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Abstract

Fluency—described as the “coordinated meshing of joint ac-
tivities between members of a well-synchronized team”—is
essential to human-robot team success. Human teams achieve
fluency through rich, often mostly implicit, communication.
A key challenge in bridging the gap between industry and
academia is understanding what influences human percep-
tion of a fluent team experience to better optimize human-
robot fluency in industrial environments. This paper ad-
dresses this challenge by developing an online experiment
featuring videos that vary the timing of human and robot ac-
tions to influence perceived team fluency. Our results sup-
port three broad conclusions. First, we did not see differences
across most subjective fluency measures. Second, people re-
port interactions as more fluent as teammates stay more ac-
tive. Third, reducing delays when humans’ tasks depend on
robots increases perceived team fluency.

Introduction

Human teams achieve fluent interactions in a seemingly ef-
fortless fashion through implicit timing signals, such as hes-
itations or anticipatory actions, or learned conventions, such
as turn-taking. These implicit timing cues lead to comfort-
able, flexible interactions that create a sense of team coher-
ence and fluency. On the other hand, robots are often very
precise and rigid in their timing and approach to tasks, with
plans optimized for efficiency. This work explores how met-
rics of the timing of robot actions in a human-robot team cor-
relate with perceived fluency so that we can design schedul-
ing algorithms that better account for humans’ natural pref-
erences and social cues for more effective interactions. To
our knowledge, these metrics have only been evaluated in
the context of human observers of a simulated HRI envi-
ronment (Hoffman 2019). Our work looks to validate those
results when the interactions observed involve actual hu-
man and robot agents and extends to two proposed metrics
that have not previously been evaluated (Isaacson, Rice, and
Boerkoel Jr 2019). We design a set of human-robot interac-
tions using the robot Sawyer! that varies key timing metrics.
Workers on Amazon’s Mechanical Turk (MTurk) platform
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watch videos of these interactions and respond to statements
that aim to capture their perceptions of overall team fluency.

Background

The timing of human-robot close collaborative tasks is es-
sential in HRI (Hoffman, Cakmak, and Chao 2014) and has
been shown to impact human perceptions of team fluency
(Cakmak et al. 2011; Hoffman and Breazeal 2007; Hoff-
man 2019). Hoffman (2019) introduces human idle time
(HUMAN-IDLE), robot idle time (ROBOT-IDLE), concur-
rent activity (CON-ACT), and functional delay (FUNC-
DELAY) as quantitative metrics of fluency. Hoffman vali-
dated these existing metrics against human perceptions of
fluency using a simulated human-robot interaction in which
a human and robot completed alternating tasks involving
manipulating objects in a shared workspace. Participants
watched simulation videos via an online platform and an-
swered questions about how fluent the interactions appeared.
Human idle time and functional delay were significantly cor-
related with the viewers’ perception of fluency in an interac-
tion, while robot idle time and concurrent activity were not.
Isaacson, Rice, and Boerkoel Jr (2019) proposed two HRI
metrics, concurrent idleness and resource delay, that they
hypothesized will impact human teammates’ perceptions of
fluency. Concurrent Idleness (CON-IDLE) measures the
amount of time all agents are simultaneously inactive. Re-
source Delay (RESOURCE-DELAY) is the time difference
(positive or negative) between when an agent is ready to use
a resource and when that resource becomes available. How-
ever, neither of these metrics has been evaluated against hu-
mans’ perceptions of fluency in human-robot interactions.

Hypotheses

To keep in conversation with prior work, we hypothesize that
Hoffman’s conclusions about the effect of HUMAN-IDLE
(H1), FuNc-DELAY (H2) ROBOT-IDLE (H3), and CON-
ACT (H4) will hold (Hoffman 2019) as we transition from a
simulated to real human-robot interaction. We also provide
hypotheses for the two new metrics. More precisely:

H1. We hypothesize that the sense of fluency will increase as

HUMAN-IDLE increases (Hoffman 2019).

H2. We also hypothesize that the sense of fluency will de-

crease as FUNC-DELAY increases (Hoffman 2019).



Metric Abbreviation Subjective Fluency Statements
F1. [TEAM-FLUENCY] The human-robot team worked fluently together.
F2. [HUMAN-IMPORTANT] The human was the most important member of the team.
F3. [ROBOT-TRUST] The robot was trustworthy.
F4. [ROBOT-UNINTELLIGENT] The robot was unintelligent.(R)
F5. [ROBOT-UNCOOPERATIVE] The robot was uncooperative.(R)
Fé. [ROBOT-FLUENT] The robot contributed to the fluency of the collaboration.
F7. [ROBOT-SUCCESS] The robot was committed to the success of the team.
F8. [ROBOT-IMPORTANT] The robot had an important contribution to the success of the team.

Table 1: Subjective indicators of fluency that appear as part of our participant survey that were taken from Table 1 in (Hoffman
2019). (R) indicates reverse scale (i.e., increased agreement implies decreased perceived fluency) .

H3. We hypothesize that ROBOT-IDLE will not have a signif-
icant effect on the perception of fluency (Hoffman 2019).

H4. We hypothesize that CON-ACT will not have a significant
effect on the perception of fluency (Hoffman 2019).

HS. We hypothesize that as CON-IDLE increases, the sense
of fluency will decrease.

He6. We hypothesize that exchanges will be perceived as more
fluent as the absolute value of RESOURCE-DELAY de-
creases (i.e., resources become ready closer to the time
that an agent needs to use them).

Experimental Design

We use Amazon Mechanical Turk (MTurk) and Qualtrics as
the platforms for our experiment. One advantage of MTurk
is that it reaches a broader demographic sample of the
United States population than traditional studies using uni-
versity students (Crump, McDonnell, and Gureckis 2013).
However, it is not entirely free of population biases (Stew-
art, Chandler, and Paolacci 2017). We restrict participants to
MTurk workers at least 18 years of age in the United States
with a Human Intelligence Task (HIT) approval rate of at
least 99% and at least 50 prior HITs approved. All but one
participant completed the survey in less than 30 minutes, and
the average amount of time was roughly 12 minutes. We
compensate participants $1.50 for submitting the HIT and
award a bonus of $1.50 if their submission is usable.

Each participant views two sets of videos in which
a human-robot team collaborates to complete a shared
workspace task, as shown in Figure 1. We randomize both
the sets of videos participants view and the order in which
videos appear within each set. Each set contains three videos
that display a variation on the metric under observation,
with appropriate changes made to the workspace to best test
that metric. After viewing each video, the participant an-
swers a series of questions originally from (Hoffman 2019)
(see Table 1) asking them to rate their agreement to state-
ments about the fluency of the interaction on 6-point Likert-
type items, ranging from strongly disagree (0) to strongly
agree (5). Though we recognize the controversy around us-
ing parametric statistical methods on this kind of ordinal
data, it is widespread to do so, and we undertake our analy-
sis with the knowledge that many studies dating back to the
1930s consistently show that parametric statistics are robust
with respect to this practice (Norman 2010).

Figure 1: A frame from video E3 (https://youtu.be/
IOhh2a5jsuc) demonstrating low resource delay.

Metric | Participants Video Code & Timing Data

H1. 49 Al (86.0%), A2(82.8%), A3(73.4%)
H2. 53 B1 (7.7%), B2(1.7%), B3 (-5.0%)
H3. 51 C1(52.7%), C2(49.7%), C3 (44.4%)
H4. 51 D1 (28.2%), D2 (36.4%), D3 (48.8)
HS5. 51 D1 (5.1%), D2(4.3%), D3 (3.3%)
He. 52 E1 (24.0%), E2(18.0%), E3 (5.8%)

Table 2: Metric values as a portion of total task time.

We designed five sets of three interactions each using the
same shared workspace shown in Figure 1. Each set of inter-
actions attempts to isolate one of the six HRI timing metrics
described above. These are reported as a portion of the total
interaction time in Table 2). Note that CON-ACT and CON-
IDLE are both varied in one set of interactions.

Results

We analyzed our datausing the JASP software pack-
age (JASP Team 2022). We use a Bayesian statistical frame-
work for our analysis because 1. the Bayesian approach
to statistical analysis provides some robustness to sample
size (as it is not grounded in the central limit theorem),
2. the Bayesian approach allows us to examine the evidence
both for and against hypotheses (whereas the frequentist ap-
proach can only quantify evidence towards rejection of the
null hypothesis) (Jarosz and Wiley 2014), 3. the Bayesian
approach does not require reliance on p-values used in Null



Hypothesis Significance Testing (NHST) which have come
under considerable scrutiny (Berger and Sellke 1987; Sim-
mons, Nelson, and Simonsohn 2011; Sterne and Smith 2001;
Wagenmakers 2007), and 4. the rules governing when data
collection stops are irrelevant to data interpretation in the
Bayesian framework, so it is entirely appropriate to collect
data until sufficient evidence has been gathered to draw a
meaningful conclusion or until the data collector runs out
of time, money, or patience (Edwards, Lindman, and Sav-
age 1963). We use JASP’s default general-purpose uninfor-
mative prior distributions for all analyses. We follow exist-
ing recommendations from in our linguistic interpretations
of reported Bayes factors (Bfs) (Jarosz and Wiley 2014).

While the Bayesian statistical approach has become fairly
widely used in the Cognitive Science and Psychology re-
search communities, it is still relatively rare in Human-
Robot Interaction research. We will, therefore, give a brief,
high-level overview to help interpret our quantitative results.
The Bfs reported throughout this paper are sometimes re-
ferred to as BF’, and are the ratio of the likelihood of the
data given the alternative hypothesis to the likelihood of the
data given the null hypothesis. B Fjy; shows the opposite ra-
tio, i.e., BFy; = ﬁw (Jarosz and Wiley 2014). In general,
a Bf < 1 indicates evidence for our null hypothesis (e.g.,
evidence against a difference in means), a Bf > 1 indicates
evidence for our alternative hypothesis (e.g., evidence for a
difference in means), and Bf=1 indicates evidence neither
for nor against either hypothesis. The further a Bf is from 1,
the stronger the evidence and confidence in the correspond-
ing conclusions. A Bf is technically defined as the ratio of
probabilities of the data as predicted by each model (e.g., the
model that some independent variable had an effect vs. the
model that it did not). The decision threshold for deciding
whether to accept a model is set by practical considerations,
but a Bf > 10 indicates “strong” evidence (Kruschke and
Liddell 2018). We analyze responses to the subjective flu-
ency statements delineated in Table 1 via Bayesian repeated
measures analyses of variance (RM-ANOVA), and summa-
rize the results for each experiment below.

HUMAN-IDLE Experiment

Participants responded to our eight subjective fluency state-
ments (Table 1) after watching each of three videos across
which HUMAN-IDLE varies (videos A1, A2, and A3 in Table
2). According to H1, we would expect the highest perceived
fluency associated with video Al (highest HUMAN-IDLE)
and the lowest perceived fluency associated with video A3
(lowest HUMAN-IDLE).

For all subjective fluency statements except F2 [ HUMAN-
IMPORTANT], a Bayesian RM-ANOVA favors the null
model over the model that the video affected the responses,
indicating evidence against a difference across videos in per-
ceived fluency. The strength of this evidence ranges from
weak (Bf=0.335) to strong (Bf=0.071).

For fluency statement F2, we found substantial evidence
supporting an effect of HUMAN-IDLE on participant re-
sponses (Bf=6.723). Post hoc tests indicated substantial evi-
dence for a difference between video Al and A3 (Bf=7.646),
with evidence against all other pairwise differences between
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Figure 2: Mean response to fluency statement F2 across
videos varying HUMAN-IDLE with 95% credible intervals.

videos. As shown in Figure 2, agreement was highest when
HUMAN-IDLE was lowest. Thus, our data regarding fluency
statement F2 are the opposite of what H1 predicts.

Hoffman’s (Hoffman 2019) speculative explanation for
H1 was that people might see the human’s possibility to rest
during idle time as a positive aspect of the collaboration.
We do not see variations in agreement with fluency state-
ment F2 as having much bearing on that idea since F2 is
a positive statement about the human’s contribution rather
than a normative one. We also note that F2 was the weak-
est indicator on the scale in Hoffman’s study and was not
correlated with any objective metrics, prompting Hoffman
to opine that it could reasonably be eliminated from future
studies (Hoffman 2019). We have included it here out of in-
terest in perceptions of the human’s role. However, it may
be less relevant to evaluating our hypotheses than the other
seven subjective fluency statements.

FUNC-DELAY Experiment

Participants responded to our eight subjective fluency state-
ments (Table 1) after watching each of three videos varying
FUNC-DELAY (videos B1, B2, and B3 in Table 2). Accord-
ing to H2, we would expect the highest perceived fluency
after video B3 (lowest FUNC-DELAY) and the lowest per-
ceived fluency after video B1 (highest FUNC-DELAY).

For all subjective fluency statements except F5 and F6, a
Bayesian RM-ANOVA favors the null model over the model
that the interaction affected the responses, indicating evi-
dence against a difference across interactions in perceived
fluency. The strength of this evidence ranges from weak,
anecdotal evidence (Bf=0.757) to substantial (Bf=0.101).

For fluency statement F5 [ROBOT-UNCOOPERATIVE],
we found very weak evidence supporting an effect of FUNC-
DELAY on participant responses (Bf=1.535). Post hoc tests
indicated substantial evidence for a difference between
video B1 and video B2 (Bf=6.937), with evidence against all
other pairwise differences between videos. As shown in Fig-
ure 3, agreement with FS was higher when FUNC-DELAY
was more strongly positive (greater disagreement with F5
indicates increased perceptions of fluency). We thus con-
clude that our data regarding fluency statement F5 support
H2, at least in the pairwise comparison between the posi-
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Figure 3: Mean response to fluency statement F5 across
videos varying FUNC-DELAY with 95% credible intervals.
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Figure 4: Mean response to fluency statement F6 across
videos varying FUNC-DELAY with 95% credible intervals.

tive FUNC-DELAY condition (video B1) and the near-zero
FUNC-DELAY condition (video B2).

We also found very weak evidence supporting an effect of
FUNC-DELAY on participant responses to subjective fluency
statement F6 [ROBOT-FLUENT] (Bf=1.512). Post hoc tests
indicated weak evidence for a difference between video B1
and video B3 (Bf=1.406), with evidence against all other
pairwise differences between videos. As shown in Figure
4, agreement with F6 was higher when FUNC-DELAY was
more strongly negative. We thus conclude that our data re-
garding fluency statement F6 weakly support H2.

ROBOT-IDLE Experiment

Participants responded to our eight subjective fluency state-
ments (Table 1) after watching each of three videos across
which ROBOT-IDLE varies (videos C1, C2, and C3 in Table
2). According to H3, we expect ROBOT-IDLE not to affect
perceived fluency significantly.

Results for most of our subjective fluency statements sup-
port H3. Bayesian RM-ANOVAs found weak to substantial
evidence against an effect of the videos varying ROBOT-
IDLE on F2 (Bf=0.110), F3 (Bf=0.636), F4 (Bf=0.251),
F6 (Bf=0.200), F7 (Bf=0.183), and F8 (Bf=0.246). How-
ever, there was weak evidence supporting an effect of vary-
ing ROBOT-IDLE across videos on fluency statements F1
(Bf=2.090) and F5 (Bf=1.224).

For F1 [TEAM-FLUENCY], post hoc tests revealed sub-
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Figure 5: Mean response to fluency statement F1 across
videos varying ROBOT-IDLE with 95% credible intervals.
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Figure 6: Mean response to fluency statement F5 across
videos varying ROBOT-IDLE with 95% credible intervals.

stantial evidence (Bf=3.377) for a pairwise difference be-
tween only videos C1 and C3 (which have the highest and
lowest levels of ROBOT-IDLE respectively). As shown in
Figure 5, agreement, and therefore perceived fluency, was
highest when ROBOT-IDLE was lowest. Although this con-
tradicts H3, we believe this result intuitively makes sense;
the team seemed to work most fluently together when the
robot had the least idle time. We emphasize that ROBOT-
IDLE was nonzero in all conditions and speculate that per-
haps an ROBOT-IDLE of zero would result in a drop in per-
ceived fluency if the robot seemed overworked or unable to
complete all of its tasks.

Results showed a different trend for fluency statement F5
[ROBOT-UNCOOPERATIVE]. Post hoc tests showed weak
evidence for a difference between videos C1 (high ROBOT-
IDLE) and C2 (medium ROBOT-IDLE) (Bf=1.484), and
between videos C2 (medium ROBOT-IDLE) and C3 (low
ROBOT-IDLE) (Bf=1.703). This result, shown in Figure 6,
is more difficult to interpret or explain. However, it is sup-
ported by only very weak evidence.

CON-ACT and CON-IDLE Experiment

Participants responded to our eight subjective fluency state-
ments (Table 1) after watching each of three videos across
which CON-ACT and CON-IDLE both vary (videos D1, D2,
and D3 in Table 2). According to H4, we expect no variation
in our subjective fluency statements regardless of the differ-
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Figure 7: Mean response to fluency statement F1 on videos
varying CON-ACT/CON-IDLE with 95% credible intervals.

ences in CON-ACT. However, H5 predicts that the differ-
ences in CON-IDLE will lead to increased perceived fluency
from video D1 to D2 to D3 as CON-IDLE decreases.

We chose to vary CON-ACT and CON-IDLE both in these
videos to maintain realism. We expect these two metrics
to be strongly inversely correlated in typical real collabo-
rations. However, this correlation is not necessary, and we
can imagine a human-robot team performing a task with 0%
of both CON-ACT and CON-IDLE or with 99% CON-ACT
and 0% CON-IDLE, for example. Further exploring and dis-
entangling the relationship between CON-ACT and CON-
IDLE will require further experimentation in the future. For
now, we will attempt to interpret any differences that emerge
across our videos with an understanding that we cannot be
sure whether they are attributable (more) to changes in CON-
ACT or CON-IDLE. However, we are also unsure that this
distinction would be meaningful if these metrics tend to be
as strongly correlated as we suspect.

For all subjective fluency statements except FI, a
Bayesian RM-ANOVA favors the null model over the model
that the video affected the responses, indicating evidence
against a difference across videos in perceived fluency. The
strength of this evidence ranges from weak (Bf=0.526) to
strong (Bf=0.076). Thus, H4 is largely supported here.

For fluency statement F1 [TEAM-FLUENCY], a Bayesian
RM-ANOVA strongly favors the model that the video af-
fected participant responses (Bf=18.489). Post hoc tests in-
dicated very strong evidence for a difference between video
D1 and video D3 (Bf=33.110), with no meaningful evidence
for differences between other pairings of the videos. This is
the strongest evidence for a difference between conditions
found for any variable in this study. As shown in Figure 7,
agreement with F1 was higher when CON-ACT was higher
and, correspondingly, when CON-IDLE was lower. We inter-
pret this as evidence supporting H5.

RESOURCE-DELAY Experiment

Participants responded to our eight subjective fluency state-
ments (Table 1) after watching each of three videos across
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Figure 8: Mean response to fluency statement F1 on videos
varying RESOURCE-DELAY with 95% credible intervals.

which RESOURCE-DELAY varies (videos E1, E2, and E3 in
Table 2). According to H6, we would expect the highest per-
ceived fluency after video E3 (lowest RESOURCE-DELAY)
and the lowest perceived fluency after video El (highest
RESOURCE-DELAY).

For all subjective fluency statements except FI, a
Bayesian RM-ANOVA favors the null model over the model
that the video affected the responses, indicating evidence
against a difference across videos in perceived fluency. The
strength of this evidence ranges from weak (Bf=0.524) to
strong (Bf=0.069).

For fluency statement F1 [TEAM-FLUENCY], we found
weak evidence supporting an effect of RESOURCE-DELAY
on participant responses (Bf=2.101). Post hoc tests indicated
substantial evidence for a difference between video E1 and
video E3 (Bf=3.700), with evidence against all other pair-
wise differences between videos. As shown in Figure 8§,
agreement with F1 was highest when RESOURCE-DELAY
was lowest. We thus conclude that our data regarding fluency
statement F1 support H6. However, the evidence mentioned
above against any differences regarding our other fluency
statements concerning H6 gives us pause about concluding
overall support for H6; the results are mixed.

Summary of Results
We summarize our findings across our six hypotheses.

H1. [HUMAN-IDLE] Our analysis mostly supports previ-
ous findings that human idle time does not significantly im-
pact observer perception of team fluency. The one exception
is that we found substantial evidence that the human team-
mate’s contributions were deemed more important as they
stayed busier (less idle).

H2.[FUNC-DELAY] Our analysis generally does not sup-
port the idea that functional delay significantly impacts an
observer’s perception of team fluency. The two exceptions
are that the robot’s cooperativeness and contribution to team
fluency increase as functional delay decreases. Robots that
perform anticipatory actions are seen as more cooperative
and more highly contributing to team fluency.

H3. [ROBOT-IDLE] Our analysis supports previous find-
ings that robot idle time does not significantly impact ob-



server perceptions of team fluency in most cases. The one
key exception is that we found substantial evidence that ob-
servers found the team to be less fluent as the robot was less
busy (more idle).

H4.[CON-ACT] & H5.[CON-IDLE] Our analysis gener-
ally supports previous findings that concurrent activity does
not significantly impact an observer’s perception of team
fluency. The one notable exception is that team fluency (as
measured by subjective fluency statement F1) is perceived
to drop significantly as concurrent idleness increases. When
combined with our analyses of H1 and H3, a higher-order
trend emerges—increases in either teammate’s idleness lead
to decreased perceived fluency.

H6. [RESOURCE-DELAY] Our analysis found weak sup-
port for our hypothesis that reducing resource delay would
increase perceived team fluency. However, this result did not
persist across all measures of fluency. Combining this with
the results from H2 suggests that perceived fluency increases
when robots complete tasks in a way that anticipates human
actions (e.g., negative functional delay) and complete them
in a just-in-time manner (e.g., minimal resource delay).

Conclusions

In this paper, we designed an online experiment that ex-
plored how various aspects of timing in human-robot col-
laboration influence perceived team fluency. Evidence points
against differences across most subjective fluency measures.
Evidence suggests that perceived team fluency decreases as
team members spend more time idle. Finally, the robot is
seen as more cooperative and better contributes to team flu-
ency when it completes tasks in an anticipatory, just-in-time
manner. This suggests that scheduling human-robot team ac-
tions should (1) minimize team member idleness and (2)
ensure that transitions, particularly those where human ac-
tion depends on the robot(s), are well synchronized, e.g., in
a way that anticipates human teammates’ tasks and avoids
creating unnecessary delays. Our results are consistent with
prior work based on simulated interactions.

We believe fluency should be a primary consideration for
increasing trust and safety as robots become more common
in industrial settings. A human worker experiencing their
robot teammate acting in a fluent manner can better antic-
ipate the robot’s future locations, goals, and tasks, produc-
ing long-term trust. This trust increases both the productiv-
ity and safety of the human-robot team, which is particularly
important within an industrial, manufacturing setting of the
type we began to emulate in our experiment. In the future,
we aim to conduct an in-person experiment in a more realis-
tic human-robot industrial setting and measure their percep-
tions of the robot’s fluency. Thus, we believe that studying
colocated, embodied interactions will allow us to better un-
derstand the factors that contribute to perceived team fluency
in industrial settings (Xu et al. 2012).
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