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ABSTRACT

Major flaring events on the Sun can have hazardous impacts on
both space and ground-based infrastructure. An effective approach
of predicting that a solar active region (AR) is likely to flare after
a period of time is to leverage multivariate time series (MVTS)
of the AR magnetic field parameters. Existing MVTS-based flare
prediction models are based on training traditional classifiers with
preset statistical features of univariate time series instances, or
training deep sequence models based on Recurrent Neural Network
(RNN) or Long Short Term Memory (LSTM) Network. While the
earlier approach is affected by hand-engineered features, the latter
approach uses only the temporal dimension of the MVTS instances.
The variables of MVTS do not depend only on their historical values
but also on other variables. In this work, we used the dynamic func-
tional network representation of the MVTS instances to leverage
higher-order relationships of the variables through Graph Convo-
lution Network (GCN) embedding. In addition to finding spatial
(inter-variable) patterns through functional network embedding,
our model uses local and global temporal patterns through LSTM
networks. Our experiments on a real-life solar flare dataset exhibit
better prediction performance than other baseline methods.
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1 INTRODUCTION

Solar flares are characterized by sudden bursts of magnetic flux
in the solar corona and heliosphere. Extreme Ultra-Violet (EUV),
X-ray, and gamma-ray emissions caused by major flaring events
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can have disastrous effects on our technology-dependent society.
The risks of life and infrastructure in both space and ground include
radiation exposure-based health risks of the astronauts, disruption
in GPS and radio communication, and damages in electronic devices.
The economic damage of such extreme solar events can rise up
to trillions of dollars [9]. In 2015, the White House released the
National Space Weather Strategy and Space Weather Action Plan
[26] as a roadmap for research aimed at predicting and mitigating
the effects of solar eruptive activities.

In recent years, multiple research efforts of the heliophysics com-
munity aim to predict solar flares from the current and historic
magnetic field states of the solar active regions. Due to the absence
of direct theoretical relationship between magnetic field influx and
flare occurrence in active regions (AR), solar physics researchers
rely on data science-based approaches for predicting solar flares.
The data is collected by the Helioseismic Magnetic Imager (HMI)
housed in the Solar Dynamics Observatory. Near-continuous-time
images captured by the instruments of HMI contain spatiotem-
poral magnetic field data of the active regions. The prediction of
solar flares, which will identify active regions that will potentially
flare after a period of time, requires time series modeling of the
magnetic field data. For that, spatiotemporal magnetic field data
of active regions are mapped into multiple MVTS instances [3].
The variables of the MVTS instances represent solar magnetic field
parameters (e.g., flux, current, helicity, Lorentz force). The time
series corresponding to the magnetic field parameters are extracted
based on two time windows: observation window (the time window
of data collection), and prediction window (the time window after
the data collection and before the flare occurrence). Each MVTS
instance is labeled as one of six classes - Q, A, B, C, M, and X, where
Q represents flare quiet active regions, and other labels represent
flaring events with increasing intensity. Among these classes, X
and M-class flares are considered as most intense flaring events.

In comparison to the earlier single timestamp-based magnetic
field vector classification models, recent MVTS-based models are
more effective for predicting flaring activities [3]. MVTS classifi-
cation models targeting flare prediction are divided in two cate-
gories: (1) statistical feature-based method [11], and (2) end-to-end
deep learning-based method [21]. The models of the first cate-
gory work in two steps. Firstly, low-dimensional representations
of MVTS instances are calculated from concatenation/aggregation
of summarization statistics (e.g., mean, standard deviation, skew-
ness, kurtosis, etc) of the univariate time series components. Lastly,
traditional classifiers (e.g., KNN, SVM, etc) are trained with labeled
MVTS representations. The two-step process of MVTS classifica-
tion relies heavily on hand-engineered statistical features and the
choice of downstream classifiers, which eventually complicates the
application of these models in datasets with varying properties.
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In the second category, RNN/LSTM-based deep sequence models
are trained by sequentially feeding vectors representing magnetic
field parameters into sequence model cells, and optimizing the cell
weights through gradient descent-based backpropagation. While
the deep learning models ensure end-to-end learning bypassing the
dependency on hand-engineered features, they can utilize only the
time dimension of the MVTS instances, and this limited usage of
underlying patterns results in poor classification performance.

In this work, we propose a deep learning-based MVTS classifica-
tion approach for solar flare prediction leveraging the the fact that
MVTS data is rich not only in temporal dimension, but also in spa-
tial dimension which encodes inter-variable relationships [29]. For
learning higher-order relationships of the MVTS variables, we used
functional networks, where nodes represent variables, and edges
represent positive correlation of the time series of corresponding
variables. The MVTS instance is divided into equal-length temporal
windows, and an edge-weighted functional network is constructed
for each window. We trained Graph Convolution Network (GCN)
to learn representation of each functional network. In addition, we
used two LSTM networks for learning representations based on
temporal dimension within and between the windows. Our model
significantly outperforms existing MVTS-based flare prediction
models on a dataset containing MVTS instances of solar events of
different flare classes.

The contributions made by this paper are listed below.

(1) Leveraging higher-order inter-variable relationships of the
MVTS instances by GCN-based dynamic functional network
embedding.

(2) Utilizing local and global patterns of the temporal dimension
of the MVTS instances through LSTM-based within-window
and between-window sequence learning.

(3) Experimentally demonstrating the better performance of our
model in comparison with the state-of-the-art baselines on
a benchmark solar flare prediction dataset.

2 RELATED WORK

While the current approaches of flare prediction are mostly based
on data science, the earliest flare prediction system was an ex-
pert system named THEO that required human inputs [20]. The
Space Environment Center (SEC) of the National Oceanic and At-
mospheric Administration (NOAA) adopted the system THEO in
1987. To distinguish flare classes, THEO was provided input data
of sunspots and magnetic field properties.

Due to the abundance of magnetic field data collected by NASA’s
recent missions, research efforts of flare prediction of the last two
decades are based on data science rather than on purely theo-
retical modeling. Data science-based approaches stemmed from
both linear and nonlinear statistics. Based on the type of dataset
used, these approaches are subdivided into two classes: line-of-
sight magnetogram-based models and vector magnetogram-based
models. Solar active regions are represented by the parameters
of either photospheric magnetic field data that contain only the
line-of-sight component of the magnetic field or by the full-disk
photospheric vector magnetic field. Followed by NASA’s launch of
SDO in 2010, the HMI instrument has been mapping the full-disk
vector magnetic field every 12 minutes [19]. Most of the recent
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models use the near-continuous stream of vector magnetogram
data found from SDO, while the earlier models (dated before 2010)
mostly used line-of-sight magnetic data.

The objective of the linear statistical models was to find the AR
magnetic field features that are highly correlated with the flare
occurrences. Cui et al. [7] and Jing et al. [13] used line-of-sight mag-
netogram data to find correlation-based statistical relationships
between magnetic field parameters and flare occurrences. Even be-
fore the launch of SDO, Leka and Barnes [16] collected and curated
vector magnetogram data from Mees Solar Observatory on the
summit of Mount Haleakala, and used linear discriminant analysis
(LDA) for classifying flaring events.

Nonlinear statistical models are mostly machine learning classi-
fiers based on tree induction, kernel method, neural network, and so
on. On the line-of-sight magnetogram-based active region datasets,
Song et al. [27] used logistic regression, Yu et al. [30] used C4.5 deci-
sion tree, Ahmed et al. [1] used the fully connected neural network,
and Al-Ghraibah et al. [2] used relevance vector machine as classifi-
cation models. Bobra et al. [5] used Support Vector Machine (SVM)
on SDO-based vector magnetogram data for classifying flaring and
non-flaring active regions. Nishizuka et al. [23] used both line-of-
sight and vector magnetograms and compared the performance
of three classifiers - kNN, SVM, and Extremely Randomized Tree
(ERT). Other examples of solar flare prediction on non-sequential
data include various applications of convolutional neural network
(ConvNet) on SDO AIA/HMI images [17, 22, 24, 31].

Angryk et al. [3] introduced temporal window-based flare pre-
diction, which extends the earlier single timestamp-based models.
The authors published an MVTS-based active region dataset, where
each MVTS instance records magnetic field data for a preset ob-
servation time and uniform sampling rate, and is labeled by flare
classes that occurred after a given prediction time. Among the
MVTS classification approaches, Hamdi et al. [11] used statistical
summarization of component univariate time series for training
kNN classifier, Ma et. al. [18] applied MVTS decision trees that ap-
proached the problem using clustering as a preprocessing step, and
Muzaheed et. al. [21] used LSTM-based deep sequence modeling
for end-to-end flare classification that automated feature learning
process avoiding hand-engineered statistical features.

Unlike previous models based on traditional ML and deep se-
quence learning, in this work, we present a model that leverages
temporal as well as spatial relationships of the MVTS instances.
Our model learns MVTS representations through an end-to-end
fashion, and utilizes higher-order inter-variable relationships and
local and global temporal changes.

3 MVTS REPRESENTATION LEARNING BY
NETWORK AND SEQUENCE EMBEDDING

3.1 Notations and Preliminaries

3.1.1 MVTS and Sub-MVTS. Each solar active region resulting in
different flare classes (or staying as a flare quiet region) after a given
prediction window represents a solar event. The solar event i is
represented by a MVTS instance 5 and associated by a class label
y(i) . The class label y(i) represents the flare quiet state, or flare
classes of different intensities. The MVTS instance S} € RT*N jsa
collection of univariate time series of N magnetic field parameters,
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Figure 1: Multivariate time series instance with predefined observa-
tion and prediction window, and corresponding flare class label [21]

where each time series contains periodic observation values of the
corresponding parameter for an observation period T. We denote
the vector of t-th timestamp as x<!> € RN, and the time series
represented by k-th parameter as P, € RT. After the observation
period T and prediction period A, the event is labeled by the active
region state (flare quiet or different flare classes). The active region
state of a particular timestamp is found from the NOAA records of
flaring events. Fig. 1 shows the MVTS-based data model of a solar
event. Each MVTS instance is divided into 1 equal-length windows
such that T = nr, where 7 denotes window length. The sub-MVTS
is denoted by s € R”™*N  and s is a subsequence of S.

3.1.2  Node-attributed functional network. Functional network is a
undirected and edge-weighted graph, and definedas G = (V, E, W, X),
where the set of nodes V = {Py, P, ..., PN} denotes magnetic field
parameters, W : E — R is a function of mapping edges to their
weights, and node attribute matrix X € RN*7 contains the time
series of each node in the sub-MVTS, i.e., X = sT. The functional
network is defined on the sub-MVTS, and the weight w;; of edge e;;
(between node pair P; and Pj) represents the statistical similarity of
7-length time series of P; and P;. Each functional network derived
from a MVTS dataset contains the same node set V.

3.1.3  Graph Convolution. For learning the representations of node-
attributed functional networks, we use Graph Convolution Network
(GCN). GCN is a widely used graph neural network [15] that learns
node representations from a graph through layer-wise neighbor-
hood aggregation. Graph convolution of layer I aggregates the
representations of [-hop neighbors. GCN updates representation of
node v in a graph G = (V, E, W, X) by following equations.

ol = x, (1)
' = et (w)!h Y waohu! i
0 ¢ L N T
Vie{0,1,..,L -1} ®)
2o = b 3)
1
26 = sz (4)

Here, L is the number of GCN layers, x, € R7 is the vector

L]

of node v, h; ' € R% is the representation of node v in layer I,

W_q[lJ € R9%dg is the weight matrix of layer [, B_‘EZJ € R% is the
bias vector of layer I, N(v) is the set of neighbor nodes of node v,
wyy is the weight associated in the edge between node v and its
neighbor u, z, is the final representation of node v after L iterations
of neighborhood aggregation, and zg is graph representation found

by averaging the node representations.

3.1.4 Sequence embedding through LSTM. Long-short term mem-
ory (LSTM) networks [12] are frequently used for sequence repre-
sentation learning which facilitates various tasks such as sequence
classification, sequence-to-sequence translation, and so on. We
use LSTM networks for learning low-dimensional representations
of MVTS instances. The MVTS (and sub-MVTS) instances are se-
quences of N-dimensional timestamp vectors. The timestamp vec-
tor x<!> € RN represents the magnetic filed state of the active
region (N parameter values) in the timestamp ¢t. We denote the
inputs to the LSTM cells as [x<1>,x<%> x<3> _ x<V>], cell state
representations as [¢<9>,¢<1>,¢<?>, . ¢<¥~1>], and hidden state
representations as [h<0>, h<1>, h<?> _ h<Y>], where y is the last
timestamp of the sequence. After randomly initializing ¢<°> and
h<%>, we update the cell state and hidden state of the timestamp ¢
by following LSTM equations [12].

&< = tanh(We[h<171>, <] + be) (5)
I, = o(Wy, [h<t_1>,x<t>] +by) (6)
Tp = o(Wp[h<' 717, x5 + by) (7)
I =a(W, [h<t71>>x<t>] +bo) (8

C<t> - ru @ E<t> + rf @ C<t—1> (9)

<> =T, ® tanh(c<") (10)

We denote the number of dimensions of the cell state representa-
tion ¢c<?> and hidden state representation h<!> of the LSTM cell as
ds. The concatenation of hidden state of previous timestamp and the
input of current timestamp is [A<!~1>, x<!>] € R%+N The candi-
date cell state representation is ¢<!> € R% . The weight matrices are
We, W, Wr, W, € RY9*(ds+tN)  and bias terms are b, by, br,bo € R.
The subscripts u, f, and o represents the activations of update gate,
forget gate, and output gate respectively, while © refers to elemen-
twise multiplication, and o represents sigmoid activation. Finally,
we consider h<Y~ as the final representation of the input MVTS.

3.2 Data Preprocessing

3.2.1 Node-level normalization. Since the magnetic field parameter
values are recorded in different scales, we perform z-score normal-
ization. Suppose that M number of MVTS instances each with
N parameters and T time points are represented by a third-order
tensor X € RMXNXT where three modes represent events, parame-
ters/nodes, and timestamps. For the better performance of the GCN-
based graph embedding, we perform node-level z-normalization as
a preprocessing step in the following three steps.

(1) We perform mode-2 matricization, i.e., reshaping the tensor
so that mode-2 (parameter/node) fibers become the columns
of the matrix. The matrix is denoted by X(5) € RMTXN The
columns are denoted by Py, Ps, ..., PN.
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Figure 2: GCN-based node-attributed functional network embedding and LSTM-based local and global sequence embedding. For showing the
functional network construction process, parameter set { Py, P,, .., Py } of the MVTS instance has been shown as {A,B,C, D, E, F}.

(2) For each column Pj, we perform z-normalization as follows.

xzij) —u

) _
“k o)

Here, xlgj ) is the k-th value of the column Pj, where 1 <

k < MT, p(j) is the mean of the column P;, and o) is the
standard deviation of the column P;.

(3) We reshape the matrix X,) € RMTXN pack to third-order

tensor, X € RM*XNXT

3.2.2  Functional network construction. We calculate the Pearson
correlation matrix C € RNXN for the sub-MVTS s € R7™*N  In the
correlation matrix, C; j represents the Pearson correlation coeffi-
cient (in the range of [-1, 1]) between r-length time series P; and
P;j. The symmetric matrix C can be considered as an adjacency
matrix of a graph of N nodes. We apply a sparsity threshold of 0
so that only edges with positive weight (node pairs with positive
correlation) are considered for functional network construction.
We denote the sparse correlation matrix as the adjacency matrix
A € RNXN_ Although the functional network defined over a sub-
MVTS encodes inter-variable interactions within a small temporal
window, the adjacency matrix is not enough for the completeness of
data, since negative correlation coefficients are discarded. To avoid
the data missing, in addition to the adjacency matrix (graph struc-
ture), we extract the node attribute matrix X = sT.In X € RN%7,
each row represents node attributes in the form of r-length time
series (normalized in the previous step).

3.3

In Fig. 2, we show the components of MVTS representation learn-
ing. Firstly, the window embedding learns the local spatiotemporal
changes of the sub-MVTS instances through the models denoted as
GCN and LSTM;, and finally, the whole MVTS embedding learns
global temporal changes of the local (window) representations
through the model denoted as LST M.

MYVTS representation learning

3.3.1 Window embedding. Our model learns the representation
of the window s (sub-MVTS) of the MVTS instance S through
GCN-based node-attributed functional network embedding and
LSTM-based local sequence modeling.

e GCN-based functional network embedding: We input
the node-attributed functional network G(V,E, W, X) to a
two-layer GCN. The initial node attributes are set as X = s
(EqQ. 1). In the first layer, each node is embedded into a d;—
dimensional space through 1-hop neighborhood aggregation,
and after the second layer, each node is embedded into a dg-
dimensional space through 2-hop neighborhood aggregation
(Eq. 2,3). Finally, the whole graph representation zg € R%
is computed through mean pooling (Eq. 4).

e LSTM-based sub-MVTS embedding: The sub-MVTS s =
[x<1>,..,x<7>], where x<*> € RV, is sequentially input to
the LSTM; (Eq. 5-10), and we extract the last hidden repre-
sentation z; = hy™”, where z; € RYs,

For the window embedding, we concatenate zg € R% and z; € R%:.
Therefore, the window representation is z,, € RYg+ds

3.3.2  Whole MVTS embedding. After each of n windows is repre-
sented as (dg + ds)-dimensional vector, we feed the sequential data
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(251>, ... 25" ] into LSTM [ for global temporal change modeling.

Note that LSTMy and LSTM; have different learnable parameter
sets (e.g., Wy, Wuf, etc), although in this work the number of di-
mensions (ds) in the cell state and hidden state are kept the same.

We extract the final hidden state representation zy = h;’7>, where

zp € R% . We input zy into a linear (fully connected) layer. In this

layer, the parameters are Wr € R”CX“'S, and br € R, where n; is
the number of classes. After this layer, we have a n.-dimensional
representation of the whole MVTS instance of event i.

2\ = ReLU(Wrzy + br) (11)

Finally, we input z() € R" into a softmax layer, whose number
of units is equal to the number of classes. The softmax layer gives
us the normalized class probabilities, and we finally get g(i) € R,

‘ o2
O — e
e, ¢
The predicted labels of training MVTS instances are matched
against true labels, and the Adam optimizer [14] updates the weight
and bias parameter values of the GCN, LSTM;, LSTM f and the fully
connected layer through backpropagation algorithm. Algorithm 1
shows the training procedure of the proposed GCN-LSTM-based
MVTS representation learning,.

Algorithm 1 Training of GCN-LSTM-based MVTS embedding
Input: Training set D consisted of functional network adjacency
matrices X,q; € RMrainXIXNXN
Xnar € RMrainXXNXT one_hot training labels
Ytrain € RMrainXne number of epochs Nepochs» learning rate a,
and weight decay factor of the Adam optimizer A.
Output: Learned parameters of GCN, LSTMjs, and LST M.

1: Randomly initialize parameter set ‘W, which contains GCN,

LSTMs, and LSTMy parameters
2. for number of training epochs nepocns do
for MVTS instance i = 1,2, ..., n¢rqin do
Window representation matrix, Z,, = [0] nx(dy+ds)

and node attribute matrices

3

4

5 for window j = 1,2,..,n do

6: A <—Xadj[i,j, 5 :]

7 X — Xnat[i, .+ ]

8 2G — GCN(A,X) //Eq. 1-4 with L = 2
9 zs « LSTMs(XT) //Eq. 5-10

10: Zwlj,:] « Concat(zg, zs)

11: end for

12: zp « LSTMg(Z,y) //Eq. 5-10

13: zp « Linear(zy) //Eq. 11

14: (D) Softmax(zf) //Eq. 12

15: //negative log likelihood loss calculation
16: L« NLLLoss(z(i), yx)ain)

17: Update ‘W minimizing £ by Adam(a, 1)
18: end for

19: end for

20: return W

4 EXPERIMENTS

In this section, we demonstrate our experimental findings. We
compared the performance of our model with six other MVTS-based
flare prediction baselines on a benchmark dataset. We used PyTorch
1.10.0 with CUDA 11.1 for implementing our GCN-LSTM-based
MVTS classifier. The source code of our model and the experimental
dataset are available at our GitHub repository. !

4.1 Dataset

As the benchmark dataset of our experiments, we used the solar
flare prediction dataset published by Angryk et. al. [3]. Each MVTS
instance in the dataset is made up of 25 time series of active region
magnetic field parameters (for the full list of parameters, see [5]).
The time series instances are recorded at 12 minutes intervals for a
total duration of 12 hours (60 time steps). The MVTS instances are
labeled according to the flaring event that occurred after 12 hours.
Therefore, the dataset has the number of the observation points
T = 60, and the number of dimensions in timestamp vectors N = 25,
while the prediction window is A = 12 hours. Our experimental
dataset consists of 1,540 MVTS instances evenly distributed across
four classes (X, M, BC, and Q), where BC represents events from
both B and C classes (less intense flares). We split the dataset into
train and test using the stratified holdout method (two-thirds for
training and one-third for the test).

4.2 Baseline methods

We evaluated our GCN-LSTM-based MVTS classification model
with six other baselines.

e Flattened vector method (FLT): This is a naive method,
where each 60 x 25 MVTS instance is flattened into a 1, 500-
dimensional vector.

e Vector of last timestamp (LTV): This method was intro-
duced by Bobra et al [5], where vector magnetogram data
(feature space of all magnetic field parameters) were used for
classification. Since the last timestamp of the MVTS is tem-
porally nearest to the flaring event, we sampled the vector
of the last timestamp (25-dimensional) to train the classifier.

e Time series summarization-based MVTS representa-
tion (TS-SUM): This method, proposed by Hamdi et al [11]
summarizes each individual time series of length T by eight
statistical features: mean, standard deviation, skewness, and
kurtosis of the original time series, and the first-order de-
rivative of the time series. As a result, we get an 8 X 25-
dimensional vector space, which is used for training the
downstream classifier.

e Long-short term memory (LSTM): This LSTM-based ap-
proach was proposed by Muzaheed et. al. [21]. Each MVTS in-
stance was considered as a T-length sequence of x<*> € RN
timestamp vectors. After sequentially feeding the LSTM
model with each timestamp vector, the last hidden repre-
sentation was considered as the MVTS representation. Fol-
lowing the same experimental setting, we use the number
of both cell state and hidden state dimensions as 128, the

Uhttps://github.com/FuadAhmad/GCN-LSTM
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Table 1: Multiclass classification performance of the proposed method with the baselines

Measures FLT LTV TS-SUM RNN LSTM ROCKET GCN-LSTM

Accuracy 0.259 £0.012 | 0.323 £0.02 | 0.609 +0.091 | 0.427 £0.025 | 0.628 £0.03 | 0.742 = 0.021 | 0.817 + 0.014
Precision (X) 0.232 +£0.024 | 0.342 +0.041 | 0.712 £ 0.054 | 0.534 +0.031 | 0.757 £0.028 | 0.92 +0.034 | 0.932 + 0.022
Recall (X) 0.264 £ 0.053 | 0.392 +0.043 | 0.772 £ 0.024 | 0.631 £ 0.028 | 0.947 +£0.023 | 0.981 +0.016 | 0.99 + 0.023
F1 (X) 0.244 £0.032 | 0.362+0.04 | 0.741 +0.034 | 0.582 +£0.019 | 0.841 £0.014 | 0.952 +0.028 | 0.961 + 0.013
Precision (M) | 0.254 +£0.012 | 0.324 +0.033 | 0.522 +0.031 | 0.411 +0.014 | 0.594 +0.018 | 0.661 + 0.042 | 0.803 + 0.054
Recall (M) 0.26 £ 0.023 | 0.331 +0.061 | 0.552 +0.022 | 0.402 +0.03 | 0.544 +0.014 | 0.704 + 0.038 | 0.824 + 0.063
F1 (M) 0.257 £0.026 | 0.327 +£0.042 | 0.537 £ 0.023 | 0.406 + 0.029 | 0.568 +0.02 | 0.687 = 0.028 | 0.811 + 0.033
Precision (BC) | 0.232 +0.044 | 0.263 + 0.024 | 0.453 +0.033 | 0.282 +0.031 | 0.495 +0.013 | 0.58 +0.026 0.682 + 0.03
Recall (BC) 0.241 £0.053 | 0.212+0.02 | 0.472+0.014 | 0.261 £0.021 | 0.409 £0.023 | 0.573 £ 0.052 | 0.664 + 0.05
F1 (BC) 0.236 £0.041 | 0.234+0.024 | 0.462 + 0.041 | 0.271 £ 0.031 | 0.448 £0.031 | 0.577 = 0.031 | 0.673 + 0.032
Precision (Q) 0.324 +£0.034 | 0.343 +0.044 | 0.583 £0.045 | 0.483 +0.024 | 0.603 +0.024 | 0.81 +0.046 | 0.831+ 0.018
Recall (Q) 0.251 £0.042 | 0.362 +0.071 | 0.663 = 0.034 | 0.413 +£0.042 | 0.683 +£0.023 | 0.724 = 0.034 | 0.772 + 0.021
F1(Q) 0.282 £0.014 | 0.352+0.013 | 0.62 +0.043 | 0.445+0.032 | 0.64 +0.024 | 0.771 +0.036 | 0.798 + 0.017

number of training epochs as 500, and the learning rate in
stochastic gradient descent as 0.01.

e Recurrent Neural Network (RNN): As the fifth baseline,
we replace LSTM cells of the model of [21] with standard
RNN cells. Similar to the experimental setting of [21], we use
the number of RNN hidden dimensions as 128, the number of
training epochs as 1,000, and the learning rate in stochastic
gradient descent as 0.01.

¢ Random Convolutional Kernel Transform (ROCKET):
We use ROCKET [8] as the sixth baseline for MVTS-based so-
lar event classification. ROCKET was shown as the best per-
forming algorithm in the MVTS classification benchmarking
study by Ruiz et al [25], which included 26 MVTS datasets of
the UEA archive [4]. ROCKET uses a large number of random
convolution kernels in conjunction with a linear classifier
(ridge regression or logistic regression), where each kernel
is applied to each univariate time series instance. Similar
to the experimental setting of [25], we used the number of
kernels in ROCKET as 10,000.

The first three baselines are embedding followed by classifica-
tion methods. After performing the embedding of MVTS instances
using those methods, we use logistic regression classifier with L2
regularization. In all the experiments, we split the dataset into train
and test using the stratified holdout method (two-thirds for training
and one-third for the test). In the experiments of the proposed GCN-
LSTM model, we have following hyperparameters: # windows, 7 :
4, window length, 7: 15, # hidden dimensions d; in first GCN layer:
64, # node embedding dimensions dg in second GCN layer: 4, #
dimensions in cell state and hidden state representations ds of both
LSTM; and LSTMp: 128, # training epochs: 100, Adam learning rate
a: 1074, and weight decay (regularization factor) A: 1073,

4.3 Multiclass classification performance

In Table 1, we show the classification performances of our GCN-
LSTM-based MVTS classifier along with that of the baseline meth-
ods. For a comprehensive classification report, we show accuracy
along with precision, recall, and F1 of each class. We performed
five experiments with different train/test sets sampled by stratified

holdout (two-thirds for training and one-third for the test) and
reported the mean and standard deviation of the experiments. From
the results, it is visible that the GCN-LSTM-based MVTS classifica-
tion model outperforms all other baselines in all the performance
measures. In overall evaluation, ROCKET achieves second-bast per-
formance, while the LSTM model becomes third. GCN-LSTM model
achieves around 20% more accuracy in comparison with the LSTM
model, which proves the importance of learning MVTS represen-
tations in both spatial and temporal domains rather than learning
only from the temporal domain. Among shallow ML models, TS-
SUM performs better than FLT and LTV models. In general, the high
performances of TS-SUM, RNN, LSTM, ROCKET, and GCN-LSTM
prove the importance of time series representations of solar events.

4.4 Classification varying training set size

To verify the adaptability of our model with bigger training datasets,
we experimented by varying the training set size. We varied the
training set size from 10% to 90% of the dataset size, while testing
the models with the rest of the instances (Fig. 3). We performed
stratified train/test sampling with a given training set size, and
evaluated the classification performance of the classifiers five times
with five distinct samples of training and test sets. In Fig. 3a and 3b,
we plotted the mean accuracy values and mean F1 (X class) values
found in all runs of different train/test samples with different train-
ing data sizes. GCN-LSTM consistently outperforms other baselines
in all settings of training set sizes. ROCKET is the second-best per-
forming classifier in this experiment, and especially in F1 measure
ROCKET exhibits similar robust performance to GCN-LSTM. With
only 10% training data, GCN-LSTM achieved 70% classification ac-
curacy, while the third-best performing LSTM model achieve that
level of high performance by using 90% training data. Although all
models gain more accuracy with a gradual increase of training set
size, we observe more consistent increasing patterns in deep learn-
ing and kernel-based methods, e.g., GCN-LSTM, ROCKET, LSTM,
and RNN. It proves that with sufficiently large datasets, deep learn-
ing models can outperform the traditional classifiers or embedding
methods in a larger margin. The time series summarization-based
method TS-SUM shows promising performance throughout the
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Accuracy (%)

Train set size

(a) Multiclass classification accuracy with increasing training data
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(b) F1 of X class with increasing training data

Figure 3: Multiclass classification with varying training set size.
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Figure 4: Binary classification performance of all baselines

experiments, but the generalization capability of this model can be
limited in a more complex dataset due to its less flexible learning
methodology consisting of hand-engineered features. In compari-
son with deep learning-based and time series-based methods, the
LTV and FLT models perform poorly, which proves the importance
of time series in avoiding underfitting.
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Figure 5: t-SNE embedding of GCN-LSTM generated representations
of all MVTS instances in the dataset

4.5 Binary classification performance

In addition to classifying the solar active regions in different flare
classes, a major use case in data-driven flare prediction is the bi-
nary classification, i.e., distinguishing major flaring events from
minor flaring events or flare quiet events. In this experiment, we
considered X and M class MVTS instances as flaring events, while
we considered all other instances (Q and BC) as non-flaring events.
In Fig. 4, we show the mean binary classification performances of
all models over five different train/test samples in terms of accu-
racy, precision, recall, and F1 of flaring and non-flaring classes. It
is clearly visible that the GCN-LSTM model outperforms all other
baselines. We reported the performances of the two best-performing
models in numbers along with their bars. In all performance met-
rics, GCN-LSTM achieves an average of ~ 8% better performance
than the second-best performing ROCKET algorithm. In general,
we observe the similar performance of the models as that of mul-
ticlass classification. Although one deep learning model, i.e., the
RNN-based model performed poorer than the TS-SUM method,
the RNN-based model is an end-to-end classification model, which
might outperform TS-SUM with more training data, more complex
model, and more efficient hyperparameter tuning.

4.6 Embedding performance

Visualization of high-dimensional data in 2D/3D space is a well-
established method of demonstrating the effectiveness of learned
representations. To investigate the quality of learned MVTS repre-
sentations, we provide a visualization of t-SNE [28] transformed
MVTS representations extracted by the final layer of the GCN-
LSTM model. Similar to section 4.3, the stratified holdout strategy
is taken to pre-train the model, and all instances are projected
to t-SNE-reduced 2D space (Fig. 5). The 2D projection exhibits
discernible clustering of the MVTS instances. Some meaningful
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insights are observed by the t-SNE scatter plot such as (1) patterns
of four classes are easily recognizable, (2) flare-quiet events (Q) and
minor flaring events (B and C) are comparatively similar, (3) X and
M class flares exhibit significant dissimilarity from other classes, (4)
some flare-quiet events are similar to the minor flaring events, (5)
few minor flares show similar characteristics to M-class flares, and
(6) the characteristics of the X-class flares are exclusive, and other
class instances do not show any similarity with X-class instances.

5 CONCLUSION

In this work, we presented an end-to-end deep learning-based flare
prediction model from multivariate time series (MVTS) represented
datasets that leverages inter-variable relationships by graph convo-
lutional network-based functional network embedding, and local
and global temporal change modeling through LSTM-based se-
quence embedding. In contrary to other MVTS classification models
applied for flare prediction, our model utilizes spatial and temporal
features of the MVTS instances, and does not depend on predefined
statistical features. Our experiments on a real-life solar flare predic-
tion dataset demonstrate the superior performance of our model in
performing multiclass and binary MVTS classification.

In the future, we look forward to designing more efficient models
by techniques such as (1) learning attention coefficients in spatial
and temporal feature spaces, (2) customizing transformer models for
MVTS representations, and (3) analyzing the effects of univariate
sequence embedding towards MVTS representation learning. We
will also apply our models in other MVTS-based solar event datasets
(e.g., solar energetic particles) [6], and MVTS datasets generated
from other sources such as functional MRI (fMRI)-based time series
of brain regions [10].
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