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ABSTRACT
Solar magnetic field parameters are frequently used by solar physi-
cists in analyzing and predicting solar events (e.g., flares, coronal
mass ejection, etc). Temporal observation of the magnetic field pa-
rameters, i.e., multivariate time series (MVTS) representation facili-
tates finding relationships of magnetic field states to the occurrence
of the solar events. Forecasting MVTS of solar magnetic field pa-
rameters is the prediction of future magnetic field parameter values
based on historic values of the past, regardless of the event labels.
In this paper, we propose a deep sequence-to-sequence (seq2seq)
learning approach based on batch normalization and Long-Short
Term Memory (LSTM) network for MVTS forecasting of magnetic
field parameters of the solar events. To the best of our knowledge,
this is the first work that addresses the forecasting of magnetic field
parameters rather than the classification of events based on MVTS
representations of those parameters. The experimental results on a
real-life MVTS-based solar event dataset demonstrate that our batch
normalization-based model outperforms naive sequence models in
forecasting performance.
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1 INTRODUCTION
Solar events are characterized by magnetic field parameter values
on the solar corona such as helicity, flux, Lorentz force, etc. These
magnetic field parameter values indicate the occurrence of extreme
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solar events such as solar flares, coronal mass ejection (CME), and
eruption of solar energetic particles (SEP) [3]. These events are
caused by a sudden burst of magnetic flux from the corona. The
X-ray radiation of such extreme solar events can have devastating
effects on life and infrastructure in space and ground such as disrup-
tion in GPS and radio communication, damage to electronic devices,
and radiation exposure-based health risks to the astronauts. The
cost associated due to infrastructure damage after extreme solar
events can rise up to trillions of dollars [7].

In recent years, the prediction of solar events given a prede-
fined time window has become an important challenge in the he-
liophysics community. Since the theoretical relationship between
magnetic field influx and the occurrence of extreme events in solar
active regions (AR) is not yet established, space weather researchers
depend on the data of science-based approaches for predicting solar
events. The primary data source used in these efforts is the images
captured by the Helioseismic Magnetic Imager (HMI) housed in
the Solar Dynamics Observatory (SDO). HMI images (captured in
near-continuous time) contain spatiotemporal magnetic field data
of solar active regions. For performing temporal window-based
flare prediction of an AR instance, the spatiotemporal magnetic
field data of that region is mapped into a multivariate time series
(MVTS) instance[1]. MVTS instances, collected with a uniform sam-
pling rate throughout a present observation period, are labeled with
multiple event classes (e.g., flare classes), and machine learning-
based classifiers are trained with labeled MVTS instances to predict
the occurrences of the events after a preset prediction window. Al-
though multiple research efforts [8, 10, 13] addressed MVTS-based
solar event prediction, forecasting of MVTS-represented magnetic
field parameters is yet to be explored.

In this work, we aim to forecast the future values of the magnetic
field parameters, given past values in the MVTS representations.
In case of a sudden data gap, i.e., interruption in the communica-
tion between the satellite and ground receiver, MVTS forecasting
of magnetic field parameters can play an important role in ex-
trapolation. To the best of our knowledge, this is the first attempt
to forecast the solar magnetic field parameters. We used a deep
sequence-to-sequence learning model based on batch normalization
and Long-Short Term Memory (LSTM) network that is trained with
input-output pairs of examples, where the inputs are formed by
sampling the MVTS instances for an observation window, and the
outputs are formed by sampling theMVTS instances for a prediction
window (which follows the observation window). Our LSTM-based
encoder-decoder model is trained with a backpropagation algo-
rithm based on mini-batch gradient descent-based optimization
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for minimizing Mean Squared Error (MSE) between the observed
MVTS (input) and predicted MVTS (output).

2 RELATED WORK
Recent research efforts on solar event prediction are mostly based
on data science. Data-driven extreme solar event prediction models
stem from linear and nonlinear statistics. Datasets used in these
models were collected from line-of-sight magnetogram and vec-
tor magnetogram data. Line-of-sight magnetogram contains only
the line-of-sight component of the magnetic field, while vector
magnetogram contains the full disk magnetic field data [4]. NASA
launched Solar Dynamics Observatory (SDO) in 2010. Since then,
SDO’s instrument Helioseismic and Magnetic Imager (HMI) has
been mapping the full-disk vector magnetic field every 12 minutes
[3]. Most of the recent prediction models use the near-continuous
stream of vector magnetogram data found from SDO [12]. Magnetic
field parameters (e.g., helicity, flux, etc) were developed with the
goal of finding a relationship between the phosphoric magnetic
field behavior and solar activity, which usually occurs in the solar
chromosphere and transition region of the solar corona.

Deep learning-based sequence-to-sequence models using Long
Short Term Memory (LSTM), Recurrent Neural Network (RNN),
and Gated Recurrent Unit (GRU) have been used successfully in
multiple Natural Language Processing (NLP) tasks such as machine
translation [2, 6] and text summarization [14, 17]. Sincemultivariate
time series are high-dimensional sequence data, previously MVTS
forecasting has been addressed by different seq2seq models [9, 16].
In [11], batch normalization has shown promising improvements in
the sentiment classification task, where a batch-normalized variant
of LSTM architecture is used and each LSTM cell’s input, hidden
state, and cell state are normalized during training. Being inspired
by encoder-decoder-based machine translation models, in this work
we considered the MVTS forecasting of solar magnetic field pa-
rameters as a sequence-to-sequence learning task, and used batch
normalization-based LSTM architecture for capturing long-term
dependencies of multi-dimensional sequence data.

3 METHODOLOGY
3.1 Notations
Each solar active region results in different event occurrences after
a given prediction window represents an event instance. The event
instance 𝑖 is represented by a MVTS instance 𝑚𝑣𝑡𝑠𝑖 . The MVTS
instance𝑚𝑣𝑡𝑠𝑖 ∈ R𝑇×𝑁 is a collection of individual time series of 𝑁
magnetic field parameters, where each time series contains periodic
observation values of the corresponding parameter for an obser-
vation period 𝑇 . In the MVTS instance𝑚𝑣𝑡𝑠𝑖 = {𝑣𝑡1 , 𝑣𝑡2 , ., ., ., 𝑣𝑡𝑇 },
𝑣𝑡𝑖 ∈ R𝑁 represents a timestamp vector. We divide the dataset
into (𝑋,𝑌 ) pairs, where 𝑋𝑖 = 𝑚𝑣𝑡𝑠𝑖 [𝑡1 : 𝑡𝑡𝑜𝑏𝑠 , :] ∈ R𝑡𝑜𝑏𝑠×𝑁 , 𝑌𝑖 =

𝑚𝑣𝑡𝑠𝑖 [𝑡𝑡𝑜𝑏𝑠+1 : 𝑡𝑇 , :] ∈ R𝑡𝑝𝑟𝑒𝑑×𝑁 , 𝑡𝑜𝑏𝑠 is the observation time, and
𝑡𝑝𝑟𝑒𝑑 is the prediction time.

3.2 LSTM and Batch Normalization-based MVTS
Forecasting

In this section, we present a batch normalization-based implementa-
tion of the encoder-decoder model that uses LSTM architecture and

compare it with other baseline sequence models of naive stochastic
gradient descent implementation (without batch normalization).
There are different deep sequence learning models, which are fre-
quently applied in machine translation, and they can be adapted
for time series forecasting. In this study, we analyze two seq2seq
models: the batch normalization-based seq2seq LSTM Model (BN
seq2seq LSTM), and the seq2seq models based on LSTM/GRU/RNN,
and compare their forecasting results.

Fig. 1 depicts our seq2seq-based model that uses batch normal-
ization and LSTM architecture. First, in the encoder LSTM cells,
the value of each time step is used as input to the encoder LSTM
cell together with the previous cell state 𝑐 and hidden state ℎ, the
process repeats until the last cell state 𝑐 and hidden state ℎ are
generated. Then, the decoder LSTM cell uses the last cell state 𝑐
and hidden state ℎ from the encoder as the initial states for the
decoder LSTM cell. The last hidden state of the encoder is also
copied 𝑡𝑝𝑟𝑒𝑑 times using a Repeat Vector layer according to the
length of the forecasting window, and each copy is inputted into
the decoder LSTM cell together with the previous cell state 𝑐 and
hidden state ℎ. The decoder outputs hidden states for all the 𝑡𝑝𝑟𝑒𝑑
time steps and the hidden states are connected to the final Time-
distributed-dense layer in order to produce the final output sequence.
The time-distributed-dense layer allows to apply a dense layer to
every temporal slice of the input. We use this final layer to process
the output from the LSTM hidden layer. Every input shape is three-
dimensional, and the first dimension of the input is considered to be
the temporal dimension. This means that we need to configure the
last LSTM layer prior to the time-distributed-dense layer to return
output sequences. The output shape will be three-dimensional as
well, which means that if the time-distributed-dense layer is the
output layer, then for predicting a sequence we need to reshape the
final representation into a three-dimensional shape [5]. In the batch
normalization-based seq2seq LSTM Model, we use mini-batches to
feed the data into the model. Batch normalization is a useful method
for making deep neural network training faster and more robust,
and it normalizes the input activations to avoid gradient explosion
caused by the activation function ELU (Exponential Linear Unit) in
the encoder [15]. The batch normalization layer applies a transfor-
mation that maintains the mean output close to 0 and the output
standard deviation close to 1. We found batch normalization to be
significant in maximizing the performance of MVTS forecasting
for the magnetic field parameters of the solar events, which we
demonstrate in more detail in the experiments section.

3.3 Evaluation Metrics
We used Mean Absolute Error (MAE), Mean Squared Error (MSE),
and Root Mean Squared Error (RMSE) to report our model results.
The evaluationmetrics (MAE,MSE, and RMSE)measure the amount
of error in statistical models. They assess the average squared dif-
ference between the observed and predicted values.

Mean Absolute Error (MAE) is the average over the absolute
values of the differences between predicted representations and
ground truth representations.

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
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Figure 1: LSTM and Batch normalization-based seq2seq model for MVTS forecasting

where 𝑦𝑖 is the ground truth value and 𝑦𝑖 is the predicted value.
Mean Squared Error (MSE) is defined as the mean or average

of the square of the difference between actual and predicted values.

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2

Root Mean Squared Error (RMSE) is the difference between
forecast and corresponding observed values, where each difference
is squared and averaged over the sample space. It denotes the square
root of the MSE.

𝑅𝑀𝑆𝐸 =
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1
𝑛
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4 EXPERIMENTS
We compared the batch normalization-based seq2seq LSTM model
with the baseline models on multivariate time series forecasting
of magnetic field parameters of a solar events dataset. The source
code of our model and the experimental dataset are available on
our GitHub repository 1.

4.1 Dataset Description
As the benchmark dataset of our experiments, we used the MVTS-
based solar flare prediction data set published by Angryk et al [1].
Each MVTS instance in the dataset is made up of 25 time series of
active region magnetic field parameters (a full list can be found in
[3]). The time series instances are recorded at 12 minutes intervals
for a total duration of 12 hours (60-time steps). The dataset has
the number of observation points 𝑇 = 60, and the number of di-
mensions in timestamp vectors 𝑁 = 25, while the event occurrence
window is 12 hours. Our experimental dataset consists of 1,540
MVTS instances that are evenly distributed across four flare classes
(X, M, BC, and Q). We discarded the class labels to fit the dataset
for MVTS forecasting [8, 13], where each MVTS instance is divided
1https://github.com/Kalshammari/BN_Seq2Seq

into input and output (ground truth) sequences according to the
observation window (𝑡𝑜𝑏𝑠 ) and prediction window (𝑡𝑝𝑟𝑒𝑑 ). In our
experiments, 𝑡𝑜𝑏𝑠 = 40, and 𝑡𝑝𝑟𝑒𝑑 = 20, while 𝑇 = 𝑡𝑜𝑏𝑠 + 𝑡𝑝𝑟𝑒𝑑 .

4.2 Train/test splitting method
We performed random sampling for train/test splitting, where we
use the stratified holdout method (80 % for training, and 20 % for
testing) with six different random seeds, and reported the mean
error rates along with standard deviation. Train and test datasets
are z-normalized since magnetic field parameter values appear on
different scales. The shapes of train and test datasets are as follows.

• X_train shape:(1232, 40, 25) and y_train shape:(1232, 20, 25)
• X_test shape:(308, 40, 25) and y_test shape:(308, 20, 25)

4.3 Baseline Models
We evaluated our model with LSTM, RNN, and GRU-based seq2seq
implementations. In the forward pass, we have input the first 𝑡𝑜𝑏𝑠
vectors of each MVTS to the encoder cells (LSTM/RNN/GRU) to
produce the encoded hidden state. That encoded hidden state is
the input to the decoder cells of the same type. The decoder then
predicts the next 25-dimensional timestamp vectors for each times-
tamp in 𝑡𝑝𝑟𝑒𝑑 and matches the prediction with ground truth to
perform stochastic gradient descent-based backpropagation. In all
three models, the number of dimensions in cell state and hidden
state representations was 25, the number of epochs in training was
5, and the learning rate in stochastic gradient descent is 0.01.

4.4 Performance of LSTM and Batch
Normalization-based seq2seq model

When we apply LSTM and batch normalization-based seq2seq
model, we perform the following steps. First, we extract (𝑋 , 𝑌 )
pairs from all 1,540 MVTS instances, where the length of each ex-
ample 𝑋 is 𝑡𝑜𝑏𝑠 = 40, the length of each output 𝑌 is 𝑡𝑝𝑟𝑒𝑑 = 20, and
each timestamp vector is 25-dimensional.
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Table 1: Forecasting Performance of Batch Normalization-based seq2seq (LSTM) Model compared to the baselines

Performance Metrics Gradient Descent LSTM Gradient Descent GRU Gradient Descent RNN BN seq2seq LSTM
Train MAE 14.481 ± 0.043 14.942 ± 0.052 15.578 ± 0.036 0.094 ± 0.002
Test MAE 14.55 ± 0.103 15.042 ± 0.092 15.68 ± 0.107 0.057 ± 0.010
Train MSE 18.238 ± 0.075 19.631 ± 0.062 21.269 ± 0.031 0.070 ± 0.003
Test MSE 22.598 ± 0.251 24.906 ± 0.821 24.589 ± 0.726 0.002 ± 0.001

Train RMSE 18.434 ± 0.039 19.126 ± 0.652 19.921 ± 0.821 0.265 ± 0.007
Test RMSE 18.492 ± 0.348 19.245 ± 0.542 20.092 ± 0.672 0.005 ± 0.001

In the encoder step, the input is of size (𝑏, 40, 25), where 𝑏 (= 10)
is the batch size of the MVTS instances. For each encoder LSTM
cell, the vector of each time step is used as the input to the encoder
LSTM cell together with the previous cell state 𝑐 and hidden state ℎ,
and the process repeats until the last cell state 𝑐 and hidden state ℎ
are generated. The decoder LSTM cell uses the last cell state 𝑐 and
hidden state ℎ from the encoder as the initial states for the decoder
LSTM cell. The last hidden state of the encoder is also copied 20
times using the Repeat Vector layer and each copy is inputted into
the decoder LSTM cell together with the previous cell state 𝑐 and
hidden stateℎ. The decoder outputs a hidden state for all the 20-time
steps, and these hidden states are connected to a time-distributed-
dense layer to generate the final forecasting output which is of size
(𝑏, 20, 25). We used Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE) to report our
model performance results. We reported the mean and standard
deviation of the performance measures results in Table 1. We found
that our approach of deep sequence-to-sequence learning based
on batch normalization and Long-Short Term Memory (LSTM)
network significantly outperformed the baseline methods’ results
as Table 1 shows. It is visible that batch normalization makes a
difference of a large margin by producing errors near 0, whereas
the traditional seq2seq models result in large error values due to
the absence of batch normalization.

5 CONCLUSION
We propose a batch normalization-based deep seq2seq model for
multivariate time series forecasting of magnetic field parameters of
solar events. Unlike previous works of MVTS-based event classifi-
cation, we perform forecasting of magnetic field parameter values
irrespective of MVTS labels. We compare it with other seq2seq
implementations based on LSTM, GRU, and RNN. Our proposed ap-
proach significantly improved the MAE, MSE, and RMSE results of
MVTS forecasting on a benchmark solar magnetic field parameter
dataset.

For future research, we plan to develop machine learning models
for MVTS forecasting that leverage MVTS labels. We aim to use
the forecasting models for augmenting (creating synthetic exam-
ples) MVTS instances of minority classes (rare events). In addition,
to utilize inter-variable dependencies of the MVTS instances for
the task of forecasting, we plan to incorporate graph construction
(e.g., functional network computation from the correlation matrices
of the MVTS instances) and graph neural network (GNN)-based
representation learning.
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