 11. Even if we reuse the AccModel trained for a different

final DNN, AccMPEG still offers decent performance gain over

the best H.264 encoding scheme. DNN A → DNN B means the

AccModel trained for A is reused to encode videos for B.

Basic training pipeline (Figure 5(a)) 453 minutes
After decoupling final DNN from train-
ing (Figure 5(b))

74.0 minutes

After 10× training data downsampling 7.40 minutes

Table 2. The training time of AccMPEG on 8 GPUs.

6.4 Fast AccModel training and reusing

Efficacy of reusing AccModel: From Figure 11, we see

that in object detection, the AccModel trained on Faster-

RCNN also provides performance benefit on YoLo and Ef-

ficientDet across two different datasets. Similarly, in key-

point detection, the AccModel trained on KeypointRCNN-

ResNet101 also generalizes to KeypointRCNN-ResNet50

on the surfing dataset. This demonstrates that AccMPEG

can generalize to different vision models and provide better

accuracy-delay trade-off, as long as the models are trained

on the same dataset (as explained in §5).

Fast training: To benchmark the training speed, we train

AccModel for FasterRCNN (Ren et al., 2015) on 10x-

downsampled COCO dataset (COCO, 2017). The training

takes less than 8 minutes in total on 8 RTX 2080 Super GPU.

From Table 2, we see that downsampling and the AccGrad

abstraction reduces the overall training time by 60x.

7 DISCUSSION ON GENERALIZATION OF

ACCMPEG

While AccMPEG improves performance in most cases, Ac-

cMPEG does not generalize to all video content and may

have marginal or negative improvement for some video con-

tent.

13We use the real-time encoding option of VP9.
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First, our camera-side cheap quality-selection model may

fail when the content of test videos is out-of-distribution

(e.g., when the videos contain objects of a new class that

did not appear in the training set of AccModel). That said,

in Figure 7, we empirically show that AccMPEG performs

reasonably well on YouTube videos, when AccModel is

trained on images sampled from the large training set of the

server-side final DNN.

Second, AccMPEG reduces the overhead of AccModel

by using a cheap architecture and running it on sampled

frames (§4), but these cost optimization techniques may

make it fail on certain types of video content. As AccModel

is run every k = 10 frames, it will have low accuracy

if the objects are moving very quickly (e.g., monitoring

camera feeds from a race car). Moreover, the architecture of

AccModel—MobileNet-SSD (Sandler et al., 2018)—works

well on medium to large sized objects, and it can perform

poorly with tiny objects (such as distant vehicles in drone

videos).

8 RELATED WORK

Video analytics pipelines: There are many proposals to

balance video analytics accuracy and its costs, including

computing cost (e.g., (Zhang et al., 2017; Keahey et al.,

2019; Xu et al., 2019; Canel et al., 2019; Xu et al., 2018)) as

well as compression efficiency (e.g., (Du et al., 2020; Zhang

et al., 2018; Liu et al., 2019; Zhang et al., 2015)). Besides

those elaborated elsewhere in the paper, other techniques

also try to discard unimportant frames (Shen et al., 2017;

Chen et al., 2015; Apicharttrisorn et al., 2019; Canel et al.,

2019; Hsieh et al., 2018) or downsize the quality/framerate

of an entire video segment (Xu et al., 2019; Keahey et al.,

2019; Zhang et al., 2017; Haris et al., 2018), offload infer-

ence of RoI bounding boxes (Zhang et al., 2021) to remote

servers, and raise bitrate in regions found by feeding DNN

through the final DNN (Galteri et al., 2018; Choi & Bajic,

2018). Again, AccMPEG differs in that it introduces a cheap

DNN-aware module to perform macroblock-level (rather

than object-based) quality optimization and can quickly cus-

tomize for any given final DNN.

Vision feature encoding: Other video encoders extract

vision feature maps from the video and then compress the

features (e.g., (Duan et al., 2020; Xia et al., 2020; Emmons

et al., 2019; Kang et al., 2017b; Matsubara et al., 2019)),

with some efforts to standardize this approach (Gao et al.,

2021; VCM; CDV). Some also optimize for both vision

accuracies and human visual quality (e.g., (Hu et al., 2020)).

These video codecs explore a different design point than

AccMPEG: (1) they assume that all video analytics DNNs

share the same feature extractor (instead, AccMPEG treats

each final DNN as just a blackbox); (2) they redesign both

the encoder and the decoder (instead, AccMPEG run on any

standard video codec); and (3) Their target vision tasks (e.g.,

classification or action recognition) have more error toler-

ance when compressing feature maps (instead, AccMPEG

handles more expensive tasks, like object detection, where

any distortion on the feature maps matters).

Deep learning-based video compression: Some paral-

lel efforts also replace the video codec by autoencoders

(e.g., (Lu et al., 2019; Habibian et al., 2019; Agustsson

et al., 2020; Rippel et al., 2019; Wu et al., 2018)). In a simi-

lar spirit, recent work trains differentiable video encoders

to improve inference accuracy on the decompressed videos

(e.g., (Chamain et al., 2021)). These DNN-based autoen-

coders do not directly apply, since these autoencoders are

orders of magnitude more expensive than the standard video

codes (used in AccMPEG): the fastest autoencoder runs at

similar speed on GPU as H264 on CPU (Rippel et al., 2019).

Adapting spatial scales in computer vision: The com-

puter vision community also uses adaptive image sizing

or partitioning to improve inference accuracy; e.g., feature

pyramid networks (FPN) (Lin et al., 2017b) and BiFPN (Tan

et al., 2020) extract feature maps from multiple resolutions

to detect small objects. Others use attention mechanisms to

focus computation on regions with potential objects (Wang

et al., 2017; Ozge Unel et al., 2019; Ržička & Franchetti,

2018; Fan et al., 2019). While AccMPEG shares similar in-

sights, it optimizes the video compression efficiency, rather

than computation complexity.

9 CONCLUSION

In this work, we present AccMPEG, a new video codec for

video analytics that improves the tradeoffs between infer-

ence accuracy and compression efficiency for a variety of

computer vision tasks. It does so by treating any vision

DNN as a differentiable black box and infers the accuracy

gradients to identify where in the frame the DNN’s inference

result is highly sensitive to the encoding quality level and

thus needs to be encoded with high quality. Our evaluation

of AccMPEG over three vision tasks shows that compared

with the state-of-the-art baselines, AccMPEG reduces upto

43% of the delay while increasing accuracy by upto 3% at

the same time. Moreover, AccMPEG’s camera-side over-

head is almost the same as those of the traditional codecs.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact includes the implementation of AccMPEG, a

static ffmpeg binary as well as a modified ffmpeg source

code.

A.2 Artifact check-list (meta-information)

• Algorithm: yes

• Binary: ffmpeg (we use ffmpeg 3.4.8, but we also repro-
duced our results under ffmpeg 5.0)

• Model: MobileNet-SSD (we provide the model weight in
our github repository)

• Data set: downloaded from youtube

• Run-time environment: Ubuntu 18.04 with CUDA avail-
able. Root access not required.

• Hardware: NVIDIA GPU

• Metrics: delay and accuracy

• Output: delay-accuracy.jpg

• How much disk space required (approximately)?: 25GB

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours



AccMPEG: Optimizing Video Encoding for Video Analytics

• How much time is needed to complete experiments (ap-
proximately)?: 3 hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache-2.0

• Data licenses (if publicly available)?: none

• Workflow framework used?: no

• Archived (provide DOI)?: AccMPEG
(https://doi.org/10.5281
/zenodo.6047842), ffmpeg 5.0
(https://doi.org/10.5281/zenodo.
6048006), modified ffmpeg source code
(https://doi.org/10.5281/
zenodo.6051544)

A.3 Description

A.3.1 How delivered

• Implementation of AccMPEG: AccMPEG github reposi-

tory, MLSys branch

• Modified ffmpeg source code: Modified ffmpeg github

repository, AccMPEG branch

• Static ffmpeg binary: Johnvansickle ffmpeg

A.3.2 Hardware dependencies

NVIDIA GPU.

A.3.3 Software dependencies

GCC, NVIDIA CUDA driver and conda.

A.3.4 Data sets

We download all of our videos from youtube. Please check

this google spreadsheet for the details on how we collected

the dataset.

A.4 Installation

Please refer to INSTALL.md to install our code.

A.5 Experiment workflow

Please refer to README.md for the experiment workflow

of our code.

A.6 Evaluation and expected result

Please refer to README.md for the evaluation and ex-

pected result of our code.

B OPTIMAL QUALITY ASSIGNMENT

ANALYSIS

We formalize the spatial quality assignments in this section

and derive the near-optimal solution through AccGrad.

B.1 Formalize quality assignment

To make the discussion more concrete, we split each W ·H
frame into w · h grids of 16x16 blocks (W = 16w,H =
16h) and assign each block either a high quality or a low

quality. We now consider this problem: what is the best

quality assignment for these 16x16 blocks that maximizes

the accuracy subject to no more than c blocks encoded in

high quality. Formally, it searches for a binary mask M of

size w · h (Mx,y = 1 means block x, y is in high quality),

such that

max Acc (D(M × H + (1 − M)× L), D(H)) (2)

s.t. ∥M∥ ≤ c (3)

where H and L are the high-quality encoding and the low-

quality encoding of each frame14, D : I 7→ O returns the

DNN inference result (I and O are the spaces of input frames

and DNN output), and Acc : O×O 7→ R returns the accu-

racy of D’s output on a compressed frame by comparing its

similarity with D’s output on the high quality image D(H).

This formulation involves two simplifying assumptions: the

16x16 blocks may be suboptimal boundaries between quality

levels, and it restricts the encoding to only two quality levels.

That being said, we believe that analyzing this formulation is

still valuable for two reasons. First, the block granularity of

16x16 is on par with the block sizes employed in H.264 and

H.265, which means more fine-grained blocks will not have

much impact on the encoded video size. Second, the use

of two quality levels does subsume many recent solutions

(e.g., (Zhang et al., 2015; Du et al., 2020; Zhang et al., 2018;

Chen et al., 2015; Li et al., 2020)) which use two or fewer

quality levels.

B.2 Deriving near-optimal solution through AccGrad

In this section, we “derive” the near-optimal quality assign-

ment. We use M to represent the quality assignment over

each macroblock B. MB = 1 when B is encoded in high

quality, and MB = 0 when encoded in low quality. We then

encode the image X according to the quality assignment M.

We assume that X = M × H + (1 − M) × L, where H is

the high quality image, L is the low quality image and ×
means element-wise multiplication.

Our goal is to maximize the accuracy Acc of our approach

14The dimension of a frame is the same for different QP values,
so H and L have the same dimension.
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(b) The loss function (y-axis)
used to train AccModel.

Figure 12. Comparing the training curve of a traditional segmenta-

tion model and that of AccModel: with more DNN layers (higher

DNN compute cost), the traditional segmentation loss drops slowly,

whereas the loss function of AccModel (i.e., low-dimensional bi-

nary segmentation with a higher tolerance to false positives) drops

very quickly, which indirectly suggests that a cheap model might

suffice to train an accurate enough AccModel.

against the ground truth D(X) (D represents the final

video analytic DNN). In other words, we are maximizing

Acc(D(X), D(H). We notice that max Acc(D(X), D(H))
is equivalent to the following (note that the first term of Eq 4

is a constant):

min Acc(D(1 × H), D(H))−Acc(D(X), D(H)) (4)

=

〈

∂Acc(D(X′), D(H))

∂X′
, (1 × H − X)

〉

F

(5)

≈

〈

∂Acc(D(L), D(H))

∂L
, (1 × H − X)

〉

F

(6)

=

〈

∂Acc(D(L), D(H))

∂L
, (1 − M)× (H − L)

〉

F

, (7)

where ⟨·, ·⟩F is the Frobenius inner product and 1 is the

matrix with all of its elements be 1. Eq (5) uses Lagrange’s

Mean Value Theorem 15, where X′ lies between H and X.

In Equation (7), since the value of M is identical inside each

block, each block B contributes the following value to Eq

(7):

(1− MB)
∑

i∈B

(

∂Acc(D(L), D(H))

∂L

∣

∣

∣

∣

i

· (Hi − Li)

)

≤(1− MB) ·
∑

i∈B

∥

∥

∥

∥

∂Acc(D(L), D(H))

∂L

∣

∣

∣

∣

i

∥

∥

∥

∥

1

· ∥Hi − Li∥1

=(1− MB) ·AccGradB , (8)

where i means the pixel inside the macroblock B. The

equality condition of the inequality above is the sign of

the gradient term ∂Acc aligns with the sign of Hi − Li,

which actually is most of the cases since pushing a pixel

closer to high quality typically improves accuracy. After the

15As the accuracy metric is typically not differentiable, we use
the training loss function of the neural network as the differentiable
approximation of the accuracy.

inequality, we transform the original optimization objective

(Eq (4) to minimizing the quality drop 1 − MB times the

accuracy gradient AccGradB . Thus, the optimal solution

is to give those high accuracy gradient macroblocks a low

quality drop, which means encode them in high quality.

C EMPIRICAL EVIDENCE ON HOW

FALSE-POSITIVE-TOLERANCE REDUCES

THE COST OF AccModel

To empirically support that false positive tolerance (men-

tioned in §3.2) can reduce the compute demand of segmen-

tation task, we train a series of DNNs with compute power

[1,2,4,6,8]x on the same dataset with two different losses:

traditional segmentation loss and our training loss (with less

penalty on those blocks that wrongfully encoded in high

quality). From Figure 12, we see that 4x-compute DNN

performs much worse than 8x DNN under traditional seg-

mentation loss (as shown in Figure 12a) but the performance

of 4x-compute DNN and 8x-compute DNN is similar under

our training loss (see Figure 12b). This indicates that our

training loss is much less compute-hungry than traditional

segmentation loss.


