
Q-Functionals For Value-Based Continuous Control

Bowen He *1, Sam Lobel *1, Sreehari Rammohan *1, Shangqun Yu2, George Konidaris1,
1 Brown University

2 University of Massachusetts, Amherst
bowen he@brown.edu, samuel lobel@brown.edu, sreehari rammohan@brown.edu,

shangqunyu@umass.edu, gdk@cs.brown.edu

Abstract
We present Q-functionals, an alternative architecture for con-
tinuous control deep reinforcement learning. Instead of re-
turning a single value for a state-action pair, our network
transforms a state into a function that can be rapidly evalu-
ated in parallel for many actions, allowing us to efficiently
choose high-value actions through sampling. This contrasts
with the typical architecture of off-policy continuous con-
trol, where a policy network is trained for the sole pur-
pose of selecting actions from the Q-function. We represent
our action-dependent Q-function as a weighted sum of ba-
sis functions (Fourier, Polynomial, etc) over the action space,
where the weights are state-dependent and output by the Q-
functional network. Fast sampling makes practical a variety
of techniques that require Monte-Carlo integration over Q-
functions, and enables action-selection strategies besides sim-
ple value-maximization. We characterize our framework, de-
scribe various implementations of Q-functionals, and demon-
strate strong performance on a suite of continuous control
tasks.

Introduction
The ultimate product of a successful reinforcement learn-
ing system is a policy that performs well in interacting
with the environment, as measured by expected cumulative
discounted reward. A dominant paradigm in reinforcement
learning is to derive policies from a Q-function (Watkins and
Dayan 1992) that estimates the expected cumulative reward
for taking a given action. When the number of actions avail-
able is finite, a strong policy can be derived by enumerating
all action-values for a given state and choosing the one with
the highest value. However, enumeration is impossible when
there are large or infinite possible actions, for example when
actions are drawn from a continuous vector space. This is the
natural description of, for example, robotic locomotion and
control; significant effort has therefore gone into alternative
approaches for action-selection in these domains (Gu et al.
2016; Asadi et al. 2021; Lillicrap et al. 2015). A common
framework for so-called continuous control problems is to
train a separate policy network that selects actions according
to some criteria of the Q-values (Fujimoto, van Hoof, and
Meger 2018; Haarnoja et al. 2018a).

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The gradient update for a policy network comes com-
pletely from the Q-function, and as such it essentially sum-
marizes information about the Q-function for a given state
so as to efficiently produce high-value actions. For example,
standard practice is to train a policy network to estimate the
maximum-valued action for any given state(Lillicrap et al.
2015). The quantities policy networks estimate are difficult
to calculate on a per-state basis, so policy networks can be
thought of as amortizing the expensive computation of find-
ing desirable actions: the training procedure is expensive,
but it allows actions to be identified with a single pass of
a neural network. There are two potential pitfalls of this
framework. First, since the policy network is not reinitial-
ized after every Q-function update, at any given timestep
most of the policy training has been done on old versions of
the Q-function. The policy network is therefore maximizing
a stale estimate of action-value. Second, policies are gener-
ally either deterministic or sampled from a tight distribution
around the single highest valuable action. Therefore, it is
unlikely for the policy to sample two high-value actions if
they are too far apart from each other (Tessler, Tennenholtz,
and Mannor 2019). This may limit exploration as well as the
robustness of the value function. Perhaps most importantly,
we show later that even a well-trained policy network is less
effective than previously thought at its assigned task of max-
imizing Q-values.

We take a different perspective on this problem: instead of
training a network to amortize expensive action-value com-
putations, we propose a network architecture that ensures
these evaluations are cheap to do in parallel. This opens up
a new avenue for action-selection: instead of using a pol-
icy network, we can simply evaluate many actions in par-
allel and choose from them one with high value. Since the
policy is directly derived from Q-values at each timestep it
always reflects the most current action-value estimates. In
addition, random sampling can easily generate high-value
actions from throughout the action-space.

We introduce a class of Q-functions we call Q-functionals
that allow for efficient sampling. A functional is a function
that returns another function; as such, a Q-functional trans-
forms a state into a function over only the action space, such
that Q-values for many actions can be evaluated in parallel
and with little overhead. Specifically, we compute Q-values
as the dot product between state-dependent coefficients and

an expressive basis representation of an action; thus, evalu-
ating multiple actions for a state reduces to a single matrix
multiplication. We describe a variety of implementations of
this architecture, investigate its speed and effectiveness at
sampling and action-maximization, and demonstrate com-
petitive performance on a suite of continuous control rein-
forcement learning tasks.

Background
This work examines sequential decision making problems
represented as Markov Decision Processes (MDPs) denoted
by ⟨S,A, T, R, P0, γ⟩, where S ,A and γ are the state space,
action space, and the discount factor, respectively (Sutton
and Barto 2018). The transition and reward functions are
given by T (s, a) and R(s, a) respectively, and P0(s) is the
initial state distribution. We seek to learn an action-selection
strategy, or policy π : S → A, resulting in high cumulative
discounted reward.

For a given policy π, the state-action value function, or
Q-function, is defined as:

Qπ(st, at) = Eπ[R(st, at) + γV π(st+1)],

where V π(s) is the expected value of following policy π
from state s:

V π(s) = Ea∼π(s)[Q
π(s, a)].

We also investigate τ -Entropy-Regularized RL (ER-RL),
in which case the value of a state is regularized by the en-
tropy of the current policy (Schulman, Chen, and Abbeel
2017; Haarnoja et al. 2018b):

V π
ENT(s) = Ea∼π(s)[Q

π(s, a)− τ log(π(a|s))],
where τ controls the degree of regularization.
When we are interested in maximizing cumulative re-

ward, we can derive a policy from a Q-function by choosing
the maximum-valued action at every state:

πQ(s) = argmax
a

Q(s, a).

A common method for iteravely improving a Q function
parameterized by θ is through bootstrapping (Sutton 1988):

θ ← θ + αδ∆θQ̂(s, a; θ)

where δ = r + γV π(s′)− Q̂(s, a; θ), (1)

where α is the step-size and (s, a, r, s′) tuples are drawn
from experience. The fixed point of this update equation is
Q∗, the Q-function that describes the optimal policy π∗:

Q∗(st, at) = Eπ∗ [R(st, at) + γV π(st+1)].

Central to this process is deriving a policy from a Q-
function through maximization, or related techniques. When
A is a set of discrete actions, this maximization can be done
easily by comparing the Q-value for each action (Mnih et al.
2015). Alternatively, this work focuses on the problem of
continuous control, where actions are drawn from a contin-
uous vector space.

Related Work
Continuous-control is concerned with domains that have
continuous action spaces; thus, instead of choosing from a
finite set of actions, an agent must output a vector of contin-
uous entries at every timestep. This difference necessitates
characteristically different agent architectures from discrete-
action agents such as DQN.

Policy-gradient (PG) methods are a dominant paradigm
of continuous control due to their expressive policies and
end-to-end training scheme (Sutton et al. 1999). Modern PG
methods represent policies as deep neural networks, that are
trained to output high-valued actions using a gradient sig-
nal produced by the Q-function. Deterministic PG methods
output a single action, while stochastic PG methods gener-
ally parameterize a simple distribution (such as Gaussian)
that can be sampled during action-selection (Haarnoja et al.
2018a). The output of a “perfectly” trained policy network
would maximize the value (as calculated by the Q-function)
at any given state. The chief observation motivating our
work is that throughout training, this is far from the case.

Standard PG methods require a single evaluation of the
policy network to produce an action, and a single evalua-
tion of the Q-network to compute the value of that action.
A fruitful line of research involves incorporating sampling
methods, which compute the value of multiple actions, for
either improved action-selection or better value-estimation.
Prior work utilizes the cross-entropy method (CEM), a zero-
order sample-based optimization method, to choose actions
that have higher value than the original action output by the
policy network (Simmons-Edler et al. 2019). The Expected
Policy Gradient (EPG) framework reduces variance in the
value computation through Monte Carlo integration over the
policy’s outputs (Ciosek and Whiteson 2018). Evaluating
actions from a distribution around the policy’s output has
been found to reduce overfitting of a policy network to a Q-
function (Fujimoto, van Hoof, and Meger 2018). All of these
methods, however, are limited to evaluating small numbers
of action-values in practice, because every computed value
requires an additional evaluation of the Q-function’s neural
network.

Our method does away with the policy network alto-
gether, putting it in the class of value-function only continu-
ous control. We list other examples from this class for com-
pleteness. “Continuous Action Q-Learning” (Millán, Posen-
ato, and Dedieu 2002) uses mixed-integer programming to
solve for maximal valued actions (though in practice run-
time considerations stop this at approximately maximal) in
piecewise-linear value functions (such as neural networks
with rectified linear activation functions). “Normalized Ad-
vantage Functions” analytically select maximum-valued ac-
tions by restricting their action-value function to quadratic
polynomials (Gu et al. 2016). Perhaps the most similar
method to ours is RBF-DQN (Asadi et al. 2021), which
computes value as the weighted sum over learned centroids,
and describes a method to select approximately maximum-
action values. The primary difference in our approach com-
pared with past value-function only methods is the focus
on sampling, which allows for a variety of action-selection
strategies besides simple maximization, as well as use for

variance-reducing Monte Carlo techniques.

Q-Functionals
Our method is based on a simple premise: many of con-
tinuous control’s subproblems described above (action se-
lection/maximization, value-estimation, variance reduction)
can be improved if we can rapidly compute the value of
many actions.

Q-functionals are a way of expressing Q-functions so that
many action-values can be evaluated in parallel for a given
state. Consider a traditional deep Q-function, represented by
a neural network:

Q(s, a) : (S ×A)→ R.
A standard design for such a Q-function in continuous

control is to concatenate states and actions, and then pass
the concatenated vectors through a neural network that out-
puts their estimated values. For this standard architecture,
evaluating two action-values for the same state takes twice
as many operations as evaluating one. A Q-functional breaks
the computation of action-values into two parts: first, a state
is transformed into parameters that define a function over
the action space. Then, this function is evaluated for the ac-
tion(s) in question:

QFUNC(s, a) : S → (A → R). (2)
We design these functions such that while the per-state

computation may be expensive, the per-action computation
is relatively cheap. One simple way to represent these func-
tions is by learning state-dependent coefficients of basis
functions over the action space. As a brief example, a one-
dimensional polynomial basis function represents a scalar
action a by the vector [1, a, a2, . . .]. An appropriate choice
of basis function also adds an inductive bias to learning
action-values: though we may expect values to have com-
plex dependence on state (especially when the state is high-
dimensional such as in image representations), in general
we expect values to be relatively smooth with respect to the
action dimensions. In Figure 1, we visualize the difference
between the two architectures as differing places where the
actions enter the computation.

Neural Network

s,a

Q(s,a) Coefficients

s

Neural Network

Q(s,a)

A

Figure 1: Network architecture of traditional Q-function
(left) and Q-functional (right)

Q-Functional Implementations
We describe three implementations of Q-functionals using
different basis functions. First, a Q-functional calculated us-
ing the Fourier basis is shown below in equation 3. The

Fourier basis representation of states had great success when
used for Q-learning in small state spaces (Konidaris, Os-
entoski, and Thomas 2011); we rely on the same induc-
tive bias over the moderately-sized action spaces typical of
continuous control. L represents the difference between the
max and min action space value allowed, xi(s), yi(s) are
the state-dependent coefficients output by the Q-functional
network. C is a matrix of frequencies for the Fourier ba-
sis. For a rank R Q-functional using the Fourier basis
and operating in an environment with action dimension
d, the full set of frequencies is represented by the Carte-
sian product {0, 1, 2, ..., R}d. In practice however, we find
that limiting the set of frequencies to those where the sum
of all elements in the frequency is less than or equal to
the rank provides sufficient generalization. Formally, C ={

Ci = {0, 1, 2, ..., R}d|
∑d

j=0 Cij ≤ R
}

QFUNC(s, a) =
∑

Ci∈C

xi(s) sin(
π

L
a ·Ci)+yi(s) cos(

π

L
a ·Ci).

(3)
Crucially, the learned coefficients xi(s) and yi(s) are

computed by the Q-functional neural network using only the
state as input. Each action-evaluation for that state then re-
uses these same coefficients. Thus, Q-functionals can com-
pute many action-values for the same state with only a sin-
gle neural network evaluation. As demonstrated later, this
allows for significantly faster sampling of Q-values.

We can similarly define a second basis over polynomials:
we represent our action-value function such that the total
polynomial-order is less than some R:

QFUNC(s, a) =
∑

Ci∈C

xi(s)
d∏

j=0

a
Cij

j . (4)

A third implementation of Q-functionals is the Legendre
basis. To encourage feature-independence, we can orthogo-
nalize the polynomial basis over A by extending the Legen-
dre polynomials to multiple dimensions (see the Appendix
for details on the Legendre basis). Let Li(x) be the ith-order
Legendre polynomial. Then, each frequency vector defines
an orthogonal polynomial:

L̂Ci(a) =

d∏
j=0

LCij (aj),

and our Q-function can be calculated from learned coeffi-
cients:

QFUNC(s, a) =
∑

Ci∈C

xi(s)L̂Ci
(a). (5)

Previous work demonstrates that action-values can be ana-
lytically maximized for quadratic polynomials over actions
(R = 2) (Gu et al. 2016). Without a policy network, how-
ever, Q-functions defined as such are restricted to convex
functions over actions which can be overly limiting. Our
sampling framework can derive a strong policy from more
complex, higher-order polynomial Q-functions. In addition,

Algorithm 1 Q-functional action-evaluation / selection
Set rank, BASIS, numRandom
Initialize model(rank, BASIS, θ)

Function EvaluateManyActions(s, A):
coefficients = model.getCoefficients(s)
representations = BASIS.getRepresentation(A, rank)
actionValues = matmul(A, coefficients)

Function getBestActionAndValue(s, A):
A = drawRandomActions(1, numRandom)
actionValues = EvaluateManyActions(s, A)
return A[argmax(actionValues)], max(actionValues)

as described in the next section, sampling allows us to calcu-
late state-values with various methods that work better than
simple maximization.

We note a simple interpretation of each method listed
above: the Q-function is computed as the dot product be-
tween an action-representation and a vector of learned co-
efficients. For example, the Q-value of rank-1 polynomial
functional is simply an affine linear function over the action
space. Higher-order functions allow trading off more expres-
sive function classes with evaluation speed.

Extracting Policies and State-Values from
Q-Functionals
In standard continuous-control RL, the policy network
is used for two distinct purposes: calculating state-
value functions (bootstrapping) and action-selection (policy-
evaluation). Here we describe how a variety of strategies for
both can be implemented using sampling.

The most common strategy for both is action maximiza-
tion (Lillicrap et al. 2015): aiming to find the highest-value
action for every state, and using this for both bootstrapping
and action-selection:

π(s)← argmax
a∈A

Q(s, a) ; V (s) = Q(s, π(s)).

Instead of training a policy network, we can directly esti-
mate the maximum through sampling k actions:

π(s) = argmax
ai∈Ak

Q(s, ai) ; V (s) = max
ai∈Ak

Q(s, ai).

(6)
This sampling scheme is directly analogous to how ac-

tions are selected in discrete-action domains. These func-
tions are detailed in Algorithm 1, and can be used as drop-in
replacements for backpropogation-trained policy networks
in the learning process.

For ER-RL, the optimal policy is proportional to the
Boltzmann distribution over Q-values, as this optimally
trades off between policy entropy and expected return
(Schulman, Chen, and Abbeel 2017). Thus, given a trained

Q-function, the optimal policy and associated value are
(Haarnoja et al. 2017):

π(s) = Pr(a|s)← exp{Q(s, a)/τ}∫
A exp{Q(s, a)/τ}

V (s) =

∫
A
π(s)Q(s, a)− log(Pr(a|s))

= τ log
(∫

A
exp{Q(s, a)/τ}

)
.

Due to limitations imposed by common representations
of stochastic policies (often constrained to state-dependent
normal distributions over actions), this relation between
policy and value cannot be achieved by standard policy-
parameterizations (Haarnoja et al. 2017). By contrast, we
can consistently estimate these qualities through Monte
Carlo sampling:

π(s) = Pr(a|s) = exp{Q(s, a)/τ}
1
k

∑
ai∈Ak exp{Q(s, a)/τ}

V (s) = τ log
(1
k

∑
ai∈Ak

exp{Q(s, a)/τ}
)
. (7)

In our experiments, we derive a robust policy π(s) and
value function V (s) through a “top-n of k” approach: we
evaluate k random actions, and represent our policy and
value by sampling from the best n actions during interaction
with the environment and averaging these n values during
bootstrapping updates for stability.

π(s) ∼ top-n
{
Q(s, a1), ...Q(s, ak)

}
V (s) = mean

[
top-n

{
Q(s, a1), ...Q(s, ak)

}]
. (8)

This is a similar strategy to “target policy smoothing” (Fu-
jimoto, van Hoof, and Meger 2018), which computes V (s)

Figure 2: Quality of actions selected by trained policy net-
work, and random sampling, on the LunarLanderContinuous
task.

Figure 3: Speed comparison of 100 sets of action-evaluations of the same states (batch size 1024), for varying number of action-
samples. Left: samples up to 10,000. Right: zoomed in sampling up to 100.

as a single-sample mean of the Q-values surrounding the
policy-networks output. We find that averaging over many
values, instead of simply choosing one, leads to decreased
noisiness of V (s) for the Bellman target in the update, and
superior performance at maximizing reward.

Comparisons
The core claim of this paper is that by structuring our Q-
functions as functionals we gain access to superior action-
selection strategies that standard architectures cannot effi-
ciently implement: that policy networks do not effectively
maximize the Q-function they are trained on, and that
Q-functionals allow for significantly larger sampling with
the same computational budget. All experiments are done
on tasks from the OpenAI Gym continuous control suite
(Brockman et al. 2016). Reproducing code can be found at
the linked repository1.

Evaluating Policy Networks
We begin by investigating the implicit assumption that poli-
cies trained through gradient descent are effective at maxi-
mizing the output of the Q-function they are trained on. We
can quantify this concept by comparing the Q-value of the
policy network’s output with the distribution of Q-values of
randomly sampled actions. A well-trained policy network
should consistently output actions with higher value than the
large majority of random actions. We train three instances
of a DDPG agent on the “LunarLanderContinuous-v2” task,
and for each one collect a dataset of 10,000 states from on-
policy rollouts. For each state, we compute the Q-value of
the policy’s output using the agent’s Q-function. We then
compare this to the value of 10,000 randomly sampled ac-
tions, and determine the fraction of these for which the pol-
icy’s output has lower value (Figure 2). The horizontal red
line indicates the median action’s value at each state. This
shows that in 15% of states, on average the policy network
selects an action with lower value than one chosen at ran-
dom. Furthermore, the policy’s output is only in the top

1Code available at https://github.com/samlobel/q functionals

decile of action-values in 5% of states. This enormous gap
between a policy network’s implied function and its empiri-
cal behavior suggests that alternative action-selection strate-
gies can prove useful.

By contrast, the orange line represents the Q-functional
policy from Equation 6, that selects the highest-valued ac-
tion from a pool of 1,000 random samples. The output of
this policy is better than a single random action 99.9% of
the time. We include similar figures for a variety of environ-
ments in the Appendix.

Sampling Q-functions Versus Q-functionals
As demonstrated in the previous section, the standard Q-
function architecture can naı̈vely evaluate many actions by
simply passing the same state to its input many times. How-
ever, Figure 3 demonstrates the speedup of using the Q-
functional architecture for multiple evaluations. For a sin-
gle batch of 1024 states, we evaluate an increasing number
of actions on the Hopper task (action dimension of 3) for
100 iterations. We find that a rank 3 Legendre Q-functional
evaluates actions roughly 3.5 times faster on a single Nvidia
2080-ti GPU than a neural network that takes in both states
and action as inputs. In addition, the lightweight action-
evaluations of Q-functionals allows for larger sampling size:
the standard architecture runs out of GPU memory with
4,000 samples, while the Fourier Q-functional can evalu-
ate up to 10,000 actions in a single pass. In the low-sample
regime (up to 50 actions per state), Q-functionals evaluate
in near constant time, while the standard architecture shows
the expected linear dependence.

These advantages are substantially improved when intro-
ducing a simple optimization: instead of sampling directly
from the action space, we pre-compute the basis representa-
tions for a large amount of actions (one million in our exper-
iments) and sample from this distribution instead. This opti-
mization is especially helpful for the Legendre basis, which
requires a more expensive computation than Fourier or Poly-
nomial. By precomputing the representations, the speed of
action-evaluation is decoupled from the complexity of the
basis. Using this procedure, we can evaluate actions us-

Figure 4: Performance on 8 tasks from the OpenAI continuous control suite. The shaded region represents the standard error
over 8 runs. Colors correspond to the same methods across domains. One iteration corresponds to 10,000 environment steps.

ing a rank-3 Legendre Q-functional more than 20 times as
quickly, and with less than one tenth the memory-footprint,
as a standard Q-function. This procedure has minimal to
no effect on reinforcement learning behavior, as confirmed
in the Appendix, and we use precomputed representations
through the remainder of the experiments.

Experimental Results
In this section, we favorably compare our method to existing
off-policy policy-gradient methods, on both the standard and
the entropy-regularized RL objective.

Benchmarking
We compare Q-functionals to two popular and strong off-
policy policy-gradient baselines:

Deep Deterministic Policy Gradient (DDPG) is a de-
terministic policy gradient method which relies on a deter-
ministic policy for action-selection and bootstrapping (Lilli-
crap et al. 2015). The policy network is trained to maximize
the Q-function using batch gradient descent, and the value-
function is calculated from the Q-function using the policy
network’s output.

Twin Delayed DDPG (TD3) is an extension of DDPG
that addresses issues of overestimation bias and overfitting
present in the original algorithm (Fujimoto, van Hoof, and
Meger 2018). They do this with the addition of two com-
ponents. To address overestimation bias, the Q-function is
parameterized by two networks, and a state’s value is com-
puted as the minimum of both, evaluated on the policy’s
output. To address overfitting, TD3 introduces target policy
smoothing, which adds Gaussian noise to the policy’s output
for use in bootstrapping.

We construct two versions of our architecture for fair
comparison, analogous to the two policy gradient methods
above. The first computes Q-values using a single network,
and chooses the maximum-valued action (Equation 6) to
compute values for bootstrapping, analogously to DDPG.
Like TD3, the second version computes Q-values using the
minimum of two networks to address overestimation bias.
To address overfitting, in this version we calculate value us-
ing the “top-n of k” strategy detailed in Equation 8.

In Figure 4, we compare these four methods on the
OpenAI Gym continuous control suite (Brockman et al.
2016; Todorov, Erez, and Tassa 2012). Tasks have action-

dimension ranging from 1 (Pendulum) to 17 (Humanoid).
For all benchmark experiments, we use the Legendre basis
with rank 3, and use 1,000 samples for action-selection both
in bootstrapping and interaction. Details on environments
and architectural choices can be found in the Appendix. We
find that Q-functionals compare favorably to their policy-
gradient analogues across a variety of tasks. Somewhat sur-
prisingly, Q-functionals perform best on Ant and Humanoid,
the two tasks with the highest action-dimension. This is con-
trary to popular wisdom that sampling methods are unsuit-
able for large vector spaces, and perhaps points to policy
gradient methods sharing the same flaw.

Maximizing Regularized Objectives

Sampling-based value estimation allows for additional flex-
ibility in representing policies over the action space. In-
stead of being restricted to policies that are either de-
terministic (Lillicrap et al. 2015), or parameterize a sim-
ple state-dependent distribution (Haarnoja et al. 2018a), Q-
functionals can sample actions from arbitrary functions over
their Q-values. We demonstrate the utility of this approach
to ER-RL, under which the Boltzmann distribution over Q-
values Q(s, a) maximizes a state’s value V (s) (Schulman,
Chen, and Abbeel 2017).

We compare a rank 3 Q-functional using the Fourier ba-
sis to Soft Actor Critic (SAC), a popular continuous con-
trol algorithm for solving ER-RL problems (Haarnoja et al.
2018a), on a simple bandit task (Slivkins et al. 2019). The re-
ward for a given action is the sum of two Gaussian functions
centered around −0.5 and 0.5. Figure 5 shows the learned
policies of both algorithms. The optimal policy under ER-
RL, shown in yellow, gives equal weight to each peak of the
bimodal distribution. Because the SAC agent represents its
policy as a Gaussian distribution squashed to the valid action
space, it cannot represent the bimodal nature of the optimal
policy. By contrast, using Equation 7 to derive a policy al-
lows the Q-functional agent to fit the general shape of the
optimal policy.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Action

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

P
ro

ba
bi

lit
y…

D
en

si
ty

Derived…Policies…of…Q-functionals…and…SAC

Q-Functional…(Fourier,…Rank…3)
SAC
Optimal

Figure 5: Policies for SAC and Q-functional on a bandit task

Figure 6: Performance versus samples used to select max-
value action on the Humanoid-v2 environment. Shaded re-
gion represents the standard error over 2 runs.

Performance with Increased Sampling
As the number of samples used to select actions increases,
so does the average Q-value of the returned action. In Fig-
ure 6, we investigate whether increased sampling also leads
to better performance on the Humanoid task. We train Q-
functional agents using the configurations from our bench-
mark experiments, and evaluate their performance as we
vary the number of samples used in action-selection. On this
task, we see drastic improvement as sampling increases to
1,000, and then continued diminishing returns as it contin-
ues to increase.

Conclusion
The translation between a Q-function and a policy is a cen-
tral research question in continuous-control reinforcement
learning. In this work, we highlight the substantial room for
improvement in this question over the currently accepted
method of policy-gradients. We introduce Q-functionals as
a general framework for Q-functions that can evaluate many
actions in parallel. Q-functionals allow for far greater flex-
ibility in how one derives a policy from a Q-function, and
achieve impressive results even on tasks with extremely
high action dimensions. In addition, under the Q-functional
framework, a variety of sample-based techniques become
much more practical. We view the flexibility of this frame-
work as well as its strong empirical performance as an at-
tractive alternative to policy-gradient methods in continuous
control.

Acknowledgements
We thank Cameron Allen, Saket Tiwari, Rafael Rodriguez-
Sanchez, and other members of BigAI for their valuable
input. This research was supported in part by NSF GRF
#2040433, NSF grants #1717569 #1955361 and NSF CA-
REER award #1844960. This research was conducted us-

ing computational resources and services at the Center
for Computation and Visualization, Brown University. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. The content is solely the respon-
sibility of the authors and does not necessarily represent the
official views of the NSF.

References
Asadi, K.; Parikh, N.; Parr, R. E.; Konidaris, G. D.; and
Littman, M. L. 2021. Deep radial-basis value functions for
continuous control. In Proceedings of the Thirty-Fifth AAAI
Conference on Artificial Intelligence, 6696–6704.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Ciosek, K.; and Whiteson, S. 2018. Expected policy gradi-
ents. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.
Fujimoto, S.; van Hoof, H.; and Meger, D. 2018. Address-
ing Function Approximation Error in Actor-Critic Methods.
arXiv e-prints, arXiv:1802.09477.
Gu, S.; Lillicrap, T.; Sutskever, I.; and Levine, S. 2016. Con-
tinuous Deep Q-Learning with Model-based Acceleration.
arXiv e-prints, arXiv:1603.00748.
Gu, S.; Lillicrap, T.; Sutskever, I.; and Levine, S. 2016. Con-
tinuous deep q-learning with model-based acceleration. In
International conference on machine learning, 2829–2838.
PMLR.
Haarnoja, T.; Tang, H.; Abbeel, P.; and Levine, S. 2017. Re-
inforcement learning with deep energy-based policies. In In-
ternational Conference on Machine Learning, 1352–1361.
PMLR.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018a.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018b.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In International
conference on machine learning, 1861–1870. PMLR.
Konidaris, G.; Osentoski, S.; and Thomas, P. 2011. Value
function approximation in reinforcement learning using the
Fourier basis. In Twenty-fifth AAAI conference on artificial
intelligence.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv e-prints,
arXiv:1509.02971.
Millán, J. D. R.; Posenato, D.; and Dedieu, E. 2002.
Continuous-action Q-learning. Machine Learning, 49(2):
247–265.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533.

Schulman, J.; Chen, X.; and Abbeel, P. 2017. Equivalence
between policy gradients and soft q-learning. arXiv preprint
arXiv:1704.06440.
Simmons-Edler, R.; Eisner, B.; Mitchell, E.; Seung, S.; and
Lee, D. 2019. Q-learning for continuous actions with cross-
entropy guided policies. arXiv preprint arXiv:1903.10605.
Slivkins, A.; et al. 2019. Introduction to multi-armed ban-
dits. Foundations and Trends® in Machine Learning, 12(1-
2): 1–286.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine learning, 3(1): 9–44.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y.
1999. Policy Gradient Methods for Reinforcement Learning
with Function Approximation. In Solla, S.; Leen, T.; and
Müller, K., eds., Advances in Neural Information Processing
Systems, volume 12. MIT Press.
Tessler, C.; Tennenholtz, G.; and Mannor, S. 2019. Distribu-
tional policy optimization: An alternative approach for con-
tinuous control. Advances in Neural Information Processing
Systems, 32.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ interna-
tional conference on intelligent robots and systems, 5026–
5033. IEEE.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8(3-4): 279–292.

Technical Appendix: Q-Functionals For Value-Based Continuous Control

Contents

Basis Representations 2
Fourier Basis . 2
Polynomial Basis . 2
Legendre Basis . 2

Experimental Details and Hyperparameters 4
Q-Functionals . 4
Policy Gradient Methods . 4

Proofs 5

Policy Quality Graphs 7

Supplementary Experiments 9
Precomputing Basis Representations . 9
Rank Sweep . 10
Basis Sweep . 11

Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Basis Representations
We provide detailed examples of each basis function presented in our paper, for rank two in a two-dimensional action space. For
all examples, a = [a1, a2], and each action dimension is bounded by [−L/2, L/2]. The six “frequency vectors” for a rank-two
basis in a two-dimensional action space are as follows:

C1 = [0, 0] ; C2 = [1, 0] ; C3 = [0, 1] ; C4 = [2, 0] ; C5 = [1, 1] ; C6 = [0, 2]

Fourier Basis
We construct a rank-three Fourier basis for a two-dimensional action space. Recall that for the Fourier basis, we compute
Q-values as:

QFUNC(s, a) =
∑

Ci∈C

xi(s) sin(
π

L
a · Ci) + yi(s) cos(

π

L
a · Ci).

A Fourier basis of rank 2 includes all frequency terms with sum less than or equal to 2. Thus, given the twelve state-dependent,
learned, coefficients xi(s) and yi(s) for 1 ≤ i ≤ 6, we can compute the Q-values of any state and action as follows:

Q(s, a) = x1(s) sin(0) + y1(s) cos(0)

+ x2(s) sin(
π

L
(a1)) + y2(s) cos(

π

L
(a1))

+ x3(s) sin(
π

L
(a2)) + y3(s) cos(

π

L
(a2))

+ x4(s) sin(
π

L
(2a1)) + y4(s) cos(

π

L
(2a1))

+ x5(s) sin(
π

L
(a1 + a2)) + y5(s) cos(

π

L
(a1 + a2))

+ x6(s) sin(
π

L
(2a1)) + y6(s) cos(

π

L
(2a1)).

Polynomial Basis

A polynomial basis of rank 2 includes all polynomials of the form ai1a
j
2 such that i+ j ≤ 2. Thus, given the six state-dependent

coefficients xi(s) for 1 ≤ i ≤ 6, we can compute Q-values as follows:

Q(s, a) = x1(s)

+ x2(s)a1
+ x3(s)a2

+ x4(s)a
2
1

+ x5(s)a1a2

+ x6(s)a
2
2

Legendre Basis
The Legendre polynomials are a set of 1-dimensional polynomials that are orthogonal with respect to the inner product

< L1,L2 > =

∫ 1

−1

L1(x)L2(x)dx.

The set of Legendre polynomials can be recursively computed through the Gram-Schmidt process (with L0(x) = 1):

Li = xi −
i−1∑
j=0

< xi,Lj(x) >

< Lj(x),Lj(x) >
Lj(x)

The first few Legendre polynomials are:

2

L0(x) = 1

L1(x) = x

L2(x) =
3

2
x2 − 1

2

L3(x) =
5

2
x3 − 3

2
x

We use a version of Legendre polynomials scaled to have a maximum absolute value of 1 over the interval [−1, 1]. The
coefficients for these polynomials are available through the numpy command

np.polynomial.legendre.Legendre.basis(order, [-1, 1]).convert(kind=numpy.polynomial.Polynomial).coeffs
We extend the Legendre polynomials to multiple dimensions. Coefficient vector Ci associates each action dimension with a

Legendre polynomial. For example, coefficient vector [1, 3] produces the polynomial

L̂1,3 = L1(a1) · L3(a2)

Each element of the extended Legendre polynomials is orthogonal to the rest. If a is an n-dimensional vector, then:

< L̂Ci , L̂Cj > =

∫∫∫
L̂Ci(x)L̂Cj (x)dx1 . . . dxn =

∏
k≤n

∫
LCik

(xk)LCjk
(xk)dxk.

At least one term in the product is 0 unless Cik = Cjk for all k, or in other words Ci = Cj . A Legendre basis of rank 2
includes all extended Legendre polynomials Li(a1)Lj(a2) such that i+ j ≤ 2. Thus, given the six state-dependent coefficients
xi(s) for 1 ≤ i ≤ 6, we can compute Q-values as follows:

Q(s, a) = x1(s)L0(a1)L0(a2)

+ x2(s)L1(a1)L0(a2)

+ x3(s)L0(a1)L1(a2)

+ x4(s)L2(a1)L0(a2)

+ x5(s)L1(a1)L1(a2)

+ x6(s)L0(a1)L2(a2)

3

Experimental Details and Hyperparameters
We test our method on 8 tasks from the OpenAI Gym continuous control benchmark suite (Brockman et al. 2016)(Todorov,
Erez, and Tassa 2012). All benchmark experiments were run on a computing cluster, with each job having access to 1 NVIDIA
RTX 3090ti GPU, 4 cores, and 36GB RAM. Table 1 contains the state and action dimension of each.

Name |S| |A|
Pendulum-v1 3 1
Reacher-v2 11 2

LunarLanderContinuous-v2 8 2
BipedalWalker-v3 24 4

Hopper-v3 11 3
Walker2d-v2 17 6

Ant-v3 111 8
Humanoid-v2 376 17

Table 1: Environment Details for Continuous Control Tasks

Q-Functionals
We parameterize our Q-functionals using neural networks, with input dimension |S| and output dimension equal to the number
of learned coefficients needed. For Polynomial and Legendre basis functions, rank r and action-dimension d require

(
r+d
d

)
learned coefficients. Fourier basis requrires twice this, due to having coefficients for both the sine and cosine terms. All shared
hyperparameters for Q-functional methods are listed in Table 2.

Learning rates were chosen from {1e−3, 3e−4, 1e−4} by running a subset of tasks for 2 seeds, and choosing the learning rate
that performed best on aggregate. The same learning rate is used in all experiments.

Additionally, the Q-functional TD3-analogue implemented the “top-n of k” sampling approach for bootstrapping only,
with n = 0.01k. For interaction, we use the maximum-valued action for both versions of our method. n was chosen from
{10, 100, 200} by running a subset of tasks for 2 seeds, and choosing the n that performed best on aggregate. The same n is
used in all experiments.

Policy Gradient Methods
We use the implementations of SAC (Haarnoja et al. 2018), TD3 (Fujimoto, van Hoof, and Meger 2018), and DDPG (Lillicrap
et al. 2015) from the “Stable Baselines 3” Python library (Raffin et al. 2019). All shared hyperparameters for TD3 and DDPG
are listed in Table 3.

Learning rates were chosen from {1e−3, 3e−4, 1e−4} by running a subset of tasks for 2 seeds, and choosing the learning rate
that performed best on aggregate. The same learning rate is used in all experiments.

For TD3, we use the “target policy smoothing” recommended in the original paper of N (0, 0.2) clipped to lie in range
[−0.5, 0.5] along each dimension.

Learning Rate 1e−4

Hidden Layer sizes [256, 256]
Learning Rate 1e−4

Optimizer Adam
Target Update Rate 5e−3

Batch Size 512
Iterations per timestep 1

Discount factor 0.99
Exploration Policy N (0, 0.05)

Samples used for action-selection 1000
Samples used for bootstrapping 1000

Replay Buffer Size 500000
Activation Function Tanh

Table 2: Hyperparameters for Q-Functional Benchmark Ex-
periments

Learning Rate 1e−4

Hidden Layer sizes (Policy) [256, 256]
Hidden Layer sizes (Q) [256, 256]

Learning Rate 1e−3

Optimizer Adam
Target Update Rate 5e−3

Batch Size 512
Iterations per timestep 1

Discount factor 0.99
Exploration Policy N (0, 0.1)
Replay Buffer Size 500000
Activation Function ReLU

Table 3: Hyperparameters for Policy Gradient Methods

4

Proofs
We prove using methods from the Calculus of Variations (Gelfand, Silverman et al. 2000) that in 1D bounded action spaces,
the Boltzmann distribution (softmax) over Q-values is the policy that maximizes the entropy-regularized value. To the best of
our knowledge this is a new proof method for this known fact.

Let Q(s, a) : S × A → R be the Q-value at every action for the given state, with 0 ≤ a ≤ 1. Let π(s, a) = Pr(a|s) be the
probability of a given action. We seek a policy π that maximizes entropy-regularized value,

V π
ENT(s) =

∫ 1

0

π(s, a)(Q(s, a)− τ log π(s, a))da.

We define Π(s, a) =
∫ a

0
π(s, x)dx to be the CDF of π, with Π(0) = 0 and Π(1) = 1, noting that d

daΠ
′(s, a) = π(a). We

now make use of the Euler-Lagrange equation from the Calculus of Variations:

Statement of the Euler-Lagrange Theorem: The action functional S is defined as

S[q] =

∫ b

a

F (x, q(x), q′(x))dx.

Let q(x) be a function satisfying boundary conditions q(a) = b1 and q(y) = b2. Then q(x) is a stationary point of S iff:

∂F

∂q
(x, q(x), q′(x))− d

dx

∂F

∂q′
= 0

We now write down the minimized function, V π
ENT, in terms of the CDF Π:

S[Π] =

∫ 1

0

F (a,Π(s, a),Π′(s, a))da =

∫ 1

0

Π′(s, a)(Q(s, a)− τ log Π′(s, a))da

We note that here, F does not explicitly depend on Π (only Π′). Therefore,

∂F

∂Π
= 0.

Additionally,

∂F

∂Π′ = Q(s, a)− τ log Π′(s, a)− τ.

Evaluating the Euler-Lagrange equation, we are left with

0 =
∂F

∂q
(x, q(x), q′(x))− d

dx

∂F

∂q′

=
d

dx

[
Q(s, a)− τ log Π′(s, a)− τ

]
=⇒ C = Q(s, a)− τ log Π′(s, a)− τ

=⇒ log π(s, a) = Q(s, a)/τ − C/τ − 1

=⇒ π(s, a) = Dexp
{
Q(s, a)/τ

}
where C is an integration constant and D = exp

{
−C/τ−1

}
. Therefore, optimal policy π∗ is proportional to the Boltzmann

distribution with temperature τ , with a normalizing constant equal to NORM =
∫ 1

0
exp

{
Q(s, a)/τ

}
da.

Intuitively, the above proof goes as follows: since π is constrained to have total probability 1, changes to π can be made by
moving probability from one action to another. A given π is a statationary point only when gains cannot be made by moving
probability from one action to another, or in other words, when the regularized value of all actions are equal. This condition
only holds when π(s, a) ∝ exp{Q(s, a)}.

We can now additionally simplify V π∗

ENT:

5

V π
ENT(s) =

∫ 1

0

π(s, a)(Q(s, a)− τ log π(s, a))da

=

∫ 1

0

1

NORM
exp{Q(s, a)/τ}(Q(s, a)− τ(Q(s, a)/τ) + logNORM)da

=

∫ 1

0

1

NORM
exp{Q(s, a)/τ}(logNORM)da

= (logNORM)

∫ 1

0

1

NORM
exp{Q(s, a)/τ}da

= (logNORM)

∫ 1

0

1

NORM
exp{Q(s, a)/τ}da

= logNORM)× 1

= log

∫ 1

0

exp{Q(s, a)/τ}da

For an alternative proof of above claims, please consult Appendix 1.A of (Haarnoja et al. 2018).

6

Policy Quality Graphs
We include plots similar to that of Figure 2 in the main paper, for all benchmark tasks. These plots depict how frequently
(x axis) each policy-gradient method selects actions better than some fraction of random actions (y axis). In general, TD3
outperforms DDPG at the task of choosing high-value actions, including near-optimal action selection on the Reacher task.
This is perhaps due to its smoother Q-value function or more stable training. However, on a large number of tasks both methods
frequently perform poorly at action selection. Figure 1 details action-selection performance for DDPG, and Figure 2 details
action-selection performance for TD3.

Figure 1: Action-selection quality by DDPG, on all tasks.

7

Figure 2: Action-selection quality by TD3, on all tasks.

8

Supplementary Experiments
Precomputing Basis Representations
In Figure 3 we compare performance between using precomputed action representations, and re-computing action represen-
tations for each sample. We find generally similar performance between both approaches, although the Q-functional DDPG-
analogue performs significantly worse on one domain with precomputed representations.

Figure 3: Comparison of performance for precomputing-vs-recomputing basis representations. The shaded region represents
the standard error over 8 runs. One iteration corresponds to 10,000 environment steps.

We do however find a significant difference in speed, motivating our use of precomputed representations in our benchmarking
experiments.

Figure 4: Comparison of wallclock runtime for precomputing-vs-recomputing basis representations. The shaded region repre-
sents the standard error over 8 runs. One iteration corresponds to 10,000 environment steps.

9

Rank Sweep
In Figure 5, we compare performance using different ranks on 3 tasks, using the Legendre basis, and both the DDPG and TD3
Q-functional analogues. We find that rank 1 is frequently not enough to solve these tasks, while higher ranks generally perform
similarly.

Figure 5: Performance of Q-functionals on 3 tasks from the OpenAI continuous control suite using different ranks. The shaded
region represents the standard error over 8 runs. One iteration corresponds to 10,000 environment steps.

10

Basis Sweep
In Figure 6, we compare performance using different basis functions on 3 tasks, for both the DDPG and the TD3 analogue
Q-functionals. On these tasks, the Polynomial basis performs marginally better than the Legendre basis, and both of these
frequently outperform the Fourier basis.

Figure 6: Performance of Q-functionals on 3 tasks from the OpenAI continuous control suite using different basis functions.
The shaded region represents the standard error over 8 runs. One iteration corresponds to 10,000 environment steps.

References
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym. arXiv
preprint arXiv:1606.01540.
Fujimoto, S.; van Hoof, H.; and Meger, D. 2018. Addressing Function Approximation Error in Actor-Critic Methods. arXiv
e-prints, arXiv:1802.09477.
Gelfand, I. M.; Silverman, R. A.; et al. 2000. Calculus of variations. Courier Corporation.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018. Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International conference on machine learning, 1861–1870. PMLR.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous control with
deep reinforcement learning. arXiv e-prints, arXiv:1509.02971.
Raffin, A.; Hill, A.; Ernestus, M.; Gleave, A.; Kanervisto, A.; and Dormann, N. 2019. Stable baselines3.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ international
conference on intelligent robots and systems, 5026–5033. IEEE.

11

