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S I N G U L A R I T Y  M O D E L S  I N  T H E  T H R E E - D I M E N S I O N A L
R I C C I  F L O W

SIMON B R E N D L E

A b s t r a c t .  The Ricci ow is a natural evolution equation for Riemann-ian
metrics on a given manifold. The main goal is to understand sin-
gularity formation.     In his spectacular 2002 breakthrough, Perelman
achieved a qualitative understanding of singularity formation in dimen-
sion 3. More precisely, Perelman showed that every nite-time singular-ity
to the Ricci ow in dimension 3 is modeled on an ancient -solution.
Moreover, Perelman proved a structure theorem for ancient -solutions in
dimension 3.

In this survey, we discuss recent developments which have led to
a complete classication of all the singularity models in dimension 3.
Moreover, we give an alternative proof of the classication of noncol-
lapsed steady gradient Ricci solitons in dimension 3 (originally proved
by the author in 2012).

1. Background on the R i c c i  f l ow

Geometric evolution equations play an important role in dierential ge-
ometry. The most important such evoluation equation is the Ricci ow for
Riemannian metrics which was introduced by Hamilton [21]:

Denit ion 1.1 (R.  Hamilton [21]). Let g(t) be a one-parameter family of
Riemannian metrics on a manifold M. We say that the metrics g(t) evolve by
the Ricci ow if

(1)
@t

g(t) =   2 Ricg(t) :

In his paper [21], Hamilton established short time existence and unique-
ness for the Ricci ow.

Theorem 1.2 (R.  Hamilton [21]; D. DeTurck [18]). Let g0 be a Riemannian
metric on a compact manifold M . Then there exists a unique solution g(t), t
2  [0; T ), to the Ricci ow with initial metric g(0) =  g0. Here, T is a positive
real number which depends on the initial data.

The main diculty in proving Theorem 1.2 is that the Ricci ow is weakly, but
not strictly, parabolic. This is due to the fact that the Ricci ow is invari-ant
under the dieomorphism group of M. This problem can be overcome
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using DeTurck’s trick [18]. In the following, we sketch the argument (see [6]
or [30] for details). Let us x a compact manifold M and a smooth one-
parameter family of background metrics h(t). The choice of the background
metrics h(t) is not important. In particular, we can choose the background
metrics h(t) to be independent of t. For each t, we denote by g(t);h(t) the
Laplacian of a map from (M; g(t)) to (M; h(t)) (see [6], Denition 2.2). With
this understood, we can dene Ricci-DeTurck ow as follows:

Denit ion 1.3. Let g~(t) be a one-parameter family of metrics on M. We
say that the metrics g~(t) evolve by the Ricci-DeTurck ow if

@t
g~(t) =   2 Ricg~(t) L t (g~(t));

where the vector eld t is dened by t : =  g~(t);h(t) id.

The evolution of the metric under the Ricci-DeTurck ow can be written
in the form

@t
g~ j  =  g~kl @k@lg~ j  +  lower order terms.

Therefore, the Ricci-DeTurck ow is strictly parabolic, and admits a unique
solution on a short time interval.

In the next step, we show that the Ricci ow is equivalent to the Ricci-
DeTurck ow in the sense that whenever we have a solution to one equation, we
can convert it into a solution of the other.

To  explain this, suppose rst that we are given a solution g~(t) of the
Ricci-DeTurck ow. Our goal is to produce a solution g(t) of the Ricci ow. As
above, we dene t : =  g~(t);h(t) id. We dene a one-parameter family of
dieomorphisms ’ t  by  @ ’ t ( p )  =  t j ’  (p) and ’0 ( p )  =  p. Moreover, we dene
a one-parameter family of metrics g(t) by g(t) =  ’  (g~(t)). Then g(t) is a
solution of the Ricci ow.

Conversely, suppose that we are given a solution g(t) of the Ricci ow. Our
goal is to produce a solution g~(t) of the Ricci-DeTurck ow. To  that end, we
solve the harmonic map heat ow  @ ’ t  =  g (t);h(t) ’t  with initial condition ’
=  id. Moreover, we dene a one-parameter family of metrics g~(t) by ’(g~(t))  =
g(t). Then g~(t) is a solution of the Ricci-DeTurck ow. This shows that the
Ricci ow is equivalent to the Ricci-DeTurck ow.

A  solution to the Ricci ow on a compact manifold can either be continued
for all time, or else the curvature must blow up in nite time:

Theorem 1.4 (R.  Hamilton [21]). Let g0 be a Riemannian metric on a com-
pact manifold M . Let g(t), t 2  [0; T ), denote the unique maximal solution to
the Ricci ow with initial metric g(0) =  g0. If T <  1 ,  then the curvature of g(t)
is unbounded as t !  T .

A  central problem is to understand the formation of singularities under
the Ricci ow. To  that end, it is often useful to consider a special class of
solutions which move in a self-similar fashion. These are referred to as Ricci
solitons:
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Denit ion 1.5. Let (M; g) be a Riemannian manifold, and let f  be a scalar
function on M. We say that (M; g; f ) is a steady gradient Ricci soliton if
Ric =  D 2 f .  We say that (M; g; f ) is a shrinking gradient Ricci soliton if Ric
=  D 2 f  +  g for some constant  >  0. We say that (M; g; f ) is an expanding
gradient Ricci soliton if Ric =  D 2 f  + g  for some constant  <  0.

We next discuss the global behavior of the Ricci ow in dimension 2.
Hamilton [22] and Chow [15] showed that, for every initial metric on S 2, the
Ricci ow shrinks to a point and becomes round after rescaling:

Theorem 1.6 (R.  Hamilton [22]; B. Chow [15]). Let g be a Riemannian
metric on S 2 . Let g(t), t 2  [0; T ), denote the unique maximal solution to the
Ricci ow with initial metric g(0) =  g . Then T <  1 .  Moreover, as t !  T , the
rescaled metrics 1  g(t) converge in C 1  to a metric with constant
Gaussian curvature 1.

Theorem 1.6 was rst proved by Hamilton [22] under the additional as-
sumption that the initial metric g0 has positive scalar curvature. This con-
dition was later removed by Chow [15]. In the following, we sketch the main
ideas in Hamilton’s proof. Full details can be found in [22] or [6], Section 4.
Given a metric g on S 2 with positive scalar curvature, Hamilton denes the
entropy E (g) by

(2) E (g) =  
S 2  

R  log
8

d;

where A  denotes the area of (S 2; g). The functional E (g) is invariant under
scaling. By the Gauss-Bonnet theorem, 2 R d  =  8. Hence, it follows
from Jensen’s inequality that E (g) is nonnegative. Moreover, E (g) is strictly
positive unless the scalar curvature of (S 2; g) is constant.

Hamilton’s key insight is that the functional E (g) is monotone decreasing
under the Ricci ow. From this, Hamilton deduced that the product A R  is
uniformly bounded under the evolution. This implies that the ow con-verges
to a shrinking gradient Ricci soliton, up to scaling. Finally, Hamilton showed
that every shrinking gradient Ricci soliton on S 2 must have constant scalar
curvature. This completes our discussion of Theorem 1.6.

In the three-dimensional case, Hamilton [21] showed that an initial metric
with positive Ricci curvature shrinks to a point in nite time and becomes
round after rescaling.

Theorem 1.7 (R.  Hamilton [21]). Let g0 be a Riemannian metric on a
three-manifold M with positive Ricci curvature. Let g(t), t 2  [0; T ), denote
the unique maximal solution to the Ricci ow with initial metric g(0) =  g0.
Then T <  1 .  Moreover, as t !  T , the rescaled metrics 4(T  t) g(t) converge
in C to a metric with constant sectional curvature 1.

The proof of Theorem 1.7 is based on a pinching estimate for the eigen-
values of the Ricci tensor. To  explain this, let 1  2  3 denote the



1 2 3

2 2 2

@ 2

@ 2

4 SIMON B R E N D L E

eigenvalues of the tensor R g i j    2 Ricij . With this understood, the scalar
curvature is given by  +   +   , and the eigenvalues of the Ricci tensor are
given by 1 (2 + 3 );  1 (3 + 1 );  1 (1 + 2 ).  In particular, the positivity of the Ricci
tensor is equivalent to the inequality 1 +  2 >  0. Hamilton proved that

(3)
@t1  1 +  1 +  23 and

(4)
@t3  3 +  3 +  12;

where both inequalities are understood in the barrier sense. In the special
case when the initial metric has positive Ricci curvature, Hamilton proved a
pinching estimate of the form 3 1  C  (1 + 2 )1  , where  is a small positive
constant depending on the initial data and C  is a large constant depending
on the initial data. The proof of this estimate relies on the
maximum principle.

Theorem 1.7 has opened up two major lines of research. On the one hand,
it is of interest to prove similar convergence theorems in higher dimensions,
under suitable assumptions on the curvature. This direction led to the proof
of the Dierentiable Sphere Theorem (see [5],[12]). On the other hand, it is
important to understand the behavior of the Ricci ow in dimension 3 for
arbitrary initial metrics. In this case, the ow will develop more complicated
types of singularities, including so-called neck-pinch singularities. In a series
of breakthroughs, Perelman [27],[28] achieved a qualitative understanding
of singularity formation in dimension 3. This is sucient for topological
conclusions, such as the Poincare conjecture.

In this survey, we will focus on issues related to singularity formation in
dimension 3. In Section 2, we will review the concept of an ancient solution,
and explain its relevance for the analysis of singularities. We next discuss
Perelman’s noncollapsing theorem. Moreover, we describe examples of an-
cient solutions to the Ricci ow in low dimensions. In Section 3, we discuss the
classication of ancient solutions in dimension 2. In Section 4, we review results
due to Perelman [27] concerning the structure of ancient -solutions in
dimension 3. These are ancient solutions which have bounded and non-
negative curvature and satisfy a noncollapsing condition. In Section 5, we
discuss the classication of ancient -solutions in dimension 3. In Section 6, we
describe a quantitative version of the fact that the Ricci ow preserves
symmetry. In Section 7, we discuss the Neck Improvement Theorem from
[8]. This theorem asserts that a neck becomes more symmetric under the
evolution. Finally, in Sections 8 and 9, we give an alternative proof of the
classication of noncollapsed steady gradient Ricci solitons in dimension 3.
This result was originally proved in [7]; the proof given here relies on the
Neck Improvement Theorem from [8].
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2. Ancient  solutions and noncollapsing

The notion of an ancient solution plays a fundamental role in under-
standing the formation of singularities in the Ricci ow. This concept was
introduced by Hamilton [23].

Denit ion 2.1. An ancient solution to the Ricci ow is a solution which is
dened on the time interval (  1 ; T ]  for some T .

The concept of an ancient solution to a parabolic P D E  is analogous to
the concept of an entire solution to an elliptic P D E .

Ancient solutions typically arise as blow-up limits at a singularity. In the
Ricci ow, we are specically interested in ancient solutions which satisfy a
noncollapsing condition.

Denit ion 2.2 (G. Perelman [27]). An ancient solution to the Ricci ow in
dimension n is said to be -noncollapsed if volg(t) (Bg(t) (p; r))  r n  when-ever
supx2Bg ( t ) (p;r )  R(x; t)   r  2.

Denition 2.2 is motivated by Perelman’s noncollapsing theorem for the
Ricci ow:

Theorem 2.3 (G. Perelman [27], Section 4). Let M be a compact manifold of
dimension n, and let g(t), t 2  [0; T ), be a solution to the Ricci ow, where T <
1 .  Consider a sequence of times tj  !  T and a bounded sequence of radii
r j .  Finally, let pj  be a sequence of points in M such that

r2 sup R(x; t j )  <  1 :
x 2 B g ( t j ) ( p j ; r j )

Then
lim inf r j  

n  volg (t j ) (Bg (t j ) (pj ; rj )) >  0:

Theorem 2.3 is a consequence of Perelman’s monotonicity formula for the
W-functional. In particular, Theorem 2.3 implies that every blow-up limit of
the Ricci ow at a nite-time singularity must be -noncollapsed.

In dimension 3, the Hamilton-Ivey estimate gives a lower bound for the
sectional curvature in terms of the scalar curvature:

Theorem 2.4 (R.  Hamilton [23]; T .  Ivey [25]). Let g(t), t 2  [0; T ), be a
solution to the Ricci ow on a compact three-manifold M . Let 1 denote the
smallest eigenvalue of the tensor R g i j    2 Rici j .  Then 1 satises a pointwise
inequality of the form 1   f ( R ) ,  where the function f  satises l i m s ! 1  

f ( s )  =
0.

Theorem 2.4 implies that every blow-up limit of the Ricci ow in dimen-sion
3 must have nonnegative sectional curvature. The proof of Theorem 2.4
relies on the maximum principle together with the evolution equation for
the Ricci tensor.

This motivates the following denition:
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Denit ion 2.5. An ancient -solution to the Ricci ow in dimension n 2  f2; 3g
is a complete, non-at, -noncollapsed ancient solution with bounded and
nonnegative curvature.

The notion of an ancient -solutions plays a key role in Perelman’s the-ory.
In particular, Perelman showed that, if a solution to the Ricci ow in
dimension 3 forms a singularity in nite time, then the high curvature
regions can be approximated by ancient -solutions (see [27], Section 12).

In the remainder of this section, we describe some of the known examples
of ancient solutions to the Ricci ow in dimension 2 and 3.

Example 2.6. Let g 2     denote the standard metric on S 2. Let us dene
a family of metrics g(t) on S 2 by g(t) =  (  2t) gS 2     for t 2  (  1 ; 0 ) .  This
is an ancient solution to the Ricci ow which shrinks homothetically. It is -
noncollapsed.

Example 2.7. Let us dene a one-parameter family of conformal metrics
on R2  by

g
ij

(
t
)
 =  

et +  jxj2 i j

for t 2  (  1 ; 1 ) .  This gives a rotationally symmetric solution to the Ricci
ow on R2 , which moves by dieomorphisms. It is referred to as the cigar
soliton. The cigar soliton has positive curvature and opens up like a cylinder
near innity. The cigar soliton fails to be -noncollapsed.

Example 2.8. Let us dene a one-parameter family of conformal metrics
on R2  by

8 sinh( t)
i j 1 +  2 cosh( t) jxj2 +  jxj4     i j

for t 2  (  1 ; 0 ) .  For each t 2  (  1 ; 0 ) ,  g(t) extends to a smooth metric
on S 2. This gives a rotationally symmetric solution to the Ricci ow on S 2.
This is referred to as the King-Rosenau solution (cf. [26],[29]). The King-
Rosenau solution is an ancient solution to the Ricci ow with positive
curvature. The King-Rosenau solution fails to be -noncollapsed.

Example 2.9. Let g 3     denote the standard metric on S 3. Let us dene
a family of metrics g(t) on S 2 by g(t) =  (  4t) gS 3     for t 2  (  1 ; 0 ) .  This
is an ancient solution to the Ricci ow which shrinks homothetically. It is -
noncollapsed.

Example 2.10. Let again g 2 denote the standard metric on S 2. Let us
dene a family of metrics g(t) on S 2  R  by g(t) =  (  2t) gS 2 +  dz
 dz
for t 2  (  1 ; 0 ) .  This is an ancient solution to the Ricci ow. It is -
noncollapsed.

Example 2.11. Robert Bryant [13] has constructed a steady gradient Ricci
soliton in dimension 3 which is rotationally symmetric. This can be viewed as
the three-dimensional analogue of the cigar soliton. The Bryant soliton
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has positive sectional curvature and opens up like a paraboloid near innity.
Unlike the cigar soliton, the Bryant soliton is -noncollapsed.

Example 2.12. Perelman has constructed an ancient solution to the Ricci
ow on S 3 which is rotationally symmetric. This can be viewed as the three-
dimensional analogue of the King-Rosenau solution. Perelman’s ancient
solution has positive sectional curvature. Unlike the King-Rosenau solution,
Perelman’s ancient solution is -noncollapsed.

The asymptotics of Perelman’s ancient solution are by now well under-
stood; see [2].

3. C lass i f i c at ion  of  ancient solutions in dimension 2

In this section, we discuss the main classication results for ancient so-
lution in dimension 2. In [27], Perelman gave a classication of ancient -
solutions in dimension 2:

Theorem 3.1 (G. Perelman [27], Section 11). Let (M; g(t)) be an ancient -
solution in dimension 2. Then (M; g(t)) is isometric to a family of shrinking
spheres, or a Z2-quotient thereof.

Let us sketch Perelman’s proof of Theorem 3.1. Suppose that (M; g(t))
is an ancient -solution in dimension 2. After passing to a double cover if
necessary, we may assume that M is orientable. By Proposition 11.2 in [27],
we can nd a sequence of times tj  !   1  and a sequence of points pj  2  M
with the following property: if we dilate the manifold (M; g(tj )) around the
point pj  by the factor (  tj )      1 

, then the rescaled manifolds converge in the
Cheeger-Gromov sense to a non-at shrinking gradient Ricci soliton. Using
Hamilton’s classication of shrinking gradient Ricci solitons in dimension 2
(see [22]), we conclude that the limiting manifold must be a round sphere.
Since the limiting manifold is dieomorphic to S 2, it follows that M is
dieomorphic to S 2.

We next consider Hamilton’s entropy functional dened in (2). Since the
manifolds (M; g(tj )) converge to a round sphere after rescaling, we know
that E (g(tj )) !  0 as j  !  1 .  Moreover, it follows from Hamilton’s work
[22] that the function t !  E (g(t)) is monotone decreasing. Consequently,
E (g(t))  0 for each t. On the other hand, Jensen’s inequality implies that
E (g(t)) is strictly positive unless (M; g(t)) has constant scalar curva-ture.
Putting these facts together, we conclude that the scalar curvature of
(M; g(t)) is constant for each t. This completes our sketch of the proof of
Theorem 3.1.

Daskalopoulos, Hamilton, and Sesum were able to classify compact an-
cient solutions in dimension 2 without noncollapsing assumptions:

Theorem 3.2 (P. Daskalopoulos, R.  Hamilton, N. Sesum [17]). Let (M; g(t))
be a compact, non-at ancient solution to the Ricci ow in dimension 2. Then,
up to parabolic rescaling, translation in time, and dieomorphisms,
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(M; g(t)) coincides with the family of shrinking spheres, the King-Rosenau
solution, or a Z2-quotient of these.

One of the main ideas behind Theorem 3.2 is to nd a quantity to which the
maximum principle can be applied and which vanishes on the King-
Rosenau solution. To  explain this, suppose that (M; g(t)) is a compact,
non-at ancient solution to the Ricci ow in dimension 2. After passing to a
double cover if necessary, we may assume that M is orientable. Using the
maximum principle, it is easy to see that (M; g(t)) has nonnegative scalar
curvature for each t. Moreover, the strict maximum principle implies that
the scalar curvature of (M; g(t)) is strictly positive. Since M is compact and
orientable, it follows that M =  S 2. By the uniformization theorem, we may
assume that the metrics g(t) are conformal to the standard metric on S 2.

Using the stereographic projection, we can identify R2  with the comple-
ment of the north pole in S 2. Thus, we obtain a family of conformal metrics on
R2  which evolve by the Ricci ow. We may write the evolving metric in the
form v 1 

i j ,  where v satises the parabolic P D E

@t
v =  v v jrv j2

on R2 , where r v  and v denote the gradient and Laplacian of v with
respect to the Euclidean metric on R2 . Daskalopoulos, Hamilton, and Sesum
consider the quantity

Q =  v 
@z

v 
@z3 ;

where  @      =  1 (  @    i   @ )  and  @      =  1 (  @  +  i   @ )  denote the usual
Wirtinger derivatives. A  straightforward calculation shows that the quan-
tity Q is invariant under M•obius transformations. Moreover, Q satises the
evolution equation

2

@t
Q =  v

 
Q 16v         v 

@z@z 
  

@z @z 
Q

@4v @v @3v @4v @v @3v
@z4 @z @z3 @z4 @z @z3 @4v

@v @3v             @4v         @v @3v
@z3@z @z @z3 @z3@z @z @z3

The scalar curvature of the conformal metric v 1 
i j  can be written in the

form

R  =  v 1 (v v jrv j2 )  =  4v 1     v 
@z@z 

  
@z @z 

:
This gives

@t
Q  v Q 4RQ

(compare [17], Section 5, or [16]). Here, Q denotes the Laplacian of Q with
respect to the Euclidean metric on R2 . The term v Q can be interpreted as
the Laplacian of Q with respect to the evolving metric v 1 

i j .
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On the King-Rosenau solution, v is a quadratic polynomial in jxj2, with
coecients that depend on t. In particular, @3v vanishes identically on
the King-Rosenau solution. Therefore, Q vanishes identically on the King-
Rosenau solution.

4. S t r u c t u r e  of  ancient -solutions in dimension 3

In [27], Perelman proved several fundamental results concerning the struc-
ture of ancient -solutions in dimension 3. One of the central results is the
following pointwise estimate for the covariant derivatives of the curvature
tensor.

Theorem 4.1 (G. Perelman [27], Section 11). Let (M; g(t)), t 2  (  1 ; 0 ] ,
be an ancient -solution to the Ricci ow in dimension 3.     Let m be a
positive integer. Then the m-th order covariant derivatives of the curvature
tensor satisfy the pointwise bound jDmRmj  C  R

m + 2  
, where C  is a positive

constant that depends only on m and .

Another fundamental result in Perelman’s work is the following longrange
curvature estimate:

Theorem 4.2 (G. Perelman [27], Section 11). Let (M; g(t)), t 2  (  1 ; 0 ] ,
be an ancient -solution to the Ricci ow in dimension 3. Then there exists a
function !  : [ 0 ; 1 )  !  [ 0 ; 1 )  (depending on )  such that

R(y; t)  R(x; t) ! (R(x; t) dg (t ) (x; y )2 )

for all x; y 2  M and all t  0.

Perelman’s longrange curvature estimate is extremely useful, in that it
allows Perelman to take limits of sequences of ancient -solutions. One
important consequence is that the space of ancient -solutions is compact in
the following sense:

Theorem 4.3 (G. Perelman [27], Section 11). Let (M (j ) ; g (j ) (t)), t 2  (  1 ; 0 ] ,
be a sequence of ancient -solutions in dimension 3. Moreover, suppose that pj

2  M (j )  is a sequence of points such that R(pj ; 0) =  1 for each j .  Then,
after passing to a subsequence if necessary, the ows (M (j ) ; g (j ) (t); p )  con-
verge in the Cheeger-Gromov sense to a limit (M 1 ; g 1 ( t ) ) ,  and this limit is
again an ancient -solution.

Corol lary 4.4 (G. Perelman [27], Section 11). Let (M; g(t)), t 2  (  1 ; 0 ] ,
be a noncompact ancient -solution to the Ricci ow in dimension 3 with

positive sectional curvature. Let us x a point p0 in M . Let pj  be a sequence
of points in M such that dg(0)(p0; pj ) !  1 ,  and let r j  

2 : =  R(pj ; 0). Let
us dilate the ow around the point (pj ; 0) by the factor r  1. Then, after
passing to a subsequence if necessary, the rescaled ows converge in the
Cheeger-Gromov sense to a family of shrinking cylinders.
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Let us sketch how Corollary 4.4 follows from Theorem 4.3. The longrange
curvature estimate gives

R(p0; 0)  R(pj ; 0) !(R(pj ; 0) dg (0) (p0 ; pj )2 )

for each j .  This implies

R(pj ; 0) dg(0) (p0; pj )2 !  1

as j  !  1 .  In other words, r j  
1 dg(0)(p0; pj ) !  1  as j  !  1 .  We next con-

sider the rescaled metrics g (j ) (t) : =  r  2 g(r2t) for t 2  (  1; 0] .  By Theorem
4.3, the ows (M; g(j ) (t); pj ) converge in the Cheeger-Gromov sense to an
ancient -solution (M 1 ; g 1 (t ) ) .  Since r  1 dg(0)(p0; pj ) !  1 ,  the limiting ow
(M 1 ; g 1 ( t ) )  must split o a line. Using Perelman’s classication of ancient
-solutions in dimension 2 (see Theorem 3.1), it follows that the limiting ow
(M 1 ; g 1 ( t ) )  must be a family of shrinking cylinders or a quo-tient thereof.
On the other hand, M is dieomorphic to R3  by the soul theorem. In
particular, M does not contain an embedded RP2. This implies that
(M 1 ; g 1 ( t ) )  cannot be a non-trivial quotient of the cylinder. This
completes the sketch of the proof of Corollary 4.4.

Denit ion 4.5. Let (M; g(t)) be a solution to the Ricci ow in dimension 3,
and let (x; t) be a point in space-time with R(x; t) =  r  2. We say that (x; t) lies
at the center of an evolving "-neck if, after rescaling by the factor r  1, the
parabolic neighborhood Bg (t) (x; " 1 r)  [t   " 1r2; t] is "-close in C [ "      1 ] to a
family of shrinking cylinders.

The notion of a neck was introduced in Hamilton’s work [24]. In partic-
ular, Hamilton showed that a neck admits a canonical foliation by constant
mean curvature (CMC)  spheres.

Corollary 4.4 implies the following structure theorem for noncompact an-
cient -solutions:

Corol lary 4.6 (G. Perelman [27], Section 11). Let (M; g(t)), t 2  (  1 ; 0 ] ,
be a noncompact ancient -solution to the Ricci ow in dimension 3 with
positive sectional curvature. Moreover, let " be a positive real number, and let
M" denote the set of all points x  2  M with the property that (x; 0) does not
lie at the center of an evolving "-neck. Then M" has nite diameter.
Moreover, supx2M R(x; 0)  C (; ") inf x2M" R(x; 0) and supx2M R(x; 0)
C (; ") diamg(0) (M") .

5. C lass i f i c at ion  of  ancient -solutions in dimension 3

We now turn to the classication of ancient -solutions in dimension 3. The
rst major step was the classication of noncollapsed steady gradient Ricci
solitons in dimension 3.
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Theorem 5.1 (S. Brendle [7]). Let (M; g) be a three-dimensional complete
steady gradient Ricci soliton which is non-at and -noncollapsed. Then
(M; g) is rotationally symmetric, and is therefore isometric to the Bryant
soliton up to scaling.

More recently, we classied all noncompact ancient -solutions in dimen-
sion 3:

Theorem 5.2 (S. Brendle [8]). Assume that (M; g(t)) is a noncompact
ancient -solution of dimension 3. Then either (M; g(t)) is isometric to a
family of shrinking cylinders (or a quotient thereof ), or (M; g(t)) is isometric
to the Bryant soliton up to scaling.

Theorem 5.2 conrms a conjecture of Perelman [27].
The proof of Theorem 5.2 consists of two main steps. In the rst step, we

classify noncompact ancient -solutions with rotational symmetry. To  do
that, we need precise asymptotic estimates for such solutions. In the sec-ond
step, we show that every noncompact ancient -solution is rotationally
symmetric. This second step uses the classication of steady gradient Ricci
solitons in Theorem 5.1, as well as the classication of ancient -solutions with
rotational symmetry. Another crucial ingredient is the Neck Improve-ment
Theorem which asserts that a neck tends to get more symmetric as it evolves
under the Ricci ow. We will discuss the Neck Improvement Theo-rem in
Section 7 below.

The following theorem is the counterpart of Theorem 5.2 in the compact
case:

Theorem 5.3 (S. Brendle, P. Daskalopoulos, N. Sesum [10]). Assume that
(M; g(t)) is a compact ancient -solution of dimension 3. Then, up to para-
bolic rescaling, translation in time, and dieomorphisms, (M; g(t)) is either a
family of shrinking spheres or Perelman’s ancient solution or a quotient of
these.

The proof of Theorem 5.3 again requires two main steps. In the rst step,
we show that every compact ancient -solution is rotationally sym-metric.
This step uses the classication of noncompact ancient -solutions in Theorem
5.2, together with the Neck Improvement Theorem. In a second step, we
classify compact ancient -solutions with rotational symmetry. To  do that, we
need to understand the asymptotic behavior of such solutions. These
asymptotic estimates are established in [2].

Similar classication results exist for convex, noncollapsed ancient solu-
tions to mean curvature ow in R3 . We refer to [9] for the classication in the
noncompact case, and to [3] for the classication in the compact case.

6. Preservat ion of  symmetry  under the R i c c i  f l ow

Let g(t), t 2  [0; T ), be a solution to the Ricci ow on a compact manifold M.
It follows from Hamilton’s short time uniqueness theorem that the Ricci
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ow preserves symmetry. More precisely, every isometry of (M; g(0)) is also an
isometry of (M; g(t)) for each t  0. Consequently, every Killing vector eld of
(M; g(0)) is also a Killing vector eld of (M; g(t)) for each t  0.

In this section, we describe a quantitative version of this principle. We
begin with a denition:

Denit ion 6.1. Let h be a symmetric (0; 2)-tensor. The Lichnerowicz
Laplacian of h is dened as

(5) L h i k  : =  hik +  2Ri j k l h j l  Ricl hk l Rick hil :

The Lichnerowicz Laplacian arises naturally in the study of Einstein met-
rics (see [4], equation (1.180b)). It also comes up in connection with the
evolution equation for the Ricci tensor under the Ricci ow. Indeed, if
(M; g(t)) is a solution to the Ricci ow, then the Ricci tensor satises the
evolution equation

@t
Ricg(t) =  L;g (t) Ricg (t)

(see [21], Corollary 7.3).
The following results play a key role in our analysis:

Proposition 6.2. Let (M; g) be a Riemannian manifold. Let V be a smooth
vector eld on M , and let h : =  L V  (g). Then

V +  Ric(V ) =  div h   
2 

r(tr h):

Proposition 6.3 (S. Brendle [8], Section 5). Let (M; g(t)) be a solution of
the Ricci ow. Let V (t) be a time-dependent vector eld such that

(6)
@t

V (t) =  g(t)V (t) +  Ricg(t) (V (t));

and let h(t) : =  L V  (t) (g(t)). Then the tensor h(t) satises the evolution
equation

(7)
@t

h(t) =  L;g(t)h(t):

Proposition 6.3 has a natural geometric interpretation in terms of the lin-
earized Ricci-DeTurck ow. To  explain this, let us x a solution (M; g(t)) of the
Ricci ow. Suppose that ’ t  is a one-parameter family of dieomorphisms which
solve the harmonic map heat ow with respect to the background metrics
g(t); that is,

(8)
@t

’t =  g(t);g (t) ’t :

Let us dene a ow of metrics g~(t) by ’(g~(t))  =  g(t). Then the metrics g~(t)
solve the Ricci-DeTurck ow with respect to the background metrics g(t).
More precisely,

(9)
@t

g~(t) =   2 Ricg~(t) L t (g~(t));



@

@

@t

t

t t

t

R 2

 @

2
@t R R R2 2 2

S I N G U L A R I T Y  M O D E L S  I N  T H E  T H R E E - D I M E N S I O N A L  R I C C I  F L O W 13

where t =  g~(t);g(t) id. Clearly, ’ t  : =  id is a solution of (8), and g~(t) : =  g(t) is
a solution of (9).

We now linearize the equations (8) and (9) around ’ t  =  id and g~(t) =  g(t),
respectively. Linearizing the harmonic map heat ow (8) around the identity, we
obtain the equation

@t
V (t) =  g(t)V (t) +  Ricg(t) (V (t))

for a vector eld V (see [19], p. 11). Linearizing the Ricci-DeTurck ow (9)
around g(t) leads to the parabolic Lichnerowicz equation

@t
h(t) =  L;g(t)h(t):

This completes our discussion of Proposition 6.3.

On a steady gradient Ricci soliton, Proposition 6.3 takes the following
form:

Corol lary 6.4 (S. Brendle [7]). Let (M; g; f ) be a steady gradient Ricci
soliton, and let X  : =  r f .  Let V be a vector eld satisng

(10) V +  D X V  =  0;

and let h : =  L V  (g). Then the tensor h satises the equation

(11) L h  +  L X ( h )  =  0:

Let us sketch how Corollary 6.4 follows from Theorem 6.3. On a steady
gradient Ricci soliton, the time derivative  @  reduces to a Lie derivative
 L X .  More precisely, let (M; g; f ) be a steady gradient Ricci soliton, let
X  : =  r f ,  and let t denote the ow generated by the vector eld  X .  Sup-pose
that V satises V + D X V  =  0, and let h : =  L V  (g). Using the identity DV  X  =

Ric(V ), we obtain V + L X V  + Ric(V ) =  0. Consequently, the vec-tor elds
(V ) satisfy the parabolic P D E  (6) on the evolving background (M; (g)).

By Theorem 6.3, the tensors (h) satisfy the parabolic P D E  (7) on the
evolving background (M; (g)). This implies L h + L X ( h )  =  0. In order to

apply Proposition 6.3 in practice, we need estimates for so-lutions of the
parabolic Lichnerowicz equation. In dimension 3, this can be

accomplished by applying the maximum principle to the quantity jhj2 
:

Proposition 6.5 (G. Anderson, B. Chow [1]). Let (M; g(t)) be a solution
to the Ricci ow in dimension 3 with positive scalar curvature. Let h be a
solution of the parabolic Lichnerowicz equation @th(t) =  L;g (t)h(t). Then

@ jhj2  
 
jhj2  

+  
R  

D
r R ; r

j h j 2  E
:

On a steady gradient Ricci soliton, Proposition 6.5 takes the following
form:



jhj jhj 2 jhj
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Corol lary 6.6 (G. Anderson, B. Chow [1]). Let (M; g; f ) be a steady gra-
dient Ricci soliton in dimension 3 with positive scalar curvature, and let X
: =  r f .  Let h be a solution of the equation L h  +  L X ( h )  =  0. Then

2 D 2 E D 2 E

 
R

2 +  X ; r  
R 2 +  

R
 

r R ; r  
R

2  0:

7. Improvement of  symmetry  on a  neck

In view of Proposition 6.3, it is important to understand the parabolic
Lichnerowicz equation (7) on a Ricci ow background. As a starting point, we
consider the special case when the background is given by a family of
shrinking cylinders. To  x notation, we dene a family of metrics g(t), t 2  (
1 ; 0 )  on S 2  R  by

g(t) =  (  2t) gS 2 +  dz

 dz; t 2  (  1 ; 0 ) :
Clearly, the metrics g(t), t 2  (  1 ; 0 ) ,  evolve by the Ricci ow.

Proposition 7.1 (S. Brendle [8], Section 6). Let (S 2  R; g(t)) denote the
family of shrinking cylinders. Let L  be a large real number. Let h(t) be a
solution of the parabolic Lichnerowicz equation  @ h(t) =  L;g(t)h(t) which is
dened on S 2  [ L ;  L ]  and for t 2  [ L ;  1]. Assume that jh(t)jg(t)  1 for t 2  [
L ;  L ] ,  and jh(t)jg(t)  L1 0  for t 2  [ L ;  1]. Then we can nd a
rotationally invariant tensor of the form !(z ; t) gS 2  +  (z; t) dz
 dz and a
scalar function : S  !  R  such that lies in the span of the rst spherical
harmonics on S 2 and

jh(t) !(z ; t) gS 2  (z; t) dz
 dz ( t) gS 2 jg(t)  C  L      2

on S 2  [ 1000; 1000] and for t 2  [ 1000;  1]. Here, C  is a constant which
does not depend on L .

Proposition 7.1 asserts that, given sucient time to evolve, a solution of
the parabolic Lichnerowicz equation can be approximated by a sum of a
rotationally invariant tensor and a tensor of the form ( t) g 2 , where

: S 2 !  R  lies in the span of the rst spherical harmonics on S 2. The tensor (
t) gS 2      can be written as a Lie derivative of the metric along a vector
eld. To  see this, let us dene a vector eld  on S  by gS 2 (; ) =    d . Since
lies in the span of the rst spherical harmonics on S  , we obtain
L ( g S 2 )  =  1 gS 2 , and consequently L (g(t ) )  =  (  t) gS 2 .

To  prove Proposition 7.1, we decompose the tensor h(t) into components,
and perform a mode decomposition in spherical harmonics. This leads to a
system of linear heat equations in one space dimension.

Using Proposition 7.1, we can show that a neck becomes more symmetric as
it evolves under the Ricci ow. To  state this result, we need a quantitative
notion of "-symmetry:

Denit ion 7.2 (S. Brendle [8], Section 8). Let (M; g(t)) be a solution to
the Ricci ow in dimension 3, and let (x; t) be a point in space-time with
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R(x; t)  =  r  2. We assume that (x; t) lies at the center of an evolving "0-neck
for some small positive number "0. We say that (x; t) is "-symmetric if there
exist smooth, time-independent vector elds U (1); U (2); U (3) which are dened
on an open set containing Bg (t) (x; 100r) and satisfy the following conditions:

 supBg (t) (x;100r)[t 100r2;t]
l
=

0
a=1  r2l jD l (LU ( a ) (g (t)))j2   "2.

 If t 2  [t   100r2; t] and   Bg (t) (x; 100r) is a leaf of the C M C  foliation
of (M; g(t)), then sup 3 r  2 jhU (a); ij2  "2, where
denotes the unit normal vector to  in (M; g(t)).

 If t 2  [t   100r2; t] and   Bg (t) (x; 100r) is a leaf of the C M C
foliation of (M; g(t)), then

3 Z 2

ab areag(t)() 2 hU (a); U (b) ig(t) dg(t)   "2:
a;b=1

With this understood, we can now state the Neck Improvement Theorem
from [8]:

Theorem 7.3 (S. Brendle [8], Section 8). We can nd a large constant L  and
small positive constant "1 such that the following holds. Let (M; g(t)) be a
solution of the Ricci ow in dimension 3, and let (x0; t0) be a point in space-
time which lies at the center of an evolving " -neck and satises R(x0 ; t0 ) =  r
2. Moreover, we assume that every point in the parabolic neighborhood Bg (t

) (x0 ; Lr )   [t0   L r  ; t0) is "-symmetric, where "  "1. Then the point (x0; t0) is
2 -symmetric.

8. Asy mptot ic  behavior of  noncollapsed steady gradient  R i c c i
solitons in dimension 3

Let (M; g; f ) be a non-at steady gradient Ricci soliton in dimension n, so
that Ric =  D 2 f .  For abbreviation, let X  : =  r f .  Throughout this section, we
x an arbitrary point p 2  M.

Lemma 8.1. Given any point x 2  M , we can nd a smooth function  which
is dened in an open neighborhood of x and satises the following conditions:

 (x)   d(p; x)2 in an open neighborhood of the point x.   (x)  =
d(p; x)2.
 j r j 2  =  4 at the point x.
  +  h X ; r i   N0 +  N1       at the point x.

Here, N0 and N1 are uniform constants which do not depend on x.

Proof. Let us x a positive real number r0 such that r0 is strictly smaller
than the injectivity radius at p.

We rst consider the case x 2  B (p; r ). In this case, we dene a smooth
function  : B (p; r0 ) !  R  by (x)  : =  d(p; x)2. It is easy to see that j r j 2  =
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4 at each point in B(p; r0 ). Moreover, at each point in B(p; r0 ), we have
+  h X ; r i   C  for some uniform constant C .

In the next step, we consider the case x 2  M n B(p; r0). Let l : =  d(p; x)  r0.
Moreover, let  : [0; l] !  M be a unit-speed geodesic with (0) =  p and

(l ) =  x. Finally, let  : [ 0 ; 1 )  !  [ 0 ; 1 )  be a smooth cuto function such
that  =  0 on the interval [0; r 0  ] and  =  1 on the interval [ r0 ; 1) .

Let us x a positive real number r such that r is strictly smaller than the
injectivity radius at x. We dene a smooth function  : B (x; r)  !  R  as follows.
Given a point x  2  B (x; r),  there exists a unique vector w 2  TxM such that jwj
<  r and x  =  expx(w). We denote by W the unique parallel vector eld along
satisfying W (l) =  w. We then dene (x)  to be the
length of the curve

s !  exp(s) ((s) W (s)); s 2  [0; l]:

Clearly,

(x)   d exp(0) ((0) W (0)); exp(l) ((l) W (l)) =  d(p; expx(w)) =  d(p; x):

Moreover, in the special case when x  =  x and w =  0, we obtain
(x)  =  l =  d(p; x):

The formula for the rst variation of arclength implies that r p  =  0(l) at the
point x. In particular, j r  j2 =  1 at the point x. Consequently, j r j 2  =  4 at
the point x.

Using the formula for the second variation of arclength, we obtain

(D 2 p
)x(w; w ) =

l 
0(s)2 hW (s); W (s)i ds  

l  
0(s)2 h0(s); W (s)i2 ds Z 0

0

  (s)2 R(0(s); W (s); 0(s); W (s)) ds 0
for every vector w 2  TxM , where W denotes the unique parallel vector eld
along  satisfying W (l) =  w. Taking the trace over w gives

p
( x)  =  (n 1)

Z l  
0(s)2 ds 

Z l  
(s)2 Ric(0(s); 0(s)) ds: 0

0
Since  =  1 on the interval [r ; l], we obtain

p
( x)   

Z l  
Ric(0(s); 0(s)) ds +  C; 0

where C  denotes a uniform constant that does not depend on x.
On the other hand, using the identity D 2 f  =  Ric, we obtain

ds
hrf ((s)); 0 (s)i =  Ric(0(s); 0(s)):

Integrating this identity over s 2  [0; l] gives

hrf ((l )) ; 0 (l ) i   
Z l  

Ric(0(s); 0(s)) ds +  C; 0
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where C  is a uniform constant that does not depend on x. Since (l ) =  x and
0(l) =  r  (x), we obtain

h r f ( x) ; r
p

( x) i   
Z l  

Ric(0(s); 0(s)) ds +  C; 0

where C  is a uniform constant that does not depend on x. Putting these
facts together, we conclude that

p
( x)  +  h r f ( x) ; r

p
( x) i   C ;

where C  is a uniform constant that does not depend on x. This nally
implies

(x)  +  h r f ( x) ; r ( x) i   2 +  C
p

;

where C  is a uniform constant that does not depend on x. This completes
the proof of Lemma 8.1.

Proposition 8.2 (B.L.  Chen [14]). The manifold (M; g) has nonnegative
scalar curvature.

Proof. As above, we x an arbitrary point p 2  M. Let N0 and N1
denote the constants in Lemma 8.1. Let us x a radius r  >  0. We dene a
continuous function u : B (p; r ) !  R  by

u(x) : =  R ( x )  +  2n(12 +  N0 +  N1 r)r2 (r2 d(p; x)2) 2

for x  2  B (p; r). We claim that u(x)  0 for all x  2  B (p; r). To  prove this, we
argue by contradiction. Let x be a point in B (p; r ) where the function u
attains its minimum, and suppose that u(x) <  0. The evolution equation for
the scalar curvature implies

R  +  h X ; r R i  =   2 jRicj2:

By Lemma 8.1, we can nd a smooth function  which is dened in an open
neighborhood of x and satises the following conditions:

 (x)   d(p; x)2 in an open neighborhood of the point x.  (x)  =
d(p; x)2.
 j r j 2  =  4 at the point x.
  +  h X ; r i   N0 +  N1       at the point x.

Then

R ( x )  +  2n(12 +  N0 +  N1 r)r2 (r2 (x))  2  u(x)  u(x)

in an open neighborhood of x, with equality at the point x. Consequently,
the function R + 2n(12 + N 0  + N1 r )r 2 (r 2       )  2 attains a local minimum at



p
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the point x. Thus, we conclude that

0  R  +  h X ; r R i

+  2n(12 +  N0 +  N1 r)r 2 ((r2 )  2) +  hX ; r ( ( r 2  )  2 ) i

=  R  +  h X ; r R i

+  4n(12 +  N0 +  N1 r)r2 (r2 )  3 (  +  h X ; r i )  +

12n(12 +  N0 +  N1 r)r2 (r2      )  4 j r j 2

  2 jRicj2 +  4n(12 +  N0 +  N1 r )(N0 +  N1      )r2 (r2 )  3

+  48n(12 +  N0 +  N1 r)r2 (r2 )  4

at the point x. Since u  0 at the point x, we know that

 R   2n(12 +  N0 +  N1 r)r2 (r2 )  2

at the point x. This implies

n jRicj2  R 2   4n2(12 +  N0 +  N1 r)2 r4 (r2 )  4

at the point x. Putting these facts together, we obtain

0   2 jRicj2 +  4n(12 +  N0 +  N1 r )(N0 +  N1
p

)r 2 (r 2  )  3

+  48n(12 +  N0 +  N1 r)r2 (r2 )  4

8n(12 +  N0 +  N1 r)2 r4 (r2      )  4

+  4n(12 +  N0 +  N1 r )(N0 +  N1 r)r4 (r2 )  4

+  48n(12 +  N0 +  N1 r)r4 (r2 )  4

=   4n(12 +  N0 +  N1 r)2 r4 (r2 )  4

at the point x. This is a contradiction.
Thus, we conclude that

R ( x )  +  2n(12 +  N0 +  N1 r)r2 (r2 d(p; x)2) 2  0

for all x  2  B (p; r). Sending r  !  1  gives R ( x )   0 for each point x  2  M.
This completes the proof of Proposition 8.2.

Corol lary 8.3. There exists a large constant C  such that j r f j   C  at each
point on M .

Proof. Since (M; g; f ) is a a steady gradient soliton, the sum R  +  j r f j 2

is constant. Since R   0 by Proposition 8.2, we conclude that j r f j  is uni-
formly bounded from above. This completes the proof of Corollary 8.3.

In the remainder of this section, we assume that M is three-dimensional.
As in Section 1, we denote by 1  2  3 the eigenvalues of the tensor R g i j

2 Ricij . Then R  =  1 +  2 +  3. Since R   0, it follows that 3  0 at each
point on M.



2

2

p

S I N G U L A R I T Y  M O D E L S  I N  T H E  T H R E E - D I M E N S I O N A L  R I C C I  F L O W 19

Proposition 8.4 (B.L.  Chen [14]). Assume that n =  3. Then k1 + 2 R   0 for
every nonnegative integer k.

Proof. The proof is by induction on k. For k =  0, the assertion follows
from Proposition 8.2.

We now turn to the inductive step. Suppose that k  1 and (k 1)1 +
2R  0. As above, we x an arbitrary point p 2  M. Let N0 and N1 denote
the constants in Lemma 8.1. Let us x a radius r  >  0. We dene a continuous
function v : B (p; r ) !  R  by

v(x) : =  k1 (x) +  2R(x)  +  4k(12 +  N0 +  N1 r)r2 (r2 d(p; x)2) 2

for x  2  B (p; r). We claim that v (x)  0 for all x  2  B (p; r). To  prove this, we
argue by contradiction. Let x be a point in B (p; r ) where the function v
attains its minimum, and suppose that v (x) <  0. The evolution equation for
the scalar curvature implies

R  +  h X ; r R i  =   2 jRicj2:

The evolution equation for the Ricci tensor gives

1 +  h X ; r 1 i    (1 +  23);

where the inequality is understood in the barrier sense. More precisely, we
can nd a smooth function which is dened in an open neighborhood of x
and satises the following conditions:

(x)   1 (x) in an open neighborhood of the point x. (x)
=  1 (x).
  +  h X ; r  i    (1 +  23) at the point x.

For example, we may dene : =  Ric(; ), where  is a smooth unit vector eld
satisfying Ric(; ) =  1 at x; D  =  0 at x; and  =  0 at x.

By Lemma 8.1, we can nd a smooth function  which is dened in an
open neighborhood of x and satises the following conditions:

 (x)   d(p; x)2 in an open neighborhood of the point x.  (x)  =
d(p; x)2.
 j r j 2  =  4 at the point x.
  +  h X ; r i   N0 +  N1       at the point x.

Then

k (x)  +  2R(x)  +  4k(12 +  N0 +  N1 r)r2 (r2 (x))  2  v (x)  v (x)

in an open neighborhood of x, with equality at the point x. Consequently,
the function k + 2R + 4k (12 + N0 + N1 r )r 2 (r 2  )  2 attains a local minimum



1
p

1

1 1 2 3

2

1
p

20 SIMON B R E N D L E

at the point x. Thus, we conclude that

0  k ( +  h X ; r  i )  +  2 (R +  h X ; r R i )

+  4k(12 +  N0 +  N1 r)r 2 ((r2 )  2) +  hX ; r ( ( r 2  )  2 ) i

=  k ( +  h X ; r  i )  +  2 (R +  h X ; r R i )

+  8k(12 +  N0 +  N1 r)r2 (r2 )  3 (  +  h X ; r i )  +

24k(12 +  N0 +  N1 r)r2 (r2      )  4 j r j 2

  k (2 +  23) 4 jRicj2

+  8k(12 +  N0 +  N1 r )(N0 +  N1      )r2 (r2 )  3

+  96k(12 +  N0 +  N1 r)r2 (r2 )  4

at the point x. Since v  0 at the point x, we know that

 (k1 +  2R)   4k(12 +  N0 +  N1 r)r2 (r2 )  2

at the point x. Note that R   0, (k 1)1 +  2R  0, k1 +  2R  0, 1  0, and 3  0
at the point x. This implies

k2 (2 +  23) +  4k jRicj2

=  k2 (2 +  23) +  2k (2 +  2 +  2 +  12 +  23 +  31) =  (k1 +  2R)2

2R(k1 +  2R)  +  k((k 1)1 +  2R)3

+  k2(2 1)3 k13 +  2k2  (k1

+  2R)2

 16k2(12 +  N0 +  N1 r)2 r4 (r2 )  4

at the point x. Putting these facts together, we obtain 0

k (2 +  23) 4 jRicj2

+  8k(12 +  N0 +  N1 r )(N0 +  N1      )r2 (r2 )  3

+  96k(12 +  N0 +  N1 r)r2 (r2 )  4

  16k(12 +  N0 +  N1 r)2 r4 (r2 )  4

+  8k(12 +  N0 +  N1 r )(N0 +  N1 r)r4 (r2 )  4

+  96k(12 +  N0 +  N1 r)r4 (r2 )  4

=   8k(12 +  N0 +  N1 r)2 r4 (r2 )  4

at the point x. This is a contradiction.
Thus, we conclude that

k1 (x) +  2R(x)  +  4k(12 +  N0 +  N1 r)r2 (r2 d(p; x)2) 2  0

for all x  2  B (p; r). Sending r  !  1  gives k1 (x) +  2R(x)   0 for each point x
2  M. This completes the proof of Proposition 8.4.
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Corol lary 8.5 (B.L.  Chen [14]). Assume that n =  3. Then (M; g) has
nonnegative sectional curvature.

Proof. Sending k !  1  in Proposition 8.4 gives 1  0.

Corol lary 8.6. Assume that n =  3. Then (M; g) has bounded curvature.

Proof. Since (M; g; f ) is a a steady gradient soliton, the sum R  +  j r f j 2

is constant. Consequently, the scalar curvature is uniformly bounded from
above. Hence, the assertion follows from Corollary 8.5.

From now on, we will assume that (M; g) is -noncollapsed. Moreover, we
will assume that (M; g; f ) is normalized so that R  +  j r f j 2  =  1 at each point
on M. Let t denote the one-parameter group of dieomorphisms generated
by the vector eld  X .  It follows from Corollary 8.3 that t is dened for all t 2
( 1 ; 1 ) .  In view of Corollary 8.5 and Corollary 8.6, the metrics t (g), t 2  (
1; 0] ,  form an ancient -solution to the Ricci ow.

Proposition 8.7. Assume that n =  3 and (M; g) is -noncollapsed. Then
(M; g) has positive sectional curvature.

Proof. By Corollary 8.5, (M; g) has nonnegative sectional curvature. We
claim that (M; g) has strictly positive sectional curvature. Suppose this is
false. By the strict maximum principle, the universal cover of (M; g) splits o
a line. Using Perelman’s classication of ancient -solutions in dimension 2 (see
Theorem 3.1), we conclude that the universal cover of (M; g) is iso-metric to
a cylinder S 2 R,  up to scaling. In particular, (M; g) has constant scalar
curvature. This contradicts the fact that R  +  h X ; r R i  =   2 jRicj2 at each
point on M. This completes the proof of Proposition 8.7.

Proposition 8.8. Assume that n =  3 and (M; g) is -noncollapsed. Let
pj be a sequence of points going to innity, and let r j  

2 : =  R(p j ) .  Let us
dilate the manifold (M; g) around the point pj  by the factor r  1. Then, after
passing to a subsequence if necessary, the rescaled manifolds converge in the
Cheeger-Gromov sense to a cylinder of radius 2.

Proof. Since (M; g) has positive sectional curvature, the assertion follows
from Corollary 4.4.

Corol lary 8.9. Assume that n =  3 and (M; g) is -noncollapsed. Then
R  !  0 at innity.

Proof. Proposition 8.8 implies that R  2 R  !  0 and R      2 j r R j  !  0 at
innity. Since R  is bounded from above, it follows that R  !  0 and j r R j  !  0 at
innity. Since jX j  is bounded, we conclude that R  +  h X ; r R i  !  0 at
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innity. On the other hand, the evolution equation for the scalar curvature
gives R  +  h X ; r R i  =   2 jRicj2 at each point in M. Putting these facts
together, we conclude that jRicj2 !  0 at innity. This completes the proof of
Corollary 8.9.

Corol lary 8.10. Assume that n =  3 and (M; g) is -noncollapsed. Let pj

be a sequence of points going to innity, and let r  2 : =  R(p j ) .  Let us dilate
the manifold (M; g) around the point pj  by the factor r  1. Then, after passing
to a subsequence if necessary, the rescaled manifolds converge in the Cheeger-
Gromov sense to a cylinder of radius 2, and the rescaled vector
elds r j  X  converge in Cl

oc to the axial vector eld on the cylinder.

Proof. The vector eld X  satises the pointwise estimates jX j   1 and j D X j
=  jRicj  C  R .  Moreover, Perelman’s pointwise derivative estimate (see
Theorem 4.1) implies jD m + 1 X j  =  jDm Ricj  C  R

m + 2  
for every positive integer

m. Consequently, the rescaled vector elds r j  X  converge in C 1  to a limit
vector eld on the cylinder. Since jX j2 =  1   R  !  1 at innity, the limiting
vector eld on the cylinder has unit length at each point. Since j D X j   C  R ,  the
limiting vector eld on the cylinder is parallel. This com-pletes the proof of
Corollary 8.10.

Proposition 8.11. Assume that n =  3 and (M; g) is -noncollapsed. Then the
function f  has a unique critical point p, and f  attains its global mini-mum
at the point p.

Proof. In view of Corollary 8.9, there exists a point p where the scalar
curvature is maximal. In particular, r R  =  0 at the point p. Since R + j X j 2  is
constant, we know that r R  +  2 Ric(X )  =  0 at each point on M. Con-
sequently, R i c ( X )  =  0 at the point p. Since (M; g) has positive Ricci
curvature, it follows that X  =  0 at the point p. In other words, p is a
critical point of f .  Since (M; g) has positive Ricci curvature, the function f  is
strictly convex. Thus, p is the only critical point of f ,  and f  attains its global
minimum at the point p. This completes the proof of Proposition 8.11.

Corol lary 8.12. Assume that n =  3 and (M; g) is -noncollapsed. Then
there exists a positive constant C  such that

C  
d(p; x)  f ( x )   C  d(p; x)

outside some compact set.

Proof. The upper bound for f  follows from Corollary 8.3. The lower
bound follows from Proposition 8.11 together with the strict convexity of f .
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Proposition 8.13 (H. Guo [20]). Assume that n =  3 and (M; g) is -
noncollapsed. Then f  R  !  1 at innity.

Proof. Using the evolution equation for the scalar curvature, we obtain

R  +  h X ; r R i  =   2 jRicj2

at each point in M. This implies

h X ; r ( R  1 f ) i  =   R  2 h X ; r R i  j r f j 2

=  R  2 R  +  2R  2 jRicj2 j r f j 2

at each point in M. Using Proposition 8.8, we obtain R  2 R  !  0 and R
2 jRicj2 !  1 at innity. Moreover, Corollary 8.9 implies j r f j 2  =  1  R  !  1 at
innity. Putting these facts together, we conclude that

h X ; r ( R  1 f ) i  !  0

at innity. Hence, if " >  0 is given, then

h X ; r ( R  1 (1 +  ") f ) i   0
and

h X ; r ( R  1 (1 ") f ) i   0
outside a compact set. Integrating these inequalities along the integral
curves of X ,  we obtain

sup(R 1 (1 +  ")f )  <  1
M

and
inf (R 1 (1 ")f )  >   1 :

Since " >  0 is arbitrary, we conclude that f  R  !  1 at innity. This com-
pletes the proof of Proposition 8.13.

In particular, if s is suciently large and f ( x )  =  s, then x  lies at center of
a neck, and the radius of the neck is (1 +  o(1)) 2s.

9. Ro tat i on a l  symmetry  of  noncollapsed steady gradient  R i c c i
solitons in dimension 3 {  the proof of  Theorem 5.1

Throughout this section, we assume that (M; g; f ) is a non-at steady
gradient Ricci soliton in dimension 3 which is -noncollapsed. Moreover, we
assume that (M; g; f ) is normalized so that R  +  j r f j 2  =  1 at each point on
M. It follows from Proposition 8.11 that f  is bounded from below. After
adding a constant to f  if necessary, we may assume that f  is positive at
each point on M. For abbreviation, we put X  : =  r f .  Let t denote the one-
parameter group of dieomorphisms generated by the vector eld  X .  By
Corollary 8.3,  is dened for all t 2  (  1 ; 1 ) .  Moreover, the metrics (g), t 2  (
1; 0] ,  form an ancient -solution to the Ricci ow.
Let us x a large real number L  and a small positive real number "1 so that

the conclusion of the Neck Improvement Theorem holds. In view of
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Proposition 8.13, we can nd a large constant  with the following proper-
ties:

 f (x) R(x; 0) 2   106 L for each point x  2  M with f ( x )   2 .
 If f ( x)   2 , then (x; 0) lies at the center of an evolving "1-neck.

By a repeated application of the Neck Improvement Theorem, we obtain the
following result.

Proposition 9.1. Suppose that j  is a nonnegative integer and x  is a point
in M with f ( x )   2 400 . Then the point (x; 0) is 2 j  "1-symmetric.

Proof. The proof is by induction on j .  For j  =  0, the assertion is true by
our choice of . Suppose next that j   1, and the assertion is true for j  1.
Let us x a point x 2  M satisfying f ( x)   2 400 , and let r  2 : =  R(x; 0). By our
choice of , f ( x) r  1 =  f (x) R(x; 0) 2       106L. Since j r f j   1 at each point on M, we
obtain

f ( x )   f ( x)  L r   (1 10 6 ) f (x)   (1 10 6) 2 400   2 400

for each point x  2  Bg (x; Lr ) .  This implies

f ( t (x))   f ( x )   2 400

for each point x  2  B g (x; Lr )  and each t  0. We now apply the induction
hypothesis. Hence, if x  2  B g (x; Lr )  and t  0, then the point (t (x); 0) is 2
j + 1  "1-symmetric. Since we are working on a self-similar solution, the point
(x; t) plays the same role as the point (  (x); 0). Consequently, if x  2
B g (x; Lr )  and t  0, then the point (x; t) is 2 j + 1  "1-symmetric. Using the Neck
Improvement Theorem, we conclude that the point (x; 0) is 2 j  "1-symmetric.
This completes the proof of Proposition 9.1.

Corol lary 9.2. If m is suciently large, then we can nd smooth vector elds
U (1;m); U (2;m); U (3;m) on the domain fm   80 m  f   m +  80 mg with the
following properties:

2 3 ml j D l ( L  ( a ; m ) (g ))j2  C  m 800.
 If   fm   80 m  f   m +  80 mg is a leaf of the C M C  foli-ation, then

sup 3 m 1 jhU (a); ij2  C  m 800, where  denotes the
unit normal vector to .

 If   fm  80 m  f   m + 80 mg is a leaf of the C M C  foliation, then

X  
ab area() 2 

Z 
hU (a;m); U (b;m)i d

2 

 C  m 800: a;b=1

As explained in Section 7 of [8], we can glue approximate Killing vector
elds on overlapping necks. This allows us to draw the following conclusion:
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Corol lary 9.3. We can nd smooth vector elds U (1); U (2); U (3) such that

jLU ( a ) (g ) j   C  ( f  +  100) 100;

jD (LU ( a ) (g ) ) j   C  ( f  +  100) 100;

jD 2 (LU ( a ) (g )) j   C  ( f  +  100) 100:
Finally, given any positive real number ", we have

3 Z
ab area() 2 hU (a); U (b)i d  "2

a;b=1

whenever  is a leaf of the C M C  foliation which is suciently far out near
innity (depending on ").

Lemma 9.4. We have jh[U (a) ; X ]; X ij  C  ( f  +  100) 40.

Proof. The vector eld X  satises jX j2 =  1   R .  Let us take the Lie
derivative along U (a) on both sides. This gives

( L U ( a ) ( g ) ) ( X ; X )  +  2 h L U ( a ) ( X ) ; X i  =   L U ( a ) ( R ) :

Using the formula for the linearization of the scalar curvature (see [4], The-
orem 1.174 (e)), we obtain

jL U ( a ) (R ) j   C  jD 2 (LU ( a ) (g )) j  +  C  jRicj jLU ( a ) (g )j  C  ( f  +  100) 40:

Putting these facts together, we conclude that

jhL U ( a ) (X ) ; X i j   C  ( f  +  100) 40:

This completes the proof of Lemma 9.4.

Lemma 9.5. We have jD([U (a) ; X ])j  C  ( f  +  100) 40.

Proof. The vector eld X  satises gj k D i X j  =  Ricik . Let us take the Lie
derivative along U (a) on both sides. Using the formula for the linearization of
the Levi-Civita connection (see [4], Theorem 1.174 (a)), we obtain

(L U ( a ) (g ) ) j k  D i X j  +  gj k D i ( L U ( a ) ( X ) ) j

+  
2 

D i ( L U ( a ) ( g ) ) j k  X j  +  
2 

D j ( L U ( a ) ( g ) ) i k  X j    
2 

D k (L U ( a ) ( g ) ) i j  X j

=  (LU ( a ) (R ic) ) i k :

The formula for the linearization of the Ricci tensor (see [4], Theorem 1.174
(d)) gives

jLU ( a ) (R ic) j   C  jD 2 (LU ( a ) (g )) j  +  C  jRmj jLU ( a ) (g )j  C  ( f  +  100) 40:

Putting these facts together, we conclude that

jD ( L U ( a ) ( X ) ) j   C  ( f  +  100) 40:

This completes the proof of Lemma 9.5.
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Lemma 9.6. We have j[U (a) ; X ]j  ( f  +  100) 20 outside a compact set.

Proof. Suppose that the assertion is false. Then there exists an index
a 2  f1; 2; 3g and a sequence of points pj going to innity such that

j[U (a) ; X ]j  ( f  +  100) 20

at the point pj . Let us dene sj : =  f (pj ),  and let A j  denote the norm of the
vector eld [U (a) ; X ] at the point pj . By assumption, A j   (sj  + 100) 20 for
each j .  Since j r f j   1 at each point on M, we know that s j       f   3s j      at each
point in Bg (pj ; 2 ). Using Lemma 9.4 and Lemma 9.5, we obtain

sup jh[U (a) ; X ]; X ij  C  (sj  +  100) 40  C  (sj  +  100) 20 A j
B g (p j ;  2  )

and

sup jD([U (a) ; X ])j  C  (sj  +  100) 40  C  (sj  +  100) 20 A j :
B g (p j ;  2  )

In the next step, we integrate the bound for D([U (a) ; X ]) along geodesics
emanating from pj . If j  is suciently large, we obtain

sup j[U (a) ; X ]j  A j  +  C  (sj  +  100) 30  2Aj :
B g (p j ;  2  )

We now dilate the manifold (M; g) around the point pj  by the factor s     2  .
By Corollary 8.10, the rescaled manifolds converge in the Cheeger-Gromov

sense to a cylinder of radius 2, and the rescaled vector elds s 2 X  converge in
Cl

oc to the axial vector eld on the cylinder. Moreover, the vector elds s 2 A
1 [U (a) ; X ] converge in C  2       to a non-trivial parallel vector eld on the cylinder,
and this limiting vector eld is orthogonal to the axial vector eld on the
cylinder. This is a contradiction. This completes the proof of Lemma 9.6.

Lemma 9.7. We have jU (a) +  DX U ( a) j   C  ( f  +  100) 20.

Proof. Using Proposition 6.2 and Corollary 9.3, we obtain

jU (a) +  Ric(U (a) )j  C  jD (LU ( a ) (g ) ) j   C  ( f  +  100) 100:

Moreover, Lemma 9.6 gives

j[U (a) ; X ]j  C  ( f  +  100) 20:

Using the identity

U (a) +  D X U ( a )  =  U (a) +  D U ( a ) X  [U (a) ; X ]

=  U (a) +  Ric(U (a) ) [U (a) ; X ];
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we conclude that

jU (a) +  DX U (a ) j   C  ( f  +  100) 20:

This completes the proof of Lemma 9.7.

For abbreviation, we dene smooth vector elds Q(1); Q(2); Q(3) by Q(a) : =
U (a) +  DX U ( a) .

Proposition 9.8. We can nd smooth vector elds W (1); W (2); W (3) such
that jW (a)j  C  ( f  +  100) 8 and W (a) +  D X W ( a )  =  Q(a) .

Proof. We consider a sequence of real numbers sj  !  1 .  For each j  and
each a 2  f1; 2; 3g, we denote by W (a;j ) the solution of the elliptic P D E

W (a;j ) +  DX W ( a ; j )  =  Q(a)

on the domain f f   sj g with Dirichlet boundary condition W (a;j ) =  0 on the
boundary f f  =  sj g. This Dirichlet problem has a solution by the Fredholm
alternative. Moreover, since Q(a) is smooth, it follows that W (a;j ) is smooth.

By Lemma 9.7, Q(a) satises a pointwise estimate of the form

jQ(a)j  K  ( f  +  100) 20;

where K  is a large constant that does not depend on j .  Using Kato’s in-
equality, we obtain

jW (a;j ) j +  hX; rjW (a; j ) j i    jQ(a)j   K  ( f  +  100) 20

on the set fW (a;j )  =  0g.     On the other hand, using the identity f  +
h X ; r f i  =  R  +  j r f j 2  =  1, we obtain

( ( f  +  100) 8) +  h X ; r ( ( f  +  100) 8 )i

=   8 (f  +  100) 9 ( f  +  h X ; r f i )  +  72 (f +  100) 10 j r f j 2

8 (f  +  100) 9 +  72 (f +  100) 10

  ( f  +  100) 9:

Using the maximum principle, we conclude that

jW (a;j ) j  K  ( f  +  100) 8

on the set f f   sj g.
We now send j  !  1 .  After passing to a subsequence, the vector elds

W (a;j ) converge in C 1  to a smooth vector eld W (a). The limiting vector eld
W (a) satises

jW (a)j  K  ( f  +  100) 8

and
W (a) +  D X W ( a )  =  Q(a):

This completes the proof of Proposition 9.8.

Proposition 9.9. We have jDW (a) j  C  ( f  +  100) 8.



t

@
t t t t t t

jh j jh j 2 jh j

R R

R

R

28 SIMON B R E N D L E

Proof. By Proposition 9.8, the vector eld W (a) satises W (a) +
D X W ( a )  =  Q(a). This equation can be rewritten as W (a) +  L X ( W ( a ) )  +
Ric(W (a) ) =  Q(a). We next consider the vector elds (W (a) ) on the evolv-ing
background (M; t (g)). These vector elds satisfy the parabolic P D E

@t
(W (a)) =  (g ) (W (a) ) +  Ric(g ) ((W (a) )) (Q(a)):

The assertion follows now from interior estimates for parabolic P D E  (see
e.g. [11], Proposition C.2). This completes the proof of Proposition 9.9.

We next dene smooth vector elds V (1); V (2); V (3) by V (a) : =  U (a)  W (a).

Proposition 9.10. The vector eld V (a) satises V (a) +  D X V  (a) =  0.

Proof. This follows immediately from Proposition 9.8.

Proposition 9.11. The tensor L V
 ( a ) (g ) vanishes identically.

Proof. Recall that
V (a) +  D X V  (a) =  0:

By Corollary 6.4, the tensor h(a) : =  L V  ( a ) (g ) satises

L h(a)  +  L X ( h ( a ) )  =  0:

Hence, Corollary 6.6 implies
(a) 2 D (a) 2 E D (a) 2 E
R

2 +  X ; r
R

2 +  
R
 

r R ; r
R

2  0:

Using the maximum principle, we obtain

sup 
jh(a)j 

 sup 
jh(a)j

f f s g f f = s g

for each s. On the other hand, Corollary 9.3 and Proposition 9.9 imply

jh(a)j  jLU ( a ) (g ) j  +  C  jDW (a) j  C  ( f  +  100) 8:

Using Proposition 8.13, we deduce that

jh(a)j 
 C  ( f  +  100) 7:

In particular,

sup 
jh(a)j 

!  0
f f = s g

as s !  1 .  Putting these facts together, we conclude that h(a) vanishes
identically. This completes the proof of Proposition 9.11.

Corol lary 9.12. We have [V (a) ; X ] =  0 and hV ( a ) ; X i  =  0.
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Proof. Note that
V (a) +  D X V  (a) =  0

by Proposition 9.10. On the other hand, since V (a) is a Killing vector eld,
we obtain

V (a) +  Ric(V (a) ) =  0
by Proposition 6.2. This implies D X V  (a) =  Ric(V (a) ). On the other hand,
D  ( a ) X  =  Ric(V (a) ). Consequently, [V (a) ; X ] =  0. This proves the rst
statement. We now turn to the proof of the second statement. Since V (a) is a
Killing vector eld, we obtain

r ( L V
 ( a ) ( f ) )  =  L V

 ( a ) ( r f )  =  L V
 ( a ) ( X )  =  0:

Consequently, the function L  ( a ) ( f )  =  hV ( a ) ; X i  is constant. On the other
hand, by Proposition 8.11, the vector eld X  vanishes at some point p 2  M.
Thus, we conclude that the function hV ( a ) ; X i  vanishes identically. This
completes the proof of Corollary 9.12.

Corollary 9.12 implies that the vector elds V (1); V (2); V (3) are tangential
to the level sets of f .

Proposition 9.13. Given any positive real number ", we have
3 Z 2

ab area() 2 hV (a); V (b) i d  "2

a;b=1

whenever  is a leaf of the C M C  foliation which is suciently far out near
innity (depending on ").

Proof. This follows by combining Corollary 9.3 with Proposition 9.8.

Proposition 9.13 ensures that the vector elds V (1); V (2); V (3) are non-
trivial near innity. From this, it is easy to see that (M; g) is rotationally
symmetric.
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