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Abstract: Study of the plastic flow and strain-induced phase transformations (PTs) under high 
pressure with diamond anvils is important for material and geophysics. We introduce rough 
diamond anvils and apply them to Zr, which drastically change the plastic flow, microstructure, 
and PTs. Multiple steady microstructures independent of pressure, plastic strain, and strain path 
are reached. Maximum friction equal to the yield strength in shear is achieved. This allows 
determination of the pressure-dependence of the yield strength and proves that ω-Zr behaves like 
perfectly plastic, isotropic, and strain path-independent immediately after PT. Record minimum 
pressure for α-ω PT was identified. Kinetics of strain-induced PT depends on plastic strain and 
time. Crystallite size and dislocation density in ω-Zr during PT depend solely on the volume 
fraction of ω-Zr.  

One-Sentence Summary: Cell with rough diamond anvils allowed us to determine laws of 
plastic flow, microstructure, and phase transformations under pressure. 
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Processes that involve large plastic deformation and PTs under high pressure are common in 
various manufacturing applications, materials synthesis technologies, and geophysics-related 
problems. Plastic strain may drastically reduce the PT pressure by one (1-3) and even two orders 
of magnitude (4), lead to new phases, and substitute time-controlled kinetics with fast plastic 
strain-controlled kinetics (5-8). Four-scale theory and simulations (5, 6) are developed to explain 
these strain-induced PTs (which are completely different from the traditional pressure or stress-
induced PTs). However, it is still in its infancy, and new experimental and theoretical approaches 
and breakthrough results are very important. The main problem in studying plasticity, plastic 
strain-induced PTs, and structural changes is that they depend on five components of the plastic 
strain tensor 𝜺𝑝 and its entire path 𝜺𝑝𝑝𝑎𝑡ℎ, making an unspecifiable number of combinations of 
independent parameters. In particular, the yield surface in the 5D deviatoric stress 𝒔 space 𝑓(𝒔, 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎ) = 𝜎𝑦(𝑝) depends on the pressure 𝑝, 𝜺𝑝, and 𝜺𝑝𝑝𝑎𝑡ℎ

, demonstrating strain 
hardening/softening and strain-induced anisotropy (Fig. 1A); here 𝜎𝑦  is the yield strength in 
compression. This complexity makes it practically impossible to determine the complete 
evolution of the yield surface, even at small strains at ambient pressure. At high pressure, all 
methods (9-11)  present the yield surface as 𝑓(𝒔) = 𝜎𝑦(𝑝), i.e., like for perfectly plastic material 

(for which the yield surface is independent of 𝜺𝑝and 𝜺𝑝𝑝𝑎𝑡ℎ, i.e., is fixed in the 5D stress space), 

and dependence on 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ is neglected and merged in pressure, which causes large error in 
the determination of the yield strength under high pressure. One of the methods to determine the 
yield strength in shear 𝜏𝑦 = 𝜎𝑦/√3 in DAC is based on the application of the simplified 

equilibrium equation 
𝑑𝑃̅𝑑𝑟 = − 2𝜏𝑓ℎ , assuming the contact friction stress 𝜏𝑓 between anvil and 

sample reaches its maximum value 𝜏𝑦 (10-12). Here, 𝑃̅ is the pressure averaged over the sample 
thickness h. However, the results are systematically lower than other methods at ambient and 
high pressure (7, 9) due to the low friction coefficient of diamond leading to 𝜏𝑓 < 𝜏𝑦. Coupled 
simulations and experiments show that 𝜏𝑓 = 𝜏𝑦 only in a small region even above 100 GPa (13). 
To resolve the above problems, we introduce rough diamond anvils (rough-DA), whose culet is 
roughly polished to increase friction (Fig. S1). We demonstrated that 𝜏𝑓 = 𝜏𝑦 for rough-DA, 

which allowed us to robustly determine 𝜎𝑦(𝑝). The rough-DA allowed us to solve several other 
basic problems and brought up discoveries described below. 

 It was hypothesized in (12) that, above some level of accumulated plastic strain q in 
monotonous straining (straining path without sharp changes in directions), the initially isotropic 
polycrystalline materials deform as perfectly plastic and isotropic with a strain path-independent 
surface of the perfect plasticity 𝜑(𝒔) = 𝜎𝑦(𝑝) (Fig. 1A). This statement means that the effect of 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ is excluded under the above conditions. Some qualitative supportive arguments for 
the perfect plastic behavior are presented in (12), but quantitative experimental proof is lacking 
for any material. Here, we heavily pre-deformed commercial Zr by multiple rolling until 
saturation of its hardness. We show that after the α-ω PT, for four different compression stages 
(i.e., for very different 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ), all pressure distributions in the studied range from 2 to 11 
GPa are described by single function 𝜎𝑦 = 1.24 + 0.0965𝑝 (𝐺𝑃𝑎). This is possible only if the 

material behaves like perfectly plastic, isotropic, and independent of 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ. The perfectly 
plastic state is related here to reaching a steady microstructure, determined here by in situ 
synchrotron X-ray diffraction in terms of crystallite (grain) size d and dislocation density 𝜌, 
which do not change under successive plastic straining. For rough-DA at the beginning of α-ω 
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PT, 𝑑𝛼 is smaller and 𝜌𝛼 is larger than those from smooth anvils, i.e., rough-DA produces 

different, more refined steady microstructure. This is also confirmed by the fact that the 
minimum pressure for plastic strain-induced α-ω PT, 𝑝𝜀𝑑, was reduced from 1.36 GPa in smooth 
DAC to 0.67 GPa with rough DAC, which is the record low PT pressure for Zr. For both smooth 
and rough anvils, the 𝑝𝜀𝑑, 𝑑𝜔, and 𝜌𝜔 in ω-Zr are shown to be independent of 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ. 
Surprisingly, 𝑑𝜔 and 𝜌𝜔 evolution in ω-Zr during α-ω PT depends solely on the volume fraction 
c of ω-Zr and is independent of 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎ, p, initial dα, and anvil asperities. Similarly, there are 
unique functions dα(c) and 𝜌α(c) for rough-DA (with some scatter for 0.38<c<0.52, which is 
discussed in supplementary materials), independent of 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎ, and p. Thus, for strongly pre-

deformed material, 𝜺𝑝and 𝜺𝑝𝑝𝑎𝑡ℎ
are excluded from the governing parameters; this is the main 

completely unexpected rule for plastic flow, microstructure evolution, and PT under pressure. 
The rough-DA also qualitatively changes the PT kinetics for c: (a) dc/dq~(1-c) (first-order 
reaction) with smooth anvils, while dc/dq is independent of c (zero-order reaction) with rough-
DA; (b) In contrast to instantaneous process from conventional view on the strain-induced PTs, c 
here varies not only with growing plastic strain q, but also with time t.  

Pressure dependence of the yield strength. Radial pressure distributions in each phase in 
five successive compression steps, marked by the peak pressure at the culet center, are shown in 
Fig. 1B. Corresponding sample thicknesses are collected in Table. S2. Due to the large asperities 
of the rough-DA, when they penetrate Zr surface, contact sliding occurs in a thin layer of Zr, 
leading to τ𝑓 = τ𝑦. Assuming von Mises yield condition with the yield strength 𝜎𝑦 = 𝜎𝑦0 + 𝑏𝑝,  
and taking non-hydrostatic stress and heterogeneity along thickness into consideration, the 
equilibrium equation averaged over thickness is advanced to (see supplementary materials):  

 
𝑑𝑃̅𝑑𝑟 = −𝐴 𝝈𝑦0 +𝑏𝑃̅ℎ   →  𝑃̅ = (𝑃0 + 𝜎𝑦0𝑏 ) 𝑒𝑥𝑝 (−𝐴 𝑏 𝑟−𝑟0ℎ ) − 𝜎𝑦0𝑏 ;  𝐴 = 2(1+0.524𝑏)√3(1−0.262𝑏),              (1) 

where 𝑃0 is the pressure at the point 𝑟0. Fig. 1C shows that after α-ω PT and for four different 
compression stages, all pressure distributions overlap and are described by Eq. (1) with single 
dependence 𝜎𝑦 = 1.24 + 0.0965𝑝 (𝐺𝑃𝑎). Note that 𝜎𝑦0 = 1.24 𝐺𝑃𝑎 is converted from the 
hardness of ω-Zr from (2), H=3.72 GPa, based on the known relationship 𝜎𝑦0 = 𝐻/3, proving 
that 𝜏𝑦 is reached. Finite element simulations of the processes in DAC (13, 14) demonstrate that 

for different positions and compression stages, 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎ, and material rotations are very 
different. Consequently, the ability to describe all four curves with single function 𝜎𝑦(𝑝) 
demonstrates strict proof that for the monotonous loading with rough-DA, ω-Zr deforms as 
perfectly plastic and isotropic material with 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ independent surface of perfect 
plasticity. Additional point is that the perfectly plastic state is found almost immediately after 
completing α-ω PT, i.e., it is inherited from α-Zr. We found that for smooth anvils up to 15 GPa, 
the ratio 𝜏𝑓/𝜏𝑦 =  0.39-0.46 away from the center characterizes underestimate in the 𝜎𝑦(𝑝) in 
previous works. We connect perfectly plastic behavior with reaching steady microstructure. 
After completing PT, 𝑑𝜔, and 𝜌𝜔 for 6, 10, and 14 GPa steps are practically independent of 
radius (Figs. 2B and 3B). Since 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎ, and p strongly vary with radius and increasing load, 

this indicates that steady microstructure, which is independent of pressure, 𝜺𝑝, and 𝜺𝑝𝑝𝑎𝑡ℎ, is 
reached.  
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Fig. 1. Determination of the surface of perfect plasticity for ω-Zr. (A) Schematic of the evolution of the yield 
surface 𝑓(𝒔, 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎ) = 𝜎𝑦(𝑝) until it reaches the fixed surface of perfect plasticity 𝜑(𝒔) = 𝜎𝑦(𝑝) in “5D” space of 
deviatoric stresses 𝒔 at fixed p. The initial yield surface and 𝜑(𝒔) = 𝜎𝑦(𝑝) are isotropic (circles). Two other yield 

surfaces depend on 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ, and acquire strain-induced anisotropy, namely shifted centers O1 and O2 (back 
stress) and ellipsoidal shape due to texture. When the yield surface reaches 𝜑(𝒔) = 𝜎𝑦(𝑝), the material deforms as 
perfectly plastic, isotropic with the fixed surface of perfect plasticity. (B) Pressure distributions for different 
deformation steps with rough-DA. (C) Pressure in single-phase ω-Zr vs. r/h. Solid lines correspond to Eq. (1) for 𝜎𝑦0 = 1.24 𝐺𝑃𝑎 and b=0.0965. Eq. (1) is not valid around culet center. Dash line shows the position where data is 
truncated. The unified curve for all loadings (necessary to use data from all four compression stages as a single data 
set) is obtained by shifting each curve (which is allowed by differential Eq. (1), see supplementary materials) along 
the horizontal axis by an appropriate distance. Shifts are shown in parenthesis. Since for different points from 
different curves 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎ, and material rotations are very different, the obtained results prove the perfectly plastic 

and isotropic material response with 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ independent surface 𝜑(𝑠) = 𝜎𝑦(𝑝). (D) Distribution of volume 
fraction of α-Zr and pressure in α-Zr. Starting from the 6 GPa step, α -Zr is fully transformed to ω-Zr along the 
radius. Note that errors from the Rietveld refinement of the x-ray patterns for pressure, the volume fraction of phases 
(as well as dislocation density and crystallite size) are smaller than the symbols in the plots. 

 



 

5 
 

 
Fig. 2 Crystallite size distribution and evolution. Radial distributions of the crystallite size obtained with rough-
DA at (A) 2 and 3 GPa steps and (B) 6, 10, and 14 GPa steps. Since 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎ, and p strongly vary with radius and 
increasing load, this indicates that steady microstructure in terms of crystallite size, which is independent of 
pressure, 𝜺𝑝, and 𝜺𝑝𝑝𝑎𝑡ℎ, is reached almost immediately after PT. (C) Crystallite size of α-Zr versus steady volume 
fraction of ω-Zr from 2 and 3 GPa steps with rough-DA and with smooth anvils. Blue cross represents the first 
appearance of ω-Zr with rough-DA at 0.67 GPa. For rough-DA at the beginning of α-ω PT, the crystallite size is 
smaller than that from smooth anvils, i.e., rough-DA produces different, more refined steady microstructure. With 
exception of region 0.38<c<0.52, where some scatter is observed, the crystallite size of α-Zr during α-ω PT is the 
unique function of c, almost constant for c<0.6, which is independent of pressure, plastic strain, and strain path. (D) 
Crystallite size of ω-Zr versus steady volume fraction of ω-Zr from 2 and 3 GPa steps with rough-DA, and with 
smooth anvils. For rough-DA, points from 2 and 3 GPa steps overlap within dash lines. Results in (D) represent 
surprising rule for ω-Zr for both rough and smooth anvils: existence of the unique curve for the crystallite size solely 
depending on c for both pressure steps during α-ω PT independent of pressure, 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ.    
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Fig. 3. Dislocation density distribution. Radial distribution of dislocation density at (A) 2 and 3 GPa steps, and (B) 
6, 10, and 14 GPa steps. Since 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎ, and p strongly vary with radius and increasing load, this indicates that 

steady microstructure in terms of dislocation density, which is independent of pressure, 𝜺𝑝, and 𝜺𝑝𝑝𝑎𝑡ℎ, is reached 
almost immediately after PT. (C) Dislocation density in α-Zr versus volume fraction of ω-Zr from 2 and 3 GPa steps 
with rough-DA, and with smooth anvils. Blue cross represents the first appearance of ω-Zr with rough-DA at 0.67 
GPa. Since for rough-DA at the beginning of α-ω PT, the dislocation density is larger than from smooth anvils, the 
rough-DA produces different, more defected steady microstructure. With exception in region 0.38<c<0.52, where 
some scatter is observed, the dislocation density in α-Zr during α-ω PT is the unique function of c, almost constant 
for c<0.6, which is independent of pressure, plastic strain, and strain path. (D) dislocation density in ω-Zr versus 
volume fraction of ω-Zr from 2 and 3 GPa steps with rough-DA, and with smooth anvils. For rough-DA, points 
from 2 and 3 GPa steps overlap within dash lines. Results in (D) represent unexpected law for ω-Zr for both rough 
and smooth anvils: existence of the unique curve for the dislocation density solely depending on c for both pressure 
steps during α-ω PT independent of pressure, 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ. For small c, 𝜌α =𝜌ω, indicating that small nuclei directly 
inherit the dislocation structure from α-Zr during strain-induced PT. 

Minimum pressure for initiation of strain-induced PT 𝑝𝜀𝑑. ω-Zr diffraction peaks started 
being observed at 𝑝𝜀𝑑 =0.67 GPa at the sample center (Figs. 4A and S2). This is a record low 
pressure for α-ω Zr PT, which is 9.0 times lower than that under hydrostatic loading (𝑝ℎ𝑑 =6.0 
GPa), 5.1 times lower than the phase equilibrium pressure of 3.4 GPa (15), and 2 times lower 
than 𝑝𝜀𝑑 =1.36 GPa obtained with smooth anvils. At the culet edge at 2 GPa step, c=0.05 at 0.74 
GPa (Fig. 1D), which means 𝑝𝜀𝑑 at the edge is practically identical to that at the center. This 
indicates that for strongly pre-deformed α-Zr, 𝑝𝜀𝑑 is independent of 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎ and pressure-strain 
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path since they are very different at center and edge. The same is true for smooth diamonds (Fig. 
S3), for which, due to higher PT pressure, we have more points with p= 𝑝𝜀𝑑. 

At the initiation of PT with rough-DA, dα ≈46 nm (Fig. 3C) and 𝜌α= 1.68×1015/m2 (Fig. 
4C), while with smooth anvils, dα≈66 nm (Fig. 3C) and 𝜌α= 1.22×1015/m2 (Fig. 4C), both 
independent of radii and, consequently, 𝜺𝑝, 𝜺𝑝𝑝𝑎𝑡ℎand pressure-strain path. Thus, smooth and 
rough anvils produce different steady microstructures in α-Zr, which results in different 𝑝𝜀𝑑 . For 
steady microstructure of pre-deformed α-Zr, d≈74 nm and 𝜌 = 9.94×1014/m2 at ambient 
condition, which is one more steady microstructure. Since for annealed α-Zr with micron grains, 𝑝𝜀 𝑑 = 2.3 𝐺𝑃𝑎 (7), a general trend is that 𝑝𝜀 𝑑 reduces with reduction in dα (opposite to the initial 
theoretical prediction in (5)) and increase in 𝜌α. 

PT and microstructure evolution kinetics. Distributions of pressure in phases and volume 
fraction c of ω-Zr at 2 and 3 GPa steps are presented in Fig. 1D. Strain-induced PT kinetic 
equation derived based on nanoscale mechanisms (5) with neglected reverse PT is: 𝑑𝑐𝑑𝑞 = 𝑘 𝐵(1−𝑐)𝑎𝐵(1−𝑐)+𝑐 (𝑝𝛼(𝑞)−𝑝𝜀𝑑𝑝ℎ𝑑−𝑝𝜀𝑑 )  for    𝑝𝛼 > 𝑝𝜀𝑑.                                     (2) 

Here 𝑝𝛼(𝑞) is the pressure in α-Zr - q loading path; 𝐵 = (𝜎𝑦𝜔𝜎𝑦𝛼)𝑙
; k and l are material parameters. 

For smooth anvils, a=1, k=11.65, and B=1.35 (Fig. S4). Although plastic strain tensor at arbitrary 
r is unknown in experiments, material near the symmetry axis undergoes uniaxial compression 
and 𝑞 = 𝑙𝑛(ℎ0/ℎ). Through numerical integration of Eq. (2), 𝑐 can be expressed as a function of  𝐼 = ∫ (𝑝𝛼(𝑞) − 𝑝𝜀𝑑)𝑞𝑞0 𝑑𝑞, where 𝑞0 is the accumulated plastic strain at 𝑝𝜀𝑑. In addition to steady-

state data (after long relaxation time), data instantly after compression and transient data between 
instant and steady states are shown in Fig. 4B. Such an unexpected time dependence of PT 
kinetics confronts the conventional view that strain-induced PTs do not occur without plastic 
strain increment, time is not an essential parameter, and plastic strain serves as time-like 
parameter (like in Eq. (2)) (5, 6, 8). Note that since the thickness of the sample does not change 
between instant and steady states, creep as a reason for the time dependence of the strain-induced 
PT is excluded. It appears that rough-DA allows us not only to reveal the time-dependent part of 
the growth for strain-induced PT, but also to change the plastic strain-dependent part. 
Surprisingly, c-I curve is linear for steady state and instant state before relaxation at 2 GPa step 
(𝐼 < 0.5) and after relaxation, with practically the same slope (Fig. 4B). Thus, the rate of PT in 
Eq. (2) is independent of 𝑐, which results in a=l=0, B=1, and   

                                                               
𝑑𝑐𝑑𝑞 = 𝑘 𝑝𝛼(𝑞)−𝑝𝜀𝑑𝑝ℎ𝑑−𝑝𝜀𝑑                                                             (3) 

Value a=1 corresponds to multiple nucleation within the parent phase, while a=0 is typical for 
propagation from a limited number of nuclei without their interaction, like for thickening of PT 
band. Eq. (3) should be used for each fast-loading increment and for steady state, with different 
k. Time-dependent contribution to the kinetics that reproduces Eq. (3) for the instant kinetics at 𝑡 = 0 and steady-state kinetics for 𝑡 = ∞ and describes transient data at 2 GPa step is:      

                    𝑐(𝑡) = 𝑐(𝑞)𝑡=∞ + (𝑐(𝑞)𝑡=0 − 𝑐(𝑞)𝑡=∞) exp (− 𝑡43.13)                          (4) 

with a characteristic time of 43.13 min. Here, 𝑐(𝑞)𝑡=0 and 𝑐(𝑞)𝑡=∞ are the volume fractions after 
instant compression and in the steady state. The surprising rule is found in Figs. 2D and 3D for 
ω-Zr: the unique curves 𝑑𝜔(𝑐) and 𝜌𝜔(𝑐) for both pressure steps during α-ω PT independent of 
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pressure, 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ; for 𝑑𝜔(𝑐), it is also independent of processing with rough and smooth 
anvils. There is similar, but weaker regularity for 𝑑α(c) and 𝜌α(c) (Figs. 2C and 3C): with 
exception in region 0.38<c<0.52, where some scatter is observed (see supplementary material), 
the crystallite size and dislocation density in α-Zr during α-ω PT is the unique function of c, 
almost constant for c<0.6, which is independent of pressure, plastic strain, and strain path. For 
small c, 𝜌α =𝜌ω, indicating that small nuclei directly inherit the dislocation structure from α-Zr 
during strain-induced PT.  

 

 
Fig. 4 First appearance of ω-Zr at the sample center and strain and time-dependent kinetics of α-ω PT in Zr. 
(A) Pure α-Zr diffraction peaks (blue) at p= 0.49 GPa and appearance of ω-Zr peaks at 𝑝𝜀𝑑 = 0.67 GPa (red). (B) 
The volume fraction of ω-Zr vs. plastic strain and time. Green diamonds represent diffraction data after instant 
compression; red circles designate results after reaching steady state; orange squares show intermediate data vs. 
relaxation time; time labels show time from the beginning of the first measurement; q-values are shown near 
symbols. Revealed linear strain-dependent kinetics and time dependence of the kinetics of strain-induced PT were 
not observed in the literature.   

The current results not only present the main and very nontrivial rules of plastic yielding, 
strain-induced PT, and microstructure evolution during and after PT under high pressure but also 
open new windows for utilizing rough-DA and finding similar laws for multiple material systems 
in a broad pressure range. In particular, one can determine the pressure dependence of the yield 
strength for important multiphase material systems (e.g., mantle rocks and composites). 
Discovered time-dependence of the kinetics of strain-induced PTs opens unexplored field of the 
simultaneous strain- and stress-induced PTs under pressure. By optimizing anvil asperity, 
desirable plastic flow, minimum grain size, and minimum PT pressure can be reached. Also, 
instead of severe plastic straining at high pressure, e.g., by high-pressure torsion, one can reach 
one of the steady microstructures by severe straining at normal pressure (e.g., by rolling, ball 
milling, or equal channel extrusion) and then produce PT and reach steady microstructure with 
smaller grain size at relatively small plastic strain and low pressure by compression or high-
pressure torsion. Holding at a constant load to utilize the time-dependent PT component may 
also be useful. For small volume fraction of ω-Zr, crystallite size is much smaller, and 
dislocation density is larger than for the steady state. This gives an idea of designing α-ω Zr 
composites with increased strength due to strong ultrafine-grained ω-Zr and sufficient plasticity 
due to α-Zr. During intense loading, an increase in volume fraction of ω-Zr leads to energy 
absorption and an increase in strength. All these may result in the economic plastic strain-
induced synthesis of nanostructured high-strength high-pressure phases at low pressures. In 
addition, rough-DA eliminates the problem of describing contact friction required for modeling 
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deformational and PT processes in DAC (13, 14, 16). For traditional high-pressure torsion with 
ceramic/metallic anvils, friction reaches the maximum possible level due to large asperities. 
Utilizing rough-DA in rotational DAC (1, 4, 6) will allow in situ studies of high-pressure torsion. 
Also, to increase the maximum possible pressure in DAC, toroidal grooves are used, which 
increase friction (17). This can be done with rough-DA more uniformly throughout the culet and 
with smaller stress concentrators. Note that the above plethora of results was obtained in a single 
experiment, thus transforming the main challenge—strongly heterogeneous fields—into a great 
opportunity. 
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Materials and Methods 

Starting materials and experiment details 
 

The material studied here is the same as was used in (18), purchased from Haines and 
Maassen (Bonn, Germany), which is commercially pure (99.8%) alpha Zr (Fe: 330 ppm; Mn: 27 
ppm; Hf: 452 ppm; S: <550 ppm; Nd: <500 ppm). The sample slab of the initial thickness of 
5.25 mm was cold-rolled down to thin foil to obtain a plastically pre-deformed sample with 
saturated hardness. 3 mm disk was punched out from thin foil for unconstrained non-hydrostatic 
compression experiments in DAC. For hydrostatic compression experiments, specks of size 20 
μm were chipped off from the pre-deformed sample. The hydrostatic high-pressure x-ray 
diffraction measurements were performed to constrain the 3rd order Birch-Murnaghan equation 
of state (Table S1) and pressure 𝑝ℎ𝑑, which was found to be 6.0 GPa. All the pressures in 
unconstrained non-hydrostatic experiments are determined using measured lattice parameters 
and cell volume with the same equation of state. For hydrostatic experiments, Zr specks of size 
20 μm were loaded in the sample chamber along with silicone oil and copper chips as pressure 
transmitting medium and pressure marker, respectively. The sample chamber was prepared by 
drilling a hole of 250 μm diameter in pre-indented stainless-steel gaskets indented from the 
initial thickness of 250 μm to 50 μm. Hydrostatic high-pressure experiments were carried out in 
a small pressure step of 0.2 GPa up to a maximum pressure of 16 GPa. For the non-hydrostatic 
experiment with smooth diamond anvils, a pre-deformed Zr sample disk (3 mm diameter, initial 
thickness 165 µm) was gradually compressed to ~15 GPa at the culet center without any 
constraining gasket using a custom-designed loading system. For the nonhydrostatic experiments 
with rough diamond anvil (rough-DA) (Fig. S1), a pre-deformed Zr disk sample (3 mm diameter, 
initial thickness 163 μm) was compressed gradually up to ~14 GPa at the culet center with a gas-
membrane system.  

All the in-situ axial XRD experiments were performed at 16-BM-D beamline at HPCAT 
(Sector 16) at Advanced Photon Source employing focused monochromatic x-rays of wavelength 
0.3100 Å and size of 6μm x 5μm (full width at half maximum (FWHM)) and recorded with 
Perkin Elmer detector. For the smooth anvil experiment, the sample was scanned along one culet 
diameter (500 μm) in 10 µm step size at each load. For rough-DA experiment, the sample was 
scanned along two perpendicular culet diameters (230 µm) in 10 µm step size. The sample 
thickness was measured through x-ray intensity absorption using the linear attenuation equation 
with density corrected to the corresponding pressure, similar to (7). For the rough-DA 
experiment, the thickness was measured for six steps shown in Table S2: when ω-Zr emerged 
(0.67 GPa at the center) and when the pressure at the center reached ~2, 3, 6, 10, and 14 GPa. 
The diffraction images were first converted to unrolled patterns using FIT2D software (19) (Fig. 
S2) and then analyzed through Rietveld refinement using MAUD software (20) to obtain the 
lattice parameters, volume fractions of ω-Zr, microstrains, and crystallite sizes.  
 
Dislocation density estimation 
 
The crystallite sizes and microstrains extracted from the refinement using MAUD were used to 
estimate the dislocation density as well, which helps in situ tracking the microstructure change 
during deformation. Dislocation density can be expressed as (21): 𝜌 = √𝜌𝑐𝜌𝑚𝑠 .                                                          (S1) 
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Where 𝜌𝑐 and 𝜌𝑚𝑠 are the contribution to overall dislocation density from crystallite size and 
microstrain, respectively. Contribution from crystallite size is:  

                                                               𝜌𝑐 = 3𝑑2 .                                                            (S2) 

Where d is the crystallite size. Contribution from the microstrain is determined by the equation: 
                                                               𝜌𝑚𝑠 = 𝑘𝜀2/𝑏2.                                                         (S3) 

Where 𝜀 is the microstrain; 𝑏 is the magnitude of the Burgers vector; 𝑘 = 6𝜋𝐴( 𝐸𝐺 ln (𝑟/𝑟0)) is a 

material constant; 𝐸 and 𝐺 are Young’s modulus and shear modulus, respectively; 𝐴 is a constant 
that lies between 2 and 𝜋/2 based on the distribution of strain; 𝑟 is the radius of crystallite with 
dislocation; 𝑟0 is a chosen integration limit for dislocation core. In this study, 𝐴 = 𝜋/2 as the 
gaussian distribution of strain. Moduli 𝐸, 𝐺 and their pressure dependence for α and ω-Zr are 
taken from (22) and (23), respectively. A reasonable value of ln (𝑟/𝑟0) being 4 is used (21). α-Zr 
has a dominant prismatic slip system of {11̅00}〈112̅0〉 (e.g., 24-27). As for ω-Zr, (28) suggests a 
prismatic {112̅0}〈11̅00〉 and basal {0001)}〈11̅00〉 dominant slip system based on plasticity 
modeling. Since crystal lattice gets compressed under pressure, the length of the Burger vector is 
calculated using pressure-dependent lattice constants. It is worthy to note that when estimating 
dislocation density using the Williamson-Smallman method (21), we only consider one dominant 
dislocation slip system. However, to accommodate arbitrary imposing plastic strain on 
polycrystal, auxiliary slip systems are usually needed. With changing orientation of grains during 
deformation, the Schmid factor of slip systems changes, and thus slip system activities, which is 
the percentage of plastic strain accommodated by certain slip systems, will be different. This will 
induce uncertainty in dislocation density estimation. 
 
Evaluation of the yield strength under high pressure 
 

Pressure dependence of the yield strength is of great interest to many disciplines for 
various reasons. It determines: (a) strength of structural elements working under extreme loads, 
in particular, different high-pressure apparatuses, including DAC, rotational DAC, and 
apparatuses with metallic or ceramic dies for the high-pressure torsion; (b) maximum pressure 
that can be achieved in materials compressed in DAC (see Eq. (1)); (c) material flow in different 
technologies, like high-pressure material synthesis, extrusion, forging, cutting, polishing, and 
ball milling; (d) maximum possible friction in heavily loaded contacts, and related wear; (e) the 
level of shear (deviatoric) stresses that can be applied to materials. The shear stresses drastically 
affect the phase transformations, chemical reactions, and other structural changes (1-8); (f) 
plastic flow and geodynamic processes in Earth and other planets, including earthquakes. 

There are two approaches to estimate yield strength under pressure in a DAC-like device, 
which exploit x-ray diffraction in either radial or axial diffraction geometry. With radial 
diffraction geometry, the yield strength in compression can be estimated from the lattice strains 
(distortion of crystal lattice planes) measured by synchrotron x-ray diffraction. Since the 
compression direction is perpendicular to the x-ray beam, lattice strains are detectable because 
axial compression symmetry and diffraction symmetry do not coincide. With this method, all the 
components of the elastic strain tensor in single crystals comprising polycrystalline sample can 
be determined. Combined with high-pressure single crystal elastic constants, lattice strains can 
be used to estimate the yield strength with proper mechanical assumptions (29). Despite 
obtaining a large amount of experimental information and broad usage, this method suffers from 
several disadvantages:  
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(a) All measurements are averaged over the diameter of the sample, and the radial 
gradient of strain and stress fields is unavoidable due to contact friction. The macroscopic stress 
state also includes shear stresses, which are not included in the treatment. To reduce the effect of 
friction, a relatively small ratio of the sample diameter to thickness 𝑑/ℎ needs to be used, which 
also limits the axial displacement and applied plastic strain. 

(b) When estimating yield strength from the lattice strains, different chosen mechanical 
assumptions to determine effective elastic properties of the polycrystalline aggregate (Reuss, 
Voigt, Hill, self-consistent, etc.) leads to different results.  

(c) For multiphase materials, lattice strains give an estimation of stress in a single phase 
only. The mixture theory for the yield strength of multiphase material is not well developed, 
especially for large difference in the yield strength of phases (30, 31).  

(d) Yield strength depends on the pressure, plastic strain, and grain size that evolve 
during deformation. By presenting the yield strength versus pressure, all these effects are 
prescribed to the pressure only, which introduces large errors.  

With axial diffraction geometry, yield strength is estimated using radial pressure gradient 
and sample thickness based on the simplified mechanical equilibrium equation in radial direction 
r (10-12), combined with the assumption that the friction stress reaches the yield strength in 
shear 𝜏𝑦: 

                                                                𝑑𝑝̅𝑑𝑟 = − 2𝜏𝑦(𝑝)ℎ  ,                                                         (S4) 

where 𝑝̅ is the pressure, averaged over the sample thickness. Previously, the pressure was 
measured at the surface using the ruby fluorescence method and thickness was measured on 
recovered samples after unloading. Currently, pressure 𝑝̅ can be measured using x-ray diffraction 
and thickness using x-ray absorption. The advantage of Eq. (S4) is that it does not include 
constitutive equations and assumptions, making it available for multiphase material. 
Disadvantages are:  

(a) Due to the low friction coefficient of diamond, the friction stress is much lower than 
the yield strength in shear 𝜏𝑦. This is the reason why this method significantly underestimates the 
yield strength.  

(b) Stress 𝝈 and strain 𝜺𝑝 tensor fields are strongly heterogeneous along the radius, and 

material undergoes very different plastic straining path 𝜺𝑝𝑝𝑎𝑡ℎ at different positions. Since the 

yield strength depends on pressure, 𝜺𝑝, and 𝜺𝑝𝑝𝑎𝑡ℎ, but is presented as a function of a pressure 
only, this also introduces large errors.  

(c) Eq. (S4) neglects heterogeneity along the thickness and difference between pressure 
and normal stresses. 

We eliminate all the above drawbacks and advance mechanical equilibrium Eq. (S4) to 
the form of Eq. (1) from the main text, which considers the heterogeneity of all stresses across 
the sample thickness, in the following part. 

 
Supplementary Text 

Derivation of the advanced averaged equilibrium equation 

 Problem formulation. For compression of a sample in the DAC, 𝜎33, 𝜎11, and 𝜎22 are the 
normal stress components along the load (vertical), radial, and azimuthal directions, respectively; 𝜏31 is the shear stress; 𝜎𝑦 and 𝜏𝑦 are the yield strength in compression and shear respectively. 
Compressive stresses are negative. Pressure is defined as: 

                                                         𝑝 = −(𝜎11 + 𝜎22 + 𝜎33)/3 .                                           (S5) 
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All stresses and pressure are functions of 𝑟 and 2𝑧/ℎ in a cylinder coordinate system with the 
origin at the center of the sample cylinder, where ℎ is the sample thickness; in particular, 𝑝(0) 
corresponds to the symmetry plane 𝑧 = 0 and 𝑝(1) corresponds to the contact surface 2𝑧/ℎ = 1. 
Pressure (or any stress), averaged over the sample thickness, is defined as: 

                                                                  𝑝̅ = 1ℎ ∫ 𝑝ℎ0 𝑑𝑧.                                                        (S6) 

The contact friction stress 𝜏𝑓 is defined by the simplified mechanical equilibrium equation  

                                                                𝑑𝜎̅11𝑑𝑟 = − 2𝜏𝑓(𝑝(1))ℎ   .                                                 (S7)      

The pressure-dependent yield strength in compression 𝜎𝑦 and shear 𝜏𝑦 = 𝜎𝑦/√3 (based on the 
von Mises equivalent stress) are: 𝜎𝑦 = 𝜎𝑦0 + 𝑏𝑝;  𝜏𝑦 = 𝜎𝑦/√3 = (𝜎𝑦0 + 𝑏𝑝)/√3 .                      (S8) 
Note that 𝜎𝑦 depends on the local pressure 𝑝. At the contact surface, symmetry plane, and for 
averaged over the thickness, we have different pressures and yield strengths:  

                        𝜎𝑦(1) = 𝜎𝑦0 + 𝑏𝑝(1);   𝜎𝑦(0) = 𝜎𝑦0 + 𝑏𝑝(0);     𝜎𝑦 = 𝜎𝑦0 + 𝑏𝑝̅ .                 (S9) 

     𝜏𝑦(1) = (𝜎𝑦0 + 𝑏𝑝(1)) /√3; 𝜏𝑦(0) = (𝜎𝑦0 + 𝑏𝑝(0)) /√3; 𝜏𝑦̅ = (𝜎𝑦0 + 𝑏𝑝̅)/√3 . 

 
For maximum possible friction provided by the rough-DA we have: 

                                  𝜏𝑓(𝑝(1)) = 𝜏𝑦(1) = 1√3 𝜎𝑦(1) = 1√3 (𝜎𝑦0 + 𝑏𝑝(1)) .                          (S10) 

With expression in Eq. (S10), the equilibrium Eq. (S7) specifies as: 

                                              𝑑𝜎̅11𝑑𝑟 = − 2√3 𝜎𝑦(1)ℎ = − 2√3 𝜎𝑦0+𝑏𝑝(1)ℎ  .                                            (S11) 

Since we assume that in XRD experiments, the distribution of pressure 𝑝̅(𝑟) averaged over the 
thickness is measured, we need to express 𝜎11 and 𝑝(1) in Eq. (S11) in terms of 𝑝̅(𝑟). 
Traditionally, this difference is neglected, i.e., it is assumed 𝜎11 = 𝑝(1) = 𝑝̅(𝑟), which 
introduces errors.  
 Analytical evaluation of the stress and pressure fields. We assume that material behaves 
as perfectly plastic and isotropic macroscopically, with the surface of perfect plasticity 𝜑(𝒔) =𝜎𝑦(𝑝) in the 5D deviatoric stress tensor s space. This surface is independent of the plastic strain 

tensor 𝜺𝑝 and its path 𝜺𝑝𝑝𝑎𝑡ℎ. Such behavior can be achieved after large enough preliminary 
plastic deformation leading to saturation of hardness (12). The pressure-dependent von Mises 
yield condition (i.e., Drucker-Prager yield condition) is assumed: 𝜑(𝒔) = 1√2 √(𝜎11 − 𝜎22)2 + (𝜎11 − 𝜎33)2 + (𝜎22 − 𝜎33)2 + 6𝜏132 = 𝜎𝑦(𝑝) = √3𝜏𝑦(𝑝). (S12)    

Equilibrium equations are: ∂𝜎11∂𝑟 + ∂𝜏13∂𝑧 + 𝜎11−𝜎22𝑟 = 0;                                          (S13)  

 
∂𝜎33∂𝑧 + ∂𝜏13∂𝑟 + 𝜏13𝑟 = 0.                                                   (S14)                                                                                 

The following assumptions are made: 
(a) It approximately follows from the finite element method simulations and DAC experiments: 𝜎11 = 𝜎22. Then plasticity condition Eq. (S12) simplifies to: (𝜎11 − 𝜎33)2 + 3𝜏312 = 𝜎𝑦2(𝑝) = 3𝜏𝑦2(𝑝).                   (S15)                                                
(b) Stress 𝜎33 is independent of 𝑧. However, it does not mean that: 

 
∂𝜏13∂𝑟 + 𝜏13𝑟 = 0   →    𝜏13 = 𝜏0(𝑧) 𝑟0𝑟  .                              (S16)                                     
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because at the contact surface, 𝜏0(𝑧) may equal to constant 𝜎𝑦 for all 𝑟, for material with 
pressure-independent yield strength. 𝜎33, that is independent of 𝑧 means two other terms in Eq. 
(S14) make small contributions to 𝜎33. 

For plane strain, when the term 
𝜏13𝑟  in Eq. (S14) is absent, a slightly modified Prandtl's 

solution for the maximum possible contact friction (32) for stresses that satisfy equilibrium 
equations and plasticity conditions are: 𝜎33(𝑟)𝜏𝑦 = 𝜎33(0)𝜏𝑦 + 2𝑟ℎ  ;                                                  (S17) 𝜏13𝜏𝑦 = 2𝑧ℎ  ;                                                          (S18) 

                                                                                                                             

                              𝜎11𝜏𝑦 = 𝜎33(0)𝜏𝑦 + 2𝑟ℎ + √3√1 − (2𝑧ℎ )2 = 𝜎33(𝑟)𝜏𝑦 + √3√1 − (2𝑧ℎ )2
 ;                       (S19) 

                                             𝑝𝜏𝑦 = − 2𝜎11+𝜎333𝜏𝑦 = − 𝜎33(𝑟)𝜏𝑦 − 23 √3√1 − (2𝑧ℎ )2
 .                                 (S20)           

The difference with Prandtl's solution is in multiplier √3 instead of 2 in Eq. (S19) for 𝜎11. The 
reason is that we use the von Mises condition and 𝜎11 = 𝜎22, which results in Eq. (S15), while in 
Prandtl's solution, the Tresca condition along with plane strain assumption leads to the yield 
condition (𝜎11 − 𝜎33)2 + 4𝜏312 = 𝜎𝑦2 = 4𝜏𝑦2. 
Eq. (S19) and Eq. (S20) lead to the relationship: 

                                                          
𝜎11𝜏𝑦 = − 𝑝𝜏𝑦 + √33 √1 − (2𝑧ℎ )2

 .                                            (S21) 

Stress 𝜎11 and pressure 𝑝̅, averaged over the sample thickness are 

                                   
𝜎̅11 𝜏𝑦(𝑝̅) = 1ℎ ∫ 𝜎11𝜏𝑦ℎ0 𝑑𝑧 = 𝜎33(0)𝜏𝑦(𝑝̅) + 2𝑟ℎ + √3𝜋4 = 𝜎33𝜏𝑦(𝑝̅) + √3𝜋4  ;                        (S22) 

                                    
𝑝̅𝜏𝑦(𝑝̅) = − 𝜎33𝜏𝑦(𝑝̅) − √3𝜋6  .                            (S23) 

We assumed that 𝜏𝑦 is constant during averaging and then substituted in the result 𝜏𝑦(𝑝̅). It is 
possible to avoid this assumption, but the final equations are getting too bulky and not usable 
analytically for our purposes. Note that the averaged value of 𝜎11 is much closer to the value of 𝜎11(2𝑧/ℎ) at the symmetry plane 𝜎11(0) than at the contact surface 𝜎11(1). For example, (𝜎11(0) − 𝜎33)/(√3𝜏𝑦) = 1, 𝜎11(1) − 𝜎33 = 0, and (𝜎̅11 − 𝜎33)/(√3𝜏𝑦) = 0.79. Similar, (𝑝(0) + 𝜎33)/(2𝜏𝑦/√3) = −1, 𝑝(1) − 𝜎33 = 0, and (𝜎̅11 − 𝜎33)/(2𝜏𝑦/√3) = −0.79. 
Eq. (S22) and Eq. (S23) lead to the relationship: 𝜎̅11𝜏𝑦(𝑝̅) = − 𝑝̅𝜏𝑦(𝑝̅) + √3𝜋12  .                                                   (S24) 

We aim to find the relationship between 𝜎11, 𝜎11(0), and 𝜎11(1). We will use the following 
identity: 

  𝜎11 = 𝜎11(1)𝑤 + 𝜎11(0)(1 − 𝑤);   𝑤 : = 𝜎̅11−𝜎11(0)𝜎11(1)−𝜎11(0) .                  (S25) 

Where 𝑤 is treated as the weight factor. Utilizing Eq. (S19) and Eq. (S22), we obtain: 𝑤 = 1 − 𝜋4 𝜎𝑦(𝑝̅)𝜎𝑦(𝑝(0)) = 1 − 𝜋4 𝜎𝑦0+𝑏𝑝̅𝜎𝑦0+𝑏𝑝(0) .                                       (S26) 

Similar, 𝑝̅ = 𝑝(1)𝑤 + 𝑝(0)(1 − 𝑤);   𝑤 = 𝑝̅−𝑝(0)𝑝(1)−𝑝(0) .                            (S27) 
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Here we used the same symbol 𝑤 because from Eq. (S20) and Eq. (S23), it has the same 
expression (Eq. (S26)) as for 𝜎11. Also, we obtain from Eq. (S19) and Eq. (S21): 𝜎11(1) = −𝑝(1) = 𝜎33; 𝜎11(0) = −𝑝(0) + √33 𝜏𝑦(𝑝(0)) = −𝑝(0) + 13 𝜎𝑦(𝑝(0));   (S28) 

from Eq. (S20): 𝑝(0) = −𝜎33 − 1.155𝜏𝑦(𝑝(0)) = −𝜎33 − 0.667𝜎𝑦(𝑝(0)) = 𝑝(1) − 0.667𝜎𝑦(𝑝(0)); (S29) 
from Eq. (S24): 𝜎11 = −𝑝̅ + 0.453𝜏𝑦(𝑝̅) = −𝑝̅ + 0.262𝜎𝑦(𝑝̅) = 0.262𝜎𝑦0 + 𝑝̅(0.262𝑏 − 1).         (S30) 
Elaborating Eq. (S29) with allowing for Eq. (S9): 𝑝(0) = 𝑝(1) − 0.667𝜎𝑦(𝑝(0)) = 𝑝(1) − 0.667[𝜎𝑦0 + 𝑏𝑝(0)] → 𝑝(0) = 𝑝(1)−0.667𝜎𝑦01+0.667𝑏  .   (S31) 

Substitution of Eq. (S31) in Eq. (S26) and Eq. (S27) results in: 𝑝̅ = 𝑝(1)𝑤 + 𝑝(1)−0.667𝜎𝑦01+0.667𝑏 (1 − 𝑤);   𝑤 = 1 − (0.785 + 0.524𝑏) 𝜎𝑦0+𝑏𝑝̅𝜎𝑦0+𝑏𝑝(1) .       (S32) 

Resolving linear equations Eq. (S32) for 𝑤 and 𝑝(1), we obtain: 𝑤 = 0.4111.910+𝑏 ;                                                           (S33) 

 𝑝(1) = 0.524𝜎𝑦0 + (1 + 0.524𝑏)𝑝̅.                                      (S34) 
Substituting in Eq. (S9) for 𝜎𝑦(1) in Eq. (S34), we obtain: 𝜎𝑦(1) = 𝜎𝑦0 + 𝑏𝑝(1) = (𝜎𝑦0 + 𝑏𝑝̅)(1 + 0.524𝑏)                             (S35) 
Substituting Eq. (S30) and Eq. (S35) in Eq. (S11) results in the final equilibrium equation for 
parameters 𝜎𝑦0 and 𝑏 from the best fit to experiments: 𝑑𝑝̅𝑑𝑟 = − 2√3  1+0.524𝑏1−0.262𝑏  𝜎𝑦0+𝑏𝑝̅ℎ  .                                                (S36) 

Eq. (S36) is the final mechanical equilibrium equation expressed in terms of measured pressure 𝑝̅ 
averaged of the sample thickness, which is used as Eq. (1) in the main text to determine the 
pressure dependence of the yield strength. It transforms to the known equation (10-12) for 𝑏 = 0 
only. We want to use data from all four compression stages as a single data set. To do this, we 
must justify a way to combine all data in a single plot. Eq. (S36) and its solution in Eq. (1) in the 
main text have the following properties:  

(a) Pressure distribution depends on the dimensionless geometric parameter 𝑟/ℎ rather 
than on 𝑟 and ℎ separately.  

(b) Pressure distribution curves for different applied forces and compression can be 
overlapped by shifting curves along the 𝑟 axis without changing 𝜎𝑦(𝑝), since change 𝑟 → 𝑟 + 𝐶 
does not violate Eq. (S36). Indeed, one can choose the same 𝑝0 for all curves and choose 

constant 𝐶 for each curve such that 
𝑟+𝐶ℎ = 𝑐𝑜𝑛𝑠𝑡 is the same for all curves.  

These properties are used in Fig. 1C in the main text. Practically, one can choose a fixed (𝑝𝑓 ,  𝑟𝑓) point in the 𝑝 − 𝑟/ℎ plane for all curves to pass through. Then the curve that originally 
passes through the point (𝑝𝑓 ,  𝑟𝑖), should be shifted in the positive direction by the distance (𝑟𝑓 −𝑟𝑖)/ℎ, so that the new curve passes through (𝑝𝑓 ,  𝑟𝑓). Then we used all the points in the shifted 
curve in Fig. 1C to find the best fit for Eq. (S36) (or Eq. (1) in the main text).  
 
Rationales for the evolution of the crystallite size and dislocation density in ω-Zr during 

the phase transformation 
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Small crystallite size in ω-Zr at the beginning of PT is caused by small transformed 
regions. The growth of the crystallite size in ω-Zr is related to the growth of these regions in the 
course of PT. Also, as it follows from (7) and the current paper, the reduction in the crystallite 
size of α-Zr reduces the minimum pressure for initiation of the strain-induced PT 𝑝𝜀𝑑 and 
promotes the PT. That is why the smallest crystallites of α-Zr transform first to ω-Zr, then larger 
grains transform, so the crystallite size in ω-Zr grows during PT. Since ω-Zr is approximately 
two times stronger than α-Zr, plastic strain is mostly localized in the α-Zr. That is why plastic 
strain and strain path do not affect the crystallite size and dislocation density in ω-Zr. Reduction 
in the dislocation density in ω-Zr is caused by the inverse proportion between the dislocation 
density and the crystallite size following from Eq. (S1) and Eq. (S2). 
 
Explanation of the existence of outliers in the evolution of the crystallite size and 

dislocation density in α-Zr during the phase transformation 

 
As it follows from Fig. 2D and Fig. 3D, the crystallite size of and dislocation density in ω 

-Zr during the phase transformation are unique functions of the volume fraction of ω-Zr 
independent of pressure, plastic strain tensor, and its path. Similar dependence is found for α-Zr 
in Fig. 2C and Fig. 3C, but there are outliers for 0.38<c<0.52 obtained at the 2 GPa step. Indeed, 
at the 2 GPa step and in the two-phase region, the crystallite size of α-Zr remains constant while 
its volume fraction is larger than 0.6 (Fig. 2A and Fig. 2C), same as the steady value before PT. 
When the volume fraction of α-Zr gradually decreases to 0.48 towards the culet center, the 
average crystallite size of α -Zr slightly increases to ~60 nm. This is caused by the statistical 
effect. As it follows from (7) and the current paper, the reduction in the crystallite size of α-Zr 
reduces the minimum pressure for initiation of the strain-induced PT 𝑝𝜀𝑑 and promotes the PT. 
That is why the smallest crystallites of α-Zr transform first to ω-Zr, increasing the average size 
of the remaining α-Zr crystallites. It is almost non-detectable at large volume fractions of α-Zr 
but essential at small volume fractions. Also, constant crystallite size is observed for r>60 µm, 
where, due to friction, plastic deformation is much larger than at the central part. This large 
plastic strain restores the same steady averaged crystallite size by refining large crystallites. At 
the center, plastic strain is much smaller and insufficient to restore the steady size. At the 3 GPa 
step, with further reduction in the volume fractions of α-Zr and an increase in plastic strain, these 
outliers disappear, and all points belong to the single red curve in Fig. 2C versus volume 
fractions of α-Zr. Reduction in crystallite size is related to dividing α-Zr crystallite into two or 
more parts due to PT inside of grains.  
 A similar statistical effect can explain outliers in the dislocation density in α-Zr for 
0.38<c<0.52 obtained at 2 GPa step. Formally, it is caused by the inverse proportion between the 
dislocation density and the crystallite size that follows from Eq. (S1) and Eq. (S2). Physically, 
PT starts and occurs first in the grains with the largest dislocation density, where the probability 
of strong stress concentrators is higher. Transformation of these grains of α-Zr to ω-Zr decreases 
the averaged dislocation density in the remaining α-Zr crystallites. It is almost non-detectable at 
large volume fractions of α-Zr but essential at decreasing volume fractions. Also, constant 
dislocation density is observed for r>60 µm, where plastic deformation is much larger than at the 
central part. This large plastic strain restores the same steady averaged dislocation density in the 
large grains. At the center, plastic strain is much smaller and insufficient for restoring the steady 
dislocation density. At the 3 GPa step, with further reduction in the volume fraction of α-Zr and 
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an increase in plastic strain, these outliers disappear, and all points belong to the single red curve 
in Fig. 3C versus the volume fraction of ω-Zr. An increase in averaged dislocation density is 
probably caused by increased dislocation density near new α- ω interfaces to accommodate local 
transformation strain and decrease crystallite size. Large scatter in both crystallite size and 
dislocation density in α-Zr near completion of PT is caused by increasing measurement error for 
a tiny amount of α-Zr. 
   
Scatter in crystallite size and dislocation density in ω-Zr after completing phase 

transformation 

 

While the crystallite size and the dislocation density in ω-Zr after completing the phase 
transformation are independent of the radius (Fig. 2B and Fig. 3B), there are some scatters 
around the average along the radius. Also, the dislocation densities are slightly varying between 
6, 10, and 14 GPa steps. These scatters cannot be attributed to the dependence of the crystallite 
size and dislocation density on pressure, plastic strain, and strain path. Indeed, pressure strongly 
and monotonously reduces, plastic strain strongly and monotonously increases along the radius, 
and the plastic strain path also changes monotonically. However, there are no clear radial 
dependence of the crystallite size and the dislocation density. Because of the large fluctuation, 
the slight difference in the average dislocation density between 6, 10, and 14 GPa steps also 
cannot be solely attributed to the growing pressure and plastic strain. A possibility is that the 
observed fluctuations in the crystallite size and the dislocation density after PT completed are 
due to evolving texture (i.e., dynamically changing distribution of crystallographic orientations 
and uncharacterized preferred orientations) during the plastic deformation with increasing 
pressure and errors in post-processing of XRD patterns as described at the end of the section 
"Dislocation density estimation." 
 
New findings relative to the previous works  

 
The effects of severe plastic deformations under high pressure on phase transformations 

and microstructure evolution are mostly studied with high-pressure torsion (HPT) with metallic 
or ceramic anvils, see reviews (8,33-35). Stationary states after severe plastic straining in terms 
of torque, hardness, and grain size are well-known in literature, particularly after HPT, along 
with many cases where they were not observed. However, all these results were not observed in 
situ but obtained postmortem after pressure release and further treatment during sample 
preparation for mechanical and structural studies. The direct effect of pressure and the combined 
effect of pressure and plastic straining on the yield strength, crystallite size, and dislocation 
density were not determined in the literature. This is very important because, e.g., the yield 
strength of the ω-Zr doubles at ~13 GPa. During unloading after compression or HPT, additional 
plastic deformation may occur, which may also cause direct or reverse PT (36, 37). Also, several 
PTs may occur during the loading and others during unloading, e.g., Si-I→Si-II→ Si-XI→ Si-V 
during loading and Si-V→Si XII & III during unloading (38, 39), and the final product does not 
characterize any PT and processes during the loading. Since after severe plastic deformation a 
material becomes brittle and internal tensile stresses are present in some regions, damage may 
also occur. 

Moreover, during machining, polishing, and electropolishing of the recovered sample, 
with or without acids, direct or reverse PT may occur as well, in particular, for Zr (40). It was 
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obtained in (40) that the grain/crystallite size of ω-Zr is smaller than those of α-Zr, while our in-
situ experiments show the opposite. Some samples were characterized six months later than HPT 
was performed (41), and some heterogeneities in hardness distribution along the radius were 
found. β-Zr was found in (18) after compression of optimally oriented highly textured Zr at 1 
GPa and after five anvil rotations at 0.5 GPa in (42) from the same Zr sample we are using here. 
However, in situ, we did not find any traces of β-Zr even at 13 GPa. Our results are consistent 
with the first-principles simulations in (43), in which β-Zr exhibits imaginary phonon 
frequencies and is dynamically unstable at a pressure lower than 25 GPa. Grain size and 
dislocation density may also change through recovery and recrystallization processes. Thus, in 
comparison with our in-situ examination, various inaccuracies are introduced in postmortem 
studies. In addition, pressure during compression and HPT with metallic/ceramic anvils is 
determined as a total force over total area, which may underestimate the maximum pressure in a 
sample by a factor of 3 or more (44, 45). In particular, the above numbers for PT pressure and 
corresponding numbers in (18, 40-42) for α-ω PT should be multiplied by these correcting 
factors.  
 Because of the above problems, the time-dependence of plastic strain-induced PT kinetics 
was not reported previously and could be reliably determined only in in-situ experiments. The 
same is true for the minimum pressure for the direct strain-induced PT and, consequently, for the 
findings that it is independent of the preliminary plastic straining (above some critical 
magnitude), pressure-accumulated plastic strain, and entire plastic strain path. The existence of 
the unique curves for the dislocation density and crystallite size for both α-Zr and ω-Zr during α-
ω PT, independent of pressure, 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ has not been reported in the previous studies.  
 Our results about the existence of multiple steady states are consistent with known results 
that different ways to produce severe plastic deformation (e.g., HPT, equal channel extrusion, 
ball milling, etc.) lead to different steady grain sizes (8, 33, 34). However, our results also find 
that the different steady states in terms of the crystallite/grain size, dislocation density, and the 
minimum pressure for the strain-induced PT can be produced in the same device by the same 
method just by increasing the height of asperities and, consequently, the contact friction. Being 
different from the previous studies, the existence of the multiple steady states is proved in situ 
under high pressure in our study.  
 Our result in Fig. 1A on the existence of the fixed isotropic pressure-dependent surface of 
perfect plasticity independent of 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ is far beyond the existence of the steady hardness, 
the same for different processing techniques and initial states. An important point is how to relate 
this surface with the traditional evolving yield surface, which is anisotropic and depends on 𝜺𝑝 

and 𝜺𝑝𝑝𝑎𝑡ℎ. In addition, our finding is formulated in the language of plasticity theory (plastic 
strain and strain path tensors, yield surface, etc.) instead of technological language, which allows 
one to use the obtained knowledge to significantly enrich fundamental plasticity in the 
formulation and application of plastic models and computer simulations of various processes.  
Note that the isotropy of the surface of perfect plasticity 𝜑(𝒔) = 𝜎𝑦(𝑝) follows not only from 
experiments but from the theory. Indeed, since initially polycrystalline material with stochastic 
grain orientation without texture is isotropic, its anisotropy during deformation can come from 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ only, i.e., it is strain-induced. Since 𝜑(𝒔) = 𝜎𝑦(𝑝) is independent of 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ , 
the only source for anisotropy disappears.  

Similarly, the existence of (a) the steady crystallite/grain size and dislocation density 
determined in situ under high pressure and independent of pressure, 𝜺𝑝, and 𝜺𝑝𝑝𝑎𝑡ℎ, and (b) its 
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connection to the surface of perfect plasticity and the minimum pressure for the direct strain-
induced PT, both independent of 𝜺𝑝 and 𝜺𝑝𝑝𝑎𝑡ℎ , is well beyond of the known postmortem finding 
of the steady grain size and (in few cases) the dislocation density, the same for different 
processing techniques and initial states. Note that the steady state in the yield strength does not 
correspond to the steady state in torque in high-pressure torsion (45), mostly due to the 
complexity of the friction condition.  
 
Rationales for the reduction in the minimum pressure for the strain-induced PT with 

decreasing crystallite size and increasing dislocation density    

 
 

As suggested in our analytical model (5) and phase field models (46, 47), plastic strain-
induced PT occurs by nucleation at the tip of a dislocation pileup as the strongest possible stress 
concentrator. All components of stress tensor σ at the tip of dislocation pileup, modeled as a 
superdislocation, are: 

σ~τl~N                                                              (S37) 
where τ is the applied shear stress limited by the yield strength in shear 𝜏𝑦, l is the length of the 
dislocation pileup, and N is the number of dislocations in a pileup. The higher the dislocation 
density, the higher the probability of the appearance of dislocation pileups with a larger number 
of dislocations. This trivially explains reducing the minimum pressure for the strain-induced PT 
with increasing dislocation density. However, since l is limited by the fraction of the grain size 
(e.g., half of the grain size), the main conclusion in (5) was that the greater grain size is the 
stronger reduction in the PT pressure, i.e., opposite to what we found in experiments. Our later 
phase field (46,47), molecular dynamics (48), and concurrent atomistic-continuum simulations 
(49) allow us to resolve the problem, at least qualitatively. In contrast to the analytical solution 
utilized in (5), l is not related to the grain size since most dislocations are localized at the grain 
boundary producing a step (superdislocation, Fig. S5) with effective length l=Nb<<d, where b is 
the magnitude of the Burgers vector. At the same time, 𝜏 = 𝜏𝑦 increases with the decrease in d 
according to the Hall-Petch relationship 𝜏𝑦 = 𝜏0 + 𝑘𝑑−0.5, where 𝜏0 and k are material 
parameters. That is why the minimum pressure for the strain-induced PT decreases with 
decreasing crystallite size.  
 
On the possible source of the time dependence of the kinetics of strain-induced PTs 

 
It was generally accepted that during shear under high pressure, PT stops when shear 

stops (5-8, 50). That means that time is not a governing parameter and plastic strain plays a role 
of a time-like parameter. A nanoscale rationale in (5) explaining this statement was that 
barrierless nucleation at the tip of the dislocation pileup occurs extremely fast and, since stress 
decreases like 1/r with distance from the tip r, grows is very limited and is arrested when phase 
interface is equilibrated. Since this process occurs in a much shorter time than the measurement 
time, a time-dependent component is not detectable, and plastic strain is the only governing 
parameter. This was implemented in (5) in the strain-controlled kinetic equation, see Eq. (2) in 
the main text. This equation was confirmed by experiments in (7), but the time-dependent 
component of the kinetics at fixed load/torque was not checked because it was not expected. 
After we found here the time dependence of the kinetics of strain-induced PT experimentally, we 
can revisit the results of the phase-field simulations to rationalize it. Fig. S6 shows the time 
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evolution of the phase and dislocation structures at the fixed applied normal stress and shear 
strain after phase nucleation in the right grain at the dislocation pileup in the left grain. Applied 
normal stress is 10 times lower than the PT pressure under hydrostatic conditions. One can see 
that after nucleation, the high-pressure phase significantly grows and reaches the opposite grain 
boundary, the number of dislocations in the dislocation pileup in the left grain increases 
(especially within step at the grain boundary), dislocations nucleate and evolve in the right grain, 
the second nucleus appears at the dislocation pileup that develops within the right grain, then 
nuclei coalesce, and the stationary phase and dislocation configurations is achieved. The time 
scale for phase and dislocation evolution is determined by two kinetic coefficients, which are 
different for different materials. If the first measurement at the material point in a sample in 
DAC completes before a stationary state is reached, this evolution is undetectable, the entire 
process looks instantaneous, and the kinetics of the PT is fully plastic strain controlled. In the 
opposite case, phase evolution at the fixed strain will be observed and time-dependent 
component of the kinetics should be characterized and formalized.   
 
  
   
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

13 
 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figures 

 

 

Fig. S1. Surface asperity profile of a smooth anvil and a rough-DA. (a) a traditional smooth 
diamond anvil with a range [-10 nm; 10 nm] and (b) a rough-polished diamond anvil (rough-DA) 
with a range [-500 nm; 500 nm]. 
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Fig. S2. Unrolled diffraction image of Zr when ω-Zr first emerged at 0.67 GPa at culet 

center.  
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Fig. S3. Radial distribution of (A) α-Zr pressure and (B) ω-Zr volume fraction in a sample 

deformed with smooth anvils. Different applied forces represent different compression stages. 
Yellow squares show the minimum PT pressure 𝑝𝜀𝑑 =1.36 GPa at different compression stages 
and at different radii where ω-Zr was first observed. Since plastic strain, plastic strain path, and 
pressure-strain path are very different at different locations and compression stages and 𝑝𝜀𝑑 is 
independent of the locations, then  𝑝𝜀𝑑  is independent of plastic strain, plastic strain path, and 
pressure-strain path.  
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Fig. S4. Kinetics of α-ω phase transformation in Zr with smooth diamond anvil. Compared 
to rough-DA experiment, kinetics shows different nonlinear features corresponding to the first-

order reaction with parameters a=1, k=11.65, and B=1.35 in Eq. (2) 
𝑑𝑐𝑑𝑞 = 𝑘 𝐵(1−𝑐)𝑎𝐵(1−𝑐)+𝑐 (𝑝𝛼(𝑞)−𝑝𝜀𝑑𝑝ℎ𝑑−𝑝𝜀𝑑 ), 

instead of a=l=0, B=1 for the experiment with rough-DA. 
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Fig. S5. Dislocation pileups producing a step at the grain boundary or phase interface that 

causes a phase transformation. (A) Dislocation pileup in the left grain produces step at the 
grain boundary and cubic to tetragonal PT and dislocation slip in the right grain. Phase-field 
approach results from (47). (B)  Dislocation pileup in the right grain produces a step at the grain 
boundary in Si I and amorphization in the left grain. Molecular dynamics results from (48). (C) 
Step at the phase interface boundary consisting of 15 dislocations and causing cubic to hexagonal 
PT. The atomistic portion of the concurrent continuum-atomistic approach from (49). Adopted 
with changes from (47-49) with permissions. 
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Fig. S6. Time evolution of the phase and dislocation structures at the fixed applied normal 

stress and shear strain after phase nucleation in the right grain at the tip of dislocation 

pileup in the left grain. (A) Schematics of grains with an initial solution for dislocation pileup 
and nucleated high-pressure phase (red) (46). (B)  Nucleation and growth of the high-pressure 
phase (red) in the right grain caused by an evolving dislocation pileup in the left grain, which is 
shown at the top of each right grain (47). Results are obtained with the phase-field approach. 
Adopted with changes from (46, 47) with permission.  
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Supplementary tables 

Table S1. Parameters of 3rd Birch-Murnaghan equation of state of Zr used in this study. 

 
 

Table S2. The thickness of Zr sample with rough-DA in this study at corresponding compression 
step. 0.67 GPa corresponds to the step when ω-Zr first emerge. 

 

  

Zr phase V0 (per formula unit) K0 K0
’ 

α-Zr 23.272 Å3 92.2 GPa 3.43 
ω-Zr 22.870 Å3 102.4 GPa 2.93 

Compression step initial 0.67 GPa 2 GPa 3 GPa 6 GPa 10 GPa 14 GPa 

Thickness (µm) 163 101 56 48 40 32 26 
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