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Abstract

To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that
has been adapted to metric spaces. A standard approach is to consider the Fréchet mean. In practice,
computing the Fréchet mean for sets of large graphs presents many computational issues. In this work,
we suggest a method that may be used to compute the Fréchet mean for sets of graphs which is metric
independent. We show that the technique proposed can be used to determine the Fréchet mean when
considering the Hamming distance or a distance defined by the difference between the spectra of the
adjacency matrices of the graphs.
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1. Introduction

Machine learning algorithms almost always require the estimation of the average of a dataset.
Algorithms such as clustering, classification and linear regression all utilize this average value [39].
When notions of addition and multiplication can be defined, the mean is a simple algebraic operation,
however, for data in a metric space, an extension of the notion of mean, termed the Fréchet mean, was
introduced in [33], which involves an optimization procedure defined over the metric space.

The space of graphs is only one example of a metric space where the notion of Fréchet mean has
become a commonplace replacement for the notion of centrality. However, the Fréchet mean for the
space of graphs remains difficult to compute and is instead usually approximated by taking the most
central element of a given data set (see e.g. [56]). A general critique of the few algorithms that determine
the Fréchet mean graph is their inability to be generalized to other choices of metrics. In this work, we
introduce a solution technique that can be used to determine the Fréchet mean for the space of graphs,
which can be implemented for any choice of metric.

Throughout this work, we consider a set of simple graphs with n vertices. For some of our results,
we note that the vertex set must be sufficiently large.

Our approach to determining a solution to the Fréchet mean problem involves the following steps.
First, we lift the problem to the space of probability measures and search for a measure with the correct
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2 D. FERGUSON AND F. G. MEYER

Fréchet mean. Second, we restrict the space of probability measures to a parametrizable subset and
search for the best measure within that subset.

We show that this procedure can be used to determine the Fréchet mean when the metric equipped
to the space of graphs is the Hamming distance, which is the most common metric for graph-valued
data, and a distance defined by the !2 difference between the eigenvalues of the adjacency matrices of
two graphs. Notably, the high-level steps taken to determine the Fréchet mean graphs for each metric
are nearly identical.

2. State of the art

We consider the set of undirected, unweighted graphs of fixed size n, wherein we define a distance. To
characterize the mean or median of a set of graphs a standard approach is to consider the Fréchet mean.
The choice of metric is crucial for the Fréchet mean as different metrics induce a different Fréchet mean
set of graphs.

The Fréchet mean has been studied at length when the distance is the Hamming distance (e.g. [19, 36,
40, 41, 43, 58] and references therein). The Hamming distance reflects small-scale changes in the graphs
defined by the local connectivity at each the level of each vertex. The average of the local structures in
the networks provides useful information when the specific location of an edge in the adjacency matrix
is important to the research question at hand. However, because the Hamming distance is defined by the
local connectivity, the Fréchet mean graph with respect to this distance need not preserve the observed
global properties of graphs in the data set.

A different metric, one which captures the larger scale patterns of connectivity in graphs (e.g.
community structure [3, 51], modularity [38]), may also be considered when determining the Fréchet
mean. The adjacency spectral distance, which we define as the !2 norm of the difference between the
spectra of the adjacency matrices of two graphs [80], is one such metric that quantifies differences in
global connectivity patterns.

The eigenvalues of the adjacency matrix carry important topological information about a graph
at a multitude of scales. The largest eigenvalues reveal information about the large-scale features
of a network such as community structure [51] and the existence of ‘hubs’ [32]. While the smaller
eigenvalues reveal information about the local features in the graph. Features such as the degree of a
vertex or the ubiquity of triangular substructures in the network are examples of features quantified by
the smaller eigenvalues of the adjacency matrix [26].

Oftentimes, only the largest eigenvalues of the adjacency matrix are considered when comparing
graphs. By choosing to consider only the largest c eigenvalues for some choice of c < n, the difference
in the global features of the two graphs can be highlighted while the local features of the graphs are
ignored.

A primary difficulty when determining the Fréchet mean with respect to the Hamming distance is
to have node correspondence between the graphs in the data set. When the graphs do not have node
correspondence, a lengthy minimization procedure must be solved to align the graphs before any work
can be done to determine the Fréchet mean graph [19]. When the graphs have node correspondence, the
solution can be determined analytically, as shown in [58]. One benefit to metrics defined on the spectra
of various matrix representations of a graph, in contrast to the Hamming distance, is that they naturally
allow for the comparison between graphs defined on different vertex sets.

Further studies on the mean graph appear in [31] where the authors suggest embedding the graphs
into Euclidean space where the Fréchet mean can be computed trivially using the algebraic structure
of the space. Of note, however, is that the inverse of the embedding may not be available in closed
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COMPUTATION OF SAMPLE FRÉCHET MEAN 3

form making it difficult to recover the Fréchet mean graph. The authors in [37] suggest characterizing
the mean for weighted graphs by leveraging the information captured in the Laplacian matrices of the
graphs and the mean is computed on the manifold defined by the cone of symmetric positive semi-
definite matrices.

3. Main contributions

The Fréchet mean (or median) graph has become a standard tool for analyzing graph-valued data. In this
paper, we present a solution technique to determine the Fréchet mean (or median) graph, which may be
applied for any choice of metric. We showcase the technique by recovering known results when the
metric is the Hamming distance (the most widely studied distance when considering the Fréchet mean
for graph-valued data) and subsequently show that the same technique can be used when the metric is
defined by the difference between the largest spectral values of the respective adjacency matrices of the
two graphs.

We provide novel theoretical results about the Fréchet mean graph when the metric is defined as
the difference between the spectral values of the adjacency matrices of the graphs. The proofs rely
on a combination of ideas: first, the Fréchet mean graph from a stochastic block model ensembles
provides a universal approximant in the spectral adjacency pseudo-metric (see Definition 4.7 and
Theorem 8.1). Second, the dominant eigenvalues of the adjacency matrices of the sample set of
graphs can be used to infer the parameters of a stochastic block model ensemble whose Fréchet
mean approximately minimizes the objective value that determines the sample Fréchet mean graph of
interest.

We provide experimental results when considering the metric defined on the spectra of the adjacency
matrices. We also provide an application of the sample Fréchet mean graph given this metric in the
algorithm for K-means clustering. For experiments and use cases of the Fréchet mean with respect to
the Hamming distance, see e.g. [19, 36, 40, 41, 43, 58].

In a short and early version of this work [28], we described, without proof, an algorithm to compute
an approximation to the Fréchet mean when considering a metric based on the spectral values of the
adjacency matrix. This earlier work relied on some theoretical results that were made precise, in their
full general context, only recently. These general results are presented in this version of the manuscript
in sections 6, 7 and 8.

In comparison to the algorithms presented in the conference paper, the analysis of the optimization
problem associated with the computation of the Fréchet mean has been significantly generalized. The
optimization problem is recast as a search over a space of probability distributions. This novel and
more general perspective can be used to tackle other problems where the solution to an optimization
problem is replaced by a set of solutions that can be generated by sampling a distribution. The approach
is not limited to graph-valued problems but works in any probability metric space. Conversely, the
initial conference paper focused on the algorithmic aspects of the computation of the Fréchet mean with
respect to the metric defined by comparing the largest eigenvalues of the adjacency matrices of two
graphs, omitting the abstract and more general approach presented in the current manuscript.

Finally, the current manuscript contains a novel and important application of the computation of the
Frechet mean to machine learning: the clustering of graph-valued data. For our experiments, we always
focus on the metric defined on the spectra of the adjacency matrices rather than the Hamming distance.
For experiments and applications of the Fréchet mean with respect to the Hamming distance, we would
refer the reader to any of the aforementioned studies.
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4 D. FERGUSON AND F. G. MEYER

4. Notations

We denote by G = (V , E) a graph with vertex set V = {1, 2, ..., n} and edge set E ⊂ V × V . For vertices
i, j ∈ V an edge exists between them if the pair (i, j) ∈ E. The size of a graph is called n = |V| and the
number of edges is m = |E|. The density of a graph is called ρn = m

n(n−1)/2 .
The matrix A is the adjacency matrix of the graph and is defined as

Aij =
{

1 if (i, j) ∈ E.
0 else.

(4.1)

We define the function σ to be the mapping from the set of n×n adjacency matrices (square, symmetric
matrices with zero entries on the diagonal), Mn×n to Rn that assigns to an adjacency matrix the vector
of its n sorted eigenvalues:

σ : Mn×n −→ Rn, (4.2)

A &−→ λ = [λ1, . . . , λn], (4.3)

where λ1 ≥ . . . ≥ λn. Because we often consider the c largest eigenvalue of the adjacency matrix A, we
define the mapping to the truncated spectrum as σc:

σc : Mn×n −→ Rc, (4.4)

A &−→ λc = [λ1, . . . , λc]. (4.5)

Definition 4.1. We define the adjacency spectral pseudometric as the !2 norm between the spectra of
the respective adjacency matrices,

dA(G, G′) = ||σ (A) − σ (A′)||2. (4.6)

The pseudometric dA satisfies the symmetry and triangle inequality axioms but not the identity
axiom. Instead, dA satisfies the reflexivity axiom

dA(G, G) = 0, ∀G ∈ G.

When the adjacency matrices (or Laplacian) of graphs have similar spectra, it can be shown that the
graphs have similar global and structural properties [79]. As a natural extension of this spectral metric,
sometimes only the largest c eigenvalues are measured where c * n. We refer to this next metric as a
truncation of the adjacency spectral pseudometric.

Definition 4.2. We define the truncated adjacency spectral pseudometric as the !2 norm between the
largest c eigenvalues of the respective adjacency matrices,

dAc
(G, G′) = ||σc(A) − σc(A

′)||2. (4.7)
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COMPUTATION OF SAMPLE FRÉCHET MEAN 5

Rather than considering the difference between the spectra of the adjacency matrices, the Hamming
distance quantifies discrepancies between the existence of an edge at the same location in the adjacency
matrix.

Definition 4.3. We define the Hamming distance as follows:

dH(G, G′) =
∑

1≤i<j≤n

|aij − a′
ij|. (4.8)

Definition 4.4. We denote by G the set of all simple unweighted graphs on n nodes.

4.1 Random graphs

We denote by M(G) the space of probability measures on G. In this work, we always mean a probability
measure when discussing a measure.

Definition 4.5. We define the set of random graphs distributed according to µ as the probability space
(G, µ).

Remark 4.1. In this paper, the σ -field associated with the (G, µ) will always be the power set of G.

This definition allows us to unify various ensembles of random graphs (e.g. Erdős–Rényi,
inhomogeneous Erdős–Rényi, Small–World, Barabási–Albert, etc.) through the unique concept of a
probability space.

4.1.1 Kernel probability measures. Here we define an important class of probability measures for
our study.

Definition 4.6. Let ωn be a positive constant and let f be a function such that

f : [0, 1] × [0, 1] &→ [0, 1], (4.9)

with f (x, y) = f (1 − y, 1 − x). The product, ωn f defines the kernel of a kernel probability measure,
denoted µωn f ∈ M(G ), where

∀G ∈ G, with adjacency matrix A, (4.10)

µωn f ({A}) =
∏

1≤i<j≤n

(
ωn f

(
i
n

,
j
n

))aij
(

1 − ωn f
(

i
n

,
j
n

))1−aij

. (4.11)

Remark 4.2. We refer to these measures as kernel probability measures since the kernels naturally give
rise to linear integral operators with kernels f . Furthermore, when the function f satisfies that || f ||1 = 1
then the constant ωn denotes the expected density of graphs sampled according to µωn f .

We note that given the sequence
{ i

n

}n
i=1 there exists a an equivalence class of functions f , defined

on the grid points { i
n }n

i=1 × { j
n }n

j=1, which identify an equivalent kernel probability measure µωn f .
Throughout our analysis, we always refer to a piecewise Lipschitz representative function f .
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6 D. FERGUSON AND F. G. MEYER

Fig. 1. Example stochastic block model kernel f (x, y; p, q, s).

The definition of the kernel µωn f ({A}) in Definition 4.6 is similar to the definition of graphon found
in [17, 42, 55], or the concept of W-random graphs generated from a graphon W. We follow the approach
of [13] and introduce a ‘global density’ ωn that quantifies the uniform graph sparsity; see also [1, 14,
16, 46, 47, 81] where the graphon is scaled by a ‘target density’ function ρn.

Our graph model (see Def. 4.6), does not require the introduction of latent variables ξi, ξj that
encode the node location within the domain [0, 1]2. Indeed, we can directly work with the canonical
representation of the graphon, since the distance that we use to compare graphs, dA(G, G′) (see equation
(4.6)), is invariant under the action of any joint (deterministic or stochastic) permutations of the rows
and columns of the adjacency matrix.

Definition 4.7. We denote by Gµ a random realization of a graph G ∈ (G, µ).

4.1.2 Stochastic block models. The stochastic block model (see [3]) plays a vital role in this work.
We review this model’s specific features using the notations defined in the previous paragraphs. The
critical aspects of the model are the geometry of the blocks, the within-community edges densities,
and the across-community edge densities. An example of the kernel function and associated adjacency
matrix from a stochastic block model is given in Fig. 1.

We denote by c the number of communities in the stochastic block model. The geometry of
the stochastic block model is encoded using the relative sizes of the communities. We denote by
s ∈ !1 a non-increasing non-negative sequence of relative community sizes with c non-zero entries and
||s||1 = 1.

For the geometry specified by s we define an associated edge density vector p ∈ !∞ such that 0 < pi
for i = 1, ..., c and pi = 0 for i > c, which describes the within-community edge densities.
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COMPUTATION OF SAMPLE FRÉCHET MEAN 7

Fig. 2. Example adjacency matrix.

Finally, we denote by q the across-community edge densities. For general stochastic block models,
the across-community edge density is allowed to vary between each community. In this work, we always
take a constant cross-community edge density.

Remark 4.3. We allow for infinite vectors with a finite number of non-zero entries so that we may
smoothly introduce new communities within the stochastic block model. For example, let t ∈ [0, 1] and

parametrize s and p by t as s(t) = [1 − t/2, t/2, 0,
...]T and p(t) = [0.2 + t/2, 0.1 + t/2, 0,

....

We can parameterize a stochastic block model using one representative of the equivalence class of
kernels, f , which we call the canonical stochastic block model kernel.

Definition 4.8. (Canonical stochastic block model kernel)The function f , which is piecewise constant
over the blocks, and is defined by f : [0, 1] × [0, 1] −→ [0, 1]

f (x, y) =






pi if
∑i−1

k=1 sk ≤ x <
∑i

k=1 sk,
and

∑i−1
k=1 sk ≤ y <

∑i
k=1 sk,

q if
∑i−1

k=1 sk ≤ x <
∑i

k=1 sk,
and

∑j−1
k=1 sk ≤ y <

∑j
k=1 sk

(4.12)

is called the canonical kernel of the stochastic block model with measure denoted by µωn f (see, e.g.
Fig. 1), and we denote it by f (x, y; p, q, s).

Example 1. Given s =
[
1/2 1/4 1/4 0 · · ·]T the values of f (x, y; p, q, s) in the unit square are

shown in Fig. 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaad002/7091479 by U

niversity of C
olorado Boulder user on 29 M

arch 2023



8 D. FERGUSON AND F. G. MEYER

5. The Fréchet function and sample Fréchet function

We equip the set G of graphs defined on n vertices (see definition 4.4) with a (pseudo)-metric, d. We
consider a probability measure µ ∈ M(G ) that describes the probability of obtaining a given graph
when we sample G according to µ and define the Fréchet function.

Definition 5.1. (Fréchet function)We denote by Fr the Fréchet function,

Fr(G) = Eµ

[
dr(G, Gµ)

]
. (5.1)

Using d, we quantify the spread of the graphs, and we define a notion of centrality by minimizing
the Fréchet function for various choices of r, which gives the location of the expected graph according
to µ. For r = 2 we define the Fréchet mean.

Definition 5.2. (Fréchet mean [33])The Fréchet mean of the probability measure µ in the pseudomet-
ric space (G, d) is the set of graphs G∗,µ

2 whose expected distance squared to the observed graphs is
minimum,

{
G∗,µ

2 ∈ G
}

= argmin
G∈G

F2(G) = argmin
G∈G

Eµ

[
d2(G, Gµ)

]
, (5.2)

where Gµ is a random realization of a graph distributed according to the probability measure µ and the

expectation Eµ

[
d2(G, Gµ)

]
is computed with respect to the probability measure µ.

Because G is a finite set, the minimization problem (5.2) always has at least one solution. Throughout
this work, we are interested in determining at least one element of the set {G∗,µ

2 ∈ G}. Because our results
hold for any minimizer of (5.2), i.e., for any Fréchet mean of µ, we work with a single representative
graph from the Fréchet mean set so, to ease our exposition, we write the Fréchet mean as follows:

G∗,µ
2 = argmin

G∈G
Eµ

[
d2(G, Gµ)

]
. (5.3)

We note the similarity between equation (5.3) and the definition of the barycenter [64]. Indeed, as we
change µ, we expect that, for a fixed G, Eµ

[
d2(G, Gµ)

]
will change, and therefore the Fréchet mean,

G∗,µ
2 , will move inside G for different choices of the probability measure µ.

Observe that G∗,µ
2 is the center of mass for the mass distribution associated with µ. Different

centroids (rather than just the mean) can be generalized to metric spaces by considering different choices
of r when minimizing the Fréchet function. In particular, taking r = 1 defines the Fréchet median graph.

Definition 5.3. (Fréchet median) The Fréchet median of the probability measure µ in the pseudomet-
ric space (G, d) is the set of graphs G∗,µ

1 whose expected distance to the observed graphs is minimum,

{
G∗,µ

1 ∈ G
}

= argmin
G∈G

F1(G) = argmin
G∈G

Eµ

[
d(G, Gµ)

]
, (5.4)

where Gµ is a random realization of a graph distributed according to the probability measure µ, and the

expectation Eµ

[
d(G, Gµ)

]
is computed with respect to the probability measure µ.
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COMPUTATION OF SAMPLE FRÉCHET MEAN 9

Again because our results hold for any graph in the Fréchet median set, we denote the solution to
(5.4) as a single graph,

G∗,µ
1 = argmin

G∈G
Eµ

[
d(G, Gµ)

]
. (5.5)

While the mean and median are similar, they capture different notions of centrality. For Euclidean
spaces, the differences between the mean and median are well understood. For the space of graphs, the
difference depends on the specific distance equipped to G. For example, when d = dH , and for certain
classes of probability measures, it is shown in [58] that the (sample) Fréchet mean and median graphs
are similar with high probability which is unlike the situation in Euclidean spaces in general.

In practice, the only information known about a distribution on G comes from a sample of graphs.
Therefore, we need a notion of the sample Fréchet function, defined by replacing µ with the empirical
measure. Given a set of graphs

{
G(k)}N

k=1 we define the sample Fréchet function.

Definition 5.4. (Sample Fréchet function)We denote by FN,r the sample Fréchet function,

FN,r(G) = 1
N

N∑

k=1

dr(G, G(k)). (5.6)

The sample Fréchet mean and median are defined by minimizing the sample Fréchet function when
r = 2 and r = 1, respectively.

Definition 5.5. (Sample Fréchet mean)Let
{
G(k)

}
1 ≤ k ≤ N be a set of graphs in G. The sample

Fréchet mean is defined by

{G∗
N,2 ∈ G} = argmin

G∈G
FN,2(G) = argmin

G∈G

1
N

N∑

k=1

d2(G, G(k)). (5.7)

Again, our results hold for any minimizer of (5.7), so we write the sample Fréchet mean as a
singleton set,

G∗
N,2 = argmin

G∈G

1
N

N∑

k=1

d2(G, G(k)). (5.8)

The dependence on N is explicitly written here but may be suppressed throughout the paper when it is
obvious. The sample Fréchet median is specified by setting r = 1 and minimizing the sample Fréchet
function. Here we introduce the sample Fréchet median as a singleton set for brevity though, in general,
it will be set-valued as well.

Definition 5.6. (Sample Fréchet median) Let
{
G(k)} 1 ≤ k ≤ N be a set of graphs in G. The sample

Fréchet median is defined by

G∗
N,1 = argmin

G∈G
FN,1(G) = argmin

G∈G

1
N

N∑

k=1

d(G, G(k)). (5.9)
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10 D. FERGUSON AND F. G. MEYER

Determining the (sample) Fréchet mean or median is intractable with a direct approach whenever n,
the number of vertices in the graph, is reasonably large because |G| = O(2n2

). A compounding difficulty
results from the fact that G is not ordered, so searching G in a principled manner is non-trivial (in contrast
to the situation with trees [7, 11]). Furthermore, because the geometry of the space G varies with the
choice of metric, developing an algorithm that searches the space G in a principled manner with respect
to one metric need not work well when considering a different metric.

In the following section we propose a technique that can be employed to minimize the (sample)
Fréchet function independent of the choice of r or the distance d. We suggest first lifting the problem
to the space of probability measures and searching for an approximate solution to the lifted problem by
restricting the space of probability measures to a parametrizable subset.

Remark 5.1. In fact, the technique introduced could be employed to find the minimizer of any graph
valued optimization problem, not just the minimizers of the Fréchet function.

6. A solution technique to minimize the sample Fréchet function

Let
{
G(k)}N

k=1 be a set of graphs sampled independently according to a probability measure ν ∈ M(G ).
Let the graph

G∗
N,r = argmin

G∈G
FN,r(G) = argmin

G∈G

N∑

k=1

dr(G, G(k)) (6.1)

be the minimizer of the sample Fréchet function for any choice of metric d and value of r.
The procedure we suggest to determine G∗

N,r takes three fundamental steps. First, we lift the problem
to the space of probability measures. Second, we define a suitable parametrizable subset of probability
measures to search over. Third, we show that only certain information about the graph G∗

N,r is needed to
define the solution to the lifted problem allowing for a fast algorithm to be implemented in practice.

The order of the steps presented here is not always the order taken in practice. Specifically, step 3
can be taken at any time.

6.1 Step 1: Lifting the problem to M(G )

Let µ ∈ M(G ) be a probability measure and define the graph

G∗,µ
r′ = argmin

G∈G
Fr′(G) = argmin

G∈G
Eµ

[
dr′

(G, Gµ)
]

, (6.2)

where r′ ∈ {1, 2}. In general, r′ can be any natural number but here we are restricting our analysis to
only the mean or median graphs.

Remark 6.1. The value of r taken in equation (6.1) need not be the same value as r′ in equation (6.2).

First, we observe that there exists a µ∗ ∈ M(G ) such that

d(G∗,µ∗
r′ , G∗

N,r) = 0. (6.3)
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COMPUTATION OF SAMPLE FRÉCHET MEAN 11

This can be shown by considering the measure µ∗ defined below. Let M ⊂ G be a subset of graphs and
define µ∗ by the following:

µ∗ (M) =
{

1 ifG∗
N,r ∈ M

0 ifG∗
N,r .∈ M.

(6.4)

The graph G∗,µ∗
r′ of µ∗ is trivially given by G∗

N,r, the minimizer of the sample Fréchet function defined
in equation (6.1). The existence of such a probability measure indicates that the following optimization
problem

{µ∗ ∈ M(G)} = argmin
µ∈M(G)

d(G∗,µ
r′ , GN,r∗) (6.5)

has at least one solution. In general, the solution to the above optimization problem is set-valued because
there exist many probability measures with the same center of mass. However, because finding any one
of these probability measures determines the graph G∗

N,r, we only need to find at least one solution.
Therefore, we represent the solution by a single probability measure and denote the solution as

µ∗ = argmin
µ∈M(G)

d(G∗,µ
r′ , G∗

N,r). (6.6)

Equation (6.6) shows how we lift the problem from a search over the space G to the space M(G ),
which constitutes the first step in our approach.

6.2 Step 2: Defining an approximate problem

An approximate problem can be easily defined by restricting the searchable space of probability
measures to a subset, denoted Ms(G ) ⊂ M(G ). A probability measure that solves the restricted problem
is denoted by

µ∗
s = argmin

µs∈Ms(G)

d(G∗,µs
r′ , G∗

N,r). (6.7)

Throughout this manuscript we consider subsets of probability measures that are easily parametrizable.
Most often it is the case that we consider the subset of kernel probability measures (Definition 4.6) or,
in section 8, a specific class of kernel probability measures known as the stochastic block model kernel
probability measures (Definition 4.8).

Whenever µ∗ ∈ Ms(G ) then µ∗
s = µ∗ and the solution to the approximate problem is identical to

the original problem. It may be the case that µ∗ .∈ Ms(G ). In this case, we show that for a specific
subset of probability measures and choice of metric, one may still guarantee that the distance

d(G∗,µ∗
s

r′ , G∗
N,r) (6.8)

is small. We then interpret the graph G∗,µ∗
s

r′ as an approximation of the sample Fréchet mean graph G∗
N,r

with respect to the distance d.
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12 D. FERGUSON AND F. G. MEYER

6.3 Step 3: Identifying the necessary information contained within the graph G∗
N,r to minimize equation

(6.7)

This step is broken into two smaller parts. First, we observe that to minimize equation (6.7) it is sufficient
to have knowledge of the graph G∗

N,r. However, knowledge of this graph is unknown in general because
this is the sample Fréchet mean graph that we are attempting to determine originally. Notably, it is
not always necessary to have knowledge of the entire graph G∗

N,r to minimize the objective defined
in equation (6.6) or the approximate problem defined in (6.7). Instead, it is only necessary to have
knowledge of the information contained within the graph that is relevant to the chosen metric d.

The second step within this section discusses briefly general methods to estimate the information
contained with the graph G∗

N,r that is relevant to the metric d.
The following example shows these two parts of step 3 explicitly when the metric is given by dA

(equation (4.6)).

Example 6.1. Let d = dA and let G∗,µs
r′ and G∗

N,r from equation (6.7) have adjacency matrices denoted
by A∗,µs

r′ and A∗
N,r, respectively. Consider the problem defined by equation (6.7),

µ∗
s = argmin

µs∈Ms(G)

dA(G∗,µs
r′ , G∗

N,r) (6.9)

= argmin
µs∈Ms(G)

||σ (A∗,µs
r′ ) − σ (A∗

N,r)||2. (6.10)

First, in equation (6.10), it is clear that the only information from the graph G∗
N,r that is relevant to the

problem are the eigenvalues of A∗
N,r. Therefore, to minimize the objective, it is sufficient to characterize

the eigenvalues of the adjacency matrix of the graph G∗
N,r rather than the entire graph G∗

N,r.
Second, the term σ (A∗

N,r) can be estimated in a number of ways. We suggest quantifying the
information that is relevant to the metric dA from each graph G(k) in the data set and summarizing
this information via the arithmetic mean. In general, an estimate of σ (A∗

N,r) will be the arithmetic mean
of the vectors σ (A(k)) when r = 2 or the median value of the vectors σ (A(k) when r = 1. For larger
values of r a different notion of centrality for the set of vectors {σ (A(k))}N

k=1 may need to be considered
as an estimate of σ (A∗

N,r).

Remark 6.2. The relationship between the arithmetic mean of the eigenvalues of the adjacency matrices
and the eigenvalues of A∗

N,r can be complex. We show in Theorem 8.2 and its proof that the arithmetic
mean of the eigenvalues is a good estimate of the information from the graph G∗

N,r that is relevant to the
metric dAc

(rather than dA) when the size of the graphs, n, is large.

Similar observations are true of G∗,µs
r′ in that only the eigenvalues of the adjacency matrix of this

graph are relevant to the objective value.
Recall now that our goal is to determine the sample Fréchet mean graph G∗

N,r (or an approximation

of this graph) given the data set of graphs
{
G(k)}N

k=1. Because the probability measure µ∗
s is defined

such that the minimizer of the Fréchet function Fr′ given µ∗
s is (close to) the target sample Fréchet mean

graph G∗
N,r with respect to d we will be able to either analytically determine the graph G∗,µ∗

s
r′ (Section 7)

or, when an analytic expression for G∗,µ∗
s

r′ is unknown, we may take an arbitrarily sized sample from µ∗
s

and compute an appropriate graph valued statistic given the new sample of graphs (Section 8; Theorem
8.5).
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COMPUTATION OF SAMPLE FRÉCHET MEAN 13

Step 3 is a comment on the objective value for the sample Fréchet mean (or median) problem and
does not depend on the underlying space under which the optimization is performed over. Therefore, in
certain cases, it is beneficial to perform Step 3 prior to Step 2 because doing so may inform the specific
subset of probability measures to restrict to in Step 2.

The following two sections show that the solution technique works well when considering two vastly
different metrics with minimal change in the procedure to determine the solution. We first consider the
Hamming distance, the metric which has been most widely studied when considering the sample Fréchet
mean problem and show that we recover known results using our technique. We then consider the metric
dAc

in the case of arbitrarily large graphs. Our results for this metric constitute the bulk of our theoretical
contributions which culminate in an algorithm to be implemented in practice. We verify experimentally
that the graph recovered by our method, G∗,µ∗

s
r′ , is close to the true sample Fréchet mean graph G∗

N,2.

7. The sample Fréchet median when d = dH

Here we show that our proposed solution technique recovers known results about the sample Fréchet
median graph when the metric equipped to G is dH . Because our analysis is about the theoretical
properties of the sample Fréchet median graph, we assume that there is a common vertex set for the
graphs in the data set and we therefore do not have to solve the graph matching problem.

In this section we determine a precise probability measure µ∗ ∈ M(G ) whose Fréchet mean is
identical to the sample Fréchet median for any given data set of graphs. The specifics of the solution
technique are detailed throughout the proof of Lemma 7.1.

Let
{
G(k)}N

k=1 be a set of graphs sampled independently from a distribution ν ∈ M(G ). Let d = dH
and denote the median graph as

G∗
N,1 = argmin

G∈G

1
N

N∑

k=1

dH(G, G(k)) (7.1)

with adjacency matrix A∗
N,1. Define the arithmetic mean of the adjacency matrices as

A∗
N,a = 1

N

N∑

k=1

A(k), (7.2)

where A(k) denotes the adjacency matrix of graph G(k). Let µ∗
ωn f be a kernel probability measure where

the values of ωn f on the grid points
{ i

n

}n
i=1 ×

{ j
n

}n
j=1 ⊂ [0, 1]2 are

ωn f
(

i
n

,
j
n

)
= (A∗

N,a)ij. (7.3)

Because the values of f on the points [0, 1]2\
({ i

n

}n
i=1 ×

{ j
n

}n
j=1

)
bear no impact on the results of this

section we leave them unspecified. We summarize the results of this section with the following lemma.
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14 D. FERGUSON AND F. G. MEYER

Lemma 7.1. Let G
∗,µ∗

ωn f
2 denote the Fréchet mean of µ∗

ωn f with respect to the metric dH . Then

dH(G
∗,µ∗

ωn f
2 , G∗

N,1) = 0. (7.4)

Proof. The proof for the above lemma is broken into the following steps, which highlight the solution
technique. At a very high level, the goal is to determine a probability measure with the correct Fréchet
mean or median graph and, as suggested by Example 6.1, the correct probability measure can be
determined by quantifying the properties of G∗

N,1 which are relevant to the metric by analyzing the
arithmetic mean of the observed adjacency matrices.

Because the steps outlined in Section 6 do not need to be completed in order, here we elect to begin
with step 3 to better understand the information contained within the graph G∗

N,1 that is pertinent to the
metric dH . We then complete steps 1 and 2 and conclude the proof.

1. Write equation (7.1) over the space of adjacency matrices as

A∗
N,1 = argmin

A∈{0,1}n×n

1
N

N∑

k=1

∑

1≤i<j≤n

∣∣∣(A)ij − (A(k))ij

∣∣∣ . (7.5)

Observe that
∣∣∣(A)ij − (A(k))ij

∣∣∣ =
∣∣∣(A)ij − (A(k))ij

∣∣∣
2

since (A)ij and (A(k))ij are both in the set
{0, 1}. Therefore

A∗
N,1 = argmin

A∈{0,1}n×n

1
N

N∑

k=1

∑

1≤i<j≤n

∣∣∣(A)ij − (A(k))ij

∣∣∣
2

. (7.6)

2. Relax the problem defined in equation (7.6) to the space of real n × n matrices

A∗
N,a = argmin

A∈Rn×n

1
N

N∑

k=1

∑

1≤i<j≤n

∣∣∣(A)ij − (A(k))ij

∣∣∣
2

. (7.7)

The solution to the relaxed problem is simply the arithmetic mean of the adjacency matrices.

3. Rewriting the minimization problems in equations (7.6) and (7.7)

A∗
N,1 = argmin

A∈{0,1}n×n

1
N

∑

1≤i<j≤n

N∑

k=1

∣∣∣(A)ij − (A(k))ij

∣∣∣
2

. (7.8)

A∗
N,a = argmin

A∈Rn×n

1
N

∑

1≤i<j≤n

N∑

k=1

∣∣∣(A)ij − (A(k))ij

∣∣∣
2

(7.9)

shows that we may optimize the objective for each i, j independently.
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COMPUTATION OF SAMPLE FRÉCHET MEAN 15

4. For each i, j

(A∗
N,1)ij = argmin

(A)ij∈{0,1}

1
N

N∑

k=1

∣∣∣(A)ij − (A(k))ij

∣∣∣
2

(7.10)

(A∗
N,a)ij = argmin

(A)ij∈R

1
N

N∑

k=1

∣∣∣(A)ij − (A(k))ij

∣∣∣
2

(7.11)

5. The minimum value of the objective in equation (7.11) provides a lower bound on the objective
in equation (7.10),

min
(A)ij∈R

1
N

N∑

k=1

∣∣∣(A)ij − (A(k))ij

∣∣∣
2

< min
(A)ij∈{0,1}

1
N

N∑

k=1

∣∣∣(A)ij − (A(k))ij

∣∣∣
2

. (7.12)

The value of (A∗
N,1)ij, which minimizes the sample Fréchet median objective must be the

realizable element of the set {0, 1}, which least increases the objective value from the point
(A∗

N,a)ij.

6. Because the objective in equation (7.11) is quadratic, the closest realizable element to (A∗
N,a)ij is

also the element that least increases the objective value in equation (7.11). We therefore minimize
the following objective for each i, j to determine the graph G∗

N,1,

(A∗
N,1)ij = argmin

(A)ij∈{0,1}

∣∣∣(A)ij − (A∗
N,a)ij

∣∣∣
2

. (7.13)

Rather than minimizing for each i, j separately, we may also define the problem for all i, j

A∗
N,1 = argmin

A∈{0,1}n×n

∑

1≤i<j≤n

∣∣∣(A)ij − (A∗
N,a)ij

∣∣∣
2

. (7.14)

Note, due to the simplicity of the Hamming distance, there are many objectives which may be
minimized in this step that yield the same minimizer rather than the objective that is presented in
equations (7.13) or (7.14).
A brief aside is in order. At this stage of the proof we have accomplished step 3 of section 6 which
discusses the quantification of the information contained with the graph G∗

N,1 that is pertinent to
the objective value in the sample Fréchet mean problem via the arithmetic mean of the adjacency
matrices A∗

N,a.
Furthermore, we acknowledge that the solution to equation (7.13) is analytic and the graph G∗

N,1
can be determined at this point. The purpose of this manuscript is to showcase a general approach
to solving the sample Fréchet mean problem for a variety of distances. The solution at this stage
relies on the geometry of the space of graphs induced by the Hamming distance. Rather than rely
on this geometry, we instead perform steps 1 and 2 outlined in Section 6 to lift the search space
to M(G ), the space of probability measures, where the geometry is not necessarily dependent on
the choice of distance equipped to G.
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16 D. FERGUSON AND F. G. MEYER

7. Lift the problem defined in equation (7.14) to the space of probability measures,

µ∗ = argmin
µ∈M(G)

∑

1≤i<j≤n

∣∣∣(A∗,µ
2 )ij − (A∗

N,a)ij

∣∣∣
2

. (7.15)

This accomplishes step 1 of Section 6.

8. Restrict the problem to the space of kernel probability measures, denoted µωn f ∈ Ms(G ),

µ∗
ωn f = argmin

µωn f ∈Ms(G )

∑

1≤i<j≤n

∣∣∣(A∗,µωn f
2 )ij − (A∗

N,a)ij

∣∣∣ . (7.16)

This accomplishes step 2 from Section 6. Observe that searching the restricted set of kernel
probability measures can be done easily independent of the choice of metric equipped to G by
continuously updating the values of ωn f (x, y) for each (x, y) ∈ [0, 1]2.
All that remains is a method to characterize the mean of a kernel probability measure with respect
to the distance, which for the Hamming distance is analytic.

9. Theorem 1 in [58] states that the Fréchet mean with respect to the Hamming distance of a kernel
probability measure, µωn f , can be determined analytically by thresholding the entries of the

expected adjacency matrix, E
[
(Aµωn f

)ij

]
= ωn f

(
i
n , j

n

)
. This result suggests that there are many

kernel probability measures with the same Fréchet mean. Define

ωn f
(

i
n

,
j
n

)
= (A∗

N,a)ij (7.17)

for the kernel probability measure µ∗
ωn f .

10. Consider now the Fréchet mean of µ∗
ωn f , denoted G

∗,µ∗
ωn f

2 with adjacency matrix A
∗,µ∗

ωn f
2 . We

show that this adjacency matrix minimizes equation (7.16) by showing that for every i, j any

change to the graph G
∗,µ∗

ωn f
2 either increases the objective value or the objective value remains

constant. As a result of Theorem 1 in [58], for every i, j,
∣∣∣∣(A

∗,µ∗
ωn f

2 )ij − (A∗
N,a)ij

∣∣∣∣ ∈ [0, 0.5] (7.18)

because the entries of (A
∗,µ∗

ωn f
2 )ij are the closest realizable element of the set {0, 1} to the point

(A∗
N,a)ij. In the case that

∣∣∣∣(A
∗,µ∗

ωn f
2 )ij − (A∗

N,a)ij

∣∣∣∣ .= 0.5 (7.19)

then changing the entry of (A
∗,µ∗

ωn f
2 )ij will strictly increase the objective value. In the event that

∣∣∣∣(A
∗,µ∗

ωn f
2 )ij − (A∗

N,a)ij

∣∣∣∣ = 0.5 (7.20)
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COMPUTATION OF SAMPLE FRÉCHET MEAN 17

then changing the entry of (A
∗,µ∗

ωn f
2 )ij will not increase the objective value and, the conclusion,

is that the adjacency matrix defined by A
∗,µ∗

ωn f
2 minimizes the objective value in equation (7.16).

Therefore,

dH(G
∗,µ∗

ωn f
2 , G∗

N,1) = 0 (7.21)

and we have determined the sample Fréchet median graph by finding a probability measure with
the correct Fréchet mean graph. !

8. The sample Fréchet mean when d = dAc

The focus of this section is to show that the procedure used to determine the sample Fréchet median with
respect to the Hamming distance may also be used to determine the sample Fréchet mean with respect
to the metric dAc

.
Because the method to compute the sample Fréchet mean graph with respect to dAc

is novel, we also
provide the pseudocode for an algorithm to implement in practice to determine the sample Fréchet mean
graph. We validate the theory and the proposed algorithm on several data sets in the case of finite graph
size and provide an application of the sample Fréchet mean graph, K-means clustering.

Throughout this section, we always work with the mean graph (as opposed to the median graph)
so that r = r′ = 2 for the Fréchet functions considered in this section and we omit the notation in the
subscript of the solutions to the sample Fréchet mean problem so that G∗

N,2 = G∗
N .

8.1 Approximately solving the sample Fréchet mean problem when d = dAc

Let
{
G(k)}N

k=1 be a set of graphs sampled independently from a distribution ν ∈ M(G ). Let d = dAc
and

denote the sample Fréchet mean graph as

G∗
N = argmin

G∈G

1
N

N∑

k=1

dAc
(G, G(k)). (8.1)

Throughout this section, we determine a graph that is arbitrarily close to G∗
N with respect to the metric

dAc
.
We begin our analysis with the various assumptions necessary for the theorems presented in this

section. Let G ∈ G with adjacency matrix A. For the graph G assume that

1. ρn = ω(n−2/3).

2. limn→∞ ρn = 0.

3. 0 " σc(A).

4. For every 1 ≤ i .= j ≤ c, λi .= λj.

Assumption 1 is perhaps the most restrictive, stating that the graphs we consider are not too sparse. It
has been seen that most real-world networks are considerably sparse and may not satisfy this assumption.
Assumption 1 can be traced back to the state-of-the-art work on the characterization of the limiting
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18 D. FERGUSON AND F. G. MEYER

distribution of the largest eigenvalues of graphs sampled from inhomogeneous Erdős–Rényi ensembles
[21, 25]. We expect that as more general assumptions are considered when quantifying the behavior of
the largest eigenvalues of the adjacency matrices of inhomogeneous Erdős–Rényi random graphs then
the assumptions and results of this manuscript will similarly generalize.

The remaining assumptions are relatively mild. Many graphs have a decaying density as n grows,
which implies that the average degree of a vertex is dominated by n. Furthermore, the largest eigenvalues
of graphs are distinct with high probability and positive, which is seen both in practice and for many
ensembles of random graphs such as the stochastic block model, the Barabási–Albert ensemble and the
Watts–Strogatz ensemble.

8.1.1 Existence of a stochastic block model kernel probability measure with Fréchet mean close to
G∗

N. Our primary theoretical contribution, Theorem 8.1, states that we may approximate any graph
G that satisfies our assumptions by the sample Fréchet mean of an appropriate stochastic block model
kernel probability measure, µωn f , almost surely with respect to the truncated adjacency spectral pseudo-
metric, dAc

.
Theorem 8.1 and Corollary 8.1 guarantee that when restricting the problem defined in equation (6.6)

to the subset of stochastic block model kernel probability measures, the Fréchet mean graph of the
recovered probability measure is close to the target sample Fréchet mean graph G∗

N . These theorems
therefore accomplish steps 1 and 2 outlined in section 6 when the metric is dAc

.

Theorem 8.1. (Spectrally similar large graphs) ∀ε > 0, ∃n1 ∈ N such that ∀n > n1, ∃c > 0 and
∃f (x, y; p, Q, s) a canonical stochastic block model kernel with c communities such that

lim
N→∞

dAc
(G, G

∗,µωn f
N ) < ε a.s. (8.2)

where G
∗,µωn f
N denotes the sample Fréchet mean of {G(k)}N

k=1, an iid sample distributed according to
µωn f .

Proof. The proof is in Appendix C.
!

Remark 8.1. The choice of c for the above theorem is of significant interest as it specifies the number
of non-zero entries in the geometry vector s and additionally specifies the number of largest eigenvalues
we consider when comparing graphs. Though many methods may exist to estimate this quantity, we give
in Algorithm 1 one suggestion for the choice of c. It is worth mentioning that under-estimating c may
be preferred to over-estimating c because an overestimate of c will compare eigenvalues that capture
fine-scale behaviour in the graphs to eigenvalues that determine global structures of the graphs, leading
to potentially inaccurate conclusions.

Remark 8.2. While we are free to choose the entries of the geometry vector s, we make the choice that
s1 ≥ si for i = 2, ..., c and si = sj for i, j = 2, ..., c. This choice is not required and any choice of the
nonzero entries of the vector s would be suitable so long as the graphs are sufficiently large. Intuitively,
when given a stochastic block model with a set of parameters p and s, one can decrease the value of si
while increasing the value of pi and maintain the expected i-th eigenvalue of the adjacency matrices of
graphs sampled from this ensemble. See e.g. subsection 8.3.3 as an example of two different stochastic
block model kernels where the largest eigenvalues of the adjacency matrices are identical.

The following corollary applies Theorem 8.1 to the sample Fréchet mean of any given data set of
graphs, {G(k)}N

k=1. It states that for any given set of graphs whose sample Fréchet mean, G∗
N , satisfies
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COMPUTATION OF SAMPLE FRÉCHET MEAN 19

the assumptions of Theorem 8.1, there exists a canonical stochastic block model kernel defining a
probability measure, µωn f , where the sample Fréchet mean of an iid sample from µωn f , denoted G

∗,µωn f

Ñ
,

is almost surely close to G∗
N . This corollary forms the basis of our approach to solving the sample Fréchet

mean problem, equation (5.7), when d = dAc
.

Let {G(k)}N
k=1 be a set of graphs with sample Fréchet mean G∗

N . Assume G∗
N satisfies the assumptions

of Theorem 8.1.

Corollary 8.1. (Approximation of the sample Fréchet mean)∀ε > 0, ∃n1 ∈ N such that ∀n > n1,
∃c > 0, and ∃f (x, y; p, Q, s) a canonical stochastic block model kernel with c communities such that

lim
Ñ→∞

dAc
(G∗

N , G
∗,µωn f

Ñ
) < ε a.s. (8.3)

where G
∗,µωn f

Ñ
denotes the sample Fréchet mean of {G̃(k)}Ñ

k=1, an iid sample distributed according to
µωn f .

Remark 8.3. One requirement on G∗
N is that the density, denoted ρ∗

n , satisfies assumption 1. The theory
in [27] suggests that as long each graph in our sample set {G(k)}N

k=1 satisfies this density condition, then
so too does G∗

N .

Remark 8.4. The Szemerédi regularity lemma [49; 54] states that every dense graph can be partitioned
into pairs of random bipartite graphs. The lemma provides a partition of the nodes into equally sized
blocks such that the connectivity between the blocks is quasirandom [54]. In its original formulation
[74], the number of pairs of bipartite graphs grows exponentially with the inverse of the fraction of the
edges not included in the pairs. A weaker version of the regularity lemma yields a manageable number
of blocks [34], and in fact proves that the space of step graphons is dense in the space of graphons for
the topology induced by the cut-norm. The significance of the result is not that one can approximate any
graphon arbitrary well with a step function (after all the result holds for the L1 and L2 norms), but rather
that the approximation error only depends on the complexity (number of steps) of the step graphon, and
not on the complexity of the original graphon. Unfortunately, the regularity lemma is only useful for
dense graphs, where |E| = O(n2). Some recent results [12, 48, 68] have extended Szemerédi regularity
lemma to sparse graphs.

Corollary 8.1 along with Section 6 suggest that the following minimization procedure should be
solved to determine the stochastic block model probability measure whose Fréchet mean graph is close
to G∗

N ,

µ∗
ωn f = argmin

µωn f ∈Ms(G )

d2
Ac

(
G∗,µωn f , G∗

N
)

, (8.4)

where Ms(G ) is the subset of stochastic block model kernel probability measures.

Remark 8.5. Equation (8.4) is the identical to equation (6.7) when d = dAc
.

Equation (8.4) concludes the first two steps of the solution approach to determine the sample
Fréchet mean graph G∗

N as outlined by Section 6. Note, however, that the results of Theorem 8.1 and
Corollary 8.1 are purely existential and we have not yet specified a method to implement which will
minimize the objective in equation (8.4). To do so we first need to quantify the information from the
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20 D. FERGUSON AND F. G. MEYER

graph G∗
N that is relevant to the metric dAc

(see Section 8.1.2 and Theorem 8.2). This will conclude
step 3 from Section 6. To implement an algorithm in practice that recovers µ∗

ωn f , we also quantify
the information from the graph G∗,µωn f that is relevant to the metric dAc

(see Section 8.1.3 along with
Theorems 8.3 and 8.4).

8.1.2 Quantifying the properties of G∗
N that are relevant to the metric dAc

. In a similar manner to
Example 6.1, the objective value outlined by equation (8.4) depends only on the largest c eigenvalues
of the adjacency matrices of the graphs G∗

N and G∗,µωn f which is shown explicitly by the following
equations,

µ∗
ωn f = argmin

µωn f ∈Ms(G )

d2
Ac

(
G∗,µωn f , G∗

N
)

(8.5)

= argmin
µωn f ∈Ms(G )

∣∣∣∣σc(A
∗,µωn f ) − σc(A

∗
N)

∣∣∣∣2
2. (8.6)

Therefore, to determine the probability measure µ∗
ωn f , it is only necessary to quantify the largest

eigenvalues of A∗
N which is done in the following theorem.

Let {G(k)}N
k=1 be a set of graphs with sample Fréchet mean G∗

N whose adjacency matrix is A∗
N . The

following theorem shows that the eigenvalues of the adjacency matrix A∗
N are approximated well by the

sample mean spectrum.

Theorem 8.2. ∀ε > 0, ∃n∗ ∈ N such that ∀n > n∗,

∥∥∥∥∥σc(A
∗
N) − 1

N

N∑

k=1

σc(A
(k))

∥∥∥∥∥
2

< ε. (8.7)

Proof. The proof is in Appendix D !

Remark 8.6. Here we again use the arithmetic mean of information in the observed graphs G(k) that
is relevant to the metric dAc

. Note the similarity of this theorem to the proof of Lemma 7.1, where the
arithmetic mean of the adjacency matrices was utilized to quantify information in the graph G∗

N that was
relevant to the metric.

This concludes step 3 of the solution approach that is outlined by Section 6. Because we do not have
an analytic expression for the graph G∗,µωn f for a general stochastic block model kernel probability
measure µ∗

ωn f it is also necessary to understand the largest c eigenvalues of the adjacency matrix of
the graph G∗,µωn f to minimize equation (8.4), which we analyze in the following section. This step was
not done when computing the sample Fréchet mean with respect to the Hamming distance in the prior
section where the Fréchet mean of a kernel probability measure was known explicitly.

8.1.3 Quantifying the properties of G∗,µωn f that are relevant to the metric dAc
. Let {G̃}Ñ

k=1 be an iid

sample of graphs distributed according to µωn f with sample Fréchet mean G∗,ωn f
Ñ

. Let A∗,ωn f
Ñ

be the

adjacency matrix of G∗,ωn f
Ñ

. The next two theorems show how we estimate the eigenvalues, σc(A
∗,ωn f
Ñ

),
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COMPUTATION OF SAMPLE FRÉCHET MEAN 21

in terms of the kernel function f . We first show that the expected eigenvalues, E
[
σc(Aµωn f

)
]
, are almost

surely within ε of σc(A
∗,ωn f
Ñ

).

Theorem 8.3. (The Eigenvalues of the sample Fréchet mean of stochastic block models)∀ε > 0, ∃n∗ ∈
N such that for all n > n∗,

lim
Ñ→∞

∥∥∥σc(A
∗,ωn f
Ñ

) − E
[
σc(Aµωn f

)
]∥∥∥

2
< ε a.s. (8.8)

Proof. The proof is in Appendix C. !
Theorem 8.4 then provides an estimate for E

[
σc(Aµωn f

)
]

in terms of the kernel function f since we
do not have a closed form expression for this term. It should also be noted that the following theorem is
a small modification of Theorem 2.4 in [21].

Let µωn f ∈ M(G ) be a kernel probability measure with kernel f . Let Lf be the linear integral
operator with the same kernel function, f . Assume Lf has a finite rank of c. Denote the eigenvalues and
eigenfunctions of Lf as λi(Lf ) and ri(x), respectively, where for each i = 1, ..., c, ri(x) is assumed to be
piecewise Lipschitz with finitely many discontinuities.

Theorem 8.4. For every 1 ≤ i ≤ c,

E
[
λi(Aµωn f

)
]

= λi(B
∗) + O(

√
ωn), (8.9)

where

B∗ = B∗,(1) + B∗,(2) (8.10)

and

(
B∗,(1)

)

j,l
= b∗,(1)

j,l =
√

θjθlnωn

∫ 1

0
rj(x)rl(x)dx =

{
θjnωn j = l
0 j .= l

(8.11)

(
B∗,(2)

)

j,l
= b∗,(2)

j,l = θ−2
i

√
θjθl

∫ 1

0
rj(x)rl(x)

∫ 1

0
f (x, y)dydx. (8.12)

Proof. The proof is in B. This is a modification of Theorem 2.4 from [21]. !
The above theorem provides a first-order approximation of the expected eigenvalues of stochastic

block model graphs in terms of the eigenvalues of the matrix B∗. Often the eigenvalues of B∗ are not
explicit in terms of the parameters, p, q and s and we instead rely on numerical estimates.

8.1.4 Determining the probabilitiy measure µ∗
ωn f from equation (8.4). The conclusion of the prior

steps is that to solve equation (8.4) we may use the estimates provided by Theorems 8.2, 8.3 and 8.4 and
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22 D. FERGUSON AND F. G. MEYER

minimize the following objective,

µ∗
ωn f = argmin

µωn f ∈Ms(G )

c∑

i=1

∣∣λi(B
∗) − 1

N

N∑

k=1

λi(A
(k))

∣∣2, (8.13)

where B∗ is defined as in Theorem 8.4.

Remark 8.7. We have not yet specified the choice for ωn, a necessary component when defining the
stochastic block model kernel probability measure. While several different choices of ωn will suffice,
we elect to choose ωn such that the expected density of graphs sampled according to the canonical
stochastic block model kernel probability measure is equivalent to the average density of the graphs in
the data set. In this way, we align not only the largest eigenvalues of the graphs in Corollary 8.1 but also
the density of the two graphs.

We suggest a gradient descent algorithm to determine the correct canonical stochastic block model
kernel function f (x, y; p, q, s) where the gradient is computed with respect to the parameters p and q.

The result of minimizing equation (8.13) is a probability measure µ∗
ωn f defined by the values of the

kernel function ωn f on { i
n }n

i=1 × { j
n }n

j=1. Recall that our goal is to determine a graph that is close to
the sample Fréchet mean graph G∗

N defined by equation (8.1). Although Theorem 8.4 provides a good

estimate of the largest c eigenvalues of the Fréchet mean graph, G∗,µ∗
ωn f , given the measure µ∗

ωn f we
have yet to provide a graph that achieves the eigenvalues specified by Theorem 8.4. We address this
issue in the next section by taking an arbitrarily sized sample from the recovered probability measure
µ∗

ωn f and computing an appropriate graph-valued statistic.

8.1.5 Theoretical analysis of the set mean graph from a sample distributed according to µωn f . Given
a canonical stochastic block model kernel, Theorem 8.5 shows a method of estimating the sample
Fréchet mean of graphs distributed iid according to µωn f by sampling from µωn f .

Let {G̃(k)}Ñ
k=1 be a sample of graphs distributed according to µωn f where f is a canonical stochastic

block model kernel. Define the set mean graph by

Ĝ
∗,µωn f

Ñ
= argmin

G̃∈{G̃(k)}:Ñk=1

1

Ñ

Ñ∑

k=1

d2
Ac

(G̃, G̃(k)), (8.14)

with adjacency matrix Â
∗,µωn f

Ñ
.

Theorem 8.5. (Convergence in probability of the truncated spectrum of the set mean graph) ∀ε > 0,

lim
n→∞ P

(∥∥∥σc(Â
∗,µωn f

Ñ
) − E

[
σc(Aµωn f

)
]∥∥∥

2
> ε

)
= 0. (8.15)

Proof. The proof is in Appendix E. !
Applying this theorem to the solution of equation (8.13) shows a method by which we can provide a

graph, Ĝ
∗,µωn f

Ñ
, that is, with high probability, close to the target sample Fréchet mean graph G∗

N , defined
in equation (8.1).
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COMPUTATION OF SAMPLE FRÉCHET MEAN 23

Due to Theorem 2.3 in [21] (which we restate as Theorem 8.6 below) concerning the convergence
in distribution to a multivariate normal of the eigenvalues of adjacency matrices from the stochastic
block model, we observe that relatively small size of Ñ is sufficient. Throughout our experiments in
section 8.3, we take Ñ = 5, which provides good results for the case of finite graph size.

Our final theoretical contribution is the construction of a confidence interval for the set mean graph
about the sample Fréchet mean graph. To construct the confidence set we utilize Theorem 8.6, which
states that the extreme eigenvalues of the adjacency matrices of graphs distributed according to µωn f are
asymptotically multivariate normal. This theorem allows us to obtain a lower bound on the probability
of our confidence set containing the sample Fréchet mean graph.

Let µωn f be a stochastic block model kernel probability measure.

Theorem 8.6. (Chakrabarty, Chakraborty, and Hazra 2020)

ω−1/2
n

(
σc(Aµωn f

) − E
[
σc(Aµωn f

)
])

d→ (Zi : 1 ≤ i ≤ c), (8.16)

where the right-hand side is a multivariate normal random vector in Rc, with mean zero and

Cov(Zi, Zj) = 2
∫ 1

0

∫ 1

0
ri(x)ri(y)rj(x)rj(y)f (x, y)dxdy, (8.17)

for all 1 ≤ i, j ≤ c.

Proof. The proof is in [21]. !
Before introducing the confidence set it is beneficial to introduce a few notations. We define the

cumulative distribution functions for the random variables ω
−1/2
n (σc(Aµωn f

) − E
[
σc(Aµωn f

)
]
) and

Z = (Zi : 1 ≤ i ≤ c), respectively, as

Fn(z) = Pn
(
(−∞, z1] × ... × (−∞, zc]

)
, (8.18)

F(z) = P
(
(−∞, z1] × ... × (−∞, zc]

)
. (8.19)

The convergence in distribution of the random vectors is equivalent to the following: ∀z ∈ Rc,

lim
n→∞ Fn (z) = F (z) , (8.20)

since F(z) is continuous everywhere (Appendix A).
For the construction of a confidence set, it is easier to work with the probabilities and random vectors

directly and so equation (8.20) takes the form

lim
n→∞ Pn

(
ω−1/2

n (σc(Aµωn f
) − E

[
σc(Aµωn f

)
])

" z) = P(Z " z). (8.21)

Let M1 = {G(k)}N1
k=1 be a sample of graphs distributed iid according to some distribution µ. Let G∗

N1
be the sample Fréchet mean with adjacency matrix A∗

N1
.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaad002/7091479 by U

niversity of C
olorado Boulder user on 29 M

arch 2023



24 D. FERGUSON AND F. G. MEYER

Lemma 8.1. Let α > 0. Let ε ∈ R such that 0 < ε < α. Take 0 " zα ∈ Rc such that

1 − α < P(−zα " Z " zα) − E. (8.22)

There exists n∗ ∈ N such that for all n > n∗, there exists a stochastic block model kernel function
f (x, y; p, Q, s) defining the probability measure µωn f satisfying the statement of Corollary 8.1 for the

graph G∗
N1

. Let M2 = {G(k)}N2
k=1 be a sample of graphs distributed according to µωn f . Let Ĝ∗

N2
be the set

mean graph of the set M2 (see 8.14) with adjacency matrix Â∗
N2

. For N2 = 1

1 − α < Pn

(
dAc

(
G∗

N1
, Ĝ∗

1
)

< ω1/2
n ||zα||2

)
. (8.23)

The set
{

G ∈ G|dAc

(
G∗

N1
, Ĝ∗

1

)
< ω

1/2
n ||zα||2

}
⊂ G is a 1 − α confidence set for the sample Fréchet

mean graph, G∗
N1

.

Proof. We first note that

dAc

(
G∗

N1
, Ĝ∗

N2

)
= ||σc(A

∗
N1

) − σc(Â
∗
N2

)||2. (8.24)

We will from here on be working with the eigenvalues of the adjacency matrices rather than the graphs
themselves. Now, due to equation (8.21) we have that there exists an n∗ such that for all n > n∗

1 − α < P(−zα " Z " zα) − ε (8.25)

< Pn

(
−zα " ω−1/2

n

(
σc(Aµωn f

) − E
[
σc(Aµωn f

)
])

" zα

)
. (8.26)

Note that for N2 = 1, the set mean graph, Ĝ∗
1, is simply a random observation distributed according to

µωn f and we may replace σc(Aµωn f
) by σc(Â

∗
1) leading to the following inequality,

1 − α < Pn

(
−zα " ω−1/2

n

(
σc(Â

∗
1) − E

[
σc(Aµωn f

)
])

" zα

)
. (8.27)

By interpolating σc(A
∗
N1

) we get the following:

1 − α < Pn

(
−zα " ω−1/2

n

(
σc(Â

∗
1) − E

[
σc(Aµωn f

)
])

" zα

)
(8.28)

= Pn

(
−ω1/2

n zα " σc(Â
∗
1) − σc(A

∗
N1

) + σc(A
∗
N1

) − E
[
σc(Aµωn f

)
]
" ω1/2

n zα

)
(8.29)

≤ Pn

(
||σc(Â

∗
1) − σc(A

∗
N1

) + σc(A
∗
N1

) − E
[
σc(Aµωn f

)
]
||2 ≤ ω1/2

n ||zα||2
)

, (8.30)
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COMPUTATION OF SAMPLE FRÉCHET MEAN 25

where we have taken a norm of the argument in the probability from equation (8.29) resulting in (8.30).
Continuing,

1 − α ≤ Pn

(
||σc(Â

∗
1) − σc(A

∗
N1

)||2 + ||σc(A
∗
N1

) − E
[
σc(Aµωn f

)
]
||2 ≤ ω1/2

n ||zα||2
)

(8.31)

≤ Pn

(
||σc(Â

∗
1) − σc(A

∗
N1

)||2 ≤ ω1/2
n ||zα||2 ∧ ||σc(A

∗
N1

) − E
[
σc(Aµωn f

)
]
||2 ≤ ω1/2

n ||zα||2
)

(8.32)

Let A be the event that ||σc(Â
∗
1) − σc(A

∗
N1

)||2 ≤ ω
1/2
n ||zα||2 and B be the event that ||σc(A

∗
N1

) −
E

[
σc(Aµωn f

)
]
||2 ≤ ω

1/2
n ||zα||2. Then

1 − α ≤ Pn (A) Pn (B|A) . (8.33)

Dividing by the last term on the right-hand side,

1 − α

Pn (B|A)
< Pn (A) . (8.34)

Since 1 − α < 1−α
Pn(B|A) we find that

1 − α < Pn (A) (8.35)

= Pn

(
||σc(Â

∗
1) − σc(A

∗
N1

)||2 ≤ ω1/2
n ||zα||2

)
(8.36)

= Pn

(
dAc

(Ĝ∗
1, G∗

N1
) ≤ ω1/2

n ||zα||2
)

, (8.37)

which is what we aimed to show. !
In practice, we are not always able to control n, the size of the graphs. Since we have the luxury of

choosing N2, one could perform a similar analysis and construct a confidence set for sufficiently large
N2, the number of samples used to construct the set mean graph. We do not explore this case as our
regime assumes that n is sufficiently large.

The practical significance of our theoretical analysis is the invention of an algorithm to approximate
the solution to the sample Fréchet mean problem with respect to dAc

, equation (8.1), which we give the
pseudo-code for below.

8.2 Summary and algorithm

Given a finite sample of graphs {G(k)}N
k=1, our theory allows us to estimate the sample Fréchet mean

graph, G∗
N , by solving an approximate problem in two steps:

1. Identify µ∗
ωn f by solving equation (8.13).

2. Estimate G∗
Ñ,µωn f

using Theorem 8.5 taking Ñ as large as desired.

A notable first step is to estimate c, the number of eigenvalues of G∗
N to consider. We suggest

estimating c as per Algorithm 1 and use this estimate in Algorithm 2.
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26 D. FERGUSON AND F. G. MEYER

Algorithm 1. Determine c for the approximate sample Fréchet mean

Require: Set of graphs, M = {G(k)}N
k=1 and integer K

1: Compute the arithmetic average spectrum of graphs in M as λ̄ = 1
N

∑N
k=1 λ(k).

2: Initialize i = 0.
3: Do
4: i = i + 1
5: Initialize r = λ̄(i)
6: Initialize the semi-circle probability density function (see e.g. [6]), as s(λ; r) where r is the

radius.
7: Assume λ̄( j ) ∼ s(λ; r) for j = i, ..., n.
8: Determine the PDF of the K largest order statistics with a sample size n − i, λ(n−i), ...,

λ(n−i−K+1).
9: Compute the expected value of the K largest order statistics from the PDF s(λ; r) with a sample

size of n − i.
10: With sample size n − i, compute the standard deviation of the K largest order statistics, σn−i, ...,

σn−i−K+1
11: While |λ̄(1 + i) − E

[
λ(n−i)

]
| > σn−i ∨ ... ∨ |λ̄(K + i) − E

[
λ(n−i−K)

]
| > σn−i−K+1

12: Return: c = i − 1

Algorithm 1 assumes that all but the c largest eigenvalues in the vector λ̄ follow a bulk distribution
given by the semi-circle law (see e.g. [2, 6, 24] and references therein). This assumption need not be true
of the graphs in the sample {G(k)}N

k=1 and this algorithm will still provide an estimate of c. We determine
the edge of the bulk iteratively by assuming the edge is defined by the largest observed eigenvalue and
compute whether the next K sequential eigenvalues are within a standard deviation of their expected
value. Upon termination, the number of eigenvalues left outside the bulk determines our choice for c.
Note that any estimate of c will suffice, and the algorithm above is a suggestion.

An important discussion as to the choice of c is in order. Algorithm 1 determines c for the truncated
adjacency spectral pseudo-metric based on the information provided by the arithmetic average of the
observed eigenvalues. We then use this estimate for the number of extreme eigenvalues of the adjacency
matrix of the sample Fréchet mean graph and, inherently, always compare all graphs using this choice
of c for the metric dAc

.
Note, it could very well be possible that there exist graphs G(j) and G(k) in our dataset M that have a

different number of extreme eigenvalues from c. We explore this problem via a simple example.
Take, for instance, the case of an observation from a two community stochastic block model and an

observation from a one community stochastic block model. To compare the two graphs, we must choose
c in the pseudo-metric dAc

. It is unclear whether the choice for c should be 1 or 2 since the two graphs
have differing numbers of extreme eigenvalues.

Note the issue is still not necessarily resolved even when considering the adjacency spectral pseudo-
metric dA (equivalently, c = n for dAc

). While we may be able to compare all the eigenvalues of each
graph, it is not obvious what information is provided by comparing the second largest eigenvalue from
a two-community stochastic block model graph’s adjacency matrix to the second largest eigenvalue of a
homogeneous Erdős–Rényi. In a sense, the comparison is between the structural information from one
graph and the random noise from the other.
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COMPUTATION OF SAMPLE FRÉCHET MEAN 27

Algorithm 2. Approximate sample Fréchet mean

Require: Set of graphs, M = {G(k)}N
k=1

1: Compute the average density ρ̄n of the graphs in M and set ωn = ρ̄n.
2: Approximate c via Algorithm 1. and determine s (see Remark 8.1).
3: For each i = 1, ..., c compute λ̄i = 1

N

∑N
k=1 λi(A

(k)).
4: Randomly initialize p
5: Initialize Q = (qij) such that qij = q for all i, j and enforce || f (x, y; p, Q, s)||1 = 1.
6: while Relative change in p and q is large do
7: Estimate the gradient of the objective in equation (8.13) via centered differences.
8: Update p via a projected gradient descent step
9: Update q such that || f (x, y; p, Q, s)||1 = 1. This ensures the expected density of the graphs

sampled is given by ρ̄n as stated in Remark 8.7
10: end while
11: Estimate G∗

N as G
∗,µωn f

Ñ
(see Theorem 8.5)

12: Return: G
∗,µωn f

Ñ
.

We acknowledge that these issues persist throughout our algorithm and use our estimate of c from
Algorithm 1 for the pseudo-metric dAc

. It is worth noting that any estimate of c will suffice for an
implementation of our algorithm.

Corollary 8.1 shows the existence of a canonical stochastic block model kernel, f . In our algorithm
we choose to seek a kernel f with || f ||1 = 1 so that the expected density of graphs distributed according
to µωn f is ρ̄n.

8.3 Experimental validation

8.3.1 Assessment, validation and comparison. For sets of large graphs, the ground truth for the
Fréchet mean problem is unrealistic to compute (it requires about Ω

(
n22n2)

operations for graphs of size
n). Instead, we compare the eigenvalues adjacency matrix that results from Algorithm 2 to the arithmetic
mean of the eigenvalues of the data set because this provides the optimal spectra of the adjacency matrix
(see Theorem 8.2).

One may consider comparing the Fréchet mean computed here to a Fréchet mean computed with
respect to the Hamming distance for which several optimization algorithms have been proposed (e.g. [9,
18, 30, 41, 43]). While this comparison may be feasible, it is uninformative as the Fréchet mean with
respect to the Hamming distance need not have any resemblance to the Fréchet mean with respect to
dAc

.
All the code and data are provided at https://github.com/dafe0926/approx_Graph_Frechet_Mean. To

the best of our knowledge, this study provides the first algorithm to compute the sample Fréchet mean
for a dataset of graphs when considering a spectral distance, as a consequence, we have no baselines to
compare our results with.

8.3.2 Choice of the datasets. Numerous graph-valued databases have recently been made publicly
available [60, 61, 66, 67]. For each database, the mean graph has not been provided for any choice
of metric. Consequently, we feel that computing the Fréchet mean for these datasets provides little
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28 D. FERGUSON AND F. G. MEYER

scientific value for validating our method. Instead, we present the results of experiments conducted
on synthetic datasets generated using ensembles of random graphs and explore the consequences of
differing estimates of c, the number of eigenvalues to consider when comparing graphs using dAc

.
Ensembles of random graphs capture prototypical features of existing real-world networks. Because

our theoretical analysis and associated algorithms rely on the stochastic block model graphs as the
‘atoms’ that are used to approximate any Fréchet mean, we expect that our algorithm will perform well
when computing the Fréchet mean of graphs generated by stochastic block models. Our experimental
investigation is therefore concerned with the performance of our approach in scenarios where the
families of graph ensembles exhibit structural features that are different from those of the block models.

We illustrate the theoretical analysis of the previous sections with experimental results using various
synthetic datasets of graphs. Each data set consists of N = 50 graphs on n = 600 nodes. We consider
three different iid data sets of graphs, M1, ..., M3, drawn from distributions µ1, ..., µ3 respectively. The
distributions have the following high-level descriptions.

µ1 : Variable community size stochastic block model
µ2 : Barabási–Albert
µ3 : Watts-Strogatz

Note that µ2 and µ3 induce graphs with vastly different topologies than those generated by stochastic
block models and yet we are still able to provide good approximations of the sample Fréchet mean.
We discuss the specific parameters for each distribution when applicable in each subsection. For each
dataset, we determine the parameters of the stochastic block model whose sample Fréchet mean is close
to the sample Fréchet mean of each dataset, Mi, and compute Ĝ

∗,µωn f

Ñ
.

8.3.3 Variable community size approximate sample Fréchet mean. The probability measure in this
section is associated with a variable community size stochastic block model. The parameters for the
model are p = [0.4, 0.5, 0.6, 0.3, 0.37, 0.65, 0, ...], s =

[ 160
600 , 100

600 , 60
600 , 120

600 , 85
600 , 75

600 , 0, ...
]
, and q = 0.08.

Fig. 3 is a visual depiction of a graph from M1 as compared to the approximate sample Fréchet mean
graphs resulting from Algorithm 2 when considering two different choices of c for the metric dAc

. Here
we consider both dA3

and dA6
for comparison purposes.

The metric dA3
emphasizes that the estimate of c need not be exact when implementing Alg 2.

A graph from M1 is chosen in place of the ground truth for the Fréchet mean for comparison purposes
only. While the visual comparison of the graphs is of interest, the primary metric of note is whether the
largest c eigenvalues (where c is either 3 or 6) of the graphs are similar to the arithmetic mean of the
largest c eigenvalues of the graphs in the sample as guaranteed by Theorem 8.2 which can be seen in
Fig 4.

Despite the visual differences between a graph in the sample and the adjacency matrices of the
sample Fréchet mean graphs with respect to the metrics dA3

and dA6
, there is a striking similarity between

the largest c eigenvalues for both choices of c. Note, when c = 6, the alignment between the spectra
of the adjacency matrices despite the obvious difference in the geometry vectors that defined the two
graphs. This result provides further evidence for the comments made in remark 8.1 that the choice of s
is up to the discretion of the research under the assumption that the graphs in question are sufficiently
large.

Recall that in our optimization procedure to determine the correct canonical stochastic block model
kernel, equation (8.13), the predicted expected eigenvalues from Theorem 8.4 are aligned with the
arithmetic mean of the eigenvalues of the graphs in the sample, Theorem 8.2. However, the predicted
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COMPUTATION OF SAMPLE FRÉCHET MEAN 29

Fig. 3. Visualization of a graph in M1 (left) and the approximate sample Fréchet mean of M1, Ĝ
∗,µωn f

Ñ
, with respect to the metrics

dA3 (middle) and dA6 (right).

Fig. 4. The average extreme eigenvalues from M3 (circle). The expected extreme eigenvalues of Ĝ
∗,µωn f

Ñ
from Theorem 8.4

(cross). The extreme eigenvalues of Ĝ
∗,µωn f

Ñ
(square).

expected eigenvalues only estimate the eigenvalues of the sample Fréchet mean graph of a stochastic
block model kernel probability measure in the limit of large graph size. The distinction between the
blue markers (the eigenvalues of the resulting graph from Algorithm 2.) and the red markers is due to
the finite graph size estimate.
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30 D. FERGUSON AND F. G. MEYER

Fig. 5. Visualization of a graph in M2 (left) and the approximate sample Fréchet mean of M2, Ĝ
∗,µωn f

Ñ
, with respect to the metrics

dA11 (middle) and dA16 (right).

8.3.4 Barabási–Albert approximate sample Fréchet mean. The probability measure in this section
is associated with a Barabási–Albert ensemble. The initial graph is fully connected on m0 = 5 nodes
and m = 5 edges were added at each step. In Fig. 5 we reorder the nodes based on their degree for
the Barabási–Albert graph to understand better the similarities between an observed graph and the
approximate sample Fréchet mean. By choosing K = 2 and K = 4 for the hyper-parameter in Algorithm
2 we determine two different estimates of c, c = 11 and c = 16, respectively.

Figure 5 is a visual comparison between a graph in the sample (left) and the approximate sample
Fréchet mean graphs that result from Algorithm 2 with respect to the metrics dA11

(middle) and dA16
(right). We note that there need not be any visual similarity between a graph in the sample set and the
sample Fréchet mean of that set since any observation from a distribution need not be similar to the
mean of that distribution.

While it is less clear in this case the correct choice of c, as compared with the prior section, we may
nonetheless compare the largest c eigenvalues of the graphs adjacency matrices to the arithmetic mean
of the largest c eigenvalues of the graphs in the sample (Theorem 8.2).

Furthermore, the estimates in the finite graph size setting are exacerbated by the size of c. We expect
that for larger values of c, even larger values of n are needed for the estimate from Theorem 8.4 to
be within a pre-determined tolerance. A reason for such an impact of c is that the stochastic block
model’s expected eigenvalues are determined primarily by the number of vertices within a block, which
is inversely proportional to c, the number of communities. For larger c, there are smaller relative
community sizes, indicating a larger value of n is needed for the estimates from Theorem 8.4 to be
within a certain level of error.

8.3.5 Watts–Strogatz approximate sample Fréchet mean. The parameters for the Watts–Strogatz
ensemble ([78]) are the number of connected nearest neighbors, K = 22 and the probability of rewiring,
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COMPUTATION OF SAMPLE FRÉCHET MEAN 31

Fig. 6. The average extreme eigenvalues from M2 (circle). The expected extreme eigenvalues of Ĝ
∗,µωn f

Ñ
from Theorem 8.4

(cross). The extreme eigenvalues ofĜ
∗,µωn f

Ñ
(square).

β = 0.7. Here we again take K = 2 and K = 4 resulting in two different estimates of c from Algorithm
1, c = 10 and c = 13, respectively.

Here we see a nice similarity between the adjacency matrices of a graph in M3 (left) and the
approximate sample Fréchet mean graphs with respect to dA10

and dA13
(Fig. 7).

Visually, c = 13 provides a better comparison to a graph in the sample data set; however, this
preference is dependent on a particular ordering of the vertices in the adjacency matrix, which, in
general, should not impact the choice of c. In the following figure it is shown that for either choice
of c, the largest eigenvalues of the approximate sample Fréchet mean graphs are close to the arithmetic
mean of the largest eigenvalues of the graphs in the sample.

8.4 Application to K-means clustering

This section provides another application of the sample Fréchet mean, K-means clustering. We first
briefly introduce the clustering problem and the K-means objective (see [69] for details).

8.4.1 Setup. Given a set of graphs M = {G(k)}N
k=1 we seek to partition the data into disjoint sets

M1, ..., MK under the condition that ∪K
j=1Mj = M, where each Mj is represented by its sample Fréchet

mean graph

G∗
j = argmin

G∈G

1
|Mj|

∑

G′∈Mi

d2
Ac

(G, G′) (8.38)
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32 D. FERGUSON AND F. G. MEYER

Fig. 7. Visualization of a graph in M3 (left) and the approximate sample Fréchet mean of M3, Ĝ
∗,µωn f

Ñ
, with respect to the metrics

dA10 (middle) and dA13 (right).

Fig. 8. The average extreme eigenvalues from M3 (circle). The expected extreme eigenvalues of Ĝ
∗,µωn f

Ñ
from Theorem 8.4

(cross). The extreme eigenvalues of Ĝ
∗,µωn f

Ñ
(square).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaad002/7091479 by U

niversity of C
olorado Boulder user on 29 M

arch 2023



COMPUTATION OF SAMPLE FRÉCHET MEAN 33

with adjacency matrix A∗
j . We seek to minimize the classic K-means objective function defined as

h0

((
M1, ..., MK

)
; {G(k)} : N

k=1

)
=

K∑

j=1

∑

G∈Mj

d2
Ac

(G, G∗
j ) =

K∑

j=1

∑

G∈Mj

||σc(A) − σc(A
∗
j )||22, (8.39)

where A denotes the adjacency matrix of G ∈ Mj, by determining the optimal disjoint sets M1, ..., MK .
Observe that the objective function, h0, depends on the sets Mj only through the largest c eigenvalues
of A∗

j , the adjacency matrix of the representative sample Fréchet mean graph. Theorem 8.2 states that
the eigenvalues of A∗

j , σc(A
∗
j ), are arbitrarily close to the arithmetic average of the largest eigenvalues

of the adjacency matrices in the sample set,

λ̄
∗,(j) = 1

|Mj|
∑

G∈Mj

σc(A) (8.40)

when the graphs are arbitrarily large. Therefore, to determine the correct disjoint sets M1, ..., MK , we

can quickly determine the correct partition of our data by representing the sets Mj with λ̄
∗,(j), rather

than G∗
j , and optimizing the following approximate objective function

h0,approx

((
M1, ..., MK

)
; {G(k)} : N

k=1

)
=

K∑

j=1

∑

G∈Mj

∥∥∥σc(A) − λ̄
∗,(j)

∥∥∥
2

2
, (8.41)

where A is the adjacency matrix of graph G ∈ Mj. This allows us to avoid the costly computation of
determining G∗

j each time the sets M1, ..., MK are updated in the classic K-means algorithm, which we
employ with one minor alteration that we discuss in the following section.

8.5 Algorithm

In our implementation of the classic K-means algorithm, we consider that when comparing graphs with
differing numbers of extremal eigenvalues, there is no obvious choice of c for the pseudo-distance
dAc

. The particular difficulty in the K-means algorithm is to compare a graph from G ∈ Mj to the
sample Fréchet mean graph of the set Mr, given as G∗

r , for j .= r when the number of extreme
eigenvalues from the adjacency matrices of G and G∗

r differ. To be consistent with the work in section 8,
whenever we compare a graph G to a mean graph G∗

j , we elect to choose c to be the number of
extreme eigenvalues present in the mean graph G∗

j . Therefore, the choice of c is updated every time
the sets M1, ..., MK are updated as this affects the number of extreme eigenvalues in the adjacency
matrix of G∗

j .
Since this section is merely showcasing an application of our theory, we do not make any attempt to

estimate K, the number of clusters in our data set. Below we present our implementation of the classic
K-means algorithm. The differences between the standard implementation of K-means and Algorithm 3
is due to the metric dAc

and the observation that the choice of c must be handled carefully for each
cluster.

8.5.1 Data and results. In this section, our data set consists of a mixture of 50 Barabási–Albert
(BA) graphs (parameters: m0 = 12 and m = 12 edges added at each step), 50 Watts–Strogatz (WS)
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34 D. FERGUSON AND F. G. MEYER

Algorithm 3. K-means clustering

Require: Set of graphs, M = {G(k)}N
k=1

1: For each G(k) compute and store λ(k) = σ (A(k))

2: Choose K, the number of expected clusters
3: Randomly initialize class assignments, M1, ..., MK
4: while Class assignments are changing between iterates do
5: For each Mj, estimate cj as in Algorithm 1

6: For each Mj compute λ̄
∗,(j) = 1

|Mj|
∑

G∈Mj
λ(1 : cj)

7: For each λ(k), and for each j, compute dj = 1√cj

√∑cj
i=1(λ

(k)
i − λ̄

∗,(j)
i )2

8: For each G(k) update the class assignment to jnew = argmin
j=1,...,K

dj

9: end while
10: For each Mj compute G∗

j , the sample Fréchet mean via Algorithm 2
11: Return: each Mj and G∗

j

graphs (parameters: P = 12 nearest neighbors with β = 0.4 probability of rewiring), and 50 stochastic
block model (SBM) graphs (parameters: p = [0.14, 0.16, 0.1746, 0.2, 0.22, 0.24, 0, ...], q = 0.01, and
s = [ 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 0, ...]) for a total of 150 graphs. The parameter choices for each ensemble were

made such that the number of edges in each graph is relatively consistent. Across 100 different random
initializations, Algorithm 3 had an accuracy of 0.89 along with the following average confusion matrix.
The variance of each element in the average confusion matrix below is denoted by an associated number
in parentheses, e.g. (x.xx).

SBM True BA True SW True
SBM Pred. 1(0.00) 0 0
BA Pred. 0 0.9(0.0909) 0.19(0.0909)

SW Pred. 0.23(0.1789) 0 0.77(0.1789)

One possible explanation for the misclassification of the Barabasi–Albert and Watts–Strogatz graphs
comes from the difference in the number of extreme eigenvalues of the adjacency matrices of sample
Fréchet means for the respective sets of graphs. For the 50 Barabasi–Albert graphs, Algorithm 1
estimates that there are c = 14 extreme eigenvalues in the adjacency matrix of the sample Fréchet
mean whereas for the 50 Watts–Strogatz graphs, Algorithm 1 estimates that c = 34.

Since the graphs are assigned to a new partition based on a normalized 2-norm between the largest
cj eigenvalues at each step, and because the normalization constant varies when comparing a graph
G to the sample Fréchet mean graph from Mj versus Mp for j .= p, we find that there exist random
initializations such that an empty partition is recovered upon the termination of the K-means algorithm.
In this event, all Barabasi–Albert graphs are labeled as Watts–Strogatz or vice-versa.

While we acknowledge that fixing c to be constant for each j results in a more numerically stable
algorithm, we find that implementing a dynamic choice of c provides a more honest comparison of
the graphs in the dataset (see the discussion after Algorithm 1). One may still implement a K-means
clustering algorithm and recover labels for each graph using a fixed c and estimate the number of
extreme eigenvalues of the adjacency matrices of sample Fréchet mean graphs for each recovered
partition only at the end of the algorithm, but we have no theoretical justification for this method.
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9. Conclusion

The modern developments of statistical graph analysis typically involve the determination of the average
of a sample data set. Throughout this manuscript, we have proposed a general solution technique that
can be used to determine the sample Fréchet mean graph with respect to many choices of metrics. We
have demonstrated the approach for the Hamming distance as well as the pseudometric dAc

for several
choices of c.

Several applications of the sample Fréchet mean exist, in fact as many applications for the mean
graph exist as applications for the mean of real-valued data. Here we have shown one application, which
is the principled implementation of the K-means algorithm with respect to the metric dAc

. Furthermore,
we have shown how to determine the mean graph within a cluster upon the termination of the K-
means algorithm. In [65] it is shown that a generalization of linear regression can be defined using
the Fréchet mean and sample Fréchet mean indicating that the algorithms presented here can be used
for implementations of linear regression algorithms in the future. We may also utilize these results to
further push the concepts introduced in [56], which introduces a method to sample new graphs around
the sample Fréchet mean graph but, in their experiments, the set mean graph was used as an estimate of
the sample Fréchet mean instead.

Data availability statement

The data used in this manuscript is available at the repository https://github.com/dafe0926/approx_
Graph_Frechet_Mean.
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Appendix

We split the appendix into five sections. Appendix A establishes a few classic results that we refer
to in our proofs. Appendix B outlines three methods of estimating the expected value of the largest
eigenvalues. The proof of our primary contribution, Theorem 8.1, is contained in Appendix C. Within
this appendix we also prove Theorem 8.3 and Theorem 8.4 since these are necessary results for our proof
of Theorem 8.1. Appendix D and Appendix E are short appendices in which we prove Theorems 8.2
and 8.5, respectively.

A. Classic results

Theorem A.1. (Weyl–Lidskii) Let H be a self-adjoint operator on a Hilbert space H. Let A be a
bounded operator on H Let σ (H) and σ (H + A) denote the spectra of H and (H + A), respectively.
Then

σ (H + A) ⊂ {λ : dist(λ, σ (H)) ≤ ||A||} (A1)

where ||A|| denotes the operator norm of A.

Proof. These are standard bounds that can be found in many good books on matrix perturbation theory
(e.g. [72]). !

Let Pn be probabilities on the Borel σ -field of Rc and suppose Pn → P weakly.
Theorem A.2. (Finite dimensional convergence in distribution) Let Fn(x) := Pn((−∞, x1] × ... ×
(−∞, xc]) and F(x) := P((−∞, x1] × ... × (−∞, xc]) for any x ∈ Rc. Then Fn(x) → F(x) as n → ∞
for every point of continuity x of F(x).

Proof. This is a standard equivalence for convergence in distribution found in e.g. [10]. !

B. Approximating expected eigenvalues of stochastic block model graphs

We first introduce a recent theorem from [21] that discusses an estimate of the expected eigenvalues of
an inhomogeneous Erdős–Rényi random graph. Let µωn f ∈ M(G ) be a kernel probability measure with
kernel f . Let Lf be the linear integral operator with the same kernel function, f . Assume Lf has a finite
rank of c. Denote the eigenvalues and eigenfunctions of Lf as θi and ri(x), respectively where for each
i = 1, ..., c, ri(x) is assumed to be piecewise Lipschitz with finitely many discontinuities and bounded.
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Theorem B.1. (Chakrabarty, Chakraborty, Hazra 2020) For every 1 ≤ i ≤ c,

E
[
λi(Aµωn f

)
]

= λi(B) + O

(√
ωn + 1

nωn

)
, (B1)

where B is a c × c symmetric deterministic matrix defined by

bj,l =
√

θjθlnωneT
j el + θ−2

i

√
θjθl(nωn)

−1eT
j E

[
(A − E [A])2

]
el + O

(
1

nωn

)
,

and ej is a vector with entries ej(k) = 1√
n rj

( k
n

)
for 1 ≤ j ≤ c.

Proof. The proof is in [21]. !
The authors in [21] require that the eigenfunctions be Lipschitz but, as is made clear from their

proof, this requirement can be relaxed to include piecewise Lipschitz functions with no adjustments to
their proof. The eigenfunctions of integral operators with stochastic block model kernels are therefore
within the scope of this theorem. We offer minor simplifications to Theorem [21] in the regime where
ωn → 0 and work with the eigenvalues and eigenfunctions of the linear integral operator rather than
their finite-dimensional counterparts. We begin with the following lemma, which outlines a matrix B∗

whose eigenvalues are close to B.
Lemma B.1. Let B be as defined in Theorem B.1. Define the matrices B∗,(1) and B∗,(2) to have
components j, l as

(
B∗,(1)

)

j,l
= b∗,(1)

j,l =
√

θjθlnωn

∫ 1

0
rj(x)rl(x)dx =

{
θjnωn j = l
0 j .= l

(B2)

(
B∗,(2)

)

j,l
= b∗,(2)

j,l = θ−2
i

√
θjθl

∫ 1

0
rj(x)rl(x)

∫ 1

0
f (x, y)dydx. (B3)

Let B∗ = B∗,(1) + B∗,(2). For any i,

|λi(B) − λi(B
∗)| = O(ωn). (B4)

Proof. The proof is straightforward in that we omit all contributions to bj,l that are O(ωn) and, because
ωn → 0, these contributions are negligible when computing the eigenvalues of B as a consequence
of Weyl–Lidksii’s theorem on spectral inclusion (Theorem A.1 from A). We rely heavily on the fact
that because the eigenfunctions are Lipschitz with finitely many discontinuities the right endpoint rule
approximation of integrals involving the eigenfunctions converge at a rate O( 1

n ). With these ideas in
mind, we proceed with the computations. We begin by considering the entries of B in two parts, define

b(1)
j,l =

√
θjθlnωneT

j el (B5)

b(2)
j,l = θ−2

i

√
θjθl(nωn)

−1eT
j E

[
(A − E [A])2

]
el (B6)

bj,l = b(1)
j,l + b(2)

j,l . (B7)
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For comparison, we also write again the components of B∗,(1) and B∗,(2)

b∗,(1)
j,l =

√
θjθlnωn

∫ 1

0
rj(x)rl(x)dx (B8)

b∗,(2)
j,l = θ−2

i

√
θjθl

∫ 1

0
rj(x)rl(x)

∫ 1

0
f (x, y)dydx. (B9)

We will show that for every j, l that

|b(1)
j,l − b∗,(1)

j,l | = O(ωn) (B10)

|b(2)
j,l − b∗,(2)

j,l | = O(ωn). (B11)

Observe that for all j, l we have
∫ 1

0
rj(x)rl(x)dx = lim

n→∞

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

)
(B12)

= lim
n→∞

n∑

i=1

ej(m)el(m) (B13)

= lim
n→∞ eT

j el. (B14)

The interpretation is that eT
j el is an approximation to the integral using the right endpoints of the

intervals. Denote by

R(n) =
∣∣∣∣∣

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

)
−

∫ 1

0
rj(x)rl(x)dx

∣∣∣∣∣ , (B15)

the error in the right endpoint approximation. The convergence rate for the right endpoint rule is O( 1
n )

for functions that are piecewise Lipschitz with finitely many discontinuities. Consequently,

nωnR(n) = nωnO

(
1
n

)
= O(ωn). (B16)

This indicates that for every j, l,

|b(1)
j,l − b∗,(1)

j,l | =
∣∣∣∣
√

θjθlnωneT
j el −

√
θjθlnωn

∫ 1

0
rj(x)rl(x)dx

∣∣∣∣ (B17)

=
√

θjθlnωn

∣∣∣∣e
T
j el −

∫ 1

0
rj(x)rl(x)dx

∣∣∣∣ (B18)

=
√

θjθlnωnR(n) (B19)

= O(ρn). (B20)
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We now turn our attention to the second component of B and analyze b(2)
j,l ,

b(2)
j,l = θ−2

i

√
θjθl(nωn)

−1eT
j E

[
(A − E [A])2

]
el. (B21)

To understand b(2)
j,l it is necessary to understand E

[
(A − E [A])2]. Let am,k = Am,k, the (m, k)th entry of

A,

E
[(

(A − E [A])2
)

m,k

]
= E

[
n∑

w=1

am,waw,k − am,wE
[
aw,k

]
− E

[
am,w

]
aw,k + E

[
am,w

]
E

[
aw,k

]
)

]

(B22)

=
n∑

w=1

E
[
am,waw,k

]
− E

[
am,w

]
E

[
aw,k

]
− E

[
am,w

]
E

[
aw,k

]
+ E

[
am,w

]
E

[
aw,k

]
) (B23)

=
{∑n

w=1 E
[
am,w

]
(1 − E

[
am,w

]
) m = k

0 else.
(B24)

Recall that E
[
am,w

]
= ωn f (m

n , w
n ). We may compute the term (nωn)

−1eT
j E

[
(A − E [A])2] el which

appears in the definition of b(2)
j,l with this expression for E

[
(A − E [A])2] as

(nωn)
−1eT

j E
[
(A − E [A])2

]
el =

n∑

i=1

ej(i)el(i)
n∑

w=1

E
[
ai,w

]
(1 − E

[
ai,w

]
) (B25)

=
n∑

i=1

1
n2ωn

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

ωn f
(

i
n

,
w
n

) (
1 − ωn f

(
i
n

,
w
n

))
(B26)

=
n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

) (
1 − ωn f

(
i
n

,
w
n

))
. (B27)

We consider the final term in two separate parts,

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)(
1 − ωn f

(
i
n

,
w
n

))
=

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)

(B28)

− ωn

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)2

(B29)

We will show that

ωn

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)2

= O(ωn). (B30)
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We then show that
∣∣∣∣∣

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)
−

∫ 1

0
rj(x)rl(x)

∫ 1

0
f (x, y)dydx

∣∣∣∣∣ = O

(
1
n

)
. (B31)

The conclusion is then that
∣∣∣b(2)

j,l − b∗,(2)
j,l

∣∣∣ = O(ωn). (B32)

To begin, recall that the expression for f ( i
n , w

n ) in terms of the eigenvalues and eigenfunctions is

f (x, y) =
c∑

k=1

θkrk(x)rk(y) (B33)

f (x, y)2 =
(

c∑

k=1

θkrk(x)rk(y)

)2

(B34)

=
c∑

k=1

c∑

m=1

θkrk(x)rk(y)θmrm(x)rm(y). (B35)

We have the following expression which will be used throughout our computations,

n∑

w=1

1
n

f
(

i
n

,
w
n

)2

=
n∑

w=1

1
n

c∑

k=1

c∑

m=1

θkrk(x)rk(y)θmrm(x)rm(y) (B36)

=
c∑

k=1

c∑

m=1

θkθm

n∑

w=1

1
n

rk(x)rk(y)rm(x)rm(y). (B37)

Consider now just (B29)

ωn

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)2

(B38)

= ωn

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) c∑

k=1

c∑

m=1

θkθm
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w=1

1
n

rk

(
i
n

)
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(w
n

)
rm

(
i
n

)
rm

(w
n

)
(B39)

=
c∑

k=1

c∑

m=1

θkθmωn

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

rk

(
i
n

)
rk

(w
n

)
rm

(
i
n

)
rm

(w
n

)
(B40)

We now consider each k, m independently,

θkθmωn

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

rk

(
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)
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n

)
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(
i
n

)
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(w
n

)
(B41)
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= θkθmωn

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

)
rk

(
i
n

)
rm

(
i
n

) n∑

w=1

1
n

rk

(w
n

)
rm

(w
n

)
. (B42)

It is here that we observe that each k, m equation (B42) can be interpreted as the product of two right
endpoint rule approximations to integrals. We have that

∫ 1

0
rj(x)rl(x)rk(x)rm(x)dx

∫ 1

0
rk(y)rm(y)dy

= lim
n→∞

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

)
rk

(
i
n

)
rm

(
i
n

) n∑

w=1

1
n

rk

(w
n

)
rm

(w
n

)
(B43)

We can therefore define the error in the approximation as

R(n) =
∣∣∣∣

∫ 1

0
rj(x)rl(x)rk(x)rm(x)dx

∫ 1

0
rk(y)rm(y)dy

−
n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

)
rk

(
i
n

)
rm

(
i
n

) n∑

w=1

1
n

rk

(w
n

)
rm

(w
n

)∣∣∣∣∣ (B44)

where, because each function is piecewise Lipschitz, we still have that R(n) = O
(

1
n

)
. Therefore, for

each k, m,

R(n) = θkθm

∣∣∣∣

∫ 1

0
rj(x)rl(x)rk(x)rm(x)dx

∫ 1

0
rk(y)rm(y)dy (B45)

−
n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

)
rk

(
i
n

)
rm

(
i
n

) n∑

w=1

1
n

rk

(w
n

)
rm

(w
n

) ∣∣∣∣ (B46)

= O

(
1
n

)
. (B47)

Since taking a finite sum does not impact the order of the error we can conclude that
∣∣∣∣

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)2

(B48)

−
c∑

k=1

c∑

m=1

θkθm

∫ 1

0
rj(x)rl(x)rk(x)rm(x)dx

∫ 1

0
rk(y)rm(y)dy

∣∣∣∣ (B49)

= O

(
1
n

)
. (B50)
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Observe now the impact of ωn from equation (B29),

ωn

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)2

(B51)

= ωn

(
c∑

k=1

c∑

m=1

θkθmωn

∫ 1

0
rj(x)rl(x)rk(x)rm(x)dx

∫ 1

0
rk(y)rm(y)dy + O

(
1
n

))

. (B52)

Since each rj(x) is piecewise Lipschitz, we can conclude that the entire term in equation (B29) is
negligible because,

ωn

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)2

(B53)

= ωn

(
c∑

k=1

c∑

m=1

θkθmωn

∫ 1

0
rj(x)rl(x)rk(x)rm(x)dx

∫ 1

0
rk(y)rm(y)dy + O

(
1
n

))

(B54)

= O(ωn) + O

(
ωn

1
n

)
. (B55)

Therefore,
n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)(
1 − ωn f

(
i
n

,
w
n

))
=

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)
+ O(ωn).

(B56)

By way of the exact same analysis, we can conclude that the right-hand side of (B28) is
n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

)
=

∫ 1

0
rj(x)rl(x)

∫ 1

0
f (x, y)dydx + O

(
1
n

)
. (B57)

Therefore,
∣∣∣∣

n∑

i=1

1
n

rj

(
i
n

)
rl

(
i
n

) n∑

w=1

1
n

f
(

i
n

,
w
n

) (
1 − ωn f

(
i
n

,
w
n

))
−

∫ 1

0
rj(x)rl(x)

∫ 1

0
f (x, y)dydx

∣∣∣∣ = O(ωn).

(B58)

The conclusion of this analysis shows that
∣∣∣b(2)

j,l − b∗,(2)
j,l

∣∣∣ = θ−2
i

√
θjθl

∣∣∣∣(nωn)
−1eT

j E
[
(A − E [A])2

]
el −

∫ 1

0
rj(x)rl(x)

∫ 1

0
f (x, y)dydx

∣∣∣∣ (B59)

= O(ωn). (B60)

The result puts together equations (B20) and (B60) showing that for every j, l

|bj,l −
(

b∗,(1)
j,l + b∗,(2)

j,l

)
| = |b(1)

j,l + b(2)
j,l −

(
b∗,(1)

j,l + b∗,(2)
j,l

)
| = O(ωn). (B61)
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Recall the definition of B∗ = B∗,(1) + B∗,(2). Define Bε as

Bε = B − B∗. (B62)

We have just shown that every component of Bε is O(ωn). We conclude the proof by appealing to
Weyl–Lidskii’s theorem on the spectral inclusion of the eigenvalues. For this theorem, we take

A = Bε (B63)

H = B∗ (B64)

H + A = B∗ + Bε = B∗ + B − B∗ = B (B65)

where

||B∗|| ≤ ||B∗||F = O(ωn), (B66)

and conclude that

|λi(B) − λi(B
∗)| = O(ωn). (B67)

!
The consequence of the above lemma simply shows a method to determine the ith expected

eigenvalue of Aµωn f
in terms of the eigenvalues and eigenfunctions of Lf rather than their discretized

counterparts. This constitutes the next theorem.
Theorem B.2. (Theorem 8.4 in the main document) For every 1 ≤ i ≤ c,

E
[
λi(Aµωn f

)
]

= λi(B
∗) + O(

√
ωn), (B68)

where

B∗ = B∗,(1) + B∗,(2). (B69)

and
(

B∗,(1)
)

j,l
= b∗,(1)

j,l =
√

θjθlnωn

∫ 1

0
rj(x)rl(x)dx =

{
θjnωn j = l
0 j .= l

(B70)

(
B∗,(2)

)

j,l
= b∗,(2)

j,l = θ−2
i

√
θjθl

∫ 1

0
rj(x)rl(x)

∫ 1

0
f (x, y)dydx. (B71)

Proof. The proof is a consequence of Lemma B.1 and Theorem B.1. Let B be as defined by Theorem
B.1 and B∗ be defined as in Lemma B.1. Consider

|E
[
λi(Aµωn f

)
]

− λi(B) + λi(B) − λi(B
∗)| ≤ |E

[
λi(Aµωn f

)
]

− λi(B)| + |λi(B) − λi(B
∗)| (B72)

= O

(√
ωn + 1

nωn

)
+ O(ωn) (B73)

= O(
√

ωn). (B74)

!
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COMPUTATION OF SAMPLE FRÉCHET MEAN 47

The specific structure of B∗ is of note as it is comprised of a diagonal component and a secondary
component. In practice, either method can be used depending on the situation. If the eigenfunctions are
known then the result from Lemma B.1 avoids potentially costly matrix computations for large n. In the
following corollary we show the contribution to the ith eigenvalue of B∗ in terms of the matrices B∗,(1)

and B∗,(2).
Lemma B.2. Let B∗ be as defined in Lemma B.1 such that

B∗ = B∗,(1) + B∗,(2). (B75)

Then

|E
[
λi(Aµωn f

)
]

− λi(B
∗,(1))| = O(1). (B76)

where
(

B∗,(1)
)

j,l
= b∗,(1)

j,l =
√

θjθlnωn

∫ 1

0
rj(x)rl(x)dx =

{
θjnωn j = l
0 j .= l

(B77)

(
B∗,(2)

)

j,l
= b∗,(2)

j,l = θ−2
i

√
θjθl

∫ 1

0
rj(x)rl(x)

∫ 1

0
f (x, y)dydx. (B78)

Proof. The proof is an application of Weyl–Lidksii after we have shown that ||B∗,(2)|| = O(1). It is
clear by definition that each component of b∗,(2)

j,l is independent of n; hence,

b∗,(2)
j,l = O(1). (B79)

Because B∗,(2) ∈ Rc×c where c is fixed and independent of n,

||B∗,(2)|| ≤ ||B∗,(2)||F =
c∑

j=1

c∑

l=1

b∗,(2)
j,l = O(1). (B80)

By Weyl–Lidskii, taking

A = B∗,(2) (B81)

H = B∗,(1) (B82)

H + A = B∗ (B83)

we can conclude that

|λi(B
∗) − λi(B

∗,(1))| = O(1). (B84)

Since λi(B
∗) is the first order estimate of E

[
λi(Aµωn f

)
]

we have the final conclusion via the triangle
inequality that

|E
[
λi(Aµωn f

)
]

− λi(B
∗) + λi(B

∗) − λi(B
∗,(1))| ≤ |E

[
λi(Aµωn f

)
]

− λi(B
∗)| + |λi(B

∗) − λi(B
∗,(1))|

(B85)
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48 D. FERGUSON AND F. G. MEYER

= O(1) + O(
√

ωn) = O(1). (B86)

!
Theorem 8.4 is a direct application of the prior lemma.

Theorem B.3. (Estimation of the largest eigenvalues of Stochastic Block Models) For i = 1, ..., c

E
[
λi(Aµωn f

)
]

= θinωn + O(1). (B87)

Proof. The proof is a direct application of the prior Lemma once noting that λi(B
∗,(1)) = nωnθi due to

the diagonal structure of B∗,(1). !
While the theorem is rather straightforward it makes the following observation, that B∗,(2) is

independent of n. Therefore, as n increases, the relative impact of B∗,(2) may be of little consequence
since

|E
[
λi(Aµωn f

)
]

− nωnθi|
nωnθi

= O

(
1

nωn

)
. (B88)

A second noteworthy observation is that the O(1) estimate is independent of the eigenfunctions of Lf
and can be computed without determining the eigenfunctions or finite-dimensional approximations of
the eigenfunctions as is done in Theorem B.1 and Theorem B.2. This saves significant computational
time, particularly for extremely large graphs.

C. Proof of Theorem 8.1

Theorem 8.1 constitutes the main theoretical contribution of this chapter. The proof involves a few steps
which we outline below at a high level.

1. Given G with adjacency matrix A we compute σc(A) and show that we may construct a canonical
stochastic block model kernel, f , where Q = 0 with c blocks such that λi(Lf ) = λi(A)−1

nωn
where

we define ωn = ρn, the density of the observed graph. Notably, the f that we construct will not
necessarily satisfy || f ||1 = 1 indicating that ρn need not denote the expected density of graphs
sampled according to µρn f .

2. We then show that for each 1 ≤ i ≤ c,
∣∣∣λi(B

∗) − E
[
λi(Aµρn f

)
]∣∣∣ = O(

√
ρn) where B∗ is given

by Lemma B.1. We show that λi(B
∗) = nρnλi(Lf ) + 1 due to the block-diagonal structure of

f (x, y).

3. All that is left is to show that for an iid sample of graphs {G(k)}N
k=1 distributed according to µρn f ,

the empirical Fréchet mean, G∗
N , with adjacency matrix A∗

N , satisfies

||σc(A
∗
N) − E

[
σc(Aµρn f

)
]
||2 < ε a.s.

The key in this step is to show the existence of a different graph G′ with adjacency matrix
A′ whose eigenvalues are close to E

[
σc(Aµρn f

)
]
. This graph allows us to bound the distance

between the eigenvalues of A∗
N and E

[
σc(Aµρn f

)
]
.
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COMPUTATION OF SAMPLE FRÉCHET MEAN 49

4. The final step is to show

|λi(A) − E
[
λi(Aµρn f

)
]

+ E
[
λi(Aµρn f

)
]

− λi(A
∗
N)|

= |λi(B
∗) − E

[
λi(Aµρn f

)
]

+ E
[
λi(Aµρn f

)
]

− λi(A
∗
N)| < ε

for each 1 ≤ i ≤ c.

We now proceed with our proof.
Step 1: Constructing a stochastic block model kernel

Let G ∈ G with adjacency matrix A be such that

0 " σc(A) (C1)

and for every 1 ≤ i .= j ≤ c, λi .= λj.
Lemma C.1. Let 5θ ∈ Rc such that 0 " 5θ . Let s be a fixed geometry vector for a canonical stochastic
block model kernel with c non-zero entries. There exists a canonical stochastic block model kernel
f (x, y; p, Q, s) with Q = 0 defining the integral operator

Lf (t) =
∫ 1

0
f (x, y; p, Q, s)t(y)dy, (C2)

which satisfies

λi(Lf ) = θi (C3)

Proof. The proof is rather straightforward, we simply construct the equivalent of a block diagonal
matrix. The blocks are determined by the geometry vector s which we are free to choose within the
constraints that ||s||1 = 1, s is non-increasing, non-negative and has c non-zero entries. For 1 ≤ i ≤ c,
let Si = ∑i

j=1 sj and define the intervals Ii = [Si−1, Si). Note that S0 = 0. Define the function

f (x, y) =
{

θi
si

if(x, y) ∈ Ii × Ii

0 else.
(C4)

Define the linear integral operator Lf (t) =
∫ 1

0 f (x, y)t(y)dy. The eigenfunctions for Lf are

ri(x) =
{

1√
si

ifx ∈ Ii

0 else,
(C5)

which we show in the following computations. We can compute the eigenvalues of Lf as

Lf (ri(x)) =
∫ 1

0
f (x, y)ri(y)dy (C6)

=
{∫

Ii

θi
si

1√
si

dy x ∈ Ii

0 else
(C7)

=
{

θi
si

1√
si

si x ∈ Ii

0 else
(C8)
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50 D. FERGUSON AND F. G. MEYER

=
{

θi
1√
si

x ∈ Ii

0 else
(C9)

= θiri(x). (C10)

Next we verify that ||ri||2 = 1.
∫ 1

0
ri(x)

2dx =
∫

Ii

1
si

dx (C11)

= si

si
(C12)

= 1. (C13)

Therefore, ri(x) is an eigenfunction of Lf with eigenvalue θi. At this point we note that f is a stochastic
block model kernel with qij = 0 for all i, j. !

By taking θ = σc(A)−1
nρn

in Lemma C.1 and setting ωn = ρn we will have accomplished step 1.
Step 2: Estimating the expected eigenvalues

The estimation of the largest eigenvalues has been discussed at length in B. We will use the estimate
of the largest eigenvalues outlined by Theorem B.2. Recall that

|E
[
λi(Aµρn f

)
]

− λi(B
∗)| = O(

√
ρn). (C14)

where

(B∗)j,l = b∗,(1)
j,l + b∗,(2)

j,l =
√

θjθlnρn

∫ 1

0
rj(x)rl(x)dx + θ−2

i

√
θjθl

∫ 1

0
rj(x)rl(x)

∫ 1

0
f (x, y)dydx (C15)

when ωn = ρn. For the choice of f (x, y) made in step 1, when j .= l,

∀x, rj(x)rl(x)dx = 0. (C16)

Thus, b∗,(2)
j,l = 0 for all j .= l and so B∗ is diagonal. The ith eigenvalue is then given as

λi(B
∗) = θinρn + 1

θi

∫ 1

0
ri(x)ri(x)

∫ 1

0
f (x, y)dydx. (C17)

Using the definitions of ri(x) and f (x, y) from equations (C4) and (C5),

1
θi

∫ 1

0
ri(x)ri(x)

∫ 1

0
f (x, y)dydx = 1

θi

1
si

∫

Ii

∫

Ii

f (x, y)dydx (C18)

= 1
θi

1
si

θi

si

∫

Ii

∫

Ii

dydx (C19)

= 1

s2
i

s2
i = 1 (C20)
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COMPUTATION OF SAMPLE FRÉCHET MEAN 51

since
∫

Ii
dy = si. This shows that

λi(B
∗) = θinρn + 1 = λi(A). (C21)

We could also consider the perspective that our adjacency matrix is a series of disconnected Erdős–
Rényi random graphs on n

c vertices and arrive at the same conclusion by analyzing each Erdős–Rényi
component separately.
Step 3: Eigenvalues of the empirical Fréchet mean adjacency matrix are nearly the expected
eigenvalues

Step 3 of our proof is arguably the most interesting. As was stated in the outline, given a stochastic
block model kernel probability measure, µρn f , we show the existence of a graph, G′, whose eigenvalues

are close to the E
[
σc(Aµρn f

)
]
. By showing the existence of this graph, we will be able to provide upper

bounds on the distance between the eigenvalues of the adjacency matrix of the sample Fréchet mean
graph, σc(A

∗
N) and E

[
σc(Aµρn f

)
]
.

To prove there exists a graph, G′, whose adjacency matrix has eigenvalues close to E
[
σc(Aµρn f

)
]
,

we will show that there exists a positive constant C such that

0 < C < P
(
||σc(Aµρn f

) − E
[
σc(Aµρn f

)
]
||2 < ε

)
. (C22)

Since the probability measure of the set of graphs that satisfy ||σc(Aµρn f
) − E

[
σc(Aµρn f

)
]
||2 < ε is

strictly positive, this implies the existence of at least one graph, G′, that satisfies the inequality. To prove
that the probability is nonzero we reference Theorem 2.3 from [21] on the convergence in distribution
of the extreme eigenvalues of inhomogeneous Erdős–Rényi random graphs, which we state below.

Theorem C.1. (Chakrabarty, Chakraborty, and Hazra 2020) For every 1 ≤ i ≤ c,

ρ−1/2
n (λi(Aµρn f

) − E
[
λi(Aµρn f

)
]
)

d→ (Zi : 1 ≤ i ≤ c), (C23)

where the right-hand side is a multivariate normal random vector in Rc, with mean zero and

Cov(Zi, Zj) = 2
∫ 1

0

∫ 1

0
ri(x)ri(y)rj(x)rj(y)f (x, y)dxdy, (C24)

for all 1 ≤ i, j ≤ c.

Proof. Theorem C.1 is Theorem 2.3 in [21]. !
We first acknowledge that there exists a very similar theorem to the above in [5] with the difference

being the centering of the limiting distribution about the eigenvalues of the expected adjacency matrix,
λi(E

[
Aµρn f

]
), rather than the expected eigenvalues, E

[
λi(Aµρn f

)
]
.

We consider all the eigenvalues at once by writing ρ
−1/2
n (σc(A) − E

[
σc(Aµρn f

)
]
) rather than

analyzing for each i. Let Z denote the multivariate normal random vector on the right-hand side in
equation (C23). An equivalent statement to Theorem C.1 is then

ρ−1/2
n (σc(Aµρn f

) − E
[
σc(Aµρn f

)
]
)

d→ Z. (C25)
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52 D. FERGUSON AND F. G. MEYER

One characterization of convergence in distribution for finite-dimensional random variables is pointwise
convergence of the cumulative distribution functions (see Theorem A.2).

Let Pn denote the probabilities for the sequence of random vectors ρ
−1/2
n (σc(Aµρn f

) −
E

[
σc(Aµρn f

)
]
) and P be the probability for the multivariate Guassian random vector Z. ∀z ∈ Rc,

define the cumulative distribution function of the random variables ρ
−1/2
n (σc(Aµρn f

) − E
[
σc(Aµρn f

)
]
)

and Z, respectively, as

Fn(z) = Pn
(
(−∞, z1] × ... × (−∞, zc]

)
, (C26)

F(z) = P
(
(−∞, z1] × ... × (−∞, zc]

)
. (C27)

The convergence in distribution of the random vectors is equivalent to the following: ∀z ∈ Rc,

lim
n→∞ Fn (z) = F (z) , (C28)

since F(z) is continuous everywhere. For our proof, it is easier to work with the probabilities and random
vectors directly and so equation (C28) takes the form

lim
n→∞ Pn(ρ

−1/2
n (σc(Aµρn f

) − E
[
σc(Aµρn f

)
]
) " z) = P(Z " z). (C29)

We are now ready to state and prove our lemma. Let µρn f ∈ M(G ) be a kernel probability measure with
kernel f . Let Lf be the linear integral operator with the same kernel f . Assume Lf has a finite rank c and
denote the eigenvalues and eigenfunctions of Lf as θi and ri(x), respectively, where for each i = 1, ..., c,
ri(x) is assumed to be piecewise Lipschitz with finitely many discontinuities.
Lemma C.2. ∀ε > 0, ∃n∗ ∈ N where ∀n > n∗, ∃G′ ∈ G with adjacency matrix A′ such that

||σc(A
′) − E

[
σc(Aµρn f

)
]
||2 < ε. (C30)

Proof. Let ε > 0. Fix z ∈ Rc such that 0 " z and

0 < C < P(−z " Z " z) − 2ε, (C31)

for some C > 0. By equation (C29), there exists n1 ∈ N where for all n > n1,
∣∣∣Pn

(
ρ−1/2

n (σc(Aµρn f
) − E

[
σc(Aµρn f

)
]
) " z

)
− P (Z " z)

∣∣∣ < ε (C32)

Similarly, there exists n2 ∈ N where for all n > n2,
∣∣∣Pn

(
ρ−1/2

n (σc(Aµρn f
) − E

[
σc(Aµρn f

)
]
) " −z

)
− P (Z " −z)

∣∣∣ < ε. (C33)

Furthermore, there exists n3 ∈ N where for all n > n3,

||√ρnz||2 < ε. (C34)

Take n∗ = max(n1, n2, n3) and consider the following probability

Pn(−z " ρ−1/2
n (σc(Aµρn f

) − E
[
σc(Aµρn f

)
]
) " z) = Pn(ρ

−1/2
n (σc(Aµρn f

) − E
[
σc(Aµρn f

)
]
) " z)

(C35)

− Pn(ρ
−1/2
n (σc(Aµρn f

) − E
[
σc(Aµρn f

)
]
) " −z). (C36)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaad002/7091479 by U

niversity of C
olorado Boulder user on 29 M

arch 2023



COMPUTATION OF SAMPLE FRÉCHET MEAN 53

Now, (C32) and (C33) allow us to replace (C35) and (C36) with the corresponding expression in terms
of z. We therefore obtain

∣∣∣Pn

(
−z " ρ−1/2

n (σc(Aµρn f
) − E

[
σc(Aµρn f

)
]
) " z

)
− P (−z " Z " z)

∣∣∣ < 2ε, (C37)

from which we obtain

P(−z " Z " z) − 2ε < Pn(−ρ1/2
n z " (σc(Aµρn f

) − E
[
σc(Aµρn f

)
]
) " ρ1/2

n z). (C38)

Since 0 < C < P(−z " Z " z) − 2ε we have

C < Pn(−ρ1/2
n z " (σc(Aµρn f

) − E
[
σc(Aµρn f

)
]
) " ρ1/2

n z) (C39)

< Pn(0 ≤ ||σc(Aµρn f
) − E

[
σc(Aµρn f

)
]
||2 ≤ ||√ρnz||2) (C40)

and since n is sufficiently large that ||ρ1/2
n z||2 < ε this implies that the probability measure of the set

of graphs that satisfy ||σc(A) − E
[
σc(A)

]
||2 < ε is strictly positive. Thus, there exists a graph G′ ∈ G

with adjacency matrix A′ that satisfies ||σc(A
′) − E

[
σc(A)

]
||2 < ε. !

It should also be noted that the constant C can be made arbitrarily close to 1 − 2ε and so the
probability of observing a graph such that ||σc(A

′) − E
[
σc(A)

]
||2 < ε can be made arbitrarily large so

long as n is also taken to be sufficiently large.
We are now in a position to prove Theorem 8.3, which we restate for convenience below. Let

{G(k)}N
k=1 be an iid sample of graphs drawn from µρn f where f is a canonical stochastic block model

kernel. Let A(k) be the adjacency matrix of graph G(k) and let λ(k) = σc(A
(k)). Let G∗

N be the sample
Fréchet mean graph with adjacency matrix A∗

N .

Theorem C.2. (Theorem 8.3 in the main chapter) ∀ε > 0, ∃n∗ ∈ N such that for all n > n∗,

lim
N→∞

||σc(A
∗
N) − E

[
σc(Aµρn f

)
]
||2 < ε a.s. (C41)

As will become clear in our proof, it will be easier to work with the eigenvalues directly rather than
the graphs themselves. To do so we make the following definition.

Definition C.3. (The set of c largest realizable eigenvalues of adjacency matrices of graphs in G)

Λc
n =

{
λ ∈ Rc|∃G ∈ G with adjacency matrix A such that λ = σc(A)

}
. (C42)

Proof. We make two observations. First that Λc
n ⊂ Rc and second, equation (C41) depends only on the

eigenvalues of A(k). These two observations allow us to recast the sample Fréchet mean problem over
Λc

n and consider the relaxed problem over Rc whose solution we show to be the optimal eigenvalues of
the adjacency matrix of the sample Fréchet mean.

We first recast the problem of computing G∗
N over Λc

n as follows. Let λ∗
N = σc(A

∗
N). Then

λ∗
N = argmin

λ∈Λc
n

1
N

N∑

k=1

||λ(k) − λ||22. (C43)
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54 D. FERGUSON AND F. G. MEYER

We also consider the relaxed version of (C43) where the solution is in Rc instead of Λc
n. The relaxed

problem is a trivial quadratic optimization problem with a unique solution given by

λ∗
N,r = argmin

λ∈Rc

1
N

N∑

k=1

||λ(k) − λ||22. (C44)

= 1
N

N∑

k=1

λ(k) (C45)

which is the classic arithmetic average of the observations λ(k). Now, the sample mean, λ∗
N,r, satisfies

1
N

N∑

k=1

||λ(k) − λ||22 = ||λ − λ∗
N,r||22 + 1

N

N∑

k=1

||λ(k)||22 − ||λ∗
N,r||22. (C46)

Hence, minimizing ||λ − λ∗
N,r||22 is equivalent to minimizing 1

N

∑N
k=1 ||λ − λ(k)||22 irrespective of the

domain over which the function is minimized. This shows that an equivalent formulation of the sample
Fréchet mean on the space of realizable eigenvalues is

λ∗
N = argmin

λ∈Λc
n

1
N

N∑

k=1

||λ(k) − λ||22 (C47)

= argmin
λ∈Λc

n

||λ − λ∗
N,r||22. (C48)

Equation (C48) states that we must find the realizable eigenvalues that are closest to the arithmetic
average, the solution to the relaxed problem. Using this formulation of the sample Fréchet mean problem
we will show that the eigenvalues of A∗

N converge almost surely to E
[
σc(Aµρn f

)
]
.

By the strong law of large number, ∀n,

lim
N→∞

||λ∗
N,r − E

[
σc(Aµρn f

)
]
|| = 0 a.s. (C49)

Define

λ∗ = lim
N→∞

λ∗
N (C50)

= lim
N→∞

argmin
λ∈Λc

n

||λ − λ∗
N,r||22. (C51)

Since the projection on Λc
n is a continuous operator,

lim
N→∞

argmin
λ∈Λc

n

||λ − λ∗
N,r||22 = argmin

λ∈Λc
n

lim
N→∞

||λ − λ∗
N,r||22. (C52)

Since the norm is continuous,

argmin
λ∈Λc

n

lim
N→∞

||λ − λ∗
N,r||22 = argmin

λ∈Λc
n

||λ − lim
N→∞

λ∗
N,r||22. (C53)
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COMPUTATION OF SAMPLE FRÉCHET MEAN 55

Finally, by (C49),

argmin
λ∈Λc

n

||λ − lim
N→∞

λ∗
N,r||22 = argmin

λ∈Λc
n

||λ − E
[
σc(Aµρn f

)
]
||22 a.s. (C54)

By Lemma C.2, ∀ε > 0, there exists n1 ∈ N such that for all n > n1, there exists G′ ∈ G with adjacency
matrix A′ such that

||σc(A
′) − E

[
σc(Aµρn f

)
]
||2 ≤ ε. (C55)

Because σc(A
′) ∈ Λc

n, the minimizer, λ∗, in (C54) satisfies

||λ∗ − E
[
σc(Aµρn f

)
]
||2 ≤ ε a.s. (C56)

Since λ∗ = limN→∞ λ∗
N = limN→∞ σc(A

∗
N) this concludes our proof. !

Step 4.
All that is left is to compile the results of the prior three steps into a proof for Theorem 8.1, which

we restate below. Assume G ∈ G with adjacency matrix A that satisfies the following:

1. ρn = ω(n−2/3).

2. limn→∞ ρn = 0.

3. 0 " σc(A).

4. For every 1 ≤ i .= j ≤ c, λi .= λj.

Theorem C.4. (Theorem 8.1 from the main chapter) ∀ε > 0, ∃n1 ∈ N such that ∀n > n1, ∃f (x, y; p, Q, s)
a canonical stochastic block model kernel with c communities such that

lim
N→∞

dAc
(G, G∗

N) < ε a.s. (C57)

where G∗
N denotes the empirical Fréchet mean of {G(k)}N

k=1, an iid sample distributed according to µρn f .

Proof. We begin our proof by expanding the left-hand side of equation (C57).

dAc
(G, G∗

N) = ||σc(A) − σc(A
∗
N)||2 (C58)

= ||σc(A) − E
[
σc(Aµρn f

)
]

+ E
[
σc(Aµρn f

)
]

− σc(A
∗
N)||2. (C59)

Let ε > 0. We will show that there exists an n∗ ∈ N such that for all n > n∗, there exists a stochastic
block model kernel probability measure f (x, y; p, Q, s) where the following two inequalities hold:

||σc(A) − E
[
σc(Aµρn f

)
]
||2 < ε (C60)

||E
[
σc(Aµρn f

)
]

− σc(A
∗
N)||2 < ε a.s. (C61)
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56 D. FERGUSON AND F. G. MEYER

We begin with (C60). Define Lf as in Lemma C.1 taking θ = σc(A)−1
nρn

. Then λi(A) = nρnλi(Lf ) + 1. By
Theorem 8.4,

E
[
σc(Aµρn f

)
]

= nρnθ + 1 + O(
√

ρn). (C62)

Since √
ρn → 0, there exists an n1 ∈ N such that for all n > n1,

||nρnθ + 1 − E
[
σc(Aµρn f

)
]
||2 < ε. (C63)

Theorem 8.3 implies the existence of an n2 ∈ N such that inequality (C61) holds. Taking n∗ =
max(n1, n2) implies that both inequalities hold and concludes the proof of Theorem 8.1. !

D. Proof of Theorem 8.2

The proof of Theorem 8.2, which we restate below, is a consequence of Lemmas C.1 and C.2 along with
Theorem 8.4. Let {G(k)}N

k=1 have sample Fréchet mean G∗
N .

Theorem D.1. (Theorem 8.2 in the main chapter) ∀ε > 0, ∃n∗ ∈ N such that ∀n > n∗,
∥∥∥∥∥σc(A

∗
N) − 1

N

N∑

k=1

σc(A
(k))

∥∥∥∥∥
2

< ε. (D1)

Proof. Let λ(k) = σc(A
(k)). Define λ̄ = 1

N

∑N
k=1 λ(k). Let ρ̄n denote the arithmetic average of the

densities of the observed graphs. Take θ = λ̄−1
nρ̄n

in Lemma C1 that defines the disconnected stochastic
block model kernel. Let ε > 0. By Lemma C2 there exists n1 ∈ N such that for all n > n1, there exists
a graph G′ ∈ G with adjacency matrix A′ such that

||σc(A
′) − E

[
σc(Aµρ̄n f

)
]
||2 < ε. (D2)

By Theorem 8.4, there exists n2 ∈ N such that for all n > n2,

∀i = 1, ..., c,
∣∣∣nρ̄nλi(Lf ) + 1 − E

[
λi(Aµρ̄n f

)
]∣∣∣ < ε. (D3)

Since nρ̄nλi(Lf ) + 1 = 1
N

∑N
k=1 λi(A

(k)), there exists a graph G′ with adjacency matrix A′ that satisfies
∥∥∥∥∥σc(A

′) − 1
N

N∑

k=1

λ(k)

∥∥∥∥∥
2

< Cε, (D4)

where C is an arbitrary positive constant. We recall, (see (C48), that the spectrum of the sample Fréchet
mean is the solution to

λ∗
N = argmin

λ∈Λc
n

∥∥∥∥∥λ − 1
N

N∑

k=1

λ(k)

∥∥∥∥∥

2

2

. (D5)

Now, take n∗ = max(n1, n2), then the existence of the graph G′ with adjacency matrix A′ shows that
∥∥∥∥∥σc(A

∗
N) − 1

N

N∑

k=1

λ(k)

∥∥∥∥∥

2

2

<

∥∥∥∥∥σc(A
′) − 1

N

N∑

k=1

λ(k)

∥∥∥∥∥

2

2

< ε. (D6)
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COMPUTATION OF SAMPLE FRÉCHET MEAN 57

Thus, the adjacency matrix of the sample Fréchet mean must have eigenvalues that are within ε of the
geometric average. !

E. Proof of Theorem 8.5

Let {G̃(k)}Ñ
k=1 be a sample of graphs distributed according to µωn f where f is the canonical stochastic

block model kernel. Define the set mean graph by

Ĝ
∗,µωn f

Ñ
= argmin

G̃∈{G̃(k)}:Ñk=1

1

Ñ

Ñ∑

k=1

d2
Ac

(G̃, G̃(k)) (E1)

with adjacency matrix Â
∗,µωn f
N .

Theorem E.1. ∀ε > 0,

lim
n→∞ P

(∥∥∥σc(Â
∗,µωn f

Ñ
) − E

[
σc(Aµωn f

)
]∥∥∥

2
> ε

)
= 0. (E2)

Proof. We first prove that σc(Aµωn f
) converges in probability to E

[
σc(Aµωn f

)
]

for large graph size.
From Theorem C.1,

1
√

ωn

(
σc(Aµωn f

) − E
[
σc(Aµωn f

)
])

d→ Z ∼ N(0, Σ), (E3)

where the c × c covariance matrix Σ is given by (C24). Let z > 0, ε > 0, and η > 0. Because of (E3),
∃n0 ∈ N, ∀n > n0,

∣∣∣∣P
(

1
√

ωn
|λi(Aµωn f

) − E
[
λi(Aµωn f

)
]
| ≤ z

)
− P

(
|zi| ≤ z; i = 1, ..., c

)∣∣∣∣ ≤ η

2
. (E4)

Thus,

P
(
|zi| ≤ z; i = 1, ..., c

)
− η

2
≤ P

(
1

√
ωn

|λi(Aµωn f
) − E

[
λi(Aµωn f

)
]
| ≤ z

)
. (E5)

Now P(||z|| ≤ z) ≤ P(|zi| ≤ z; i = 1, ..., c) and

P
(

1
√

ωn
|λi(Aµωn f

) − E
[
λi(Aµωn f

)
]
| ≤ z

)
≤ P

(
||σc(Aµωn f

) − E
[
σc(Aµωn f

)
]
||2 ≤ √

cωnz
)

. (E6)

Because limz→∞ P(||z|| ≤ z) = 1, ∃z0 > 0 such that

1 − η

2
< P(||z|| ≤ z0). (E7)

Also, limn→∞ ωn = 0 so ∃n1 ∈ N such that ∀n > n1, √
ωn < ε

z0
√

c or √
cωnz0 < ε. In summary,

∀ε > 0, ∀η > 0, ∃n2 = max(n0, n1) where

1 − η < P
(∥∥∥σc(Aµωn f

) − E
[
σc(Aµωn f

)
]∥∥∥

2
< ε

)
. (E8)
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58 D. FERGUSON AND F. G. MEYER

Equivalently,

P
(∥∥∥σc(Aµωn f

) − E
[
σc(Aµωn f

)
]∥∥∥

2
≥ ε

)
< η. (E9)

In other words, ∀ε > 0,

lim
n→∞ P

(∥∥∥σc(Aµωn f
) − E

[
σc(Aµωn f

)
]∥∥∥

2
≥ ε

)
= 0. (E10)

We now show that the largest c eigenvalues of the adjacency matrix of the set Fréchet mean graph
converges in probability to E

[
σc(Aµωn f

)
]
. Let ε > 0 and let η > 0. Let Ñ > 0 and consider the event

E = {A(1), ..., A(Ñ);
∥∥∥σc(Â

∗,µωn f

Ñ
) − E

[
σc(Aµωn f

)
]∥∥∥

2
> ε}. (E11)

Note that ∃k0 ∈ {1, ..., Ñ} where Â
∗,µωn f

Ñ
= A(k0) where A(k0) ∼ µωn f . Now because of (E10), ∃n0 ∈ N

where ∀n > n0, P(E) < η. We conclude that ∀ε > 0,

lim
n→∞ P

(∥∥∥σc(Â
∗,µωn f

Ñ
) − E

[
σc(Aµωn f

)
]∥∥∥

2
> ε

)
= 0. (E12)

!
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