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Abstract

A growing body of work in learning-augmented online algorithms studies how
online algorithms can be improved when given access to ML predictions about the
future. Motivated by ML models that give a confidence parameter for their predic-
tions, we study online algorithms with predictions that are e-accurate: namely, each
prediction is correct with probability (at least) €, but can be arbitrarily inaccurate
with the remaining probability. We show that even with predictions that are accurate
with a small probability and arbitrarily inaccurate otherwise, we can dramatically
outperform worst-case bounds for a range of classical online problems including
caching, online set cover, and online facility location. Our main results are an
O(log(1/e))-competitive algorithm for caching, and a simple O(1/¢)-competitive
algorithm for a large family of covering problems, including set cover, network
design, and facility location, with e-accurate predictions.

1 Introduction

The study of online algorithms with ML predictions has gained significant traction in the ML and
algorithms research communities in recent years. The basic premise is that by having access to
predictions about the future, one can design online algorithms that significantly outperform worst-case
bounds. In practice, ML models producing such predictions often come with a confidence estimate
which can be roughly interpreted as a probability € of the prediction being accurate—we call these
e-accurate predictions. Thus, it is natural to ask: can we design online algorithms whose performance
is a function of the confidence parameter € of ML predictions? If ¢ = 1 and all predictions are correct,
we would like the algorithm to approach optimal offline performance (consistency). If € = 0, then
the predictions have no guarantees and we would like to ensure that the algorithm is not much worse
than an online algorithm without predictions (robustness). Between these two extremes, we would
like the performance of the algorithm to gracefully degrade with the value of ¢. In this paper, we
present online algorithms augmented with e-accurate predictions for fundamental problems such as
caching, online set cover, online facility location, and online network design.

e-accurate predictions. We consider ML predictions that are (independently) correct with probability
at least €. Note that € represents only a minimum guarantee on the probability of a prediction being
accurate; individual predictions are allowed to have higher confidence values. Moreover, we do not
restrict what an incorrect prediction constitutes since this will depend on specific problem settings.
But morally, a correct prediction reveals information about the future while an incorrect prediction
does not. The design of online algorithms augmented with e-accurate predictions has two main
challenges: (i) that information (correct predictions) is provided to the algorithm at a slow rate, about
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once every 1/e steps, and (ii) the algorithm needs to disambiguate information (correct predictions)
Jfrom noise (incorrect predictions). We emphasize that we are interested in the “high noise” regime,
i.e., small values of ¢, where for every correct prediction, there are many incorrect ones. We will
show that even in this regime, we can obtain online algorithms that are substantially better than the
worst case. We also do not assume that the value of ¢ is known to the online algorithm; rather, our
algorithms automatically adapt to the (unknown) value of ¢ in the underlying prediction model. In
some cases, however, it will be easier to describe the algorithm and analysis if we assume that ¢ is
known. If that is the case, we will first present the simpler algorithm that knows € and then generalize
it to the one that does not know ¢.

Prediction error vs c-accurate predictions. The trend in the online algorithms with predictions
literature has been to use prediction error rather than prediction confidence to parameterize the
performance of online algorithms. Note the difference in the two measures of prediction quality:
an ML model with high confidence (i.e., that produces e-accurate predictions for € close to 1)
can occasionally make highly inaccurate predictions and therefore have very high prediction error;
conversely, an ML model that has a small but consistent bias can have £ = 0 but still have small
prediction error. So, the results obtained in this paper are complementary (and incomparable) to
the existing literature on online algorithms parameterized by prediction error. To the best of our
knowledge, neither caching nor covering problems have been studied in the setting of e-accurate
predictions.

Prior to our work, variants of e-accurate predictions that also model confidence estimates of pre-
dictions have been studied in a few different problem settings such as frequency estimation in data
streams [13], k-means [11], secretary problems [10], and page migration [14]. In some cases such
as for ski rental [23] and set cover [6], the confidence parameter A does not represent a measure of
correctness of the prediction, rather it is simply a hyperparameter that can be used to trade off the
consistency and robustness bounds of the algorithm. In contrast to these, the goal in this paper is to
understand the role of e-accurate predictions in two central problem domains in online algorithms —
caching and online covering problems.

Competitive ratio. As in previous literature in this area, we also use the classical performance
metric of competitive ratio for online algorithms. The competitive ratio of an online algorithm is the
worst-case ratio between the (expected) value of the objective in the algorithm’s solution to that of
the (offline) optimum across all input instances. In the e-accurate predictions model, this expectation
is taken over both the randomness of the algorithm (if any) and the randomness of the predictions.
Our competitive ratios are expressed as a function of ¢, and gracefully degrade as € goes from 1 to 0.
But, even if € = 0, we do not lose robustness; using standard techniques (e.g., [4]), we can combine
the best online algorithm without predictions and our algorithm with e-accurate prediction to match
(up to constants) the better of the two solutions.

1.1 Our contributions

First, we consider the problem of caching with e-accurate predictions. In this problem, there is an
underlying (slow) main memory of n pages; at any given point of time, some k < n of these can
be stored in a (fast) cache. The online input comprises a sequence of page requests p1, pa, - . ., PT,
with page p; € [n] being requested at time ¢. If page p; is not in the cache at this time, the algorithm
must perform a page swap: it must evict some page from the cache, and load page p;. The goal of
the algorithm is the minimize the number of page swaps over the entire sequence of requests.

Lykouris and Vassilvitskii [18] initiated the study of caching with ML predictions and gave determin-
istic and randomized algorithms whose competitive ratio gracefully degrades with prediction error.
(See [7, 15, 24, 27] for subsequent work on this problem.) The general idea in these algorithms is to
evict the page whose next request is predicted to be furthest in the future, but robustify this strategy
by appropriately combining it with a worst-case randomized marking algorithm if the predictions
turn out to be inaccurate.

In our paper, we consider the caching problem with c-accurate predictions. At each time, the
algorithm is given a prediction for the FIF page in the cache that is correct with probability at least
€; with the remaining probability, the prediction is just a random page in the cache and hence, does
not reveal any information about the future. A natural algorithm is to simply follow the prediction,



namely evict the predicted FIF page if the currently requested page is outside the cache. We call this
the ONE-STRIKE algorithm and show that it achieves a competitive ratio of O(1/¢). !

Our main result is to obtain an exponential improvement over this baseline. To achieve the better
bound, we give a more nuanced algorithm that we call the TWO-STRIKES algorithm, and show that
it achieves a competitive ratio of O(log(1/¢)). We show this bound is tight by giving a matching
lower bound of ©2(log(1/¢)) on the competitive ratio of any algorithm for caching with e-accurate
predictions when e = 1/k log k. (Note that as long as € > 0, e-accurate predictions are more accurate
than predictions generated uniformly at random.)

Next, we consider the problem of solving online covering problems given e-accurate predictions.
Online covering is a general framework for many optimization problems such as set cover and
network design. In this problem, the online algorithm has to maintain a solution on a fixed set of
variables, and is only allowed to monotonically increase the variables over time. In each online step,
the algorithm is presented with a new covering constraint on these variables, and must then augment
its existing solution to satisfy the new constraint. The goal is to minimize a linear cost function
defined on the variables.

The systematic study of online covering with predictions was initiated by Bamas, Maggiori, and
Svensson [6], who used primal dual techniques to leverage a predicted optimal solution given to the
online algorithm (see also [1] for subsequent work on online covering with predictions). We consider
a model where in each online step, the algorithm gets a covering constraint and a predicted optimal
way of satisfying the constraint. (Given an offline predicted solution, these online predictions can be
generated on the fly.) However, these are only e-accurate predictions. Namely, in each online step,
the predicted solution to the covering constraint is part of an optimal solution with probability at least
€, and otherwise it is an arbitrary way of satisfying the constraint with the remaining probability.
Note that in the latter case, the prediction does not reveal any information about the future. We give a
simple algorithm for online covering with e-accurate predictions that obtains a competitive ratio of
O(1/e), and also a matching lower bound of £2(1/¢). Our covering framework and algorithm are
very flexible: they can even model and solve problems like facility location that are not covering
problems in a strict sense.

Related work. There has been much recent work on incorporating ML predictions in online algo-
rithms, such as in ad-allocation [19], auction pricing [20], page migration [14], flow allocation [17],
scheduling [16, 22, 23], frequency estimation [13], speed scaling [5], Bloom filters [21], bipartite
and secretary problems [3], and online linear optimization [9]. In particular, the caching problem
was studied by [7, 15, 18, 24, 27], where the prediction model is that at each time ¢, the algorithm is
given a prediction of when currently requested page p; is next requested, and the prediction error 7 is
defined as the ¢; error between the predicted and actual request times. Antoniadis ef al. [2] consider
the more general problem of metrical task systems; their predictor gives a state p; of the optimal
solution, and the error 7 is the sum of distances between the predictions and actual states. The online
set cover problem with predictions was studied by [5], where the (offline) prediction provides an
entire feasible solution at the outset. Their algorithm uses the online primal-dual framework, and uses
a hyperparameter A € [0, 1] to obtain a trade off between the consistency and robustness bounds.

1.2 Preliminaries

For every positive integer n, let [n] := {1,2,...,n}. Let us formalize the prediction model: at
each time ¢, the algorithm is given some prediction or suggestion s, whose nature depends on the
problem statement. At each time ¢, the algorithm is given one of two possible suggestions: a “good”
suggestion v, or a “bad” suggestion z;. While the precise definitions of y; and z; depend on the
specific problems, we require that the former reveals some information about the optimal solution,
and make no such requirement about the latter. There is a fixed value € € (0, 1] that is unknown
to the algorithm. Now at each time step ¢, the e-accurate prediction s, is determined as follows,
independently of the past:

o — Ju with probability at least e
b 2t otherwise.

"More precisely, we can get O(min(1/e, log k) by combining ONE-STRIKE with Randomized Marking us-
ing standard techniques (see e.g., [2, 18]). As this applies to all our algorithms, we omit writing O(min(-, log k))
for simplicity.



We aim to bound the competitive ratio of the algorithm in terms of the noise parameter €. Note that
the randomness that determines whether s; = y; or s; = 2; is hidden from both the adversary, who
generates the input sequence, and the algorithm.

2 Caching

In the caching problem there is an underlying (slow) main memory of n pages; at any given point of
time, some k£ < n of these can be stored in the (fast) cache. The online input comprises a sequence
of page requests p1, pa, - - . , pr, With page p; € [n] being requested at time ¢. If page p; is already in
the algorithm’s cache at this time, the algorithm does not need to do anything, else it must perform a
page swap: it must evict some page in the cache, and load the page p;. The goal of the algorithm is
the minimize the number of page swaps over the entire sequence of requests.

Given the request sequence up-front, a strategy that minimizes the number of page swaps is Bélddy’s
rule [8]: at each time ¢, if the requested page p; is not in the cache, evict the page that is requested
the furthest in the future (FIF) among the pages in the cache. An online algorithm does not know
the future requests, so this is not implementable; instead policies such as LRU [26] and Randomized
Marking [12] are used to circumvent this lack of foresight by using past requests to predict the future.

In contrast to the recent work which assumes a prediction for the next-arrival time of the page
requested at time ¢ [7, 18, 25, 27], we consider a model where at every time ¢, the algorithm is
provided with a prediction on the page in its cache that will be requested furthest in the future. The
prediction s; is a noisy prediction: with probability ¢ it is the FIF page, else it is a random page from
the algorithm’s cache. Using the notation from Section 1.2, y; is the FIF page in the algorithm’s
cache, and z; is a page chosen uniformly at random from the the algorithm’s cache. This assumption
of uniformity is only made for simplicity. We can in fact show (see Appendix A.2) that it suffices to
assume that the probability that a page p is incorrectly predicted as the FIF page is at most 1/ke¢
where c is a constant.

Note the two extremes: if € = 1 then we can follow Bélady’s rule and be optimal; if € = 0 then the
predictions are just random pages in the cache (which can be generated without any knowledge about
the future), and we get back the classic worst-case online setting.

Starting with the first request, we partition the input sequence into phases, where a phase is defined
as a maximal contiguous subsequence of requests containing k distinct pages. (The last phase might
contain fewer than k distinct pages because of the termination of the input sequence.) We note that
our algorithms do not actually require suggestions to be precisely the FIF page; they work unchanged
as long as the correct predictions provide a page that is not requested in the current phase. (The FIF
page is just one such page.)

All our algorithms use the idea of a cache reset at the beginning of each phase (except the first):
replace the contents of the cache with the k pages requested in the previous phase. Since each
page brought back in due to a cache reset must have been evicted after it was last requested in the
just-ended phase, we get the following lemma.

Lemma 2.1 (Cache Reset Overhead). If an algorithm that performs cache resets at the beginning
of each phase, the number of page swaps in any cache reset is at most the number of page swaps
performed in the previous phase.

These cache resets allow us to localize the description and analysis of our algorithms to a single phase,
because the state of the cache at the beginning of the phase only depends on the input sequence, and
is now independent of the algorithm. Furthermore, we partition the (at most) k pages requested in
each phase into two sets: clean pages are the ones that were not requested in the previous phase, and
the rest are called stale. (All the k requested pages in the first phase are considered clean.) Let A;

denote the number of clean pages in the i*" phase.

2.1 ONESTRIKE: A Deterministic O(1/c)-Competitive Algorithm

Our first algorithm ONESTRIKE using e-accurate predictions is simple and deterministic, and obtains
a competitive ratio of O(1/¢). In the first phase, it fetches each requested page into the cache. After
this point in time, the cache always remains full (with k pages). Each subsequent phase starts with a



cache reset. Let C; denote the algorithm’s cache contents at the end of timestep ¢. During the phase,
the algorithm is the following:

(a) If the requested page p; is already in C;_1, do nothing (i.e., it sets Cy <— C;_1).
(b) Else if p; & C;_1, evict the predicted page s, i.e., set Cy < (Cy—1 \ s¢) U {p:}.
Theorem 2.2. The ONESTRIKE Algorithm is O(1/e)-competitive.

Remark. The ONESTRIKE algorithm and its analysis both apply assuming a weaker prediction
model, in which the z; predictions (i.e., the non-good ones) are chosen adversarially, rather than
uniformly at random among the pages in the algorithm’s cache. Note that in this model, an adversary
still does not know when good predictions are given, but can adapt to the algorithm’s behavior when
specifying the z; predictions.

2.2 TWwOSTRIKES: A Randomized O(log !/c)-Competitive Algorithm

We now use randomization to improve the competitive ratio to O(log(1/¢)). Before describing the
formal algorithm, we first give some intuition. The ONESTRIKE algorithm uses the prediction every
time it must make a page swap. This places too much faith on the predictions, and incurs a large
loss. Our first change is that the algorithm is more cautious with the predictions, and now views two
predictions for the same page (and not just a single prediction) as a strong-enough signal to evict the
page. We show that the probability that a page that remains the FIF page long enough is predicted
twice far outweighs the probability that any non-FIF page is (erroneously) predicted twice during
the course of the entire phase. As we now need two predictions before evicting a page, we need a
fallback option if the requested page is not in the cache and no page has been predicted twice. We
run a randomized marking algorithm (call it MARKER) for this purpose, and carefully combine these
two algorithms to obtain the final algorithm.

However, this does not suffice: consider a situation where the length of the request sequence for
which a page remains the FIF page in the cache is very short. (An extreme example is when pages
are requested round-robin, in which case every page is the FIF page right after it is requested and
remains so for only a single request.) In this case, none of the FIF pages maintain their FIF status
long enough to be predicted twice, and the algorithm devolves to essentially being MARKER with a
competitive ratio of O(log k). To handle this situation, we stop the algorithm once we are confident
that we have seen at least A FIF pages in the predictions, where A is the number of clean pages
requested in the phase. At this point, we switch to a different algorithm, which is again MARKER but
run only on pages predicted earlier in the phase.

2.2.1 The TWOSTRIKES Algorithm

We now formally describe the TWOSTRIKES algorithm. (In this section we assume that we know
the accuracy parameter €: we remove this assumption later in the supplementary material.) As in
ONESTRIKE, the first phase in TWOSTRIKES brings the first k£ requested pages into the cache and
does no evictions. Every subsequent phase begins with a cache reset to ensure that the pages in
the cache are precisely those requested in the previous phase. We now describe the behavior of the
TWOSTRIKES algorithm for a single phase.

Epochs and Segments. Since the algorithm does not know A (the number of clean requests in this
phase), it maintains a guess A, which starts at 1 and is periodically updated. These updates break
the phase into epochs: the first epoch starts at the beginning of the phase; each time we observe that
the number of clean requests in the phase exceeds our guess A, we double the value of A, thereby
ending the current epoch and starting a new one.

When an epoch starts, TWOSTRIKES first performs a cache reset, and then checks if ¢ < (ﬁ/k)l/ 5.
if so, it simply runs randomized marking in the rest of the current epoch. Else if ¢ > (3/ k)1/5, the
epoch now is partitioned into an explore segment followed by an exploit segment. In the explore
segment, the algorithm makes A* good evictions of pages that have been predicted twice (for some
A* < A), and also learns a small candidate set of pages that contains at least A — A* pages which
make for good evictions. In the following exploit segment, the algorithm then runs randomized
marking on these candidate pages to actually make A — A* good evictions.
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Before we give details about these two segments, let us give two procedures: MARKER and STRIKER.
The MARKER procedure maintains a binary flag called MARK for every page; we say that page p is
marked if MARK(p) = 1, else it is unmarked. We mark and unmark pages by changing the flag to 1
or 0 respectively. All pages are unmarked at the beginning of the epoch. The MARKER algorithm
essentially runs the RANDOM MARKING algorithm, but since we may run it starting with only a few
unmarked pages, we allow for the possibility of running out of unmarked pages—in which case we
declare failure. The details of MARKER appear in Algorithm 1.

Algorithm 1: MARKER

let C' be the set of pages in the cache
if page p; is requested at the current time t do
case p; € C do do nothing
casep; & C and |C| < kdo C <+ CU{p.}
case p; € C and |C| = k and C has at least one unmarked page do
| let g; be a uniformly random unmarked page in C, and set C' < (C'\ {q:}) U {p:}

otherwise do declare FAIL

mark page p;

The second procedure is STRIKER: it maintains a counter called STRIKE for every page, which takes
on values in {0, 1, 2}. we say that page p is striked if STRIKE(p) € {1, 2}, otherwise STRIKE(p) = 0
and page p is unstriked. If STRIKE(p) = 2, we say page p is strike-evicted. At the beginning of the
epoch, all pages are unstriked. The STRIKER procedure operates in two modes: active and passive.
The procedure is in the active mode when the cache contains k pages (i.e., it is full), and it is in the
passive mode (and does nothing) otherwise. Like MARKER, STRIKER is not a stand-alone caching
algorithm; instead, it is active when the cache is full to acknowledge the prediction, and possibly
performs a preemptive eviction. The details appear in Algorithm 2.

Algorithm 2: STRIKER

let C' be the set of pages in the cache
if |C| < k then do nothing (we are in the passive mode)
else if page s, € C is the predicted page at the current time t then
STRIKE(s¢)++
L if STRIKE(s;) = 2 then evict s;, s0 C' < C'\ {s;} (so that s; is strike-evicted)

Switching to ONESTRIKE. In both the explore and exploit segments, it is possible for the algorithm
to switch to the ONESTRIKE algorithm. When this happens, all marks and strikes are forgotten,
and the algorithm simply evicts the predicted page whenever an eviction is required. The only state
that remains is the count on the number of clean pages in the phase so far: whenever it exceeds A,
regardless of the state of the algorithm, we double the value of A and start a new epoch.

The Explore Segment. We now describe our algorithm for the explore segment. It uses a global
counter called BAD-STRIKES, initialized to O at the beginning of each epoch, that counts the number
of bad evictions made by the STRIKER procedure. Recall that an eviction at time ¢ is good if the
evicted page is not requested in the current phase after time ¢, and it is bad otherwise. Before serving
each request, the algorithm first increments BAD-STRIKES as necessary, and then calls STRIKER and
MARKER in that order. The formal description is in Algorithm 3. The explore segment ends if either
(a) STRIKER makes at least 2A evictions in the segment, or (b) STRIKER has been in active mode for
N := A/e? requests.

Lemma 2.3. In the explore segment, the MARKER procedure never declares FAIL.

Proof. Pages are marked only when they are requested in the current epoch. So, if p; ¢ C and C' has
k marked pages, then k + 1 distinct pages have been requested in the current epoch, and therefore
also in the current phase. This contradicts the definition of a phase. O

The Exploit Segment. The exploit segment ignores all predictions. Instead it relies on the fact
(proved in Lemma 2.10) that the set of striked pages at the end of the explore segment contains A
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Algorithm 3: Explore Segment

foreach time t do

let p; be the requested page and s, the predicted page at time ¢

if p, is strike-evicted (i.e., STRIKE(p;) = 2) then increment BAD-STRIKES

if BAD-STRIKES = A then run ONESTRIKE for rest of epoch else set STRIKE(p;) < 0

call STRIKER

call MARKER N

terminate explore segment if STRIKER evicts pages > 2A times, or STRIKER in active
mode for N := A/e? requests

pages that would be good evictions (with good probability). The exploit segment now runs MARKER
on these striked pages. Formally, see Algorithm 4.

Algorithm 4: Exploit Segment

mark all pages in the cache with no strikes; striked pages are left unmarked
foreach time t do
let p; be page requested at time ¢
if p, is strike-evicted (i.e., STRIKE(p;) = 2) then increment BAD-STRIKES
if BAD-STRIKES = A then run ONESTRIKE for rest of epoch else set STRIKE(p;) < 0
call MARKER
if MARKER returns FAIL then run ONESTRIKE for the rest of the epoch

Since the exploit segment handles the possibility that MARKER may fail (and reverts to ONESTRIKE
in that case), the algorithm is well-defined; it only remains to bound the expected number of evictions
per epoch, and hence per phase. This is what we do next.

2.2.2 Competitive Ratio of the TWOSTRIKES Algorithm

Theorem 2.4. The algorithm performs O(ﬁ log 1/¢) evictions in expectation in an epoch.

Proof. There are four types of evictions that happen during an epoch:

(i) evictions performed by STRIKER in the explore segment,

(ii) evictions performed by MARKER in the explore segment,
(iii) evictions performed by MARKER in the exploit segment, and
(iv) evictions due to the ONESTRIKE algorithm,

We show that the expected number of each of type of eviction is at most O(ﬁ log 1/¢). The type (i)
evictions are the easiest: there are at most 2A of these, by the termination condition of the explore
segment.

Next we bound the number of evictions of type (iii): consider running MARKER with some cache CY,
where some k — r pages are pre-marked. Consider the r unmarked pages of Cy, and order them as
P1,P2, - - -, Py i reverse chronological order of their first request in this segment. The pages that are
not requested at all are placed at the beginning of this sequence, but can be arbitrarily ordered relative
to each other. Let D be the number of requests for pages outside the set Cy received by the algorithm.
The following property holds by induction, since only D pages are evicted, and each unmarked page
is equally likely to be evicted at any time:

Lemma 2.5. At any time t, suppose pages pi, +1,Pi,+2, - - - , Dr have already been requested and
pages pi,p2, . .., i, have not been requested yet. Then, for any i < iy, the probability that page p;
is not in the cache of the MARKER procedure at time t is at most min(P/i,, 1).

Note that the property of this lemma is unconditional, in the sense that it does not depend on the set
of pages among p;, 1, Pi,+2, - - - , Pr that were evicted before time ¢. The following corollary follows
by applying this lemma at the time of the first request for page p;:



Corollary 2.6. The probability that the cache of the MARKER procedure does not contain page p; at
the time of its first request is at most min(DP/i, 1).

The next lemma is proved using the above corollary:

Lemma 2.7. The expected number of evictions of type (iii) in an epoch is O(ﬁ log(1/¢)).

Proof. The explore segment terminates after it sees at most N = 5/52 requests for which STRIKER
is in active mode. Let S denote the set of striked pages; clearly, |S| < N. Moreover, the number of
distinct clean page requests is at most A, else the epoch ends. By Corollary 2.6, the expected number
of evictions in .S is at most

S| A R N R R
Zmin(?g <A+ ) = =A+A(Hy - Ha) = O(Alog(1/2)). O

i=1 i=A

Bounding evictions of type (ii) is a bit more involved, because we start off with k¥ unmarked pages
(so the naive application of Corollary 2.6 would give us O(Alog k)); we need to use the interplay
between MARKER and STRIKER to get our bound.

Lemma 2.8. The expected number of evictions of type (ii) in an epoch is O(ﬁ log(1/¢)).

Finally, to bound the number of type (iv) evictions, observe that we run ONESTRIKE if the counter
BAD-STRIKES reaches A, or if MARKER returns FAIL in the exploit segment. We claim that both of
these events happen with probability at most . Now since ONESTRIKE makes Q(A /¢) evictions in
expectation the expected number of such evictions is at most e - O(A/e) = O(A).

Lemma 2.9. Pr[BAD-STRIKES > ﬁ] <e.

Lemma 2.10. The probability that MARKER declares FAIL in the exploit segment is at most O(e).

We now summarize the bounds on the four types of evictions. In the explore segment, STRIKER
performs at most 2A evictions by design of the algorithm, and MARKER performs O(Alog(1/¢))
evictions by Lemma 2.8. In the exploit segment, MARKER performs O(A log(1/¢)) evictions by
Lemma 2.7. Finally, Lemmas 2.9 and 2.10 show that ONESTRIKE is called with probability O(¢),
and its cost is O(A/e), so its expected contribution is O(A) evictions. Combining everything
together, the total expected number of evictions in any epoch is at most O (A log 1/<), which proves
Theorem 2.4.

Since we double our guess for A each time, the total expected cost of a phase is O(A log 1/¢), thereby
proving the claimed competitive ratio for the known-¢ case. The algorithm (and analysis) when we
do not know the value of ¢ in advance are conceptually similar to the one above, but there are more
details to consider. In particular, we maintain a guess € for €, and each time we square this guess. The
real problem is that unlike the value of A, we do not get a clear signal that we have overestimated
the value of €. Our algorithm therefore needs to infer failure from our algorithm not performing as
claimed; we defer this to the supplementary materials.

Comparison with [27]. We now show that under our prediction model, the algorithm given by
Wei [27] performs poorly. That algorithm combines RANDOM MARKING and BlindOracle (which
in our terminology is called ONESTRIKE). Since the BlindOracle algorithm just evicts the page
suggested by the oracle, we take n = k + 1 pages and construct a sequence of phases. In phase ¢
we request all pages except page ¢ round-robin, and do this & times. The optimal strategy is to evict
page ¢ at the start of this phase. But the algorithm follows the oracle blindly, so it will evict random
pages due to bad suggestions 1/¢ times in expectation before getting a good suggestion and evicting
page 4. This happens in each phase, giving an expected cost {2(1/¢) times the optimum. Since this is
combined with RANDOM MARKING which has an Q(log k) lower bound, by setting ¢ = 1/ log k and
interleaving phases of the above lower bound sequence with phases of the lower bound for RANDOM
MARKING, we get a sequence that causes Wei’s algorithm to pay Q2(log k) times the optimal cost,
whereas our algorithm pays O(log(1/¢)) = O(loglog k) times the optimal cost.



3 Set Cover and Generalized Covering Problems

‘We now show that for a large class of online covering problems, which includes set cover (and its
multiset multicover variants), facility location, and network design problems such as Steiner tree and
Steiner forest, we can obtain an O(1/¢)-competitive algorithm with e-accurate predictions. We first
present it for the case of online set cover, and then extend the ideas to more general settings.

3.1 The Set Cover Problem

In the SET COVER problem we are given a collection of m subsets S := {S1,. .., Sy, } of a universe
U containing |U| = n elements. Each set has a cost ¢(S) > 0, and we want to pick a subcollection of
least cost covering the universe. In the online version of the problem, we do not know the set system
in advance: an element e; € U is revealted at each time ¢, along with the names of the sets containing
e¢. If none of these sets have already been chosen by the algorithm, one must be chosen at this time.
Sets once chosen cannot be dropped (so the solutions are monotonically increasing), and the goal is
to minimize the total cost of the chosen sets.

Our model of e-accurate suggestions is the following: at each time, we are given an element e;, along
with a suggested set s* € S, with the guarantee that Pr[s® € OPT | H!~!] > ¢, where H!~ ! is the
history of all requests, predictions, and actions taken in previous steps, and OPT is the optimal offline
solution.

SET-HEDGE: If e; is already covered, do nothing. Else let g* be the minimum-cost
set that covers e;. Choose s* with probability c(g")/c(s"), and choose g* otherwise.

Since g is the cheapest set covering e;, we have ¢(g*)/c(s!) < 1 and hence a valid probability.

Theorem 3.1. Given c-accurate predictions, the SET-HEDGE algorithm is 2 /e-competitive.

This result is tight up to constant factors: we show in the supplementary material that no algorithm
for set cover can have competitive ratio better than O(1/¢) in general. Moreover, we can run this
algorithm in parallel with any other online set cover algorithm, say one that is agc-competitive, to
get an algorithm that is O(min(1/e, as¢))-competitive.

3.2 Extension to Generalized Covering Problems

The simplicity of the algorithm allows us to extend to very general set of objective functions and
constraints, which we call generalized submodular-cost coverage (GSCC). Consider the following:

1. The algorithm controls a point z € RZ. The initial point is z° = 0, the all-zeros vector.
We require that = is monotone over time; i.e., z'~! < 2.

2. (Covering.) At each time ¢, a set K; C Rio is revealed, and we want that x € N,<: K.
We restrict ourselves to sets that are closed under taking component-wise maximums—i.e.,
z,y € Ky = (v Vy) € Ky, where (x Vy); = max(x;, y;).

3. (Monotonicity and Submodularity.) The objective function ¢ : R? — R~ is monotone: if

x < ythen c(x) < ¢(y). Moreover, it is submodular: c(xVyVz)—c(xVz) < c(zVy)—c(z).

The e-accurate suggestion model now says: at each time ¢, the suggestion s* € K;, and moreover
Pr[st < a* | H!™1] > ¢, where z* is the optimal offline solution. The COVER-HEDGE algorithm
now extends the SET-HEDGE algorithm as follows:

Let g' be the minimum-cost increment—i.e., g* < arg min{c(z'~"1Vg) | g € K;}.
e(x'~va')—e(a' ")
c(xt=tVst)—c(xt—1)>

Then set z¢ < 2t~1 V/ st with probability and 2t < 27t v gt

otherwise.

In general, finding this miminum-cost increment may be computationally hard; we focus on the
information-theoretic considerations for now, and defer the computational issues for later.

Theorem 3.2. Given e-accurate suggestions, the COVER-HEDGE algorithm is 2 /e-competitive for
any generalized covering problem.



3.3 Applications

Beyond set cover, the general covering formulation above captures several interesting problems:

Network Design: In the Survivable Network Design problem (which generalizes Steiner Tree and
Steiner Forest) we are given a set V' of n points together with the distances d;; between them i, j € V.
The goal is to connect k pairs of points {(s¢,te) € V x V | £ € [k]} at minimum cost, where each
pair (s¢,t¢) comes with a connectivity requirement of 7, disjoint paths between them. This problem
can be written as

2
min{ > dijmig | Y, wy > VS ek s €St g S; xe Rgo}.
i,jEV i€8,j¢S
This formulation satisfy the Covering, Monotonicity, and Submodularity properties. Moreover, the
least-cost augmentation g* can be obtained in polynomial time by a minimum cost flow algorithm.

Facility Location: This is not a covering program, yet it can be modeled using our framework. Given
a point set V' on n points and distances d;; between points 7, j € V, and opening costs f; > 0 for
each ¢ € V, the goal is to designate some subset F' of points as facilities, so that the total cost of
> ieF fi+> jev min; e d;; is minimized. We can write this using Balinski’s MILP formulation:

2
min{Zfiyi + > diwig | Y wiy =1V €V, @i <y Vij e Viy e Ly € R’go}-
i€V jev i

It can be verified that this formulation also satisfies the Covering, Monotonicity, and Submodularity
properties, despite the non-covering constraints of the form x;; < y;. (Indeed, in the supplementary
material, we show that the coordinate-wise maximum covering property allows us to go beyond
standard covering programs.) Moreover, the least-cost augmentation g* can be obtained in polynomial
time using a simple greedy algorithm.

Covering Mixed-Integer Linear Programs (MILPs): given non-negative A € R™*", b € R™ and
¢,u € R™, and a subset I C [n], we want to solve

min{cTx | Az >b,0<z <wu,z; € ZVi € I,x; e RVi & I}.

Each constraint is a half-space, and it can be verified that this formulation satisfies the Covering,
Monotonicity, and Submodularity properties. However, since this problem is NP-hard in general, the
least-cost augmentation g¢ can be computed efficiently only in some cases such as the network design
problems described above.

4 Conclusions

In this paper, we presented online algorithms augmented with e-accurate predictions for several
classic problems such as caching, set cover, facility location, Steiner tree, and generalizations. Can
we show a a poly log(1/e) competitiveness, or even f (&) competitiveness for the k-server problem,
which is an extension of our results for caching? Another direction would be to combine the
e-accuracy prediction model studied in this paper with some measure 7 of total prediction error
namely, design online algorithms augmented by probabilistically approximately correct (or PAC)
predictions. Finally, a third direction of future work would be a thorough experimental analysis of
our framework and algorithms, to empirically compare the performance of our work with that of
other learning-augmented algorithms.
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Organization. Appendix A and Appendix B contain the missing proofs for Section 2, namely:

* Appendix A.l contains the proofs for the ONESTRIKE algorithm from Section 2.1.
* Appendix A.2 contains the proofs required for Section 2.2.

* Appendix B describes and analyzes the TWOSTRIKESUA algorithm, which is an extension
of the TWOSTRIKES to the case where the ¢ is not known.

* Appendix B.2 proves the ©2(log(1/¢)) randomized lower bound.
Appendix C presents the missing proofs for Section 3, namely:

* Appendix C.1 contains the proofs of Theorem 3.1 and Theorem 3.2.

» Appendix C.2 contains the proof of Theorem 3.2 for the case where the objective function is
separable.

* Appendix C.3 shows a syntactic characterization of generalized covering problems over
half-spaces, which allows the extension of our results to problems such as facility location,
as mentioned in Section 3.3.

 Appendix C.4 proves the 2(1/¢) randomized lower bound.

A Missing Proofs from Section 2

First, we prove Lemma 2.1 (Cache Reset Overhead):

Proof of Lemma 2.1. Every page that is being brought into the cache during the cache reset must
have been swapped out in the previous phase after serving its request. The lemma follows. O

A.1 Proofs for the ONESTRIKE algorithm

Next, we prove Theorem 2.2, the competitive ratio of the ONESTRIKE algorithm.

First, we introduce some helper lemmas. The first lemma is a standard property of caching that helps
lower bound the cost of any feasible solution:

Lemma A.1 (Lower Bound on the Optimal Cost). The number of page swaps in any feasible solution
(and therefore, in an optimal solution) is at least ) ., Nif2, where A; is the number of clean pages

requested in phase i.

Proof. For any i > 2, a total of k + A; distinct pages are requested across phases ¢ — 1 and 4, which
means that any feasible solution must perform at least A; page swaps across these two phases. The
lemma follows by summing over all the values of i. O

At any time ¢, recall that a good eviction is one where the evicted page is not requested in the current
phase after time ¢. Once evicted, such a page does not return to the cache for the rest of the phase.
This allows us to relate good evictions to clean requests:

Lemma A.2 (Good Evictions vs. Clean Requests). The number of good evictions in phase 1 is at
most A;, the number of clean pages requested in the phase.

Proof. Note that a total of k + A; pages are requested across phases i — 1 and 7. After A; good
evictions in phase ¢, all subsequent requests in phase 7 are for the remaining k pages. The cache can
hold all these k pages, so there cannot be any further page swaps in phase <. O

Finally, we relate good evictions to FIF pages:

Lemma A.3 (Good Evictions vs. FIF Pages). At any time t, if the cache contains k pages and the
FIF page is evicted to serve a request for a page not currently in the cache, then this is necessarily a
good eviction.
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Proof. Excluding the currently requested page, at most k£ — 1 other pages can be requested after
time ¢ in the current phase. Now, note that the £ — 1 pages in the cache other than the FIF page are
requested before the FIF page after time ¢. The lemma follows.

Now, we are ready to prove Theorem 2.2:

Proof of Theorem 2.2. By Lemma 2.1 and Lemma A.1, it suffices to prove that the expected number
of page evictions of the algorithm in a given phase is at most A /e, where A is the number of clean
pages requested in the phase. By Lemma A.3 and the e-accuracy condition, every eviction is a good
eviction with probability at least . It follows by Lemma A.2 that the expected number of page
evictions made by the ONESTRIKE algorithm in the current phase is at most A /e.

A.2  Proofs for the TWOSTRIKES algorithm

Now we provide the missing proofs for establishing the competitive ratio of the TWOSTRIKES
algorithm.

Proof of Lemma 2.8. Suppose p1, pa, . . ., pi are the unmarked pages in the cache at the beginning
of the epoch in reverse chronological order of their first requests in this segment. The pages that are
not requested at all are placed at the beginning of this sequence, but can be arbitrarily ordered relative
to each other. As in Lemma 2.7, the number of clean requests for pages is at most A, else the epoch
ends. So by Corollary 2.6, the expected number of evictions of type (ii) among pages p1, p2, - .., PaN
is again at most O(A log(1/¢)), using the same argument as in Lemma 2.7.

But what about evictions of type (ii) among the remaining pages pan+1, - - -, Dk ? Suppose at time
t, the first request for page p;, causes a type (ii) eviction of a page in pan 41, ..., pk. At this point
in time, the cache must be full (else we would not have evicted a page), so the STRIKER algorithm
is active at the end of time ¢. By Lemma 2.5, the probability that some page p; has been evicted
by MARKER by time  is at most 3/i, < 8/an = <*/2 for any j € {2N +1,...,k}. By the union
bound, none of the pages p; for j € {2N + 1, ..., k} satisfying j € [i, — 1/%,,) have been evicted
by MARKER by time ¢, with probability at least 1/2.

Supposse this event happens. Since STRIKER is now active, one of the following events must happen
in the next 1/:2 requests:

Ea: There is a type (i) eviction in these /2 requests, or
&y: The STRIKER procedure is active for all these 1/2 requests.

In either case, we can charge to the corresponding event. By the first termination condition for the
explore segment, event £, happens at most 2A times. By second termination for the explore segment,
event &, happens at most A times. Putting these together, we conclude that the expected number of
type (ii) evictions for pages pan 1, ..., pi is O(A), and the total expected type (ii) evictions are at
most O(Alog(1/¢)). O

Proof of Lemma 2.9. We show that E[BAD-STRIKES] < €A, whereupon Markov’s inequality im-
plies the claimed probability bound. Indeed, fix any page p, and consider the expected number of
times that the counter BAD-STRIKES is incremented due to p. For any such increment, p must be
predicted twice when it is not the FIF page in a cache containing k pages. This is because if p is the
FIF page in any of these predictions, then by Lemma A.3, p is a good eviction. By the termination
condition for STRIKER, it is active mode for at most N = A /e steps. So the expected contribution
of p to BAD-STRIKES is at most

. ~ 2 ~
N 1 1 N\% N2 A A
g ) . < E — .| — < _ _ 3 = _.
Pt ! (2@) k2t — = 21 (k> - <k> < <€2k;> since N g2

By linearity of expectation, the expected value of the counter BAD-STRIKES is at most

~

N2 —~
A ~ 1 A ~ ) A 5
(5%) ok:A~€—4'E<5A, s1ncez<5. O
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Relaxing the prediction model. The proof of Lemma 2.9 assumes that the probability that a page p
is predicted when it is not the FIF page in a cache containing k pages is at most 1/k. Now we show
that the lemma still holds assuming this probability is at most 1/ke® for any ¢ > 0. The proof is
essentially the same, but we need to change a few constants. Now, the expected contribution of p to
BAD-STRIKES is at most

e () e T () < ()

i>1

By linearity of expectation, it suffices to show that this quantity is at most eA /k. This holds if we
set N = A/e? and assume A < £2¢+2d+1k_ (In the proof of Lemma 2.9, we assumed ¢ = 0 and set
d = 2.) Under these modifications, all of the other proofs still hold; this lemma was the only one
relying on an upper bound on the probability of a page being incorrectly predicted as FIF.

Proof of Lemma 2.10. We call a strike good if it applies to a page that will not be requested in the
rest of the phase. Let S denote the number of pages struck by at least one good strike during the
explore segment. It suffices to show S > A with probability 1 — O(¢). If this happens, then at the
beginning of the exploit phase, there are at least A good pages that have either been struck or evicted,
hence we would not run out of unmarked pages before the epoch ends.

Suppose the explore segment ends due to the first termination condition: STRIKER has made 2§
evictions. By Lemma 2.9, with probability 1 — ¢, at most A of these evictions are bad, so at least A
of them are good, as desired.

Now suppose the explore_ segment ends due to the second termination condition: STRIKER has been
in active mode for N = A /e? requests. Whenever STRIKER is in active mode, it strikes the predicted
page (and possibly evicts it). Conditioned on the past, each strike is good with probability at least ¢,
so the expected number of good strikes is at least e N = A /e. Some of these good strikes apply to
the same page, but STRIKER evicts any page with two strikes, so among the good strikgs, at most A
of them apply to pages that already have a good strike. Thus, we have E[S] > A/e —

We now finish with a concentration bound; we want to show that S < A with probability O(e).
Letting = 1 — 1/(1/= — 1) and ;n = A /e — A, by a standard Chernoff bound, we have

Pr(S < A) = Pr(S < (1 8)p) < exp(~0%1/2) < exp((4 — 1/2)/2) = O(e),
assuming ¢ is sufficiently small. O

B Caching with c-Accurate Predictions for Unknown ¢

In this section, we formally describe the TWOSTRIKESUA algorithm for unknown accuracy €. At a
high level, the algorithm is similar to the one described for known e: each phase begins with a cache
reset to ensure that the pages in the cache are precisely those requested in the previous phase. Within
a phase, there is an outer loop that iterates over epochs, and an inner loop that iterates over blocks.
Each epoch has a fixed value of A, which is initialized to 1 at the beginning of the phase. When
the number of clean pages requested in an epoch exceeds A, we end the epoch, perform a cache
reset, and start a new epoch after doubling the value of A. Each block fixes the value of €, which is
initialized to 1/2 (or any constant strictly less than 1) at the beginning of an epoch. The condition for
ending a block and starting a new one is more complicated than that for an epoch because there is no
direct way for the algorithm to detect if ¢ < £. We will describe this condition later as part of the
internals of a block.

Within a block starts, TWOSTRIKESUA first checks if ¢ < (&/k)/5; if so, it simply runs randomized
marking in the rest of the current epoch. Else if £ > (&/k)!/?, the block now is partitioned into
an explore segment followed by an exploit segment. In the explore segment, the algorithm makes
A* good evictions of pages that have been predicted twice (for some A* < A), and also learns an
additional candidate set of pages that contains at least A—A* pages which would be good evictions.
In the following exploit segment, the algorithm runs randomized marking on these candidate pages to
actually make A — A* good evictions.

The algorithm requires the procedures MARKER and STRIKER. Both are identical to their respective
counterparts from Section 2, where ¢ was known. The explore and exploit segments are largely
identical to their counterparts as well, with minor changes that we now describe.
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6.6

The Explore Segment. The explore segment is almost identical to its counterpart from Section 2.
The only difference is the following: If BAD-STRIKES (initially O at the beginning of each block)
reaches A, then we end the current block, perform a cache reset, and start a new block after squaring
the value of €. The details are in Algorithm 5.

Algorithm 5: Explore Segment

foreach time t do

let p; be the requested page and s; the predicted page at time ¢

if p, is strike-evicted (i.e., STRIKE(p;) = 2) then increment BAD-STRIKES

if BAD-STRIKES = A then square £ and start a new block else set STRIKE(p;) < 0

call STRIKER

call MARKER N

terminate explore segment if STRIKER evicts pages > 2A times, or STRIKER in active
mode for N := A/e? requests

The Exploit Segment. The exploit segment is also almost identical to its counterpart from Section 2.
As was the case for the explore segment, the only difference is that if BAD-STRIKES reaches A, then
we end the current block, perform a cache reset, and start a new block after squaring the value of £.
The details are in Algorithm 6.

Algorithm 6: Exploit Segment

let S < striked pages from the explore segment

marKk all pages in the cache not in S; pages in S’ are unmarked

if p; requested at time t then
if p, is strike-evicted (i.e., STRIKE(p;) = 2) then increment BAD-STRIKES
if BAD-STRIKES = A then square £ and start a new block else set STRIKE(p;) < 0
call MARKER if MARKER refurns FAIL then square € and start a new block

Note that the TWOSTRIKESUA algorithm, unlike TWOSTRIKES from Section 2, does not call
ONESTRIKE at any point. Instead, whenever BAD-STRIKES reaches A, it squares £ and starts a new
block.

B.1 Competitive ratio of the TWOSTRIKESUA algorithm

In any block, there are three types of page evictions in the randomized algorithm:

(i) evictions performed by STRIKER in the explore segment,
(ii) evictions performed by MARKER in the explore segment, and
(iii) evictions performed by MARKER in the exploit segment

We can bound all three types using the same proofs from from Section 2, except we replace € with €.
Furthermore, the page swaps during the cache reset at the beginning of a block can be charged to the
page evictions in the previous block. So, we have arrived at the following bound:

Lemma B.1. The expected number of evictions in a block is O(A - log(1/2)).

Now we address the main difference between TWOSTRIKESUA and TWOSTRIKES, which is the
block structure due to our guess € of €. At a high level, Lemma B.1 allows us to bound the cost
incurred in blocks where £ > ¢, because squaring € creates a geometric series over these blocks. For

blocks where € < &, we now show that the probability of starting a new block is at most 2¢. This will
in fact allow us to bound the total cost over these blocks by O(A).

Lemma B.2. Pr[BAD-STRIKES > A] < é.

Proof. The proof is identical to that of Lemma 2.9, except with £ instead of €. O

Lemma B.3. In any block where é < ¢, the probability that MARKER declares FAIL is O(£).
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Proof. The proof is identical to that of Lemma 2.10, except with £ instead of €. More specifically,
suppose the explore segment ends due to the first termination condition (i.e., STRIKER has made 2A
evictions). Then by Lemma B.2, with probability 1 — €, at most A of these evictions are bad so at
least A of them are good, as desired.

Now suppose the explore segment ends due to the second termination condition: STRIKER has been
in active mode for N = A /&2 requests. Whenever STRIKER is in active mode, it strikes the predicted
page (and possibly evicts it). Conditioned on the past, each strike is good with probability at least
g, so the expected number of good strikes is at least e N = ¢A /&2 > A /é. The rest of the proof is
identical to that of Lemma 2.10, except with € instead of e. O

Lemma B4. [f¢ < ¢, then the probability that the algorithm starts a new block is at most O(€).

Proof. There are two ways for the algorithm to start a new block: if BAD-STRIKES = ﬁ, or
MARKER returns FAIL due to a request to a page not in the cache when the cache has k marked pages.
By Lemma B.2 the former occurs with probability at most €, and by Lemma B.3, the latter occurs
with probability O(£). The lemma follows by a union bound. O

Finally, we are ready to prove the competitive ratio of the algorithm.
Lemma B.5. The competitive ratio of TWOSTRIKESUA is O(log(1/¢)).

Proof. We need to show that the expected number of evictions in a phase is O(Alog(1/¢)). Since
A < 2A in each epoch and doubles between consecutive epochs in the same phase, it suffices to show
that the expected number of page swaps in an epoch is O(Alog(1/¢)). By Lemma B.1, the expected
number of evictions in all blocks of a single epoch satisfying € > £ is bounded by O(Alog(1/¢)).
By Lemma B.4, for any block with € < ¢, the probability that the algorithm starts a new block is
O(£). Thus, the expected number of swaps due to all blocks satisfying & < €2 is at most

~ e 9i 1 -~ > 2\ 1 o N
O(A)-> e log o < O(4)- > (2¢%) log — = O(A). O

i=1 i=1
B.2 Caching Lower Bound

Theorem B.6. Any (randomized) algorithm for caching with e-accurate suggestions is 2(log(1/¢))-
competitive.

In our lower bound construction, we will consider the following prediction model: at each time ¢,
with probability € (independently of the past), the algorithm receives a good prediction (i.e., it is told
the FIF page in its cache). With probability 1 — ¢, it does not receive any prediction at all. This
prediction model is stronger than e-accurate suggestions, because any algorithm, given the former,
can generate the latter by choosing a page uniformly at random from its cache in the 1 — ¢ case. Thus,
a lower bound in this model also holds for the e-accurate prediction model.

Proof. Letn = k + 1 and consider the sequence that generates each request uniformly at random
among the k + 1 pages. Sete = klﬁ A phase is defined as a maximal contiguous subsequence of
requests that contains exactly k distinct pages. Consider an arbitrary phase and let X be the random
variable denoting its length. Note that E[X] is the expected number of times we would need to sample
from a uniform random variable over a space of size k + 1 until we obtain k distinct outcomes. By a
slight modification of the coupon collector analysis, we can show that X = ©(k log k) with constant
probability.

Now partition the input into groups of 3 consecutive phases (starting at the beginning), and consider
any such group. Notice that every phase contains all but one of the k + 1 pages, and that missing page
is the first page requested in the subsequent phase. So for each page p suggested to the algorithm
during the first phase, p is either requested in the second phase, or p is the first request of the third
phase.

Furthermore, the probability that the algorithm does not receive any good suggestions during the
second or third phase is (1 — £)®(k1°8%) = ©(1). So overall in this group, with constant probability,
the algorithm only receives good suggestions in the first phase, and these suggestions do not reveal
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anything about the third phase (except for possibly the first request). So when serving the third phase
of the group, the algorithm incurs a miss at every step with probability 1/(k + 1), for an expected
cost of Q(log k) to serve the group. On the other hand, the optimal solution can serve each phase by
evicting the single page that does not appear in that phase, thereby incurring O(1) cost per group. [J

C Missing Proofs from Section 3

C.1 Analysis of SET-HEDGE and COVER-HEDGE

Proof of Theorem 3.1. Fix any instance of online set cover and an optimal solution OPT for it. Let
ALG' be the solution of the SET-HEDGE algorithm after covering e;. Consider the potential function

o' = (2/€) - Lscopmiarat <(9),

the cost of optimal sets not already picked by the algorithm by time ¢ (and scaled by 2/¢). If A®?
and Ac(ALG") denote the change in potential and the algorithm’s cost due to sets picked at time ¢,
we claim

E[A®! + Ac(ALG")] < 0; (1)

and because ®! is always non-negative, this shows that the total expected cost of sets picked by the
algorithm is at most ®° = (2/¢) - ¢(OPT).

To prove (1), condition on H*~': if e, is already covered by ALG'~* we have Ad* = A¢(ALG") = 0.
Else if e; is not previously covered, Ac(ALG") = % ce(sh )+ (1 - thg) ~c(g") <2¢(g"). The
potential change is

c(g")
c(9)”

E[A®! | 1Y = —(2/e) - 3 e(S) - Prfst = S | 1Y -
SEOPT\ALG!~tie €8

By the e-accuracy condition, the probability values sum to at least . Hence E[A®! | HI71] <
—(2/¢) - ¢(g") - &. So (1) holds irrespective of H*~! (and hence unconditionally). O

Proof of Theorem 3.2. The proof closely mimics that of Theorem 3.1; the potential is now
Pt = (2/e) - [c(a* V') — ()]

This is clearly non-negative (by monotonicity), and starts off at ®° < (2/¢) - ¢(x*). Again it suffices
to show that E[A®* + Ac(ALGt)} < 0. First, a direct calculation shows

E[A ¢(ALG)] < 2- (c(z'™1 v gt) — ¢(z'1)).

To bound the expected potential decrease, for any vector v, setting x* < 2'~! \/ v decreases the
potential by

(2/e) - [e(z* Va'™h) —e(a'!) = (e(z* Va' "t Vo) —e(zt ! V)],

which is non-negative by submodularity. Let £ be the event that p* < x*, and let F* be the event that
we make the choice of setting #* <— z¢~! Vv p’. If both events happen, we have c(z* V (z!=1 Vv p')) =
c(z* v 2'~1), and the expression above becomes

(2/e) - (e v p) = c(a'™h)).

Hence
E[A®! | HITY < —(2/¢) - (e(z' "t v pb) — e(zt™1)) - Pr[€f n FU | HETL).

Moreover, the two events are independent. By the e-accuracy property, we know that Pr[€¢ |
H!=1] > ¢. Finally, substituting the probability of F* from the algorithm description, we get

E[A®! + Ac(ALG") | H!~'] < 0, which proves the claim. O
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C.2 Separable Objective Functions

We consider the same setting as Section 3.2, with the only difference being that instead of requiring
that the objective function c : RY — R>( is submodular, in this section, we require it to be separable.
In particular, we assume there exist functions cy, ..., cq : R — R>( such that every ¢; is monotone,
and for all z € R%, ¢(z) = 3, ¢;(x;). Note that this implies c itself is monotone.

Recall the COVER-HEDGE algorithm, given a subset K; and suggestion p’:

Let g* be the minimum-cost increment—i.e., g* < arg min{c(z!~1Vvyg) | g € K;}.

t—1 t t—1
Then set 2* < =1 Vv p* with probability gnglxi:giigllg ,and 2t < 2t~1v gt

otherwise.

We claim that it is still 2/e-competitive in this setting. Note that when c is separable, for any vectors
z,v € RY, wehave c(z Vv) =3, ¢;(x; V ;).

Theorem C.1. Given e-accurate suggestions, the COVER-HEDGE algorithm is 2 /e-competitive for
any generalized covering problem where the objective is separable.

Proof. Like that of Theorem 3.2, this proof closely mimics that of Theorem 3.1. The potential is the
same as the one used to prove Theorem 3.2:

This is non-negative (by monotonicity) and starts off at ®° < (2/¢) - ¢(x*). Again it suffices to show
that E[A®! + Ac(ALG")] < 0. To bound the expected potential decrease, for any vector v, setting
xt < x'~1 v v decreases the potential by

(2/e) - [e(z* Va'™t) —e(a"!) = (c(z* Va' =t V) — ezt V)]

= (2/e) - Z ci(x}) —ei(xi™) — Z ci(z}) — (@t vu) | ],

ks t—1 ks t—1
i >1; iy > VU

which is non-negative since x; > xﬁfl V v; implies z} > 1;271, and every c; is monotone. The

remainder of the proof is identical to that of Theorem 3.2. O

C.3 Properties of Generalized Covering Problems

The component-wise maximum property is satisfied for covering programs (i.e., where the constraints
are aTz > b, and all entries of a, b are non-negative). However, we now show that the property is
also satisfied when a has one negative coordinate.

Fact C.2. Suppose a € R, b € R, and consider the set K = {x : aTx > b,x > 0}. Assume K
contains at least one non-zero vector. Then K is closed under max if and only if a has at most one
negative coordinate.

Proof. We first prove the backward direction. Let z,y € R” satisfy aTx > b and aTy > b, let

z = x V y. If a has no negative coordinates, then clearly aTz > b. Now suppose there exists ¢ such
that a; < 0. Then we have

—a;z; + b < max Zajxj, Zajyj < Zajzj,

i i i
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which implies a7z > b, as desired.

For the forward direction, if n = 1, the statement is trivial. So for contradiction, without loss of
generality, we assume a,as < 0. Let o; = —a;, N = {i : a; < 0}, and P = {i : a; > 0}. Now the
condition aTx > b is equivalent to

o121 + oxy + Z o;x; +b < Z a;T;. 2)
i€N\{1,2} ieP
Consider the following cases:

1. P = (: In this case, if b > 0, then the zero vector is the only one that could possibly satisfy
(2), contradicting the assumption that K contains at least one non-zero vector. If b < 0, then

consider u, v € R™ with all zeroes except u; = —b/a and vo = —b/a. Then w = u V v
does not satisfy (2), since the left-hand side is —b — b + b = —b > 0 while the right-hand
side is 0.

2. P # (): Define u,v € R™ such that the following conditions hold: u; = v; = 0 for all
i€ N\{1,2}, u; = v; foralli € P, (u1,u2) = (¢/a1,0), (v1,v2) = (0,e/az), and
Y iep Gty = Y, p av; = b+¢ for some arbitrary € > [b| (so b+¢ > 0). Thenw = uVv
does not satisfy (2), since the left-hand side is € + € + b = b + 2¢ while the right-hand side
isb+eande > 0. O

C.4 Lower Bound for Set Covering

Theorem C.3. Any algorithm for online set cover with e-accurate suggestions is Q(1/¢e)-competitive,
even for the fractional case (or allowing randomization).

As we did for the proof of Theorem B.6, we will consider the following prediction model: at each
time ¢ (independently of the past), the algorithm receives a good prediction (i.e., a set included in the
optimal solution) with probability €. With probability 1 — ¢, it does not receive any prediction at all.
Again, the algorithm can generate predictions on its own in the 1 — ¢ case.

Proof. Within 1/ steps, there is a constant probability that the algorithm receives no suggestion. So
we define a sequence of 1/e requested elements as follows: the first element e; is contained in 21/¢
sets. Each subsequent element e; is contained in exactly half of the sets that contain e;_1, chosen
uniformly at random. In expectation, the algorithm spends a total of 1/2 on sets that contain e; and
do not contain ey for any ¢’ > t. Since these spent amounts are disjoint, over 1/ steps, the algorithm
spends log(21/¢) /2 = £/2 in expectation, while an optimal solution spends 1 by picking the single
set containing 1 /¢ elements.

We can scale this construction by making disjoint copies of this instance, and in each copy, there is a
constant probability that the algorithm spends §2(1/¢) while the optimal solution spends 1. O
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