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ABSTRACT

With more videos being recorded by edge sensors (cameras) and analyzed by computer-vision deep neural nets
(DNNSs), a new breed of video streaming systems has emerged, with the goal to compress and stream videos to
remote servers in real time while preserving enough information to allow highly accurate inference by the server-
side DNNs. An ideal design of the video streaming system should simultaneously meet three key requirements:
(1) low latency of encoding and streaming, (2) high accuracy of server-side DNNs, and (3) low compute overheads
on the camera. Unfortunately, despite many recent efforts, such video streaming system has hitherto been elusive,
especially when serving advanced vision tasks such as object detection or semantic segmentation.

This paper presents AccMPEG, a new video encoding and streaming system that meets all the three requirements.
The key is to learn how much the encoding quality at each (16x16) macroblock can influence the server-side DNN
accuracy, which we call accuracy gradient. Our insight is that these macroblock-level accuracy gradient can be
inferred with sufficient precision by feeding the video frames through a cheap model. AccMPEG provides a suite
of techniques that, given a new server-side DNN, can quickly create a cheap model to infer the accuracy gradient
on any new frame in near realtime. Our extensive evaluation of AccMPEG on two types of edge devices (one Intel
Xeon Silver 4100 CPU or NVIDIA Jetson Nano) and three vision tasks (six recent pre-trained DNNs) shows that
AccMPEG (with the same camera-side compute resources) can reduce the end-to-end inference delay by 10-43%

without hurting accuracy compared to the state-of-the-art baselines.

1 INTRODUCTION

Empowered by modern computer vision, video analytics
applications running on edge/mobile devices are poised to
transform businesses (retail, industrial logistics, home assis-
tance, etc), and public policies (traffic management, urban
planning, etc) (TrafficVision, 2021; TrafficTechnologyTo-
day, 2019; GoodVision, 2021; intuVision, 2021; VisionZero;
Microsoft, 2019). These emerging video applications use
deep neural networks (DNNs) to analyze massive videos
from edge video sensors, resulting in an explosive growth
of video data (SecurityInfoWatch, 2012; 2016) that serve
analytical purposes rather than being watched by human
users for entertainment (SecurityInfoWatch, 2016; Grand-
ViewResearch, 2018; Slate, 2019).

A key component of these video analytics applications is an
efficient video compression' algorithm, which compresses
videos in realtime while preserving enough information for
accurate inference by the final DNN running on a remote
(cloud) server (StreamingMedia, 2019). An ideal video com-
pression algorithm should meet three requirements that are
key to edge video analytics applications: (1) high inference
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accuracy by the final DNN, (2) low end-to-end delay of
encoding and streaming the video to the analytical server,
and (3) low compute overhead on the camera. There have
recently been many proposals of such analytics-oriented
video compression algorithms; for instance, they leverage
the spatial heterogeneity of the final DNNs (Du et al., 2020;
Liu et al., 2019), such as object detection and semantic seg-
mentation: only in a small fraction of regions (e.g., which
contain important details), lowering encoding quality tends
to lower inference accuracy and renders it useless.

Unfortunately, none of the existing solutions can simultane-
ously meet all three requirements, especially when serving
advanced tasks such as object detection or semantic seg-
mentation. For instance, using camera-side heuristics to
filter out (or lower the encoding quality of) unuseful pixels
quality is sensible (Zhang et al., 2015; Li et al., 2020; Canel
et al., 2019), but existing designs cannot precisely lower
the encoding quality of unuseful pixels without affecting
useful ones, unless the heuristics themselves are almost as
compute-intensive as the final DNNs. In response, some pro-
posals achieve high accuracy and low camera-side overhead
by sending the content to the server-side DNN first to ex-
tract feedback (Du et al., 2020; Liu et al., 2019; Zhang et al.,
2021) from the server, based on which the camera can then
encode the video near-optimally or run local inference (e.g.,
object tracking), causing high end-to-end delay. Other solu-
tions extract and encode feature maps on the camera (Duan
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et al., 2020; Xia et al., 2020; Emmons et al., 2019; Kang
et al., 2017b; Matsubara et al., 2019), and they work well
for classification models but not for advanced DNNs (object
detection and segmentation models), whose feature maps
are orders of magnitude larger than those of classification
DNNSs.

This paper presents a new video streaming system called Ac-
cMPEQG that meets the three aforementioned requirements.
At a high level, AccMPEG runs a cheap quality selector
logic (a shallow neural net, MobileNet-SSD (Howard et al.,
2017; Sandler et al., 2018)) that determines a near-optimal
encoding scheme for any frame—the encoding quality at
each (16x16) macroblock, and encodes the frames using
popular video codecs like H.26x with region-of-interest
(Rol) encoding. The insight underpinning the cheap quality
selector is that inferring the influence of the encoding quality
of each macroblock on the final DNN accuracy, which we
call accuracy gradient or AccGrad, is much simpler than
semantic segmentation (a common vision task) for multiple
reasons (§3.2): for instance, assigning high or low quality
to macroblocks of a 720p frame (1280x720) is equivalent to
assigning binary labels on an 80x45 image (a 720p frame
has 80x45 macroblocks), which can be much simpler than
most modern vision tasks.

AccMPEG’s quality selection also strikes a favorable
accuracy-delay balance. Prior techniques assign encod-
ing quality at coarser granularities, such as encoding en-
tire bounding boxes in high quality and entire background
in low quality. In contrast, AccMPEG’s macroblock-level
quality selection could outperform them by encoding some
background macroblocks in high quality (e.g., to provide
necessary context that improves accuracy) and some inside
the bounding boxes in low quality (e.g., if encoding other
macroblocks of a large object in high quality is sufficient to
achieve high accuracy).

Finally, one must be able to quickly customize the quality
selector based on the need of any new final DNN. Tradition-
ally, training such a quality selector requires running though
an entire pipeline (quality selection, encoding, and infer-
ence) over many training images. In contrast, AccMPEG
decouples the final DNN from the training of the quality
selector (§5). To this end, we directly derive the AccGrad
per macroblock by treating the final DNN as a differen-
tiable blackbox, and then train the quality selector as a
standalone (low-dimensional) segmentation model to infer
these AccGrad, which also reduces the number of training
iterations and training images.

Using videos of three different genres, three typical vision
tasks (object detection, semantic segmentation, and keypoint
detection), and five recent off-the-shelf vision DNNs, we
show that on two types of edge devices (one CPU or a Jetson
Nano) AccMPEG can reduce the inference delay by 10-43%
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Figure 1. Example results of the accuracy-delay tradeoffs of AccM-
PEG and baselines. AccMPEG achieves 10-30% smaller end-to-
end delay without sacrificing accuracy, or 1-5% higher inference
accuracy than state-of-the-art solutions.

without hurting accuracy compared to various state-of-the-
art baselines. Figure 1 shows an example improvement of
AccMPEG’s accuracy-delay tradeoffs over the baselines
(See Figure 7 for the complete results). AccMPEG’s encod-
ing speed (30fps with one Intel Xeon Silver 4100 CPU) is
only marginally slower than basic video encoding and is
much faster than the baselines that achieve similar compres-
sion efficiency. Moreover, an AccMPEG encoder for a new
DNN can be created within only 8 minutes.

Admittedly, not all techniques of AccMPEG are exactly new:
it uses standard video codec libraries (Wiegand et al., 2003;
Coding & Rec, 2013) that support Rol encoding, and many
proposals in this space (e.g., (Wang et al., 2017; Mnih et al.,
2014)) use the the spatially uneven distribution of DNN
attention. Nonetheless, AccMPEG strikes a unique balance
among encoding/streaming delay, inference accuracy, and
low compute overhead in advanced vision tasks (e.g., object
detection, segmentation). Our contribution is two-fold:

e A cheap quality selector that infers accuracy gradient
(how sensitive a DNN’s output is to the encoding quality
of each macroblock) on each frame and selects encoding
quality per macroblock, with a compute overhead only on
par with video encoding.

e Fast training (within several minutes) of the quality selec-
tor for any given final DNN, which degrades gracefully
when the final DNN changes.

2 MOTIVATION

We begin by motivating the three performance requirements
that drive our design (low accuracy, low encoding and
streaming delay, and low camera-side compute overhead).
We then elaborate on why prior solutions struggle to simul-
taneously meet the three requirements.

2.1 Video encoding for edge video analytics

Distributed video analytics: As accurate analytics requires
compute-intensive DNNs that cheap video sensors cannot
afford, the video frames are often compressed by a video
encoder and then sent to a remote server for accurate DNN-
based analytics (Figure 2). We refer to the server-side DNN
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Figure 2. Illustration of video encoding as part of the video analyt-
ics pipelines for three example tasks

as the final DNN. In this work, we focus on three video
analytics tasks: object detection (one labeled bounding box
for each object), semantic segmentation (one label for each
pixel), and keypoint detection (17 keypoints such as hand
and elbow on a human body).

There are two types of video analytics. In live analytics, the
video frames are continuously encoded and sent to a remote
server which runs the final DNN to analyze the video in
an online fashion (Du et al., 2020; Liu et al., 2019; Zhang
et al., 2015; Chen et al., 2015; Li et al., 2020; Zhang et al.,
2021; 2018; Kang et al., 2017a; Zhang et al., 2017). In
retrospective analytics, the encoded video is first stored
locally on the camera, and an operator can choose to fetch
part of the video for DNN-based analytics (Keahey et al.,
2019; Kang et al., 2018; Hsieh et al., 2018).

Performance requirements: In both live and retrospective
analytics, a key component is the video encoding algorithm.
An ideal video encoding algorithm for distributed video
analytics should meet three goals:?

e High accuracy: The encoded video must preserve enough
information for the final DNN to return nearly identical
inference results as if it runs on the original video frames.>

e Low delay: The delay of encoding the video (encoding

“Different video analytics applications may have different ob-
jectives in terms of inference accuracy and delay (e.g., augmented
reality is more delay sensitive than traffic monitoring, and vehi-
cle collision detection is more sensitive to accuracy than vehicle
counting). Instead of evaluating performance of a video analytics
pipeline in the context of a particular application, this work focuses
on the relative improvement in accuracy, delay, and camera-side
compute overhead, and we leave application-specific interpretation
of the performance to future work.

3To calculate the accuracy of an inference result on a com-
pressed frame, we obtain the “ground truth” results by running
the final DNN on the high-quality video frames (rather than using
the human-annotated labels). Thus, any inaccuracy will be due to
the video stack (e.g., video compression, DNN distillation), rather
than errors made by the final DNN itself. This is consistent with
recent work (e.g., (Zhang et al., 2018; 2015; 2017; Keahey et al.,
2019; Mullapudi et al., 2019; Kang et al., 2017a)).

delay) and streaming the video to the server (streaming
delay) should be low.

e Low camera cost: The encoding algorithm should be
cheap enough to run at 30fps with only marginal extra
compute overhead compared to encoding videos using
popular codecs such as h.26x.

2.2 Limitations of previous work

Here, we categorize previous work in four general ap-
proaches and explain why they cannot meet all performance
requirements simultaneously.

Local frame-filtering schemes: One of the popular tech-
niques is to let the camera run a simple logic to identify
which frames are irrelevant to the vision task and thus can
be discarded (Li et al., 2020; Canel et al., 2019; Chen et al.,
2015) or encoded in low quality (Zhang et al., 2018). This
approach works well when the video content is relatively
stationary, where the incidents/objects of interest are rare
and easy to detect; e.g., in wildlife camera feeds, animals are
rare and readily detectable since they are the only moving
objects on a static background. However, for frames that
are not discarded, this approach encodes the entire frames
with uniform quality, which can be suboptimal, since the
objects of interest often occupy only a small fraction of each
frame (Du et al., 2020; Liu et al., 2019), leading to higher
streaming delays than necessary.*

Local heuristics to lower background quality: Since
objects of interest often account for a small fractions of
each frame, some work (e.g., (Zhang et al., 2015; Dai et al.,
2021)) uses local heuristics to filter out (or lower the quality
of) the background pixels and sends the remaining object-
related pixels in high quality to the server-side final DNN.
However, these local heuristics are constrained by the lim-
ited camera-side compute resources, giving rise to false
negatives—object-related pixels are treated as background
and thus filtered out or sent in low quality, causing the DNN
to miss objects of interest. For instance, to detect potential
object-related regions, Vigil (Zhang et al., 2015) relies on
a low-accuracy non-convolutional Haar-cascade-classifier-
based object detector, and CiNet (Dai et al., 2021) uses a
very shallow convolutional network (with only 2 convolu-
tional layers, 1 average pooling layer and 2 fully-connect
layers) designed to handle only few objects per frame. There
are also deeper NN such as MobileNet-SSD (Howard et al.,
2017) that run on resource-constrained cameras, but they
have to downsize frames to low resolutions (e.g., 300x300)
for real-time inference, thus prone to missing small objects.

Server-driven compression: To overcome the camera-
side resource constraints, another approach (Du et al., 2020;

4 Although CloudSeg (Wang et al., 2019b) does not perform
frame filtering at the camera side, it also shares the limitation since
it compresses entire frames in same encoding quality.
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Liu et al., 2019; Zhang et al., 2021) leverages the abundant
server-side compute resources to generate feedback on how
videos should be encoded. This approach generally com-
presses videos efficiently while achieving high accuracy, but
it suffers from a high inference delay. DDS (Du et al., 2020),
for instance, sends a low-quality video to the server-side
DNN which returns to the camera which regions must be
encoded in high quality, but under high network latency,
getting such server-driven feedback can take at least two
network round-trip times before the camera can actually
encode the video for final DNN inference, causing high
inference delay on each frame.

Local DNN compression: Instead of encoding videos on
the camera, some proposals also extract the final DNN’s
feature maps on the camera and compress the feature maps
which might contain less information than the original raw
frames (Duan et al., 2020; Xia et al., 2020; Emmons et al.,
2019; Kang et al., 2017b; Matsubara et al., 2019). While this
approach has shown promise with classification or action
recognition DNNs (Kang et al., 2017b; Emmons et al., 2019;
Duan et al., 2020), these tasks do not require the spatial loca-
tions of objects, allowing aggressive aggregation of feature
maps over an entire frame. In contrast, the vision tasks that
we focus on (e.g., object detection, semantic segmentation)
are sensitive to object locations, making the intermediate
feature maps much larger and much more difficult to be
compressed efficiently. For example, many state-of-the-art
object detectors (e.g., (Detectron2)) use expensive feature
extractors such as ResNet101 (He et al., 2016), and if we
feed a 720p (1280 x 720) frame through even parts (e.g.,
90) of its convolution layers, the feature map still contains
2 x 107 floating-point numbers per frame, 20x more than
the number of pixels in the original frame.

There are also proposals to train DNN autoencoders that
compress video to a smaller size than the popular video
codecs do, but these DNNs are much more compute-
intensive than the video codecs and even the final DNN.
For example, NLAM (Liu et al., 2020) requires performing
expensive 3D convolutions on videos for more than 30 times,
while an object detector backbone (e.g., ResNet34 (He et al.,
2016)) only performs 2D convolution for 34 times.

3 OVERVIEW OF ACCMPEG

In this section, we present AccMPEG, a new video encoding
algorithm that uses a cheap camera-side model to decide
which regions should be encoded in higher quality. Here,
we introduce AccMPEG’s workflow and its challenges, and
then present the key idea that addresses these challenges.

3.1 Workflow and challenges of AccMPEG

Figure 3 depicts the workflow of AccMPEG. When a
video frame arrives, AccMPEG first feeds it through a
cheap quality selector model, called AccM odel, to obtain

a macroblock-level quality selection—which macroblocks
(16x16 blocks, which many modern video codecs (Wiegand
et al., 2003) use as the basic encoding unit) should be en-
coded in high quality and which should be in low quality.
The camera then encodes the video frames according to
the quality selection and sends the encoded video to the
server for the final DNN inference. The quality selector
(AceM odel) is trained for each final DNN offline, such that
when the video frames are encoded in its selected quality, the
DNN can return accurate inference results. As we will see
in §5, the quality selector can also be re-used among DNNs
of similar tasks with only marginal performance penalty.

Challenges: The key component of AccMPEG is the qual-
ity selector (AccM odel) that selects the encoding quality
per macroblock. It has three challenges: (i) How to opti-
mally assign encoding quality at the fine spatial granularity
of macroblocks to achieve better accuracy-delay tradeoffs
than baselines? (i) How to minimize the per-frame com-
pute overhead of AccModel to allow real-time video en-
coding on the camera side? And (iii) how to quickly train
AccModel for each server-side DNN?

3.2 Key idea: Accuracy Gradient

The key idea to address these challenges of AccM odel is
to obtain the Accuracy Gradient (hereinafter AccGrad) of
each macroblock, which measures how much the encoding
quality at the macroblock can affect the DNN inference
accuracy. Mathematically, the AccGrad of macroblock B
in a given frame is defined as:

dAcc(D(X); D(H))
X,

AccGradp = Z

i€EB

<||[H; — Lall,
1

X=L

ey
where 7, L, and H denote a pixel within B, the low-quality

encoded frame, and the high-quality encoded frame, respec-
tively. D denotes the server-side DNN inference function,
Ace (D(X); D(H)) is the accuracy of inference result on
X (i.e., its similarity with the inference result on the high-
quality frame D(H)), and || - ||; is the L1-norm.

Intuitively, the encoding quality of the macroblocks with
higher AccGrad values have a greater influence on the
DNN accuracy, so these macroblocks should be encoded in
high quality. We will present the AccGrad-based quality
assignment logic in §4. Appendix B gives the mathematical
reasoning behind Equation 1.

AccGrad enables a series of system optimizations that help
address the challenges in §3.1.

Advantage over prior region-based compression: We
begin with the benefit of AccGrad-based quality selection
over the traditional region-based quality selection (Du et al.,
2020; Liu et al., 2019; Zhang et al., 2021), which identi-
fies regions with greater impact on DNN inference (e.g.,
via region proposals (Ren et al., 2015)) and then use high
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quality to encode some region proposals in their entirety
and low quality to encode the whole background. These
coarse-grained encoding schemes can be inefficient. On
one hand, some surrounding pixels of the object bounding
boxes can still be crucial for the final DNN to accurately
detect/classify objects and demarcate their boundaries from
the background. For instance, to detect the car in Figure 4(a),
one must encode not only its bounding box in high quality
but also some neighboring macroblocks too. On the other
hand, some pixels inside an object’s bounding box (e.g.,
the smooth surface of a car in Figure 4(b)) have similar
RGB values regardless of the encoding quality, so it is safe
to compress them in low quality without hurting inference
accuracy.

In contrast, AccGrad by definition can capture such fine
distinctions among macroblocks. For instance, the mac-
roblocks surrounding the car’s bounding box (Figure 4(a))
will have high AccGrad values in Equation 1, because
Acce(D(L); D(H)) will have a high derivative with respect
to the pixels in these macroblocks. Similarly, the smooth sur-
face of the car in Figure 4(b) is likely to have low AccGrad
(despite being part of the car object), because ||H; — L;||;
will be small on the pixels i in these macroblocks.’

> AccGirad may look similar to the saliency maps in computer
vision, but there is a key distinction. While saliency captures which
pixel values have more influence on the DNN output, AccGrad
captures how much changing a macroblock’s encoding quality
changes the DNN inference accuracy.

AccM odel might not be compute-intensive: AccM odel
can be seen as a segmentation problem, but unlike normal
segmentation models that are compute-intensive, a cheaper
model might suffice for AccM odel for three reasons.

First, unlike traditional image segmentation that gives one
label per pixel, AccM odel returns one label per 16x16 mac-
roblock (i.e., all pixels in a macroblock share the same DNN
output). Therefore, unlike traditional convolutional opera-
tions which scan the image pixel by pixel, AccM odel only
needs to scan the image macroblock by macroblock (saving
upto 162 = 256x on convolutional operations).

Second, AccM odel only needs to do a binary classification
on each macroblock (either high quality or low quality),
rather than multi-class segmentation, which further reduces
the complexity of AccM odel.

Third, while accurate segmentation must minimize both
false positives (e.g., pixels misclassified as objects) and false
negatives (e.g., pixels misclassified as background), AccM-
PEG has more tolerance towards false positives (e.g., mac-
roblocks mislabeled with high AccGrad). Encoding a few
more macroblocks in high quality has marginal impact on
the delay-accuracy tradeoff, because the intra-frame encod-
ing commonly used in video codecs makes the compressed
video size grow only sublinearly with more high-quality
regions. Appendix C provides the empirical evidence.

Fast training of AccModel: Training AccM odel naively
can be prohibitively expensive, because it requires run-
ning numerous forward/backward propagations on the final
DNN to calculate losses and obtain gradients. Fortunately,
AccGrad can be directly derived from the final DNN (Equa-
tion 1) using only two forward propagations and one back-
ward propagation. As we will see in §5, this allows us to
separate the compute-intensive final DNN from AccM odel
training. This can save 10x overhead, as AccMPEG trains
AccGrad for 15 epochs (see §5 for details), each requiring
only three propagations through the final DNN.

4 ONLINE ENCODING

We now describe AccMPEG’s online encoding process, in-
cluding the architecture of AccM odel and how AccMPEG
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assigns encoding quality to each macroblock.

Architecture of AccModel: We leverage the pretrained
MobileNet-SSD feature extractor (Howard et al., 2017), a
widely-used feature extractor for cheap edge devices, as the
feature extractor of AccModel. We resize these features
so that one macroblock corresponds to one feature vector,
and append three convolution layers to classify which mac-
roblock should be in high quality.

Compute cost of AccModel: Our model is much more
compact than other commonly-used feature extractors. To
put it into perspective, our AccModel uses 12 GFLOPs,
about 3x less than a typical cheap convolutional model such
as ResNet18 which uses 33 GFLOPs. In addition, since the
architecture consists only of convolutional layers (except
for batch normalization and activation), its computational
overhead is proportional to the size of the input frame (e.g.,
4 x faster when the frame size halved in both dimensions).

AccGrad-based quality assignment: Given macroblock-
level AccGrad of a frame, AccMPEG then uses a thresh-
old « to determine which macroblocks should be in high
quality—all blocks B with AccGradp > a will be encoded
in high quality. After a set of blocks are selected, AccM-
PEG then expands these selected blocks to each direction
by v (by default 5) blocks (if they are not already selected).
Intuitively, a lower « increases the accuracy at the expense
of encoding more macroblocks with high AccGrad.

Frame sampling for cheap inference: We further reduce
AccModel’s compute overhead by running it once every
k frames and using its output to encode the next k£ frames
(by default, k£ = 10). Empirically, it significantly reduces
the camera-side overhead (Figure 9) without much impact
on accuracy. The intuition is that although the AccGrad of
a macroblock fluctuates over time, its value will not shift
dramatically across consecutive frames to change its quality
selection.

To empirically verify this intuition, we use frame distance
(the absolute delta between the frame numbers of two
frames) to measure the temporal distance between two
frames and examine how the encoding quality assignment
(we measure this change by the percentage of macroblocks
that the encoding quality remains the same) varies with
greater frame distance. Figure 6 shows that on the quality
assignment generated by running AccM odel on images of
the dashcam dataset (see §6 for the detail of the dataset), the
encoding quality assignment of at least 84% of macroblocks
remains unchanged within 10 consecutive frames.

5 OFFLINE TRAINING

AceM odel customizes the video encoding for near-optimal
accuracy-delay tradeoffs of a given final DNN model. So
a natural question is how to quickly create the AccM odel
for a new DNN. Here, we describe how we speed up the

Training iterations
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Figure 5. Contrasting the conventional approach to AccM odel
training with AccMPEG. We separate the final DNN from training
by first generating the ground-truth AccGrad from the final DNN,
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Figure 6. The encoding quality of over 84% of the macroblocks
remains to be the same when the frame distance is less than 10.

training of AccM odel by separating the final DNN from the
training process, and then explain why reusing AccM odel
may also lead to decent performance.

Conventional training process: Before describing how
AccMPEG trains AccM odel, we first explain the straight-
forward approach to training AccM odel (depicted in Fig-
ure 5a) which sets up the entire pipeline of encoding and
inference and minimizes the end-to-end loss (we will define
the training loss soon). For each input image, it first feeds
the high-quality version H through the AccM odel to get the
AccGrad matrix M = AccModel(H), creates the encoded
image X = M x H+ (1 —M) x L by linearly combining the
low-quality version L and H using M®, feeds it through the
final DNN to get result D(X), and finally calculates the ac-
curacy (loss) of D(X) with D(H) as the ground truth using
Acc. This training process is actually widely used in com-
puter vision (e.g., (Goodfellow et al., 2014; Johnson et al.,
2016; Ledig et al., 2017)) and video analytic systems (Wang
et al., 2019b). However, it is prohibitively expensive: each
forward or backward propagation of the pipeline must run

5We make the elements in M to be between 0 and 1 by applying
a softmax filter on the output of AccM odel.
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the expensive D, in addition to AccModel and Acc each
once. Thus, the compute overhead of AccM odel training is
dominated by running the forward/backward propagations
on D (caching AccM odel results does not help, since the
AccM odel output changes after each update).

Separating final DNNs from training via AccGrads: In
contrast, AccMPEG calculates the AccGrads on each train-
ing image first (using Equation 1), which requires only one
forward and backward propagation of D on the high-quality
version of the image. Once the AccGrads of each training
image is generated, the training can be reformulated
as min gceproder CrossEntropy (Achodel (H), M~ ) ,
where M* is the “ground truth” AccGrad matrix of size
w - h generated by Equation 1 (not to be confused with
the ground-truth inference output of a final DNN) and
the cross-entropy loss (with 4x weight on those blocks
that should be in high quality) commonly used in deep
learning to measure the discrepancies between two vectors.
Training AccM odel thus requires only one forward and one
backward propagation on AccM odel. Thus, by generating
the ground truth first and then training AccM odel, we can
train the AccM odel within 8 minutes using 8 GPUs (§6.4).

Using pre-trained models: Instead of training AccM odel
from scratch, we initialize AccModel with a pretrained
MobileNet-SSD backbone and then fine-tune the model. It
has the similar benefit of model fine-tuning widely used
in industry: the training can converge with fewer training
epochs on fewer training images (Gao et al., 2021). Specifi-
cally, we train AccM odel on a 10x randomly downsampled
training set of the final DNN model (e.g., COCO dataset)
for 15 training epochs and pick the model with lowest loss
on cross validation set as our final AccModel. The total
training time of AccGrad is about 8 minutes (§6.4).

Reusing AccModel: Ideally, any new server-side final
DNN requires a (slightly) different AccM odel. However,
when the new final DNN is trained on the same dataset
(same images and same labels) as another final DNN (whose
AccModel is already trained), it is possible to reuse the
AccModel. This is because the macroblocks with high
AccGrads are typically those related to small, partially oc-
cluded, or darkly lit objects in the dataset. Thus, training
the new AccM odel based on the AccGrads of the old fi-
nal DNN on the same dataset would likely yield a similar
AccModel. Since DNN models are sometimes trained on
popular datasets (such as the COCO dataset (COCO, 2017)),
AccM odel can sometimes be re-used among different final
DNNs (we will empirically evaluate it in Figure 11).

6 EVALUATION
Finally, our evaluation of AccMPEG shows that:

o AccMPEG achieves better accuracy-delay tradeoffs: 10-
43% lower delay while maintaining comparable accuracy

Name Vision task # Videos  # Frames
Driving object detection 5 9000
Dashcam object detection 7 12600
Surf semantic segmentation 6 6598

keypoint detection

Table 1. Summary of our datasets.

as the baselines. The improvement remains similar on
three vision tasks and five final DNN models with a vari-
ety of architectures and backbones (§6.2).

o AccMPEG has the lowest camera-side overhead com-
pared to all the baselines that deploy customize logic at
the camera side and achieve comparable accuracy, and
the extra compute overhead due to AccM odel is less than
the popular video codecs (§6.3).

e Given a final DNN, an AccM odel can be created within
8 minutes using 8 GPUs. Even if a final DNN changes
without updating the AccM odel, AccMPEG still achieves
better accuracy-delay tradeoffs if the new vision model is
trained on the same dataset as the previous one (§6.4).

6.1 Setup

Source code: Our source code is publicly available (see
appendix A for the details).

Dataset: Table 1 summarizes the 3 video datasets we used
to evaluate AccMPEG: 5 driving videos and 7 dashcam
videos for object detection, and 6 surfing videos for key-
point detection and semantic segmentation. All videos are
obtained by searching on YouTube. We search keywords
(such as “highway dashcam hd”) in incognito mode to avoid
customization bias. All videos and collection details are
available in this anonymous link (AccMPEG).

Device setting: We create a 30fps video source where
different methods can read raw (1280x720) frames one
by one. To achieve real-time video streaming, we let the
camera stream out the video in the form of short video
chunks (this aligns with previous work (Du et al., 2020;
Zhang et al., 2018)), each consisting of 10 frames. To
fairly compare the encoding delay of different methods, we
benchmark the encoding delay on one Intel Xeon Silver
4100 CPU and run the encoding of AccMPEG and baselines
everytime the camera reads 10 frames for its current video
chunk (we also benchmark the performance of AccMPEG
on baselines on Jetson Nano, a cheap GPU device (with one
128-core Maxwell GPU, one Quad-core ARM A57 CPU
and 4GB memory (ChameleonHardware, 2021)))” provided
in the Chameleon testbed (Keahey et al., 2020)). We use
openVINO to accelerate® all camera-side DNNs on CPUs.

7 A Jetson nano developer board is only 60$ (Amazon).
8This acceleration will not reduce floating point precision, and
thus will not alter the inference result of AccMPEG.
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We also make minor modifications to the H.264 codec to
enable macroblock-level region-of-interest encoding.

Server: We train AccM odel offline on the server with 8
GeForce RTX 2080 SUPER GPU. In the online encoding
phase, we run the decoding on Intel Xeon Silver 4100 CPU
and run the inference on GeForce RTX 2080 SUPER GPU.

Video analytics tasks and DNNs: We test AccMPEG on
three tasks: object detection, semantic segmentation and
keypoint detection. Here we list the DNNs we use for these
tasks (We use italic to show the DNN that we use to deliver
AccModel for that vision task. All DNNs are pretrained
from COCO dataset (COCO, 2017)). We pick three object
detection models that represent three types of different ar-
chitectures: FasterRCNN (Ren et al., 2015) (a two-stage
detector with features from different resolutions (Lin et al.,
2017a)), YoLov5 (Redmon & Farhadi, 2017) (a single-
stage detector), and EfficientDet (Tan et al., 2020) (a de-
tector with machine-optimized architecture (Zoph & Le,
2016)). We pick FCN-ResNet50 (PyTorch) for semantic
segmentation. We also pick two keypoint detection models:
Keypoint-ResNext101 (He et al., 2017; Xie et al., 2017) and
Keypoint-ResNet50 (He et al., 2017),

Setting of AccMPEG: For the encoding quality, we use
(30, 40) as the QP value for high quality and low quality
for object detection and (30, 51) for keypoint detection. By
default, we use o = 0.2 as the AccGrad threshold.

Baselines: We use baselines from five categories:

e Uniform quality: AWStream (Zhang et al., 2018) tunes
the encoding parameters of the underlying codec (resolu-
tion, QP, and frame rate), though unlike AccMPEG, they
use the same configuration for all frames in each time win-
dow (on the timescale of minutes)’. (VStore (Xu et al.,
2019) shares a similar idea.) To show their limitation,
we use an “idealized” version where the parameters are
set such that the size reduction is maximized while its
accuracy is almost the same to AccMPEG.

e Server-driven approach: DDS (Du et al., 2020) and
EAAR (Liu et al., 2019) belong to this type and they
share the idea of encoding different regions with different
quality levels. By default, we use QP = (40, 30) as the
low quality and high quality settings.'?

e Frame filtering: We choose Reducto (Li et al., 2020), one
of the most recent proposals along this line. We use the
implementation from (Github, b).

e Autoencoder: We pick a pre-trained autoencoder (Github,
a) (introduced in (Theis et al., 2017)).

“We assume that AWStream can obtain the accuracy-delay
profile without extra cost, which makes AWStream strictly better.

Instead of letting EAAR predict the region proposal on new
incoming frames through tracking, we directly let EAAR obtain
the new region proposal, which makes EAAR strictly better.

We do not include CloudSeg (Wang et al., 2019b) in our
evaluation, because it augments the server-side DNN by
a super-resolution model, which is complementary to the
camera-side video encoding schemes above. We also does
not apply AccMPEG’s 10% frame sampling (§4) to these
baselines to reduce their camera-side overhead, because only
Reducto and Autoencoder have heavy camera-side over-
head, but with 10% frame sampling, they will simply ignore
90% of frames and thus have significantly lower accuracy,
whereas AccMPEG still encodes every frame (though with
slightly outdated AccGrad) and can deliver high accuracy.

Metrics: Following the definitions in §2.2, we compare
different techniques along three key metrics: delay, infer-
ence accuracy, and camera-side compute cost (the cost is
measured by camera-side encoding delay and overheads).
In particular, we use F1 score as the accuracy metric in ob-
ject detection, IoU in semantic segmentation, and distance-
based accuracy in keypoint detection. These metrics all
values in [0,1], with higher values the better. We calculate
the camera-side delay on one Intel Xeon Silver 4110 CPU.
We assume there are 5 video streams sharing a network link
with 2.5Mbps bandwidth upload speed (the average upload
speed of Sprint LTE connection (OpenSignal, 2018)) and
100ms latency (Wang et al., 2019a). We do not include the
server-side inference delay, since AccMPEG does not put
extra compute cost on the server side, and the optimization
of server-side delay is not our contribution either.

6.2 Better accuracy-delay tradeoffs

Figure 7 compares AccMPEG’s performance distributions
with those of the baselines on the three tasks (on their per-
spective default full DNNs) and various datasets''. We can
see that AccMPEG outperforms the baselines: in terms of
delay, AccMPEG has 10-43% smaller encoding delay than
the best baselines with comparable accuracy. Vigil has lower
streaming delay than AccMPEG, but it has low accuracy
(many small objects are missed). AccMPEG is also 0.5-
2% more accurate when compared to the non-server-driven
baselines with lower streaming delay. Though some server-
driven techniques have higher accuracy than AccMPEG on
region-proposal-based DNNs like FasterRCNN, they are not
applicable to DNNs that lack explicit region proposals like
Yolo and EfficientDet.

We also evaluate AccMPEG’s performance on semantic
segmentation with FCN (PyTorch) as the final DNN. We
find that AccMPEG has 20% higher accuracy than Reducto
with lower streaming delay, or 5% lower streaming delay
while maintaining higher accuracy than AWStream. This
improvement may seem marginal, but the actual improve-

""'We do not evaluate region-proposal-based approaches like
EAAR and DDS on EfficientDet and Yolo since these DNNs have
no region proposal (except that we evaluate DDS on Yolo since
DDS develops specific heuristics to handle Yolo).
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Figure 8. Delay breakdowns of AccMPEG and baselines. AccM-
PEG achieves minimum streaming delay and has marginally higher
encoding delay than codec encoding (used in AWStream, EAAR).

ment of AccMPEG will be higher, since AW Stream streams
the highest-quality video whenever bandwidth permit to the
server to identify the best video encoding decision, which
can incur a high delay.

Autoencoder: We also compare AccMPEG to the autoen-
coder (Theis et al., 2017) for object detection on the highway
dashcam videos. AccMPEG achieves an accuracy of 85%,
but the autoencoder only achieves 62%. Moreover, the en-
coded frame size of AccMPEG is about 7KB, much less
than that of autoencoder (240KB (Github, a) per frame).
As a result, the streaming delay of autoencoder is over 38
seconds. Thus, AccMPEG has a much better accuracy-delay
tradeoff.

6.3 Encoding and streaming delays

Delay breakdown: Figure 8 shows the video codec en-
coding delay, camera-side extra compute delay, and the
streaming delay of AccMPEG and those of the baselines
based on the settings of Figure 7e (other settings have simi-
lar delay comparisons). We can see that AccMPEG has the
lowest end-to-end delay on both camera-side hardware set-
tings compared to all baselines except Vigi (whose accuracy
is much lower than AccMPEG in Figure 7).

Camera-side compute cost: We then zoom in on the
camera-side compute cost, which consists of encoding de-
lay and the camera-side overhead delay. Figure 8 shows
that AccMPEG’s camera-side AccModel is cheaper than
H264-based video encoding on the CPU, and is 20x cheaper
than encoding on Jetson Nano. Moreover, AccMPEG’s
camera-side compute cost is lower than existing camera-
side heuristics, such as Vigil and Reducto. Compared to
Vigil, AccMPEG has lower compute cost, because it only
runs the camera-side AccM odel inference once every 10
frames, whereas Vigil performs camera-side inference on
every frame. Compared to Reducto, AccMPEG does have
higher encoding delay (since Reducto discards some frames
and only encodes the remaining ones), but Reducto runs
expensive camera-side logic on every frame'? and thus has
a much higher camera-side overhead than AccMPEG.

As a reference point, we also test the camera-side overhead
of running the expensive DNN on the camera: the camera-

"2Reducto performs Harris feature extraction, which contains
several convolution filters and per-pixel eigen value decomposition
and contributes 70% of the camera-side ovehead.
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Figure 10. The delays of AccMPEG and baselines under varying
network bandwidth.

side delay is almost 7 seconds on CPU, and the expensive
DNN cannot fit into the GPU memory of Jetson Nano.

Delay vs. bandwidth: Next, we benchmark the impact of
network bandwidth on the video-analytics delay, we calcu-
late the delay of AccMPEG and various baselines (except
for Vigil, which has accuracy lower than 80% for most of
the cases) under increasing network bandwidth. From Fig-
ure 10, we see that AccMPEG consistently achieves the
lowest delay under different network bandwidth, though
with more gains under low bandwidth.

Delay optimizations of AccMPEG: AccMPEG uses two
techniques to speed up its AccGrad-based encoding: (1)
using region-of-interest encoding to encode the video (rather
than encoding video twice as in DDS (Du et al., 2020)),
and (2) running the AccM odel model once per 10 frames.
Figure 9 shows their incremental reductions on AccMPEG’s
camera-side delay. The figure breaks down the encoding
delay of AccMPEG into AccGrad prediction (AceM odel)
and the actual codec encoding, and as a reference point, it
also shows the encoding delay of H.264, DDS and VP9'3.
As AccMPEG uses the AccModel (a shallow DNN) for
its accuracy gradient model, the delay of accuracy gradient
prediction is much smaller than prior work such as DDS
which needs to actually run the final DNN. That said, it
is sizable compared with the encoding delay. AccMPEG
further reduces the delay by running AccModel on one
frame every 10 frames, which allows AccMPEG to encode
frames at 30fps on one Intel Xeon Silver 4100 CPU.
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Figure 11. Even if we reuse the AccM odel trained for a different
final DNN, AccMPEG still offers decent performance gain over
the best H.264 encoding scheme. DNN A — DNN B means the
AccM odel trained for A is reused to encode videos for B.

453 minutes
74.0 minutes

Basic training pipeline (Figure 5(a))
After decoupling final DNN from train-
ing (Figure 5(b))

After 10X training data downsampling

7.40 minutes

Table 2. The training time of AccMPEG on 8 GPUs.

6.4 Fast AccModel training and reusing

Efficacy of reusing AccModel: From Figure 11, we see
that in object detection, the AccM odel trained on Faster-
RCNN also provides performance benefit on YoLo and Ef-
ficientDet across two different datasets. Similarly, in key-
point detection, the AccM odel trained on KeypointRCNN-
ResNet101 also generalizes to KeypointRCNN-ResNet50
on the surfing dataset. This demonstrates that AccMPEG
can generalize to different vision models and provide better
accuracy-delay trade-off, as long as the models are trained
on the same dataset (as explained in §5).

Fast training: To benchmark the training speed, we train
AccModel for FasterRCNN (Ren et al., 2015) on 10x-
downsampled COCO dataset (COCO, 2017). The training
takes less than 8 minutes in total on 8 RTX 2080 Super GPU.
From Table 2, we see that downsampling and the AccGrad
abstraction reduces the overall training time by 60x.

7 DISCUSSION ON GENERALIZATION OF
ACCMPEG

While AccMPEG improves performance in most cases, Ac-

cMPEG does not generalize to all video content and may

have marginal or negative improvement for some video con-
tent.

"3We use the real-time encoding option of VP9.
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First, our camera-side cheap quality-selection model may
fail when the content of test videos is out-of-distribution
(e.g., when the videos contain objects of a new class that
did not appear in the training set of AccM odel). That said,
in Figure 7, we empirically show that AccMPEG performs
reasonably well on YouTube videos, when AccM odel is
trained on images sampled from the large training set of the
server-side final DNN.

Second, AccMPEG reduces the overhead of AccM odel
by using a cheap architecture and running it on sampled
frames (§4), but these cost optimization techniques may
make it fail on certain types of video content. As AccM odel
is run every k = 10 frames, it will have low accuracy
if the objects are moving very quickly (e.g., monitoring
camera feeds from a race car). Moreover, the architecture of
AccM odel—MobileNet-SSD (Sandler et al., 2018)—works
well on medium to large sized objects, and it can perform
poorly with tiny objects (such as distant vehicles in drone
videos).

8 RELATED WORK

Video analytics pipelines: There are many proposals to
balance video analytics accuracy and its costs, including
computing cost (e.g., (Zhang et al., 2017; Keahey et al.,
2019; Xu et al., 2019; Canel et al., 2019; Xu et al., 2018)) as
well as compression efficiency (e.g., (Du et al., 2020; Zhang
et al., 2018; Liu et al., 2019; Zhang et al., 2015)). Besides
those elaborated elsewhere in the paper, other techniques
also try to discard unimportant frames (Shen et al., 2017;
Chen et al., 2015; Apicharttrisorn et al., 2019; Canel et al.,
2019; Hsieh et al., 2018) or downsize the quality/framerate
of an entire video segment (Xu et al., 2019; Keahey et al.,
2019; Zhang et al., 2017; Haris et al., 2018), offload infer-
ence of Rol bounding boxes (Zhang et al., 2021) to remote
servers, and raise bitrate in regions found by feeding DNN
through the final DNN (Galteri et al., 2018; Choi & Bajic,
2018). Again, AccMPEG differs in that it introduces a cheap
DNN-aware module to perform macroblock-level (rather
than object-based) quality optimization and can quickly cus-
tomize for any given final DNN.

Vision feature encoding: Other video encoders extract
vision feature maps from the video and then compress the
features (e.g., (Duan et al., 2020; Xia et al., 2020; Emmons
et al., 2019; Kang et al., 2017b; Matsubara et al., 2019)),
with some efforts to standardize this approach (Gao et al.,
2021; VCM; CDV). Some also optimize for both vision
accuracies and human visual quality (e.g., (Hu et al., 2020)).
These video codecs explore a different design point than
AccMPEG: (1) they assume that all video analytics DNNs
share the same feature extractor (instead, AccMPEG treats
each final DNN as just a blackbox); (2) they redesign both
the encoder and the decoder (instead, AccMPEG run on any
standard video codec); and (3) Their target vision tasks (e.g.,

classification or action recognition) have more error toler-
ance when compressing feature maps (instead, AccMPEG
handles more expensive tasks, like object detection, where
any distortion on the feature maps matters).

Deep learning-based video compression: Some paral-
lel efforts also replace the video codec by autoencoders
(e.g., (Lu et al., 2019; Habibian et al., 2019; Agustsson
et al., 2020; Rippel et al., 2019; Wu et al., 2018)). In a simi-
lar spirit, recent work trains differentiable video encoders
to improve inference accuracy on the decompressed videos
(e.g., (Chamain et al., 2021)). These DNN-based autoen-
coders do not directly apply, since these autoencoders are
orders of magnitude more expensive than the standard video
codes (used in AccMPEG): the fastest autoencoder runs at
similar speed on GPU as H264 on CPU (Rippel et al., 2019).

Adapting spatial scales in computer vision: The com-
puter vision community also uses adaptive image sizing
or partitioning to improve inference accuracy; e.g., feature
pyramid networks (FPN) (Lin et al., 2017b) and BiFPN (Tan
et al., 2020) extract feature maps from multiple resolutions
to detect small objects. Others use attention mechanisms to
focus computation on regions with potential objects (Wang
et al., 2017; Ozge Unel et al., 2019; Rzicka & Franchetti,
2018; Fan et al., 2019). While AccMPEG shares similar in-
sights, it optimizes the video compression efficiency, rather
than computation complexity.

9 CONCLUSION

In this work, we present AccMPEG, a new video codec for
video analytics that improves the tradeoffs between infer-
ence accuracy and compression efficiency for a variety of
computer vision tasks. It does so by treating any vision
DNN as a differentiable black box and infers the accuracy
gradients to identify where in the frame the DNN’s inference
result is highly sensitive to the encoding quality level and
thus needs to be encoded with high quality. Our evaluation
of AccMPEG over three vision tasks shows that compared
with the state-of-the-art baselines, AccMPEG reduces upto
43% of the delay while increasing accuracy by upto 3% at
the same time. Moreover, AccMPEG’s camera-side over-
head is almost the same as those of the traditional codecs.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact includes the implementation of AccMPEG, a
static ffmpeg binary as well as a modified ffmpeg source
code.

A.2 Artifact check-list (meta-information)
* Algorithm: yes

* Binary: ffmpeg (we use ffmpeg 3.4.8, but we also repro-
duced our results under ffmpeg 5.0)

* Model: MobileNet-SSD (we provide the model weight in
our github repository)

* Data set: downloaded from youtube

¢ Run-time environment: Ubuntu 18.04 with CUDA avail-
able. Root access not required.

* Hardware: NVIDIA GPU

* Metrics: delay and accuracy

¢ Qutput: delay-accuracy.jpg

* How much disk space required (approximately)?: 25GB

* How much time is needed to prepare workflow (approxi-
mately)?: 2 hours
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How much time is needed to complete experiments (ap-
proximately)?: 3 hours

Publicly available?: Yes

Code licenses (if publicly available)?: Apache-2.0

Data licenses (if publicly available)?: none

Workflow framework used?: no

Archived (provide DOID)?: AccMPEG
(https://doi.org/10.5281
/zen0d0.6047842),
(https://doi.org/10.5281/zenodo.
6048006), modified ffmpeg
(https://doi.org/10.5281/

zenodo.6051544)

ffmpeg 5.0

source code

A.3 Description
A.3.1 How delivered

e Implementation of AccMPEG: AccMPEG github reposi-
tory, MLSys branch

e Modified ffmpeg source code: Modified ffmpeg github
repository, AccMPEG branch

e Static ffmpeg binary: Johnvansickle ffmpeg

A.3.2 Hardware dependencies

NVIDIA GPU.

A.3.3  Software dependencies

GCC, NVIDIA CUDA driver and conda.

A.3.4 Data sets

We download all of our videos from youtube. Please check
this google spreadsheet for the details on how we collected
the dataset.

A.4 Installation

Please refer to INSTALL.md to install our code.

A.5 Experiment workflow

Please refer to README.md for the experiment workflow
of our code.

A.6 Evaluation and expected result

Please refer to README.md for the evaluation and ex-
pected result of our code.

B OPTIMAL QUALITY ASSIGNMENT
ANALYSIS

We formalize the spatial quality assignments in this section
and derive the near-optimal solution through AccGrad.

B.1 Formalize quality assignment

To make the discussion more concrete, we split each W - H
frame into w - h grids of 16x16 blocks (W = 16w, H =
16h) and assign each block either a high quality or a low
quality. We now consider this problem: what is the best
quality assignment for these 16x16 blocks that maximizes
the accuracy subject to no more than ¢ blocks encoded in
high quality. Formally, it searches for a binary mask M of
size w - h (M, = 1 means block x,y is in high quality),
such that

max  Acc (DM x H+ (1—M) x L), D(H)) (2
st. M| < e 3)

where H and L are the high-quality encoding and the low-
quality encoding of each frame'*, D : T ~ Q returns the
DNN inference result (I and © are the spaces of input frames
and DNN output), and Acc : O x O — R returns the accu-
racy of D’s output on a compressed frame by comparing its
similarity with D’s output on the high quality image D(H).

This formulation involves two simplifying assumptions: the
16x16 blocks may be suboptimal boundaries between quality
levels, and it restricts the encoding to only two quality levels.
That being said, we believe that analyzing this formulation is
still valuable for two reasons. First, the block granularity of
16x16 is on par with the block sizes employed in H.264 and
H.265, which means more fine-grained blocks will not have
much impact on the encoded video size. Second, the use
of two quality levels does subsume many recent solutions
(e.g., (Zhang et al., 2015; Du et al., 2020; Zhang et al., 2018;
Chen et al., 2015; Li et al., 2020)) which use two or fewer
quality levels.

B.2 Deriving near-optimal solution through AccGrad

In this section, we “derive” the near-optimal quality assign-
ment. We use M to represent the quality assignment over
each macroblock B. Mp = 1 when B is encoded in high
quality, and Mp = 0 when encoded in low quality. We then
encode the image X according to the quality assignment M.
We assume that X = M x H+ (1 — M) x L, where H is
the high quality image, L is the low quality image and x
means element-wise multiplication.

Our goal is to maximize the accuracy Acc of our approach

4The dimension of a frame is the same for different QP values,
so H and L have the same dimension.
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Figure 12. Comparing the training curve of a traditional segmenta-
tion model and that of AccM odel: with more DNN layers (higher
DNN compute cost), the traditional segmentation loss drops slowly,
whereas the loss function of AccM odel (i.e., low-dimensional bi-
nary segmentation with a higher tolerance to false positives) drops
very quickly, which indirectly suggests that a cheap model might
suffice to train an accurate enough AccM odel.

against the ground truth D(X) (D represents the final
video analytic DNN). In other words, we are maximizing
Ace(D(X), D(H). We notice that max Acc(D(X), D(H))
is equivalent to the following (note that the first term of Eq 4
is a constant):

min  Ace(D(1 x H), D(H)) — Ace(D(X), D(H)) (4

:< aAcc(Dg;): D(H)) ,(1xH— X)>F (5)
%<E)Acc(DgL),D(H))7(1 y H,X)>F ©)
~(PAADILDE) 4y )

where (-, -)r is the Frobenius inner product and 1 is the
matrix with all of its elements be 1. Eq (5) uses Lagrange’s
Mean Value Theorem '°, where X’ lies between H and X.
In Equation (7), since the value of M is identical inside each
block, each block B contributes the following value to Eq

(7):

1M Y (aAcc(DéLL),D(H)) - LZ_))
<(1- Mp)- Z aAcc(D((?IL),D(H)) |
=(1 —MBg) - AccGradg, )

where 7 means the pixel inside the macroblock B. The
equality condition of the inequality above is the sign of
the gradient term 0Acc aligns with the sign of H; — L,
which actually is most of the cases since pushing a pixel
closer to high quality typically improves accuracy. After the

15 As the accuracy metric is typically not differentiable, we use
the training loss function of the neural network as the differentiable
approximation of the accuracy.

inequality, we transform the original optimization objective
(Eq (4) to minimizing the quality drop 1 — Mp times the
accuracy gradient AccGradp. Thus, the optimal solution
is to give those high accuracy gradient macroblocks a low
quality drop, which means encode them in high quality.

C EMPIRICAL EVIDENCE ON HOW
FALSE-POSITIVE-TOLERANCE REDUCES
THE COST OF AccM odel

To empirically support that false positive tolerance (men-
tioned in §3.2) can reduce the compute demand of segmen-
tation task, we train a series of DNNs with compute power
[1,2,4,6,8]x on the same dataset with two different losses:
traditional segmentation loss and our training loss (with less
penalty on those blocks that wrongfully encoded in high
quality). From Figure 12, we see that 4x-compute DNN
performs much worse than 8x DNN under traditional seg-
mentation loss (as shown in Figure 12a) but the performance
of 4x-compute DNN and 8x-compute DNN is similar under
our training loss (see Figure 12b). This indicates that our
training loss is much less compute-hungry than traditional
segmentation loss.



