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Polynomial-Time Reachability for LTI Systems
With Two-Level Lattice Neural
Network Controllers

James Ferlez~ and Yasser Shoukry™', Senior Member, IEEE

Abstract—In this letter, we consider the computational
complexity of bounding the reachable set of a Linear Time-
Invariant (LTI) system controlled by a Rectified Linear Unit
(RelU) Two-Level Lattice (TLL) Neural Network (NN) con-
troller. In particular, we show that for such a system and
controller, it is possible to compute the exact one-step
reachable set in polynomial time in the size of the TLL NN
controller (number of neurcns). Additionally, we show that
a tight bounding box of the reachable set is computable via
two polynomial-time methods: one with polynomial com-
plexity in the size of the TLL and the other with polynomial
complexity in the Lipschitz constant of the controller and
other problem parameters. Finally, we propose a pragmatic
algorithm that adaptively combines the benefits of (semi-
Jexact reachability and approximate reachability, which we
call L-TLLBox. We evaluate L-TLLBox with an empirical
comparison to a state-of-the-art NN controller reachability
tool. In our experiments, L-TLLBox completed reachabil-
ity analysis as much as 5000x faster than this tool on the
same network/system, while producing reach boxes that
were from 0.08 to 1.42 times the area.

Index Terms—Computer-aided control design, neural
networks, linear systems.

[. INTRODUCTION

EURAL Networks (NNs) are increasingly used to control

dynamical systems in safety critical contexts. As a result,
the problem of formally verifying the safety properties of NN
controllers in closed loop is a crucial one. Despite this, com-
paratively little attention has been paid to the rime-complexiry
of such reachability analysis. Understanding — and improving
— the complexity of NN verification algorithms is thus crucial
to designing provably safe NN controllers: it bears directly on
the size of NNs thal can be pragmatically verified.

Formal verification of NNs is usually formulated in terms of
static input-output behavior, but there are few results analyz-
ing the time complexity of such input-output verification [6],
[9]. [12]. We know of no paper that directly analyzes the
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time-complexity of exact reachability analysis for LTI systems
with NN controllers, although [11] comes closest. Note:
exact reachability is distinct from (polynomial-time) set-based
reachability methods, which consider an over-approximated set
of possible controller outputs in each state [2]. Formally, [11]
only provides a complexity resull for verifying the input-output
behavior of a NN, but the underlying methodology, star sets,
suggests a complexity analysis for exact reachability of LTI
systems. Unfortunately, that algorithm produces exponentially
many star sets — in the number of neurons — just to verify the
input-output behavior of a NN once [11, Th. 1]; this expo-
nential complexity compounds with each additional time step
in reachability analysis. Mo such analysis is provided for the
accompanying approximate star-set reachability analysis.

In this letter, we show that for a certain class of Rel.U
NN controllers — viz. Two-Level Lattice (TLL) NNs [5] -
exact (or quantifiably approximale) reachability analysis for a
controlled discrete-time LTI system is worst-case polynomial
time complexity in the size (number of neurons) of the TLL
NN controller. Thus, we show that LTI reachability analysis
for the TLL NN architecture is dramatically more efficient
{per neurcn) than the same problem with general NNs (i.e.,
exponential complexity [11]; see above), In this sense, our
results motivate for directly designing TLL NN controllers in
the first place, since reachability for a TLL NN controller is
more efficient to compute (TLL NNs are similarly beneficial
in other problems: e.g., verification [4]). Moreover, TLL NNs
can realize the same functions that general ReLU NNs can,!
50 no generality in realizable controllers is lost by this choice.

In particular, we prove several polynomial-complexily
results related to the one-step reachable set of a discrete-time
LTI system: ie., the set X, = {Ax + B.¥(x)|x € Xy} for
a given polytopic set of states” X, and a TLL controller 4.
Moreover, we consider the computation of both the exact set
Xy and an e-tight bounding box of X, . All claimed com-
plexities are worst case and with respect to a fived state-space
dimension,” n. These results are summarized as:

{i} The exacl one-step reachable set, X, . can be compuled

in polynomial time-complexity in the size of the TLL
NN (Theorem 1).

!See the TLL form of Confinnous Piecewise-Affine functions [107.

1Fﬂ[ﬁnm’c input constraints are a natoral — and obiquitous — choice, since
ReLlJ NNz are affine on convex polytopic regions; hence, our complexity
results are also expressed in terms of the complexity of & Linear Program.

The reachability (verification) problem for a NN alone is known o be
able 0 encode satisfability of any 3-5AT formula: in particular, this result
matches 3-SAT variables to input dimensions to the network [9].
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{ii) An e-tight bounding box for X, can be computed via
three algorithms with time-complexities:
a} polynomial in size of the TLL (Theorem 2); or
b} polynomial in the Lipschitz constant of the con-
troller, the accuracy, €, the norm of the B malrix
and the volume of X; (Proposition 1): or
c) the minimum complexily of (n-a) and (ii-r)
{Theorem 3); this uses polynomial-time Lipschitz
constant computation for TLLs (Lemma 1).
Here an e-tight bounding box of X;.; is one that is within
e = 0 of the exact, coordinate-aligned bounding box of X, .

In addition, we propose an algorithm that adaptively
combines notions of exact and approximate bounding box
reachability for TLL NNs in order to obtain an extremely
effective approximate reachability algorithm, which we call
L-TLLBox. We validale this method by empirically compar-
ing an implementation of L-TLLBox* with the state-of-art NN
reachability tool, NNV [12]. On a test suite of TLL NNs
derived from the TLL Verification Benchmark in the 2022
VNN Competition [1], L-TLLBox performed LTI reachability
analysis as much as 53000x faster than NNV on the same reach-
ahility problem; L-TLLBox produced reach boxes of (L0B to
1.42 times the area produced by NNV,

Related work: There is a large literature on the complex-
ity of set-based reachability for LTl systems; [2] provides a
good summary. For the complexity of LTI-NN reachability,
[11] is the closest to providing an explicit, exact result. The
complexily of approaches based on NN over-approximation
have been considered in [7], [8]. The literature on the com-
plexity of input-output verification of NNs is larger but still
small: [11] falls in this category as well; [9] is important for
its NP-completeness result based on the 3-5AT encoding; and
[#]. [6] consider the complexity of veritying TLL NNs. Other
NM-related complexity results include: computing the mini-
mum adversarial disturbance is NP hard [14], and computing
the Lipschilz constant is NP hard [13].

Il. PRELIMINARIES
A Notation
We will denote the real numbers by E. For an (n = m)
matrix (or vector), A, we will use the notation [A](; ; to denote
the element in the /* row and ™ column of A. Analogously,
the notation [A]);;.; will denote the i row of A, and [A]}. ;
will denote the /" column of A; when A is a vector instead

of a matrix, both notations will return a scalar correspond-
ing to the corresponding element in the vector. We will use

angle brackets (-} to delineate the arguments to a function
that refurns a function. We use one special form of this nota-
tion: for a function f : B" — B™ and i € [1,..., m} define
mi(f) : x = [f(x)]i .- Finally, ||| will refer to the max-norm
on ", unless otherwise specified.

8. Neural Networks

We consider only Rectified Linear Unit Neural Networks
(ReLU MNs). A K-layer ReLU NN is specified by K layer
tunctions; a layer may be either linear or nonlinear. Both types
of layer are specified by a parameler list & £ (W, b) where W
is a (d x d) mairix and b is a (d = 1) vector. Specifically, the
linear and nonlinear layers specified by ¢ are denoted by Ly

sz igithub.comiferlez FastBATLLNN

and Lg respectively, and are defined as:

Lo :RES R, Lg:ze> Wztb (1)
LR B, L} : z+> max{ly(z), 0}. (2)

where the max function is taken element-wise. Thus, a K-layer
RelLU NN function is specified by functionally composing K
such layer functions whose parameters gl i=1,...,K have
dimensions that satisfy d'' = di-1:i=2, ... K;we will con-
sistently use the superscript notation " to identify a parameter
with layer k. Whether a layer function is linear or not will be
further specitied by a set of linear layers, 1in C {1,..., K}
For example, a typical K-layer NN has 1in = {K}, which
together with a list of K layer parameters defines the NN:
A =Ly Q-r-j&uc—L o I:}.[.;-_].

To indicate the dependence on parameters, we will index
a ReLU .4 by a list of NN parameters © £ (1in, 0!, ...,
AlKy: ie., we will often write .4(0) : Be' — BT

C. Two-Level-Latlice (TLL) Neural Netwarks

In this letter, we consider only Two-Level Lattice (TLL)
RelLU NNs. Thus, we formally define NNs with the TLL archi-
tecture using the succinct method exhibited in [6]; the material
in this subsection is derived from [5]. [6].

A TLL NN is most easily defined by way of three generic
NN composition operators. Hence, the following three defini-
tions lead to the TLL NN in Definition 4.

Definition 1 {S&quﬁ}:ﬁaf { Functional) Composition): Let
A(©,) : B > Bh, i = 1,2 be two NNs with param-
eter lists ®; 2 (ling.é',... .El',-"x’}. i = 1,2 such that
d\' = dj. Then the sequential (or functional) composi-
tion of #(6,) and A(O,). ie., HO,) 0 (O, is a NN
that is represented by the parameter list @) 0 € £ (1ing U
(Ling +K1). 0, ... 6,6}, ....857), where 1in; + K, is
an element-wise sum. i i

Definition 2: Let A(@;) : BE — BE i = 1,2 be two
K-layer NNs with parameter lists 8; = (1in, (W', '), ...,
[W} : b'f},h i = 1, 2 such that g',‘ = g'; : also note the common
set of linear layers, 1in. Then the parallel composition of
LA18,) and .A(6,) is a NN given by:

oo sm (D) (4 1
(3

where 0 is a sub-matrix of zeros of the appropriate size. That
is B [|&; accepts an inpul of the same size as (both) & and
2, but has as many outputs as & and &» combined.

Definition 3 (n-element  mindmax NN5): An n-element
min network is denoted by the parameter list S, .
H(Bin,) : B" — R such that 418, )(x) is the minimum
from among the components of x (i.e., minimum according
to the usual order relation = on B). An n-element max
network is denoted by ®pyga,,, and functions analogously.
These networks are described in [5].

The Rel.Ul NNs defined in Definition 1-3 can be arranged
to define a TLL NN as shown in [4, Figure 1]. We formalize
this construction by first defining a scalar TLL NN, and then
extend this notion to a multi-output TLL NN [6].

Definition 4 (Scalar TLL NN [6]): A NN from B" — R is
a TLL NN of size (N, M) if its parameter list Ey 4 can be
characterized entirely by integers N and M as follows.

EvM 2 Omaxy © ((Brminy © ©5,) |- - . 1{Ominy © Os,,)) 0 O (4)
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wherg
o B £ ([1),0) for 8z = (W, by);
« cach El_g has the form (H)sf = ({1}, (5;
column vector of N ZEr0s, and where
"5 = livlya . Ivk
sequence [t} where i £ ?1
(N » N) identity matrix.

The affine functions implemented by the mapping £; =
millg,) for i = 1,..., N will be referred to as the local lin-
ear funcﬁnns of E.-.r,p..f; we assume for simplicity that these
affine functions are unigue. The matrices {8 = 1...., M}
will be referred to as the selector matrices of Ex . Each set
= (kell,..., N3 e (1,... NL[S{p.x = 1] is said to
be the selector set of 5;.

Definition 5 {Mulri- Gua‘pw TLL NN [6]): A NN thal maps
E" — E™ is said to be a mu]ll -output TLL NN of size

(N, M) if its parameter list 2 :.NH can be writlen as

A2 :'.\- I (3)
for m equally-sized scalar TLL NNs, E'.Nh" s BN e
will be referred to as the (output) components of =M.

Finally, we have the following definition.

Definition 6 (Non-Degenerale TLL): A scalar TLL NN
Zyu is non-degenerate if each function ¢; = milla,) (see
Definition 4) is realized on some open set. That is, for each
i=1,...,N there exists an open set V; C " such that

¥x e Vi Ay ud(x) = £;(x). (6)

. )y where O is the

for a length-N
.. ] and [y is the

n{m}
Enar = Eyull--

which

[1l. PROBLEM FORMULATION

The main object of our attention is the reachable set of a
discrete-time LTI system in closed-loop with a state-feedback
TLL NN controller. To this end, we define the following.

Definition 7 (One-Step Closed-Loop Reachable Set): Let
Xy = Axy + Buy be a discrete-time LTI system with states
x = B" and controls w; = B™. Furthermore, let X © RB" be a
compact, convex polytope, and let g @ E" — BE™ be a state-
feedback controller. Then the one-step reachable set from X,
under feedback control g is defined as:

Xep1 2 AKXy, 1) 2 {Ax + Bu(x)|x € X3). (7

For a compact, convex polylope, Xp < R" the T-step
reachable set from Xy under control p is the set X7 that is
defined according to the recursion:

XERX_.pu)t=1,...,T. (8)

In one instance, we will be interested in computing X,
exactly from X,y (or by recursive application, Xg). However,
we will also be interested in two ditferent approximations for
the reachable set X;: a one-step bounding box for X, from X,_4,
and a bounding box for X; obtained by propagating bounding
boxes from Xp. Thus, we have the following,

Deﬁm’t‘ian 8 (One-Step e-Bounding Box): Let A, B, X; and
¢ be as in Definition 7. Then a une-ﬁtep e bounding box
reachable from X, is a box By = X_,[li. ri] C B® s

1) X =R(X,p) S By and

2) for each i = 1,...,n, there exist poinls Xx; X, <

RiX;, 1) such that:

|[xiliia — 4] <€ and |[xp]ig—ril <. (@

The idea of a one-step ¢ bounding box can be extended
to approximate reachability by propagating one-step bounding
boxes recursively instead of the previous reachable set itself.

Definition 9 (e-Bounding Box Propagation): Let A, B, Xp
and g be as in Definition 7.

Let By £ Xp by convention. Then an e-bounding box
propagation of X, is a sequence of bounding boxes, Bf“.
t=10,...,7 such that:

. fnr all L=l X5 E., is an e-bounding box for the

system with imtml set of states B:{_“I.

Mote: although an e-bounding box propagation only approx-
imates the reachable set X;, the amount of over-approximation
depends only on € and the dynamics — not the controller.
Thus, any desired approximation error to X; can be obtained
by computing e-box propagations of suitably small subsets of
Xo (to compensate for the propagation of each bounding box
approximation through the dynamics).

Finally, as a consequence of considering Rel.U NNs and
polytopic state sets, our complexity results can be written in
terms of the complexity of solving a linear program (LP).

Definition 10 (LP Complexity): Let LP(gn, v) be the com-
plexity of an LP in dimension v with » inequality constraints.

This complexity is polynomial in both parameters, subject
o the usual caveats associated with digital arithmetic.

V. ExAcCT REACHABILITY FOR TLL NN CONTROLLERS

Owr first complexity result shows that exact one-step reacha-
bility for an LTT system controlled by a TLL NN is computable
in polynomial time in the size of the TLL.

Thearem f: Let A, B, and X, be as defined in Definition 7,
where X; is the inlersection of Ny, linear constraints. Moreover,
suppose this system is controlled by a state-feedback TLL NN
controller #{ E},”'.} : B* — B™ (Section 1I-C).

For a fixed state dimension, n, the reachable set X, | can be
represenied as the union of at most Om" - N?"';’n!} compact,
convex polytopes, and these polytopes can be computed in
time complexity at most {also for fixed n):

o(m - T .2 . M N2 LP(mN? + Ny, m)/n!).

Proaf: This follows almost directly from the resull in [6],
where it is shown that a multi-output TLL with parameters
Ei”ﬂ. has al mosl as many linear (affine) regions as there are
regions in a hyperplane arrangement with O(m - N*) hyper-
planes. Clearly, each of these potential regions can contribute
one polytope to the reachable set X, . According to [6], these
regions can be enumerated in time complexity:

(™2 .. M. N2 . LP(mN? 4 Ny,.n)/n!) (10

which includes the complexity of identifying the active linear
function on each of those regions [6, Proposition 4]. The LP
complexity in (10) depends on Ny, because it is necessary to
obtain the intersection of the O(m - N%) regions with X;.
Thus, it remains to determine the reachable set with respect
to the TLL s realized affine function on cach such region. The

complexity of this operation is bounded by the complexity of
transforming each such polytope through the A matrix and B

times the affine function realized by the TLL on that region.
This can be accomplished by Fourier-Motzkin elimination to

determine the resulting polytopes that add together to form
the associaled constituent "Eotympc of X:yy. This operation

has complexity Q((m - N)? [ ]

V. BOUNDING-Box REACHABILITY FOR TLL NN
CONTROLLERS
We begin with the following useful definition.

Authorized licensed use limited to: Access paid by The LIC Indne Libraries. Downloaded on March 28 2023 &t 01:31:20 UITC from IEEE Xplore. Restrictions apphy.



1108

IEEE CONTROL SYSTEMS LETTERS, WOL. 7, 2023

Fig 1 Nustration of the proof of Proposition 1.

Definition 11 {Center/Extent of X CE"); Let X CR" bea
compact sel. Then the center of X is the point x, € " such
that foreach i =1,...., 1

brlia = 3 - (minkdig +maxBdig) (D
Also, define the extent of X along coordinate i as:
ext;(X) 2 max[x — x i) (12)
=X

and the extent of X as ext(X) = max—;,_,ext;{(X).

A. One-Step ¢ Bounding Box Reachability

Now we can state our second main result: that a one-step
bounding box can be computed in polynomial time in the size
of a TLL NN controller. We provide two such results, each of
which is polynomial in different a.apccts of the problem.

Theorem 2: Let A, B, X, and .#(Ey) be as in the state-
ment of Theorem 1.

Then a one-step € = 0 bounding box from X, is computable
in time complexity at most {for fixed dimension, n):

O™ .0 . M. NP LP(mN? 4 Ny, m)/nl).  (13)

Proaf: This [ollows almost directly from the prool of
Theorem 1. For each of the convex polytopes describing the
reachable set, the Fourier-Motzkin elimination can be replaced
by 2 -n LPs to compute its bounding box; these can be com-
bined to determine an € = 0 bounding box for X, without
increasing the complexity noted above. |

The result in Theorem 2 certainly meets the criteria of
a polynomial-time computation of a one-step bounding box.
Unfortunately, the dependence on N and M in Theorem 2 is
significant despite being polynomial. However, since we are
considering only bounding box reachability, it makes sense to
regard the TLL controller as a generic Lipschilz-continuous
controller instead: this allows the dependence on ils size (o be
replaced with a de; on ils Lipschitz constant, at the
expense of additional {polynomial) dependence on the size of
the set X; and the norm of the malrix A.

Proposition I: Let A, B, X; and p be as in the statement
of Definition 7. Furthermore, suppose that g is Lipschitz
continuous on X, with Lipschitz constant at most || ]|.

Then an e-hounding box from X, is computable in complex-
ity at most (for fixed dimension, #}:

o((2-exrcxy - BN 12 5, ).

Proaf: X, can be covered by a grid of (2 - ext(X;) - 2||B] -
[|ee]l /€)™ hypercubes whose edges are of width €/(2||B||- ||z
Denote by (0 an arbitrary such hypercube, and let g. denote
its center. Now observe that for all g = O

1B(g) — Bu(gol< 18I - el - g — gell < § <. (15)

Consequently, the set ¢ 2 x|AQ + Builg.) — x|| = €} is
guaranteed to be in any e-bounding box of X, as is the exact

(14)

bounding thercof, which we denote by box{Q¥); see Fig 1.
Clearly Upbox((') is likewise so contained.

Thus, an e-bounding box from X; can be obtained by exam-
ining each @ and computing box((Q"). The latter operation
enlails computing a bounding box for AQ, which has the
complexity of LP(2 - n, n); see Fig. 1. [ |

In particular, for some problems, the quantities in (14) may
be much smaller than terms like N in (13). ln fact, this
explains why this type of result is typically not used for NN
reachability: it is computationally expensive to compute the
exact Lipschitz constant of a generic NN — indeed, it is of
exponential complexity in the number of neurons for a deep
NN. For a non-degenerate TLL NN, however, it is trivial o
compute its exact Lipschitz constant (over all of B").

Lemma I: A bound on the Lipschitz constant of a TLL NN
Eiﬂ,} over B" is computable in complexity O(m - N - n). For a
non-degenerate TLL (Definition &), this bound is tight.

Progf: This is a  straightforward  application
of [6, Proposition 3] or the related result [3, Proposition
4]. The only affine functions realizable by a TLL are those
described by its linear layer (see Definition 4). Tf the TLL is
not degenerate, then each of those is realized in its output,
hence also lower bounding its Lipschitz constanl. The claim
follows, since there are N such local linear functions per
output, each of whose Lipschitz constants can be compulted
in Oin). |

Theorem 3: Let A, B, X; and J[Eﬂ.} be as in the state-
ment of Theorem 1.

Then for any € = 0, an e-bounding box from X; can be
computed with cnm?lemt}r no more than the maximum of (13)

and (14) for ||#(Z")|| bounded according to Lemma 1

V1. THE L-TLLBOX ALGORITHM

Theorem 3 establishes a trade-off in computational com-
plexity between two methods for computing an e-bounding
box from states X;. However, il requires a commitment to the
full computational complexity of one algorithm or the other.
Moreover, the difference in computational complexity between
Theorem 2 and Proposition 1 depends on the characteristics
of the TLL controller on the set X, {assuming ext(X;) and
[|B] are fixed). If the TLL controller has relatively few linear
regions intersecting X; but a relatively large Lipschitz constant
on X;. then Theorem 2 will have lower complexity: recall that
Theorem 2 enumerates the linear regions of the TLL controller
that intersect X;. If, on the other hand, the TLL controller has
relatively numerous linear regions intersecting X; but a rela-
tively small Lipschitz constant on Xy, then Proposition 1 will
instead have lower complexity. Thus, the trade off in complexity
between Theorem 2 and Proposition | amounis to roughly the
following: reachability via Proposition | is more efficient when
the Lipschitz constant of the TLL controller yields a partition of
X; into hypercubes (see proof of Proposition 1) each of which
“typically” contains many linear regions of the TLL.

This is a salient observation in light of the way that
Proposition 1 employs the Lipschilz constant of the TLL con-
troller in question. In Proposition 1, the Lipschitz constant of
the TLL controller is really used to create a subdivision of X
into sets such that the output of the TLL controller lies within
box of sufficiently small width: see (15). However, note that
the Lipschitz constant of a TLL controller over the eatire ser
X will generally be larger than the Lipschitz constant of the

SEven when this hound is approximate, it depends only on the parameters
of one layer; for general deep RelU NNs, a boumd of similar compatational
complexity involves multiplying weight matrices of successive layers.
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TLL controller on any subset of X;. Also, there may be sub-
sets of X, where the TLL controller rapidly switches between
large-Lipschitz-constant affine functions such that its output is
nevertheless confined to a small box (e.gz., a high-frequency
saw-tooth function with small amplitude). This suggesis the
tollowing improvement on Theorem 2 and Proposition 1: iden-
tify large subsets of X; where the outpul of the TLL controller is
bounded within a small box — thereby replacing the enumeration
of many linear regions of the TLL controller, as in Theorem 2,
or the enumeration of many “Lipschitz-width™ hypercubes, as
in Proposition 1.

Thus, we introduce L-TLLBox as a practical, “adaptive”
algorithm, which implements this strategy via the recent tool
FustBATLLNN [4]. In particular, FastBATLLNN provides a fast
algorithm for obtaining an e-tight bounding box on the output of
a TLL controller subject to a convex, polytopic input constrainl.
This means that FastBATLLNN can be used 1o directly and
efficiently identify subsets of X; where the outputl of the TLL
controller is confined to a small box, without enumerating all of
the linear regions of the TLL. That is, for a convex, polylopic
set P C X, and a box B = X,[I;, r;] FastBATLLNN can
efficiently decide the query:

v e PAET N € B (16)

by an algorithm that has half the crucial exponent of the
algorithms of Theorem 1 and Theorem 2 [6] — i.e., without
enumerating the afline regions of the TLL. Thus, for P as
above, a tight bounding box on .47 EE.T.-]{P] can be obtained
by roughly log invocations of FastBATLLNN in a binary search
on the endpoints of a bounding box.

In this context, the structure of L-TLLBox can be summarized
as follows. Start with a hypercube Qf of edge length 2 -ext(X;),
so that @Y is large enough to capture the whole set X;. Then use
FastBATthN to determine a sufficiently tight bounding box on
the set A7 Ema-}(Q? MX;). Il this bounding box is small enough
that its endpoints differ by less than /|| B|| from its center (see
{(15)), then the reachable bounding box, By can be updated
directly as in Proposition |. Otherwise, Q? should be refined
into 2" hypercubes, each with half its edge lengths, denoted
by Q;. p=1,...,2" and the process is repeated recursively
on each. As above, the recursion stops for a hypercube Qg at
depth d only if FastBATLLNN returns an bounding box for
AEFQ4 N X,) whose endpoints are within e/[|B].

This basic recursion is described in Algorithm 1. Three
functions in Algorithm [ require explanation:

« BEox(P) computes an exact bounding box for the convex

polytopic set P using LPs;

+ Subdivide(Q, p) retums the p™ hypercube obtained by

splitting each edge of the hypercube 7 in half;

« FastBATLLNN(Z!™. P, ) returns an e-tight bounding

box on the set A(Zy ) (P).

Formally, we have the following Theorem, which describes
the worsi-case mntime of L-TLLBox.

Theorem 4: Let A, B, X, and .4{E{") be as in the state-
ment of Theorem 3.

Then for any € = 0, L-TLLBox can compute an € bounding
box from X; with a worst-case time complexity of

0( loga [¢ - [ AENII - ext(Xs) - log, [ ]
m.K.zﬁ’-n.R-M*$.LP{N+N&,”}) (7

where K = [loga(2 - ext(X,) Hﬂj’ﬂ[ﬂ.

Algorithm 1: L-TLL Box Core Recursion

e =0

A an {n = n) matrix

& an (r = m) matrix

X; a compact, convex polytope of states

Es.mj‘ parameters of a TLL NN lo verify
output: By = Ry Ui ri). an e-bounding box from X;

1 global d — 0

1 global By £ X0 [l 7] < X2 [00, —20]

3 funclion LTLLBoX (¢, A, B, Xi, Sy}

input :

4 d+«—d+1// Increment depth counter
s Qfm-u! +— BEox{Xj)
1 forpim 1,...,2" dn
7 £ subdivide (Z_{Wﬂl into 2" hypercubes
" @it + subdivide(gd . M
L] f* Get a bounding box on TLL output to
€/2 error for inputs in Qg"'j X ®/
1w TLLBx « FastBATLLNN (24, 9+ nX;, §)
" if width (TLLBxX} < &/(2- §B]) then
12 f+ Cubtput of TLL is small encugh on
4*! that we can update Bryg =/
13 foriim1,.._, n duo
14 if MiniﬂBEnxﬁAQg'Hj]“I:i} - Min{[TLLEx
Fii:1? < 1 then
15 | &+ Min{[TLLBx Jj .}
it end
i if Max | [BROX (AQIT) [} + Mac{[TLLBx
[i,:]} = ri then
i ri + Maxt ([TLLEx Jljip)
L] en
» end
b1 return
n else // Heed to refine on deﬂ
5 | LriiBoxie, A, B @3 Xy B
E! end
= end
% end

Proaf: L-TLLBox recursively subdivides a hypercube of
edge length at most 2 . extiX;) into 2% hypercubes with each
recursion. Let d denote the number of recursions, so that at
depth d, L-TLLBox has created at most 297 hypercubes. Let

P =1, 24" denote the hypercubes at depth d.

In the worst case, L-TLLBox must recurse on every single
hypercube at each depth until all of the resultant subdivided
hypercubes have edge length at most 2-ext(X,)- (2| B - ||| /€.
This explains the factor K-2%"; the complexity at each depth is
added to the runtime, so the cumulative runtime is dominated
by the runtime for the largest recursion depth.

On any given subdivided hypercube, Qg, the complexity
of L-TLLBox is dominated by using FastBATLLNN in a
binary search on each of the m real-valued TLLs compris-
ing .4 E}ﬂi}, This is necessary to determine an € /2 bounding
box on the output of A7 Ei.’_’ﬂ} when ils input is constrained
o the sel Qf; Since the Lipschitz constant of ‘V(Ek."jﬂ,}
is known, the invocations of FastBATLLNN on each out-
put is associated with a binary search over an interval of
width 2« [ AEVIDI - 2 - ext(X)/2¢ until iterations of the
search are lie in an interval of width /2. Thus, each output
requires

[1og, (¢ - 1AEEDI-extxp/2=)] a8
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Fig 3 Example reachability box progressions computed by
L-TLLBox (25 =sec) and NNV (139000 sec); this was the sole
N = 16 reachability sequence completed by NNV

invocations of FastBATLLNN, so the total number of invoca-
tions of FastBATLLNN is less than:

0(togs[e - I AEII - ext(x,) - Tog, [ =181 ]])
From [4], each invocation of FastBATLLNN has complexity:
n-M-N" LP(N + Ny, n)/n!. (19)
This explains the formula (17). n

Vil. EXPERIMENTS

To evaluate L-TLLBox as an LTI reachability tool, we used
it to perform multi-step bounding box propagation on a num-
ber of TLL NN controllers; see Definition 9. We compared the
results to NNV's [12] approximate reachability analysis set-
ting. For this evaluation we selected 40 networks from the TLL
Verification Benchmark in the 2022 ¥NN competition [1]: the
first 10 examples from each of the sizes N = M = §, 16, 24
and 32 were used, and these TLLs were converted to a fully-
connected Tensorflow format that NNV could import. Each
TLL had n = 2 inputs and m = 1 output, so we took these
as our state and control dimensions, respectively and gen-
erated one random A and B matrix for each TLL NN. We
likewise generated one polytopic sel of states to serve as Xy for
each TLL/systemn combination. Reachability analysis was per-
formed on both tools for T = 3 discrete time steps. Both tools
were given at most 4 days of compute time per TLL/system
combination on a standard Microsoft Azure E2ds v3 instance;

this instance has one CPU core running at 2.8GHz and 16Gb
of RAM and 32Gb swap.

The execution lime results of this experiment are summa-
rized by the box-and-whisker plot in FFig. 2. L-TLLBox was
able o complete all reachability problems well within the
timeont. However, NNV only completed the 10 reachability
problems for size N = 8 and one reachability problem for
size N = 16; it timed out at 4 days for all other problems.
On problems where both tools completed the entire reacha-
bility analysis, L-TLLBox ranged from 32x faster (the first
instance of size N = 8) lo 5,392x faster (the commonly com-
pleted instance of N' = 16). For problems that both algorithms
finished, the final reachability boxes produced by L-TLLBox
were anywhere from 0.08 to 1.42 times the area of those pro-

duced by NNV, Fig. 3 shows one sequence of reach boxes
oulpul by L-TLLBox and NNV.

VI CoNcLUSION

In this letter, we presented several polynomial complex-
ity results for reachability of an LTIl system with a TLL NN
controller, including L-TLLBox; these results improve on the
exponential complexity for the same reachability problem with
a general NN controller, and thus provide a motivation for
designing NN controllers using the TLL architecture. As a

result, there are a numerous opportunities for future work
such as: considering reachability for more general convex sets

{e.g., ellipsoidal sets), and generalizing FastBATLLNN so that
L-TLLBox can be extended to exact reachability.
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