
Online Paging with Heterogeneous Cache Slots
Marek Chrobak #

University of California at Riverside, CA, USA
Samuel Haney #

Tumult Labs, Durham, NC, USA

Mehraneh Liaee #

Northeastern University, Boston, MA, USA
Debmalya Panigrahi #

Duke University, Durham, NC, USA

Rajmohan Rajaraman #

Northeastern University, Boston, MA, USA
Ravi Sundaram #

Northeastern University, Boston, MA, USA

Neal E. Young #

University of California at Riverside, CA, USA

Abstract
It is natural to generalize the online k-Server problem by allowing each request to specify not only
a point p, but also a subset S of servers that may serve it. To initiate a systematic study of this
generalization, we focus on uniform and star metrics. For uniform metrics, the problem is equivalent
to a generalization of Paging in which each request specifies not only a page p, but also a subset
S of cache slots, and is satisfied by having a copy of p in some slot in S. We call this problem
Slot-Heterogenous Paging.

In realistic settings only certain subsets of cache slots or servers would appear in requests.
Therefore we parameterize the problem by specifying a family S ⊆ 2[k] of requestable slot sets, and
we establish bounds on the competitive ratio as a function of the cache size k and family S. If all
request sets are allowed (S = 2[k]), the optimal deterministic and randomized competitive ratios are
exponentially worse than for standard Paging (S = {[k]}). As a function of |S| and k, the optimal
deterministic ratio is polynomial: at most O(k2|S|) and at least Ω(

√
|S|). For any laminar family S

of height h, the optimal ratios are O(hk) (deterministic) and O(h2 log k) (randomized). The special
case that we call All-or-One Paging extends standard Paging by allowing each request to specify a
specific slot to put the requested page in. For All-or-One Paging the optimal competitive ratios are
Θ(k) (deterministic) and Θ(log k) (randomized), while the offline problem is NP-hard. We extend
the deterministic upper bound to the weighted variant of All-or-One Paging (a generalization of
standard Weighted Paging), showing that it is also Θ(k).

Some results for the laminar case are shown via a reduction to the generalization of Paging in
which each request specifies a set P of pages, and is satisfied by fetching any page from P into the
cache. The optimal ratios for the latter problem (with laminar family of height h) are at most hk

(deterministic) and hHk (randomized).

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Caching and paging algorithms, k-server, weighted paging, laminar family

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.23

Related Version Full Version: https://arxiv.org/abs/2206.05579 [23]

Funding Marek Chrobak: Supported by NSF grants CCF-1536026 and CCF-2153723.
Samuel Haney: Supported by NSF grants CCF-1527084 and CCF-1535972.
Mehraneh Liaee: Supported by NSF grants CCF-1535929 and CCF-1909363.
Debmalya Panigrahi: Supported by NSF grants CCF-1527084, CCF-1535972, CCF-1750140, CCF-
1955703, ARO grant W911NF2110230, and Indo-US Joint Center for Algorithms under Uncertainty.
Rajmohan Rajaraman: Supported by NSF grants CCF-1535929 and CCF-1909363.
Ravi Sundaram: Supported by NSF grants CCF-1535929 and IIS-2039945.
Neal E. Young: Supported by NSF grant CCF-1619463.

© Marek Chrobak, Samuel Haney, Mehraneh Liaee, Debmalya Panigrahi,
Rajmohan Rajaraman, Ravi Sundaram, and Neal E. Young;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023).
Editors: Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté;
Article No. 23; pp. 23:1–23:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marek@cs.ucr.edu
mailto:sam.m.haney@gmail.com
mailto:mehraneh@ccs.neu.edu
mailto:debmalya@cs.duke.edu
mailto:rraj@ccs.neu.edu
mailto:koods@ccs.neu.edu
mailto:neal.young@ucr.edu
https://doi.org/10.4230/LIPIcs.STACS.2023.23
https://arxiv.org/abs/2206.05579
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Online Paging with Heterogeneous Cache Slots

1 Introduction

The standard k-Server and Paging models assume homogenous (interchangeable) servers
and cache slots. They don’t model applications where servers have different capabilities, nor
the fact that modern cache systems often partition the slots, sometimes dynamically, with
some parts exclusively accessible by specific processors, cores, processes, threads, or page
sets (e.g., [27, 37,44–46]).

This motivates us to generalize the online k-Server problem to allow each request to
specify not only a point p, but also a subset S of servers that may serve it. We call this
generalization Heterogenous k-Server. To date, only a few special cases of this problem have
been studied [20, 41]. Here, following the strategy taken for other hard generalizations of
k-Server [6, 7, 11, 21, 28, 36], we initiate a systematic study of this problem by focusing on its
restriction to uniform and star metrics. For uniform metrics, the problem is equivalent to a
variant of Paging in which each request specifies a page p and a subset S of k cache slots, to
be satisfied by having a copy of p in some slot in S. We call this problem Slot-Heterogenous
Paging. For star metrics the problem reduces to a weighted variant, where the cost of
retrieving a page is the weight of the page. For reasons discussed below, we parameterize
these problems by allowing the requestable sets S to be restricted to an arbitrary but
pre-specified family S ⊆ 2[k]. (Restricting to S = {[k]} gives standard Paging and k-Server.)
Next is a summary of our results, followed by a summary of related work.

Slot-Heterogenous Paging (Section 3). As we point out, Slot-Heterogenous Paging easily
reduces (preserving the competitive ratio) to the Generalized k-Server problem in uniform
metrics, for which upper bounds of k2k and O(k2 log k) on the deterministic and randomized
ratios are known [7,11].

We show that the optimal deterministic and randomized competitive ratios for Slot-
Heterogenous Paging are at least Ω(2k/

√
k) and Ω(k), respectively (Theorems 1 (i)

and 3).
Hence, the optimal ratios for Slot-Heterogenous Paging are exponentially worse than for
standard Paging. The proofs of Theorems 1 and 3 employ some novel ideas that may be
useful for other problems: the lower bound in Theorems 1 (i) uses an adversary argument
that requires the construction of a set family not yet studied in the literature, while the
proof of Theorem 3 is carried out via a reduction from standard Paging with a cache of size
exp(Θ(k)).

The large competitive ratios in these lower bounds occur only for instances that use
exponentially many distinct request sets S. And in realistic settings only certain subsets of
cache slots or servers would appear in requests, namely those that represent capabilities or
functionalities relevant in a given setting. This motivates us to study the optimal ratios as a
function of the cache size k and the family S of requestable slot sets, and to try to identify
natural families that admit more reasonable ratios.

We show that the optimal deterministic ratio is at most k2|S| for any family S (Theorem 5).
Theorem 1 (ii) shows a complementary lower bound: for infinitely many families S, every
deterministic online algorithm has competitive ratio Ω(

√
|S|).

Together Theorems 5 and 1 (ii) imply that, as a function of |S| and k, the optimal deterministic
ratio for Slot-Heterogenous Paging is polynomial.

Slot-Laminar Paging (Section 4). We then consider the specific structure of S, showing
better bounds when S is laminar. This case, which we call Slot-Laminar Paging, models
applications where slot (or server) capabilities are hierarchical. Laminarity implies that
|S| < 2k, so (per Theorem 5 above) the optimal deterministic ratio is O(k3).

M. Chrobak et al. 23:3

We show that the optimal deterministic and randomized ratios for Slot-Laminar Paging
are O(h2k) and O(h2 log k), where h ≤ k is the height of S (Theorem 8). We next tighten
the deterministic bound to O(hk) (Theorem 10).

The proof of Theorem 8 is via a reduction to an intermediate problem that we call Page-
Laminar Paging (introduced below), while the proof of Theorem 10 refines the generic
algorithm from Theorem 5. The dependence on k in these bounds is asymptotically tight, as
Slot-Laminar Paging generalizes standard Paging.
Page-Laminar Paging (Section 4.1). Page-Laminar Paging is a natural generalization of
Paging in which each request is a set P of pages from an arbitrary but fixed laminar family
P, and is satisfiable by fetching any page from P into any slot in the cache.

We show that the optimal deterministic and randomized ratios for Page-Laminar Paging
are at most hk and hHk, where h is the height of the laminar family and Hk =

∑k
i=1 1/i =

ln k + O(1) (Theorem 6).
The proof is by a reduction, which replaces each set request P by a request to one carefully
chosen page in P , yielding an instance of Paging, while increasing the optimal cost by at
most a factor of h.
Reducing Slot-Laminar Paging to Page-Laminar Paging. The reduction of Slot-Laminar
Paging to Page-Laminar Paging in Theorem 8 is achieved via a relaxation of Slot-Laminar
Paging that drops the constraint that each slot holds at most one page, while still enforcing
the cache-capacity constraint of k. This relaxed instance is naturally equivalent to an instance
of Page-Laminar Paging. The proof then shows how any solution for the relaxed instance
can be “rounded” back to a solution for the original Slot-Laminar Paging instance, losing an
O(h) factor in the cost and competitive ratio.

Weighted All-Or-One Paging (Section 5). All-or-One Paging is the restriction of Slot-
Laminar Paging (with height h = 2) to S = {[k]} ∪ {{j}}j∈[k]. That is, only two types of
requests are allowed: general requests (allowing the requested page to be anywhere in the
cache), and specific requests (requiring the page to be in a specified slot). Specific requests
don’t give the algorithm any choice, so may appear easy to handle, but in fact make the
problem substantially harder than standard Paging— recent independent work on All-or-One
Paging [20] has shown that the optimal deterministic ratio is twice that of Paging, to within
an additive constant. The optimal randomized ratio of All-or-One Paging is also at least
twice that for Paging, as we show in the full paper [23]. Note that Theorem 8 upper bounds
the optimal randomized ratio to within a constant factor of that for Paging. The full paper
also has a proof that the offline problem is NP-hard [23], in sharp contrast to even k-Server,
which can be solved in polynomial time for arbitrary metrics.

We initiate a study of Heterogenous k-Server in non-uniform metrics through Weighted
All-Or-One Paging, which extends All-or-One Paging so that each page has a non-negative
weight and the cost of each retrieval is the weight of the page instead of 1.

We show that the optimal deterministic ratio for Weighted All-Or-One Paging is O(k),
matching the ratio for standard Weighted Paging up to a small constant factor
(Theorem 14).

The algorithm in the proof is implicitly a linear-programming primal-dual algorithm. With
this approach, the crucial obstacle to overcome is that the standard linear program for
standard Weighted Paging does not force pages into specific slots. Indeed, doing so makes
the natural integer linear program an NP-hard multicommodity-flow problem. (Section 5
has an example that illustrates the challenge.) We show how to augment the linear program
to partially model the slot constraints.

STACS 2023

23:4 Online Paging with Heterogeneous Cache Slots

Table 1 Summary of upper (≤) and lower (≥) bounds on optimal competitive ratios. Here
mass(S) =

∑
S∈S |S| and S∗ =

⋃
S∈S 2S . The lower bound for One-of-m Paging holds for some but

not all m and k—see Theorem 1(ii). The upper bound for Slot-Laminar Paging in the deterministic
case (Theorem 8) is in fact 2 · mass(S) − k, which is at most (2h − 1)k. Also, offline All-or-One
Paging and its generalizations are NP-hard [23], as is offline Page-Subset Paging ([21]).

Paging problem set family deterministic randomized where
Slot-Heterogeneous 2[k] \ {∅} ≤ k2k ≤ O(k2 log k) via [7, 11]

– ” arbitrary S ≤ k min(|S∗|, mass(S)) Thm. 5

– One-of-m, m ≈ k/2
([k]

m

)
≥ Ω(2k/

√
k) ≥ Ω(k) Thms. 1(i), 3

– One-of-m, any m
([k]

m

)
≳ Ω((4k/m)m/2/

√
m) Thm. 1(ii)

– Slot-Laminar laminar S, ≤ (2h − 1)k ≤ 3h2Hk Thms. 8, 10
height h

– All-or-One {[k]}∪ ≥ 2k − 1 ≥ 2Hk − 1 [20, 23,32]
{{s} : s ∈ [k]}

– ” ” ≤ 2k + 14 [20]

Weighted All-or-One {[k]}∪ ≤ O(k) Thm. 14
{{s} : s ∈ [k]}

Page-Subset P =
(all pages

m

)
≥

(
k+m

k

)
− 1 [28]

” ≤ k(
(

k+m
k

)
− 1) ≤ O(k3 log m) [21]

– Page-Laminar P laminar ≤ hk ≤ hHk Thm. 6
height h

Related work. Paging and k-Server have played a central role in the theory of online
computation since their introduction in the 1980s [12, 38, 43]. For k-Server, the optimal
deterministic ratio is between k and 2k − 1 [35]. Recent work [26] offers hope for closing
this gap, and substantial progress towards resolving the randomized case has been reported
in [4, 16]. For Weighted Paging the optimal ratios are k and Θ(log k) [1, 5, 29,39,43].

Restricted Caching is one previously studied model with heterogenous cache slots. It is
the restriction of Slot-Heterogenous Paging in which each page p has one fixed set Sp ⊆ [k] of
slots, and each request to p requires p to be in some slot in Sp. For this problem the optimal
randomized ratio is O(log2 k) [18]. Better bounds are possible given further restrictions on
the sets, as in Companion Caching, which models a cache partitioned into set-associative and
fully-associative parts [14,15,30,40]. It is natural to ask whether Restricted k-Server—the
restriction of Heterogenous k-Server that requires each point p to be served by a server in a
fixed set Sp— is easier than Heterogenous k-Server; while the two problems are different for
many metric classes, they can be shown to be equivalent in metric spaces with no isolated
points, such as Euclidean spaces. The NP-hardness result for Restricted Caching from [15]
implies that offline Slot-Heterogenous Paging with S = {{s, k} : s ∈ [k − 1]} is NP-hard.

Other sophisticated online caching models include Snoopy Caching—in which multiple
processors each have their own cache and coordinate to maintain consistency across writes [34],
Multi-Level Caching—where the cost to access a slot depends on the slot [24], and Writeback-
Aware Caching—where each page has multiple copies, each with a distinct level and weight,
and each request specifies a page and a level, and can be satisfied by fetching a copy of this
page at the given or a higher level [8, 9]. (This is a special case of weighted Page-Laminar
Paging where P consists of pairwise-disjoint chains.) Multi-Core Caching models the fact
that faults can change the request sequence (e.g. [33]).

M. Chrobak et al. 23:5

Patel’s master thesis [41] studies Heterogenous k-Server with just two types of requests—
general requests (to be served by any server) and specialized requests (to be served by any
server in a fixed subset S′ of “specialized” servers)— and bounds the optimal ratios for
uniform metrics and the line. Recent independent work on deterministic algorithms for
online All-or-One Paging establishes a 2k − 1 lower bound and a 2k + 14 upper bound [20].
Earlier work in [32] presents a 2k − 1 lower bound and a 3k upper bound on deterministic
algorithms.

Heterogenous k-Server reduces (see Section 3) to the Generalized k-Server problem, in
which each server moves in its own metric space, each request specifies one point in each
space, and the request is satisfied by moving any one server to the requested point in its
space [36]. For uniform metrics, the optimal competitive ratios for this problem are between
2k and k2k (deterministic) and between Ω(k) and O(k2 log k) (randomized) [7, 11]. These
ratios are exponentially worse than the ratios for standard k-Server. Heterogenous k-Server,
parameterized by S, provides a spectrum of problems that bridges the two extremes.

Weighted k-Server is a restriction of Generalized k-Server in which servers move in the
same metric space but have different weights, and the cost is the weighted distance [31]. For
this problem (in non-uniform metrics) the deterministic and randomized ratios are at least
(respectively) doubly exponential [6, 7] and exponential [3, 22].

Page-Subset Paging, restricted to m-element sets of pages, has been studied as (uniform)
Metrical Service Systems with Multiple Servers [21,28]. For this problem the deterministic
ratio is at least

(
k+m

k

)
−1 [28], while the randomized ratio is O(k3 log m) [21]. The k-Chasing

problem extends k-Server by having each request P be a convex subset of Rd, to be satisfied
by moving any server to any point in P [17]. For k-Chasing, no online algorithm is competitive
even for d = k = 2 [17], while for k = 1 the ratios grow with d [2, 42].

In the k-Taxi problem each request (p, q) requires any server to move to p then (for
free) to q. For this problem the optimal ratios are exponentially worse than for standard
k-Server [19,25].

2 Formal Definitions

Slot-Heterogenous Paging. A problem instance consists of a set [k] = {1, 2, . . . , k} of cache
slots, a family S ⊆ 2[k] \ {∅} of requestable slot sets, and a request sequence σ = {σt}T

t=1,
where each request has the form σt = ⟨pt, St⟩ for some page pt and set St ∈ S. A cache
configuration C is a function that specifies the content of each slot s ∈ [k]; this content is
either a single page or empty. Configuration C is said to satisfy a request ⟨p, S⟩ if it assigns
page p to at least one slot in S. A solution for a given request sequence σ is a sequence
{Ct}T

t=1 of cache configurations such that, for each t ∈ [T], Ct satisfies request σt. The
objective is to minimize the number of retrievals, where a page p is retrieved in slot s at time
t if Ct assigns p to s, but Ct−1 does not (or t = 1). An event when Ct−1 does not assign pt

to any slot in St is called a fault. Obviously a fault triggers a retrieval but, while this is not
strictly necessary, it is convenient to also allow an algorithm to make spontaneous retrievals,
either by fetching into the cache a non-requested page or by moving pages within the cache.

Slot-Laminar Paging. This is the restriction of Slot-Heterogenous Paging to instances where
S is laminar : every pair R, R′ ∈ S of sets is either disjoint or nested. (This implies |S| ≤ 2k.)
A laminar family S can be naturally represented by a forest (a collection of disjoint trees),
with a set R being a descendant of R′ if R ⊆ R′. When discussing Slot-Laminar Paging
we will routinely use tree-related terminology; for example, we will refer to some sets in S

STACS 2023

23:6 Online Paging with Heterogeneous Cache Slots

as leaves, roots, or internal nodes. The height h of a laminar family S is one less than the
maximum height of a tree in S, that is the maximum h for which S contains a sequence of h

strictly nested sets: R1 ⊊ R2 ⊊ . . . ⊊ Rh.

All-or-One Paging. This is the restriction of Slot-Laminar Paging to instances with S =
{[k]} ∪ {{j}}j∈[k]. That is, there are two types of requests: general, of the form ⟨p, [k]⟩,
requiring page p to be in at least one slot of the cache, and specific, of the form ⟨p, {j}⟩,
j ∈ [k], requiring page p to be in slot j. For convenience, ⟨p, ∗⟩ is a synonym for ⟨p, [k]⟩,
while ⟨p, j⟩ is a synonym for ⟨p, {j}⟩.

Weighted All-Or-One Paging. This is the natural extension of All-or-One Paging in which
each page p is assigned a non-negative weight wt(p), and the cost of retrieving p is wt(p)
instead of 1.

One-of-m Paging. This is the restriction of Slot-Heterogenous Paging to instances with
S =

([k]
m

)
= {S ⊆ [k] : |S| = m}, that is, every request specifies a set of m slots.

Page-Subset Paging. An instance consists of k cache slots, a collection P of requestable
sets of pages, and a request sequence π = {Pt}T

t=1, where each Pt is drawn from P. A
solution is a sequence {Ct}T

t=1 of cache configurations (as previously defined) such that, at
each time t ∈ [T], Ct assigns at least one page in Pt to at least one slot. The objective is to
minimize the number of retrievals. (Slots are interchangeable here, so a cache configuration
could be defined as a multiset of at most k pages, but using slot assignments is technically
more convenient.)

Page-Laminar Paging. This is the restriction of Page-Subset Paging to instances where P
is laminar.

Generalized k-Server. In this variant of k-Server, each server moves in its own metric space;
each request specifies one point in each space, and the request is satisfied by moving any one
server to the requested point in its space [36].

Approximation algorithms. An algorithm A for a given cost minimization problem is called
a c-approximation algorithm if, for each instance σ, A satisfies costA(σ) ≤ c · opt(σ) + b,
where costA(σ) is the cost of A on σ, opt(σ) is the optimum cost of σ, and b is a constant
independent of σ.

Online algorithms and competitive ratio. In the online variants of the paging problems
studied in this paper the requests arrive online, one per time step, and an online algorithm
needs to satisfy each request before the next one is revealed. To simplify presentation we
assume that the algorithm knows the underlying set family S (or P), but many of our
algorithms work (or can be adapted to work) without knowing the set family in advance. An
online algorithm A is called c-competitive if A is a c-approximation algorithm. As common
in the literature, we will use the term “optimal deterministic (resp. randomized) competitive
ratio” to refer to the optimal ratio of of a deterministic (resp. randomized) online algorithm
for the given problem.

M. Chrobak et al. 23:7

3 Slot-Heterogenous Paging

Any instance of Slot-Heterogenous Paging can be reduced to an instance of Generalized
k-Server in uniform spaces, as follows. Represent each cache slot by a server in a uniform
metric space whose points are the pages, then simulate each request ⟨p, S⟩ by a sufficiently
long sequence of requests, each of which specifies point p for each server in S and alternates
between two different points for the remaining servers, in [k] \ S. Composing this reduction
with the upper bounds from [7] yields immediate upper bounds of O(k2k) and O(k3 log k)
on the deterministic and randomized ratios for unrestricted Slot-Heterogenous Paging (that
is, with S = 2[k] \ {∅}).

Theorems 1 (i) and 3 (Section 3.1) show that these bounds are tight within poly(k)
factors: the optimal ratios are at least Ω(2k/

√
k) and Ω(k), respectively. But restricting S

allows better ratios: Theorem 5 (Section 3.2) shows an upper bound of k2|S| on the optimal
deterministic ratio for any family S. For One-of-m Paging, Theorems 5 and 1 (ii) (Section 3.1)
imply that the optimal deterministic ratio is O(km+1) and Ω((4k/m)m/2/

√
m).

3.1 Lower bounds for Slot-Heterogenous Paging
We establish our lower bounds for Slot-Heterogenous Paging and One-of-m Paging given in
Table 1.

▶ Theorem 1.
(i) For all odd k, the optimal deterministic ratio for One-of-m Paging with m = (k + 1)/2

is at least
(

k
m

)
= Ω(2k/

√
k). For all k, the optimal ratio with m = ⌊(k + 1)/2⌋ is

Ω(2k/
√

k).
(ii) For any even m ≥ 2 and any k > m that is an odd multiple of m − 1, the optimal

deterministic ratio for One-of-m Paging is at least(
m−1
m/2

)(
k

m−1
)m/2 = Θ((4k/m)m/2/

√
m) = Ω(

√
|S|), where S =

([k]
m

)
.

Before proving Theorem 1, we prove Lemma 2. It states that for any S the existence of
a family Z ⊆ 2[k] with certain properties implies a lower bound of |Z| on the competitive
ratio. The proof of the theorem then constructs such families Z for appropriate families S of
requestable sets. Throughout this section X denotes the complement of set X ⊆ [k], that is
X = [k] \X.

▶ Lemma 2. For some S ⊆ 2[k], suppose there are two set families G ⊆ S and Z ⊆ 2[k] such
that
(gz0) For each X ⊆ [k] there is S ∈ G such that S ⊆ X or S ⊆ X.
(gz1) If Z ∈ Z then Z /∈ Z.
(gz2) For each S ∈ G there is Y ∈ Z such that S ̸⊆ Z and S ̸⊆ Z for all Z ∈ Z \ {Y }.
Then the optimal deterministic ratio for Slot-Heterogenous Paging with family S is at least |Z|.

Proof. The proof is an adversary argument based on the following idea. At each step, the
adversary chooses a request that forces the algorithm to fault but causes at most two faults
total among a fixed set of 2|Z| other solutions. At the end, the algorithm’s total cost is at
least |Z| times the average cost of these other solutions, so its competitive ratio is at least
|Z|. This general approach is common for lower bounds on deterministic online algorithms
(see e.g. lower bounds on the optimal ratios for k-Server [38], for Metrical Task Systems [13]
and for Generalized k-Server on uniform metrics [36]).

STACS 2023

23:8 Online Paging with Heterogeneous Cache Slots

Here are the details. Let A be any deterministic online algorithm for Slot-Heterogenous
Paging with slot-set family S. The adversary will request just two pages, p0 and p1. For a
set X ⊆ [k], let CX denote the cache configuration where the slots in X contain p0 and the
slots in X contain p1. Without loss of generality assume that each slot of A’s cache always
holds p0 or p1—its cache configuration is CX for some X.

At each step, if the current configuration of A is CX , the adversary chooses S ∈ G such
that either S ⊆ X or S ⊆ X. (Such an S exists by Property (gz0).) If S ⊆ X, then all slots
in S hold p0, and the adversary requests ⟨p1, S⟩, causing a fault. Otherwise, S ⊆ X, so all
slots in S hold p1. In this case the adversary requests ⟨p0, S⟩, causing a fault. The adversary
repeats this K times, where K is arbitrarily large. Since A faults at each step, the overall
cost of A is at least K.

It remains to bound the optimal cost. Let Z̃ =
{

Z : Z ∈ Z
}

. By (gz1), we have Z̃ ∩Z = ∅.
For each Z ∈ Z ∪ Z̃ define a solution called the Z-strategy, as follows. The solution starts in
configuration CZ . It stays in CZ for the whole computation, except that on requests ⟨pa, S⟩
that are not served by CZ (that is, when all slots of CZ in S contain p1−a), it retrieves pa to
any slot j ∈ S, serves the request, then retrieves p1−a back into slot j, restoring configuration
CZ . This costs 2.

We next observe that in each step at most one Z-strategy faults (and pays 2). Assume
that the request at a given step is to p0 (the case of a request to p1 is symmetric). Let
this request be ⟨p0, S⟩, where S ∈ G. Let Y ⊆ [k] be the set from Property (gz2). For
all Z ∈ (Z ∪ Z̃) \ {Y, Y }, then, S ∩ Z ≠ ∅, implying that configuration CZ has a slot in
S that contains p0—in other words, configuration CZ satisfies S. Also, either S ∩ Y ̸= ∅
or S ∩ Y ≠ ∅, so one of the configurations CY or CY also satisfies S. Therefore only one
Z-strategy (Y or Y) might not satisfy S. So, in each step, at most one Z-strategy faults
(and pays 2).

Thus the combined total cost for all Z-strategies (not counting the cost of at most k

for moving to Z at the beginning) is at most 2K. There are 2|Z| such strategies, so their
average cost is at most (2K + k)/2|Z|. The cost of A is at least K, so the ratio is at least

K
(2K+k)/2|Z| = |Z|

1+k/2K . Taking K arbitrarily large, the lemma follows. ◀

Proof of Theorem 1. Part (i). Recall that m = ⌊(k + 1)/2⌋. First consider the case when
k is odd. Apply Lemma 2, taking both G and Z to be

([k]
m

)
. Properties (gz0) and (gz1)

follow directly from k being odd and the definitions of G and Z. Property (gz2) also holds
with Y = S. (For any S ∈ G, every Z ∈ Z satisfies |Z| = |S| > |Z|, so S ̸⊆ Z, while S ⊆ Z

implies Z = S.) Thus, by Lemma 2, the ratio is at least |Z| =
(

k
(k+1)/2

)
= Ω(2k/

√
k). This

proves Part (i) for odd k.
For even k, let k′ = k − 1. Then apply Part (i) to k′ using just cache slots in [k′], that

is, using slot-set family S ′ =
([k′]

m

)
⊆

([k]
m

)
= S, with slot k playing no role as it is never

requested.
Part (ii). Fix such an m and k. Let ℓ = k/(m − 1) so ℓ ≥ 3 is odd. Recall that

S =
([k]

m

)
is the family of requestable slot sets. Partition [k] arbitrarily into m− 1 disjoint

subsets B1, B2, . . . , Bm−1, each of cardinality ℓ. For each Be, order its slots arbitrarily
as Be = {be

1, be
2, . . . , be

ℓ}. For any index c ∈ {1, 2, . . . , ℓ} and an integer i, let c ⊕ i denote
((c + i− 1) mod ℓ) + 1. In other words, we view each Be as an odd-length cycle, and this
cyclic structure is important in the proof. Any consecutive pair {be

c, be
c⊕1} of slots on this

cycle is called an edge. Thus each cycle Be has ℓ edges.
First we define G ⊆ S for Lemma 2. The sets S in G are those obtainable as follows:

choose any m/2 edges, no two from the same cycle, then let S contain the m slots in those
m/2 chosen edges. (The six slots inside the three dashed ovals in Figure 1 show one S in G.)
This set of m/2 edges uniquely determines S, and vice versa.

M. Chrobak et al. 23:9

2
1

7

3

4 5

6

2
1

7

3

4 5

6

2
1

7

3

4 5

6

2
1

7

3

4 5

6

2
1

7

3

4 5

6
B1 B2 B3 B4 B5

Figure 1 Illustration of the proof of Theorem 1 Part (ii) for k = 35, m = 6, and ℓ = 7. The
figure shows the partition of all slots into m − 1 = 5 sets B1, . . . , B5, each represented by a cycle.
To avoid clutter, each slot be

c is represented by its index c within Be. The picture shows set
S = {b1

2, b1
3, b2

6, b2
7, b4

4, b4
5} ∈ G, marked by dashed ovals. It also shows ZS′ ∈ Z, represented by

orange/shaded circles, for S′ = {b1
2, b1

3, b3
4, b3

5, b4
7, b4

1}.

We verify that G has Property (gz0) from Lemma 2. Indeed, consider any X ⊆ [k]. Call
the slots in X white and the slots in X black. Each cycle Be has odd length, so has an edge
{be

c, be
c⊕1} that is white (with two white slots) or black (with two black slots). So either (i)

at least half the cycles have a white edge, or (ii) at least half have a black edge. Consider
the first case (the other is symmetric). There are m− 1 cycles, and m is even, so at least
m/2 cycles have a white edge. So there are m/2 white edges with no two in the same cycle.
The set S comprised of the m white slots from those edges is in G, and is contained in X

(because its slots are white). So G has Property (gz0).
Next we define Z ⊆ 2[k] for Lemma 2. The set Z contains, for each set S′ ∈ G, one set

ZS′ , defined as follows. For each of the m/2 cycles Be having an edge {be
c, be

c⊕1} in S′, add
to ZS′ the two slots on that edge, together with the (ℓ− 3)/2 slots be

c⊕3, be
c⊕5, . . . , be

c⊕(ℓ−2).
For each of the m/2− 1 remaining cycles Be, add to ZS′ the (ℓ− 1)/2 slots be

1, be
3, . . . , be

ℓ−2.
(The orange/shaded slots in Figure 1 show one set ZS′ in Z.) Then ZS′ contains exactly
m/2 edges (the ones in S′) while its complement ZS′ contains exactly m/2− 1 edges (one
from each cycle with no edge in S′). This implies Property (gz1). Note that ZS′ ̸= ZS′′ for
different sets S′, S′′ ∈ G.

Next we show Property (gz2). Given any set S ∈ G, let Y = ZS ∈ Z. Consider any
ZS′ ∈ Z such that S ⊆ ZS′ or S ⊆ ZS′ . We need to show ZS′ = ZS , i.e., S′ = S. It cannot
be that S ⊆ ZS′ , because S contains m/2 edges, whereas ZS′ contains m/2− 1 edges. So
S ⊆ ZS′ . But S and ZS′ each contain exactly m/2 edges, which therefore must be the same.
It follows from the definition of ZS′ that S′ = S. So Property (gz2) holds.

So G and Z have Properties (gz0)-(gz2) from Lemma 2. Directly from definition we
have |Z| = |G|, while |G| =

(
m−1
m/2

)
ℓm/2 because there are

(
m−1
m/2

)
ways to choose m/2

distinct cycles, and then for each of these m/2 cycles there are ℓ ways to choose one
edge. Lemma 2 and ℓ = k/(m − 1) imply that the optimal deterministic ratio is at least
f(m, k) =

(
m−1
m/2

)
(k/(m− 1))m/2. To complete the proof of part (ii) we lower-bound f(m, k).

We observe that

4m = Ω(
√

m (k/(k −m))k−m+1/2). (1)

This can be verified by considering two cases: If k ≥ m + 2 then, using 1 + z ≤ ez, we have√
m (k/(k−m))k−m+1/2 =

√
m(1+m/(k−m))k−m+1/2 ≤

√
m ·e5m/4 ≤ 2 ·4m, for all m ≥ 1.

In the remaining case, for k = m+1, we have
√

m(k/(k−m))k−m+1/2 =
√

m(1+m)3/2 ≤ 2·4m.
Thus (1) indeed holds. Now, recalling that f(m, k) =

(
m−1
m/2

)
(k/(m− 1))m/2, we derive

f(m, k) = Θ
(
(2m/

√
m) · (k/(m− 1))m/2)

(Stirling’s approximation)

= Θ
(
(4k/m)m/2 · (1 + 1/(m− 1))m/2/

√
m

)
(rewriting)

= Θ
(
(4k/m)m/2/

√
m

)
((1 + 1/(m− 1))m/2 ≤ e) (2)

STACS 2023

23:10 Online Paging with Heterogeneous Cache Slots

input: Slot-Heterogenous Paging instance (k,S, σ = (σ1, . . . , σT))
1. let the initial cache configuration C0 be arbitrary; let ℓ← 1 — ℓ is the start of the current

phase
2. for each time t← 1, 2, . . . , T :
2.1. if current configuration Ct−1 satisfies request σt: ignore the request (set Ct = Ct−1)
2.2. else:
2.2.1. if any configuration satisfies all requests σℓ, σℓ+1, . . . , σt: let Ct be any such

configuration
2.2.2. else: let ℓ← t; let Ct be any configuration satisfying σt — start the next phase

Figure 2 Online algorithm ExhSearch for Slot-Heterogenous Paging.

This gives us one estimate on the competitive ratio in Theorem 1(ii). To obtain a second
estimate, squaring both sides of (2), we obtain

f(m, k)2 = Ω
(
(4k/m)m/m

)
= Ω

(
(k/m)m · 4m/m

)
= Ω

(
(k/m)m · (k/(k −m))k−m+1/2/

√
m

)
(using (1))

= Ω(
(

k
m

)
) = Ω(|S|) (Stirling’s approximation)

Therefore f(m, k) = Ω(
√
|S|), as claimed, completing the proof of Theorem 1(ii). ◀

Next we present a lower bound on the optimal competitive ratio for randomized algorithms:

▶ Theorem 3. The optimal randomized ratio for One-of-m Paging with m = ⌊k/2⌋ is Ω(k).

The proof is by a reduction from standard Paging with some N pages and a cache of
size N − 1. For any N , this problem has optimal randomized competitive ratio HN−1 =
Θ(log N) [29]. This and the next lemma, whose proof is deferred to the full paper [23], imply
the theorem.

▶ Lemma 4. Every f(k)-competitive (randomized) online algorithm A for One-of-m Paging
with m = ⌊k/2⌋ can be converted into an O(f(k))-competitive (randomized) online algorithm
B for standard Paging with N pages and a cache of size N − 1, where N = 2Θ(k).

3.2 Upper bounds for deterministic Slot-Heterogenous Paging
This section gives upper bounds on the optimal deterministic competitive ratio for Slot-
Heterogenous Paging with any slot-set family S, as a function of mass(S) =

∑
S∈S |S| ≤ k|S|

and |S∗|, where S∗ =
⋃

S∈S 2S . The first bound follows from an easy counting argument.
The second bound uses a refinement of the rank method of [7], which bounds the number
of steps of a natural exhaustive-search algorithm by the rank of a certain upper-triangular
matrix.

▶ Theorem 5. Fix any S ⊆ 2[k] \ {∅}. The competitive ratio of Algorithm ExhSearch
in Figure 2 for Slot-Heterogenous Paging with requestable sets from S is at most k ·
min {|S∗|, mass(S)}.

The theorem implies that the competitive ratio of One-of-m Paging is polynomial in
k when m is constant. Theorem 5 can be strengthened slightly by making the algorithm
retrieve at most min(t, k) pages for the tth request in each phase.

M. Chrobak et al. 23:11

Proof of Theorem 5. By inspection of the algorithm, the length of each phase does not
depend on previous phases. Focus on any one phase. We first bound the length, say L, of the
phase. To ease notation and without loss of generality, assume the phase is the first (with
ℓ = 1) and the algorithm faults in each step t, that is Ct−1 does not satisfy σt = ⟨pt, St⟩.
(Otherwise first remove such requests; this doesn’t change the algorithm’s cost or increase
the optimal cost.) So the following holds:

(UT) For each time t ∈ [L], configuration Ct−1 satisfies requests σ1, σ2, . . . , σt−1, but not σt.

The final configuration CL in the phase satisfies all requests in the phase. In particular,
for each S ∈ S, for each request ⟨p, S⟩ in the phase, CL has p in some slot in S, so (i) there are
at most |S| distinct requests in the phase that use any given set S ∈ S. Property (UT) implies
that (ii) every request σt in this phase is distinct (indeed, for any t′ < t, Ct−1 satisfies σt′

but not σt). Observations (i) and (ii) imply the following bound L ≤
∑

S∈S |S| = mass(S).
(As an aside, the above argument uses only that every request in the phase is distinct, a

weaker condition than (UT). Given only that property, the above bound on L is tight for
every S in the following sense: consider any configuration C that puts a distinct page in
each slot s ∈ [k], and a request sequence σ that requests in any order every pair ⟨p, S⟩ such
that S ∈ S and C assigns p to a slot in S. Then σ is satisfied by a single configuration, while
having mass(S) distinct requests.)

Next we give a second bound on L that is tighter for some families S. Identify each page
p with a distinct but arbitrary real number. For each cache configuration Ct, let Ci

t ∈ R
denote the page in slot i, if any, else 0. Define matrix M ∈ RL×L by

Mst =
∏
i∈St

(Ci
s−1 − pt),

so that Mst = 0 if and only if Ci
s−1 = pt for some i ∈ St, that is, if and only if Cs−1 satisfies

σt. So Property (UT) implies that M is upper-triangular and non-zero on the diagonal. So
M has rank L.

Expanding the formula for Mst, we obtain

Mst =
∑

S⊆St

(∏
i∈S

Ci
s−1

)
·
(∏

i∈St\S

−pt

)
=

∑
S⊆St

(∏
i∈S

Ci
s−1

)
· (−pt)|St|−|S| =

∑
S∈S∗

AsS · BSt ,

where matrices A ∈ RL×S∗ and B ∈ RS∗×L are defined by

AsS =
∏
i∈S

Ci
s−1 and BSt =

{
(−pt)|St|−|S| if S ⊆ St

0 otherwise.

That is, M = AB; A and B (and M) have rank at most |S∗|. And M has rank L, so
L ≤ |S∗|. To bound the optimum cost, consider any phase other than the last. Let t′ and
t′′ be the start and end times. Suppose for contradiction that the optimal solution incurs no
cost (has no retrievals) during [t′ + 1, t′′ + 1]. Then its configuration at time t′ satisfies all
requests in [t′, t′′ + 1], contradicting the algorithm’s condition for terminating the phase. So
the optimal solution pays at least 1 per phase (other than the last). In any phase of length
L the algorithm pays at most kL (at most k per step). This and two upper bounds on L

imply Theorem 5. ◀

STACS 2023

23:12 Online Paging with Heterogeneous Cache Slots

<latexit sha1_base64="fGIBy3mllBGrjRB468eKtUrO9qI=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFt24bME+oB1KJs20sZkHSUYoQ7/AjQtF3OofuRF/wy8wbRVU9MCFwzn3cs+9XsyZVAi9GQuLS8srq5k1c31jc2s7u7PblFEiCG2QiEei7WFJOQtpQzHFaTsWFAcepy1vdD71W9dUSBaFl2ocUzfAg5D5jGClpfpZL5tDFnIKTjkPkWXnS/liQROnhIr5MrQtNEPu9L0SP7+alVov+9LtRyQJaKgIx1J2bBQrN8VCMcLpxOwmksaYjPCAdjQNcUClm86CTuChVvrQj4SuUMGZ+n0ixYGU48DTnQFWQ/nbm4p/eZ1E+SU3ZWGcKBqS+SI/4VBFcHo17DNBieJjTTARTGeFZIgFJkr/xtRP+LoU/k+ajmUfW3bdzlVPwBwZsA8OwBGwQRFUwQWogQYggIIbcAfujSvj1ngwHuetC8bnzB74AePpA+C5kK0=</latexit>

B

<latexit sha1_base64="VYNFX7FDNhCPRFGSQGru1wWjThE=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsVty4bME+oB1KJs20sZkHSUYoQ7/AjQtF3OofuRF/wy8wbRVU9MCFwzn3cs+9XsyZVAi9GQuLS8srq5k1c31jc2s7u7PblFEiCG2QiEei7WFJOQtpQzHFaTsWFAcepy1vdD71W9dUSBaFl2ocUzfAg5D5jGClpfpZL5tDFnIKTjkPkWXnS/liQROnhIr5MrQtNEPu9L0SP7+alVov+9LtRyQJaKgIx1J2bBQrN8VCMcLpxOwmksaYjPCAdjQNcUClm86CTuChVvrQj4SuUMGZ+n0ixYGU48DTnQFWQ/nbm4p/eZ1E+SU3ZWGcKBqS+SI/4VBFcHo17DNBieJjTTARTGeFZIgFJkr/xtRP+LoU/k+ajmUfW3bdzlVPwBwZsA8OwBGwQRFUwQWogQYggIIbcAfujSvj1ngwHuetC8bnzB74AePpA981kKw=</latexit>

A

<latexit sha1_base64="lu7Pi15qpMO0asJYsSW8gcsl5wA=">AAAB6HicdVDLSsNAFJ34rPFVdelmsAiuQpIW24LFQjcuW7APaEOZTCft2MkkzEyEEvoFblwo4lb/yI34G36B01ZBRQ9cOJxzL/fc68eMSmXbb8bS8srq2npmw9zc2t7Zze7tt2SUCEyaOGKR6PhIEkY5aSqqGOnEgqDQZ6Ttj2szv31NhKQRv1STmHghGnIaUIyUlhq1fjZnW7ZbcMt5aFtOvpQvFjRxS3YxX4aOZc+RO3+vxM+vZqXez770BhFOQsIVZkjKrmPHykuRUBQzMjV7iSQxwmM0JF1NOQqJ9NJ50Ck81soABpHQxRWcq98nUhRKOQl93RkiNZK/vZn4l9dNVFDyUsrjRBGOF4uChEEVwdnVcEAFwYpNNEFYUJ0V4hESCCv9G1M/4etS+D9puZZzajkNJ1c9AwtkwCE4AifAAUVQBRegDpoAAwJuwB24N66MW+PBeFy0LhmfMwfgB4ynD+I9kK4=</latexit>

C
<latexit sha1_base64="FiogW2Udpafmkt8YEpZKkPO3vNg=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFnThsgX7gHYomTTTxmYeJBmhDP0CNy4Ucat/5Eb8Db/AtFVQ0QMXDufcyz33ejFnUiH0ZiwsLi2vrGbWzPWNza3t7M5uU0aJILRBIh6Jtocl5SykDcUUp+1YUBx4nLa80dnUb11TIVkUXqpxTN0AD0LmM4KVlurnvWwOWcgpOOU8RJadL+WLBU2cEirmy9C20Ay50/dK/PxqVmq97Eu3H5EkoKEiHEvZsVGs3BQLxQinE7ObSBpjMsID2tE0xAGVbjoLOoGHWulDPxK6QgVn6veJFAdSjgNPdwZYDeVvbyr+5XUS5ZfclIVxomhI5ov8hEMVwenVsM8EJYqPNcFEMJ0VkiEWmCj9G1M/4etS+D9pOpZ9bNl1O1c9AXNkwD44AEfABkVQBRegBhqAAApuwB24N66MW+PBeJy3LhifM3vgB4ynD+PBkK8=</latexit>

D

<latexit sha1_base64="uLMkSjk05IFBaF7yf+61bRkzGr8=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFkRw2YJ9QDuUTJppYzMPkoxQhn6BGxeKuNU/ciP+hl9g2iqo6IELh3Pu5Z57vZgzqRB6MxYWl5ZXVjNr5vrG5tZ2dme3KaNEENogEY9E28OSchbShmKK03YsKA48Tlve6Gzqt66pkCwKL9U4pm6AByHzGcFKS/XzXjaHLOQUnHIeIsvOl/LFgiZOCRXzZWhbaIbc6Xslfn41K7Ve9qXbj0gS0FARjqXs2ChWboqFYoTTidlNJI0xGeEB7Wga4oBKN50FncBDrfShHwldoYIz9ftEigMpx4GnOwOshvK3NxX/8jqJ8ktuysI4UTQk80V+wqGK4PRq2GeCEsXHmmAimM4KyRALTJT+jamf8HUp/J80Hcs+tuy6nauegDkyYB8cgCNggyKoggtQAw1AAAU34A7cG1fGrfFgPM5bF4zPmT3wA8bTB+VFkLA=</latexit>

E

<latexit sha1_base64="jrHUZL4j01GnAqE3edHoZe20VVc=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFgRx2YJ9QDuUTJppYzMPkoxQhn6BGxeKuNU/ciP+hl9g2iqo6IELh3Pu5Z57vZgzqRB6MxYWl5ZXVjNr5vrG5tZ2dme3KaNEENogEY9E28OSchbShmKK03YsKA48Tlve6Gzqt66pkCwKL9U4pm6AByHzGcFKS/XzXjaHLOQUnHIeIsvOl/LFgiZOCRXzZWhbaIbc6Xslfn41K7Ve9qXbj0gS0FARjqXs2ChWboqFYoTTidlNJI0xGeEB7Wga4oBKN50FncBDrfShHwldoYIz9ftEigMpx4GnOwOshvK3NxX/8jqJ8ktuysI4UTQk80V+wqGK4PRq2GeCEsXHmmAimM4KyRALTJT+jamf8HUp/J80Hcs+tuy6nauegDkyYB8cgCNggyKoggtQAw1AAAU34A7cG1fGrfFgPM5bF4zPmT3wA8bTB+bJkLE=</latexit>

F
<latexit sha1_base64="8DY3TOcnuDplQfGfnuyKuY9TxA4=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFlzosgX7gHYomTTTxmYeJBmhDP0CNy4Ucat/5Eb8Db/AtFVQ0QMXDufcyz33ejFnUiH0ZiwsLi2vrGbWzPWNza3t7M5uU0aJILRBIh6Jtocl5SykDcUUp+1YUBx4nLa80dnUb11TIVkUXqpxTN0AD0LmM4KVlurnvWwOWcgpOOU8RJadL+WLBU2cEirmy9C20Ay50/dK/PxqVmq97Eu3H5EkoKEiHEvZsVGs3BQLxQinE7ObSBpjMsID2tE0xAGVbjoLOoGHWulDPxK6QgVn6veJFAdSjgNPdwZYDeVvbyr+5XUS5ZfclIVxomhI5ov8hEMVwenVsM8EJYqPNcFEMJ0VkiEWmCj9G1M/4etS+D9pOpZ9bNl1O1c9AXNkwD44AEfABkVQBRegBhqAAApuwB24N66MW+PBeJy3LhifM3vgB4ynD+hNkLI=</latexit>

G

<latexit sha1_base64="Jc6JWSDzzNyNvm3PyFYVF00h8rM=">AAAB6HicdVDLSsNAFJ34rPFVdelmsAiuQpIW24LFgpsuW7APaEOZTCft2MkkzEyEEvoFblwo4lb/yI34G36B01ZBRQ9cOJxzL/fc68eMSmXbb8bS8srq2npmw9zc2t7Zze7tt2SUCEyaOGKR6PhIEkY5aSqqGOnEgqDQZ6Ttjy9mfvuaCEkjfqkmMfFCNOQ0oBgpLTVq/WzOtmy34Jbz0LacfClfLGjiluxivgwdy54jd/5eiZ9fzUq9n33pDSKchIQrzJCUXceOlZcioShmZGr2EklihMdoSLqachQS6aXzoFN4rJUBDCKhiys4V79PpCiUchL6ujNEaiR/ezPxL6+bqKDkpZTHiSIcLxYFCYMqgrOr4YAKghWbaIKwoDorxCMkEFb6N6Z+wtel8H/Sci3n1HIaTq56BhbIgENwBE6AA4qgCmqgDpoAAwJuwB24N66MW+PBeFy0LhmfMwfgB4ynD+nRkLM=</latexit>

H
<latexit sha1_base64="mPiXIyRiH+2l8Kt8beF9LQsaoec=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFtzorgX7gHYomTTTxmYeJBmhDP0CNy4Ucat/5Eb8Db/AtFVQ0QMXDufcyz33ejFnUiH0ZiwsLi2vrGbWzPWNza3t7M5uU0aJILRBIh6Jtocl5SykDcUUp+1YUBx4nLa80dnUb11TIVkUXqpxTN0AD0LmM4KVluoXvWwOWcgpOOU8RJadL+WLBU2cEirmy9C20Ay50/dK/PxqVmq97Eu3H5EkoKEiHEvZsVGs3BQLxQinE7ObSBpjMsID2tE0xAGVbjoLOoGHWulDPxK6QgVn6veJFAdSjgNPdwZYDeVvbyr+5XUS5ZfclIVxomhI5ov8hEMVwenVsM8EJYqPNcFEMJ0VkiEWmCj9G1M/4etS+D9pOpZ9bNl1O1c9AXNkwD44AEfABkVQBeegBhqAAApuwB24N66MW+PBeJy3LhifM3vgB4ynD+tVkLQ=</latexit>

I
<latexit sha1_base64="KoHSTb88NVEsemy5NMcPCjWuT/o=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFtyIqxbsA9qhZNJMG5t5kGSEMvQL3LhQxK3+kRvxN/wC01ZBRQ9cOJxzL/fc68WcSYXQm7GwuLS8sppZM9c3Nre2szu7TRklgtAGiXgk2h6WlLOQNhRTnLZjQXHgcdryRmdTv3VNhWRReKnGMXUDPAiZzwhWWqpf9LI5ZCGn4JTzEFl2vpQvFjRxSqiYL0PbQjPkTt8r8fOrWan1si/dfkSSgIaKcCxlx0axclMsFCOcTsxuImmMyQgPaEfTEAdUuuks6AQeaqUP/UjoChWcqd8nUhxIOQ483RlgNZS/van4l9dJlF9yUxbGiaIhmS/yEw5VBKdXwz4TlCg+1gQTwXRWSIZYYKL0b0z9hK9L4f+k6Vj2sWXX7Vz1BMyRAfvgABwBGxRBFZyDGmgAAii4AXfg3rgybo0H43HeumB8zuyBHzCePgDs2ZC1</latexit>

J

<latexit sha1_base64="XPHD8frMxHjrXwVOLX/DMKf3vPU=">AAAB7nicdVBLSgNBEO2Jvxh/URcu3DSGgIswzCeYyS7gxmUE84FkCD09PUmTng/dPUIYsvMCblwo4taTeAB3egBP4AHsJAoq+qDg8V4V9aq8hFEhDeNFyy0tr6yu5dcLG5tb2zvF3b22iFOOSQvHLOZdDwnCaERakkpGugknKPQY6Xjj05nfuSRc0Di6kJOEuCEaRjSgGEkldVDFq+CKPyiWDN2wqlbdhoZu2o5dqypiOUbNrkNTN+YoNQ7KV+9Pb6/NQfG578c4DUkkMUNC9EwjkW6GuKSYkWmhnwqSIDxGQ9JTNEIhEW42jzuFZaX4MIi5qkjCufp9IkOhEJPQU50hkiPx25uJf3m9VAaOm9EoSSWJ8GJRkDIoYzi7HfqUEyzZRBGEOVVZIR4hjrBUHyqoJ3xdCv8nbUs3T3Tz3Cw1HLBAHhyCI3AMTFADDXAGmqAFMBiDa3AL7rREu9HutYdFa077nNkHP6A9fgCct5OM</latexit>

a, b, c, d

<latexit sha1_base64="zk2TeLtmgjEv794uaULvpx1j1eM=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsJBldjeYTRewsYxoHpAsYXYymwyZfTAzK4SQztbGQhFbv8UPsNMP8Av8ACeJgooeuHA4517uuddPOJMKoRcjs7C4tLySXc2trW9sbuW3dxoyTgWhdRLzWLR8LClnEa0rpjhtJYLi0Oe06Q9Ppn7zkgrJ4uhCjRLqhbgfsYARrLR0jo/8br6ATGSX7IoDkWk5rlMuaWK7qOxUoGWiGQrVveLV+9Pba62bf+70YpKGNFKEYynbFkqUN8ZCMcLpJNdJJU0wGeI+bWsa4ZBKbzyLOoFFrfRgEAtdkYIz9fvEGIdSjkJfd4ZYDeRvbyr+5bVTFbjemEVJqmhE5ouClEMVw+ndsMcEJYqPNMFEMJ0VkgEWmCj9nZx+wtel8H/SsE3r2LTOrELVBXNkwT44AIfAAmVQBaegBuqAgD64BrfgzuDGjXFvPMxbM8bnzC74AePxA1C/kkU=</latexit>

a, b
<latexit sha1_base64="87yjMVjfrxdKnC+c4b6Y1ED3IyE=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtcxmg9lUBmwsEzAPSJYwO5lNxsw+mJkVwpLSysZCEVu/wu+w8xu08Q+cJAoqeuDC4Zx7uedeL+ZMKoRejMzC4tLySnY1t7a+sbmV395pyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3Op36rUsqJIvCczWOqRvgQch8RrDSUp308gVkomKpWLEhMi3bscslTYoOKtsVaJlohsLJ++vV/lP9rdbLP3f7EUkCGirCsZQdC8XKTbFQjHA6yXUTSWNMRnhAO5qGOKDSTWdBJ/BQK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vE6ifMdNWRgnioZkvshPOFQRnF4N+0xQovhYE0wE01khGWKBidK/yeknfF0K/yfNomkdm1bdKlQdMEcW7IEDcAQsUAZVcAZqoAEIoOAa3II748K4Me6Nh3lrxvic2QU/YDx+AIN5kd4=</latexit>c

<latexit sha1_base64="Y+5c5e+/ZORtogz6rw1KQ/rxF20=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtewjmE1lwMYyAfOAZAmzs7PJmNkHM7NCWFJa2VgoYutX+B12foM2/oGTREFFD1w4nHMv99zrJYwKaRgvWm5hcWl5Jb9aWFvf2Nwqbu+0RJxyTJo4ZjHveEgQRiPSlFQy0kk4QaHHSNsbnU799iXhgsbRuRwnxA3RIKIBxUgqqeH3iyVDN6yyVbWhoZu2Y1fKiliOUbGr0NSNGUon769X+0+Nt3q/+NzzY5yGJJKYISG6ppFIN0NcUszIpNBLBUkQHqEB6SoaoZAIN5sFncBDpfgwiLmqSMKZ+n0iQ6EQ49BTnSGSQ/Hbm4p/ed1UBo6b0ShJJYnwfFGQMihjOL0a+pQTLNlYEYQ5VVkhHiKOsFS/KagnfF0K/yctSzePdbNhlmoOmCMP9sABOAImqIAaOAN10AQYEHANbsGddqHdaPfaw7w1p33O7IIf0B4/AIT9kd8=</latexit>

d

<latexit sha1_base64="zm7gi/FztiHB+hp4eoKnyMPSnPY=">AAAB+HicdVDLSsNAFJ34rPXRqAsXbgZLwUUISVtsuiu4cVnBPqANZTKdtGMnD2YmQg3d+RduXCji1o/wA9zpB/gFfoDTVkFFD1w4nHMv997jxYwKaVkv2sLi0vLKamYtu76xuZXTt3eaIko4Jg0csYi3PSQIoyFpSCoZacecoMBjpOWNjqd+64JwQaPwTI5j4gZoEFKfYiSV1NNzxPCNgTE0qHFujAzW0/OWaRXLxWoJWqZdckqVsiJFx6qUqtA2rRnytb3C1fvT22u9pz93+xFOAhJKzJAQHduKpZsiLilmZJLtJoLECI/QgHQUDVFAhJvODp/AglL60I+4qlDCmfp9IkWBEOPAU50BkkPx25uKf3mdRPqOm9IwTiQJ8XyRnzAoIzhNAfYpJ1iysSIIc6puhXiIOMJSZZVVIXx9Cv8nzaJpH5n2qZ2vOWCODNgHB+AQ2KACauAE1EEDYJCAa3AL7rRL7Ua71x7mrQva58wu+AHt8QP965Z3</latexit>

e, f, g, h, i, j, k, l

<latexit sha1_base64="W1ubFOW2FA7Kb7diLnz0PhTQAbw=">AAAB8HicdVBLSgNBEO3xG+Mv6sKFm8YQcDEM8wlmsgu4cRnBfCQZQk+nJ2nS86G7RwhDdt7AjQtF3HoQD+BOD+AJPICdREFFHxQ83quiXpWfMCqkab5oC4tLyyurubX8+sbm1nZhZ7cp4pRj0sAxi3nbR4IwGpGGpJKRdsIJCn1GWv7oZOq3LgkXNI7O5TghXogGEQ0oRlJJF0QP9IE+1GmvUDQN0y7bVQeahuW4TqWsiO2aFacKLcOcoVjbL129P7291nuF524/xmlIIokZEqJjmYn0MsQlxYxM8t1UkAThERqQjqIRConwslngCSwppQ+DmKuKJJyp3ycyFAoxDn3VGSI5FL+9qfiX10ll4HoZjZJUkgjPFwUpgzKG0+thn3KCJRsrgjCnKivEQ8QRlupHefWEr0vh/6RpG9axYZ1ZxZoL5siBA3AIjoAFKqAGTkEdNAAGIbgGt+BO49qNdq89zFsXtM+ZPfAD2uMH5VSURQ==</latexit>

e, f, g, h, i

<latexit sha1_base64="Jc6k9Uf0A8pbvOWvg/ZqPxALGYo=">AAAB7HicdVC7SgNBFJ2NrxhfUQsLm8EQsAjLPoJJuoCNZQQ3CSQhzE5mkyGzs8vMrBCWdPY2ForY+il+gJ1+gF/gBzhJFFT0wIXDOfdyz71+zKhUlvViZJaWV1bXsuu5jc2t7Z387l5TRonAxMMRi0TbR5IwyomnqGKkHQuCQp+Rlj8+nfmtSyIkjfiFmsSkF6IhpwHFSGnJI6WgNOznC5ZpOWWn5kLLtN2qWylr4lStiluDtmnNUagfFK/en95eG/38c3cQ4SQkXGGGpOzYVqx6KRKKYkamuW4iSYzwGA1JR1OOQiJ76TzsFBa1MoBBJHRxBefq94kUhVJOQl93hkiN5G9vJv7ldRIVVHsp5XGiCMeLRUHCoIrg7HI4oIJgxSaaICyozgrxCAmElf5PTj/h61L4P2k6pn1i2ud2oV4FC2TBITgCx8AGFVAHZ6ABPIABBdfgFtwZ3Lgx7o2HRWvG+JzZBz9gPH4Ah66S9A==</latexit>

e, f, g
<latexit sha1_base64="4xnMGO6O6w99x7wWyDwcj+TZ7so=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsJBldjeYTRewsYxoHpAsYXYySYbMPpiZFcKSztbGQhFbv8UPsNMP8Av8ACeJgooeuHA4517uudePOZMKoRcjs7C4tLySXc2trW9sbuW3dxoySgShdRLxSLR8LClnIa0rpjhtxYLiwOe06Y9Opn7zkgrJovBCjWPqBXgQsj4jWGnpfHjEuvkCMpFdsisORKbluE65pIntorJTgZaJZihU94pX709vr7Vu/rnTi0gS0FARjqVsWyhWXoqFYoTTSa6TSBpjMsID2tY0xAGVXjqLOoFFrfRgPxK6QgVn6veJFAdSjgNfdwZYDeVvbyr+5bUT1Xe9lIVxomhI5ov6CYcqgtO7YY8JShQfa4KJYDorJEMsMFH6Ozn9hK9L4f+kYZvWsWmdWYWqC+bIgn1wAA6BBcqgCk5BDdQBAQNwDW7BncGNG+PeeJi3ZozPmV3wA8bjB2YFklM=</latexit>

h, i

<latexit sha1_base64="LAAEBsvzKZJNHGsYy1cn5jdEZNk=">AAAB7HicdVC7SgNBFJ31GeMramFhMxgCFmGZ3Q0m6QI2lhHcJJCEMDuZJGNmZ5eZWSGEdPY2ForY+il+gJ1+gF/gBzhJFFT0wIXDOfdyz71BzJnSCL1YC4tLyyurqbX0+sbm1nZmZ7emokQS6pOIR7IRYEU5E9TXTHPaiCXFYcBpPRieTP36JZWKReJcj2LaDnFfsB4jWBvJv8gP87yTySIbuQW37EFkO17JKxYMcUuo6JWhY6MZspX93NX709trtZN5bnUjkoRUaMKxUk0Hxbo9xlIzwukk3UoUjTEZ4j5tGipwSFV7PAs7gTmjdGEvkqaEhjP1+8QYh0qNwsB0hlgP1G9vKv7lNRPdK7XHTMSJpoLMF/USDnUEp5fDLpOUaD4yBBPJTFZIBlhios1/0uYJX5fC/0nNtZ1j2zlzspUSmCMFDsAhOAIOKIIKOAVV4AMCGLgGt+DOEtaNdW89zFsXrM+ZPfAD1uMHnoiTAw==</latexit>

j, k, l

<latexit sha1_base64="qZZJ5OzNgG+HaF4Bd92B4IoAxAQ=">AAAB6nicdVC7SgNBFJ31GeMramFhMxgCFrLsI5hNF7CxjGgekCxhdjJJxszOLjOzQljS2dpYKGLrt/gBdvoBfoEf4CRRUNEDFw7n3Ms99wYxo1JZ1osxN7+wuLScWcmurq1vbOa2tusySgQmNRyxSDQDJAmjnNQUVYw0Y0FQGDDSCIbHE79xSYSkET9Xo5j4Iepz2qMYKS2dXRwOO7m8ZVpO0Sm70DJt13NLRU0czyq5ZWib1hT5ym7h6v3p7bXayT23uxFOQsIVZkjKlm3Fyk+RUBQzMs62E0lihIeoT1qachQS6afTqGNY0EoX9iKhiys4Vb9PpCiUchQGujNEaiB/exPxL6+VqJ7np5THiSIczxb1EgZVBCd3wy4VBCs20gRhQXVWiAdIIKz0d7L6CV+Xwv9J3THtI9M+tfMVD8yQAXtgHxwAG5RABZyAKqgBDPrgGtyCO4MZN8a98TBrnTM+Z3bADxiPH2wZklc=</latexit>

j, k
<latexit sha1_base64="TnVwi3ECJnBlPpxbMdCe6mvf2iA=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtcxmg9lUBmwsEzAPSJYwO5lNxsw+mJkVwpLSysZCEVu/wu+w8xu08Q+cJAoqeuDC4Zx7uedeL+ZMKoRejMzC4tLySnY1t7a+sbmV395pyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3Op36rUsqJIvCczWOqRvgQch8RrDSUp338gVkomKpWLEhMi3bscslTYoOKtsVaJlohsLJ++vV/lP9rdbLP3f7EUkCGirCsZQdC8XKTbFQjHA6yXUTSWNMRnhAO5qGOKDSTWdBJ/BQK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vE6ifMdNWRgnioZkvshPOFQRnF4N+0xQovhYE0wE01khGWKBidK/yeknfF0K/yfNomkdm1bdKlQdMEcW7IEDcAQsUAZVcAZqoAEIoOAa3II748K4Me6Nh3lrxvic2QU/YDx+AJEdkec=</latexit>

l

<latexit sha1_base64="lTlDgkpoO/BBW1xKTnc5BVkWPLU=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsJBldjeYTRewsYxoHpAsYXYymwyZfTAzK4SQztbGQhFbv8UPsNMP8Av8ACeJgooeuHA4517uuddPOJMKoRcjs7C4tLySXc2trW9sbuW3dxoyTgWhdRLzWLR8LClnEa0rpjhtJYLi0Oe06Q9Ppn7zkgrJ4uhCjRLqhbgfsYARrLR0To+Cbr6ATGSX7IoDkWk5rlMuaWK7qOxUoGWiGQrVveLV+9Pba62bf+70YpKGNFKEYynbFkqUN8ZCMcLpJNdJJU0wGeI+bWsa4ZBKbzyLOoFFrfRgEAtdkYIz9fvEGIdSjkJfd4ZYDeRvbyr+5bVTFbjemEVJqmhE5ouClEMVw+ndsMcEJYqPNMFEMJ0VkgEWmCj9nZx+wtel8H/SsE3r2LTOrELVBXNkwT44AIfAAmVQBaegBuqAgD64BrfgzuDGjXFvPMxbM8bnzC74AePxA1znkk0=</latexit>

e, f
<latexit sha1_base64="AmKrzOFq/S+JY7fp3nskgeEzM7s=">AAAB6HicdVC7SgNBFJ2NrxhfUQsLm8EQsFpms8FsuoCNZQLmAckSZiezyZjZBzOzQljS2dlYKGLrx/gBdvoBfoEf4CRRUNEDFw7n3Ms993oxZ1Ih9GJklpZXVtey67mNza3tnfzuXktGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vfHpzG9fUiFZFJ6rSUzdAA9D5jOClZYaw36+gExUKpeqNkSmZTt2paxJyUEVuwotE81RqB0Ur96f3l7r/fxzbxCRJKChIhxL2bVQrNwUC8UIp9NcL5E0xmSMh7SraYgDKt10HnQKi1oZQD8SukIF5+r3iRQHUk4CT3cGWI3kb28m/uV1E+U7bsrCOFE0JItFfsKhiuDsajhgghLFJ5pgIpjOCskIC0yU/k1OP+HrUvg/aZVM68S0Glah5oAFsuAQHIFjYIEKqIEzUAdNQAAF1+AW3BkXxo1xbzwsWjPG58w++AHj8QM32JGp</latexit> g

<latexit sha1_base64="Mvk5aWTvEJdIbIQDn2kG+V+VYHc=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFtwIblqwD2iHkkkzbWzmQZIRytAvcONCEbf6R27E3/ALTFsFFT1w4XDOvdxzrxdzJhVCb8bC4tLyympmzVzf2Nzazu7sNmWUCEIbJOKRaHtYUs5C2lBMcdqOBcWBx2nLG51N/dY1FZJF4aUax9QN8CBkPiNYaal+0cvmkIWcglPOQ2TZ+VK+WNDEKaFivgxtC82QO32vxM+vZqXWy750+xFJAhoqwrGUHRvFyk2xUIxwOjG7iaQxJiM8oB1NQxxQ6aazoBN4qJU+9COhK1Rwpn6fSHEg5TjwdGeA1VD+9qbiX14nUX7JTVkYJ4qGZL7ITzhUEZxeDftMUKL4WBNMBNNZIRligYnSvzH1E74uhf+TpmPZx5Zdt3PVEzBHBuyDA3AEbFAEVXAOaqABCKDgBtyBe+PKuDUejMd564LxObMHfsB4+gDuXZC2</latexit>

K

<latexit sha1_base64="ZQC4wMIsGvuA/FfsLdeWKDvEjek=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFty4cNGCfUA7lEyaaWMzD5KMUIZ+gRsXirjVP3Ij/oZfYNoqqOiBC4dz7uWee72YM6kQejMWFpeWV1Yza+b6xubWdnZntymjRBDaIBGPRNvDknIW0oZiitN2LCgOPE5b3uhs6reuqZAsCi/VOKZugAch8xnBSkv1i142hyzkFJxyHiLLzpfyxYImTgkV82VoW2iG3Ol7JX5+NSu1Xval249IEtBQEY6l7NgoVm6KhWKE04nZTSSNMRnhAe1oGuKASjedBZ3AQ630oR8JXaGCM/X7RIoDKceBpzsDrIbytzcV//I6ifJLbsrCOFE0JPNFfsKhiuD0athnghLFx5pgIpjOCskQC0yU/o2pn/B1KfyfNB3LPrbsup2rnoA5MmAfHIAjYIMiqIJzUAMNQAAFN+AO3BtXxq3xYDzOWxeMz5k98APG0wfv4ZC3</latexit>

L
<latexit sha1_base64="21NtPofHGgsygD1wp/ckY+ZfjVk=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFty4EVqwD2iHkkkzbWzmQZIRytAvcONCEbf6R27E3/ALTFsFFT1w4XDOvdxzrxdzJhVCb8bC4tLyympmzVzf2Nzazu7sNmWUCEIbJOKRaHtYUs5C2lBMcdqOBcWBx2nLG51N/dY1FZJF4aUax9QN8CBkPiNYaal+0cvmkIWcglPOQ2TZ+VK+WNDEKaFivgxtC82QO32vxM+vZqXWy750+xFJAhoqwrGUHRvFyk2xUIxwOjG7iaQxJiM8oB1NQxxQ6aazoBN4qJU+9COhK1Rwpn6fSHEg5TjwdGeA1VD+9qbiX14nUX7JTVkYJ4qGZL7ITzhUEZxeDftMUKL4WBNMBNNZIRligYnSvzH1E74uhf+TpmPZx5Zdt3PVEzBHBuyDA3AEbFAEVXAOaqABCKDgBtyBe+PKuDUejMd564LxObMHfsB4+gDxZZC4</latexit>

M

Figure 3 An example of a laminar family P of height 4.

4 Slot-Laminar Paging

In this section we prove upper bounds for Slot-Laminar Paging given in Table 1. Recall
that in Slot-Laminar Paging family S is assumed to be a laminar family of slot sets whose
height we denote by h. Theorem 8 bounds the optimal ratios by 3h2k (deterministic), 3h2Hk

(randomized) and 3h2 (offline polynomial-time approximation). The proof of Theorem 8
(Section 4.2) is by a reduction of Slot-Laminar Paging to Page-Laminar Paging, which we
study in Section 4.1. Theorem 10, presented in Section 4.3, tightens the deterministic upper
bound to 2hk.

4.1 Page-Laminar Paging
Recall that Page-Laminar Paging generalizes Paging by allowing each request to be a set P of
pages. The request P is satisfiable by having any page p ∈ P in the cache. We require P ∈ P ,
where P is a pre-specified laminar collection of sets of pages, whose height we denote by h.
(See the example in Figure 3.) To our knowledge, this problem has not been yet studied in
the literature. In particular, we do not know whether the optimum solution can be computed
in polynomial time. (If the number of non-leaf sets in P is constant, the problem can be
solved in polynomial time using dynamic programming and Belady-like rules for choosing
pages to fetch and evict.)

▶ Theorem 6. Page-Laminar Paging admits the following polynomial-time algorithms:
an hk-competitive deterministic online algorithm, an hHk-competitive randomized online
algorithm, and an offline h-approximation algorithm.

The proof is by reduction to standard Paging. Known polynomial-time algorithms for
standard Paging include an optimal offline algorithm [10], a deterministic k-competitive
online algorithm [43] and a randomized Hk-competitive online algorithm [1]. Theorem 7
follows directly from composing these known results with the following lemma, whose proof
is deferred to the full paper [23].

▶ Lemma 7. Every f(k)-approximation algorithm A for Paging can be converted into
an hf(k)-approximation algorithm B for Page-Laminar Paging, preserving the following
properties: being polynomial-time, online, and/or deterministic.

4.2 Upper bounds for randomized and offline Slot-Laminar Paging
▶ Theorem 8. Slot-Laminar Paging admits the following polynomial-time algorithms: a
deterministic 3h2k-competitive online algorithm, a randomized 3h2Hk-competitive online
algorithm, and an offline 3h2-approximation algorithm.

M. Chrobak et al. 23:13

Our focus here is on uniform treatment of the three variants of Slot-Laminar Paging in
the above theorem, and the ratios in this theorem have not been optimized. For example, in
Section 4.3 we give a better deterministic algorithm. For the special case when h = 2 the
problem can be reduced to All-or-One Paging, for which the ratio can be improved even
further [20].

The proof of Theorem 8 is by a reduction of Slot-Laminar Paging to Page-Laminar Paging,
in Lemma 9 (proved in Appendix A). The reduction uses a relaxation of Slot-Laminar Paging
that relaxes the constraint that each slot hold at most one page (but still enforces the cache-
capacity constraint), yielding an instance of Page-Laminar Paging. The reduction simulates
the given Page-Laminar Paging algorithm on multiple instances of Page-Laminar Paging—
one for each set S ∈ S, obtained by relaxing the subsequence that contains just those requests
contained in S — then aggregates the resulting Page-Laminar Paging solutions to obtain the
global Slot-Laminar Paging solution. Lemma 9 and Theorem 6 (for Page-Laminar Paging)
immediately imply Theorem 8.

▶ Lemma 9. Every fh(k)-approximation algorithm A for Page-Laminar Paging can be
converted into a 3hfh(k)-approximation algorithm B for Slot-Laminar Paging, preserving the
following properties: being polynomial-time, online, and/or deterministic.

4.3 Improved upper bound for deterministic Slot-Laminar Paging
For Slot-Laminar Paging, this section presents a deterministic algorithm with competitive ratio
O(hk), improving upon the bound of O(h2k) from Theorem 8. The algorithm, RefSearch,
refines ExhSearch. Like ExhSearch, it is phase-based and maintains a configuration that
can satisfy all requests in a phase; however, in order to satisfy the next request in the current
phase, the particular configuration is chosen by judiciously moving pages in certain slots that
are serving requests along a path in the laminar hierarchy.

▶ Theorem 10. For Slot-Laminar Paging, Algorithm RefSearch (Fig. 4) has competitive
ratio at most 2 ·mass(S)− k ≤ (2h− 1)k.

We begin by defining the terminology used in the algorithm and the proof, and establish
some useful properties. Recall that a configuration D satisfies a request r = ⟨p, S⟩ if there
exists a slot s in S such that s holds p in D; in this case, we also say that slot s satisfies r

in D. A configuration D is said to satisfy a set R of requests if it satisfies every request in
R. A set R of requests will be called satisfiable if there exists a configuration that satisfies
R. To determine if a set R of requests is satisfied by a configuration, it is sufficient (and
necessary) to examine the maximal subset of “deepest” requests in the laminar hierarchy.
Formally, a request ⟨p, S⟩ is an ancestor (resp., descendant) of ⟨p, S′⟩ if S ⊇ S′ (resp.,
S ⊆ S′). For any set R of requests, define rep(R) as the set of requests in R that do not
have any proper descendants in R. That is, rep(R) = {⟨p, S⟩ ∈ R : ∀S′ ⊊ S, ⟨p, S′⟩ /∈ R}.
For r = ⟨p, S⟩, define anc(r, R) = {⟨p, S′⟩ ∈ R : S ⊆ S′}. Lemma 11 (proved in the full
paper [23]) establishes some basic properties of rep(R).

▶ Lemma 11. Let R be a set of requests. Then,
(i) In any configuration, each slot can satisfy at most one request in rep(R).
(ii) A configuration satisfies R if and only if it satisfies rep(R).
(iii) R is satisfiable iff for any requestable set S, rep(R) has at most |S| requests to subsets

of S.

Algorithm RefSearch is given in Figure 4. It consists of phases. The first phase starts
in time Step 1, and each phase ends when adding the current request to the request set
from this phase makes it unsatisfiable. Within a phase, redundant requests, that is those

STACS 2023

23:14 Online Paging with Heterogeneous Cache Slots

input: Slot-Laminar Paging instance (k,S, σ = (σ1, . . . , σT))
1. for t← 1, 2, . . . , T , respond to the current request σt = ⟨p, S⟩ as follows:
1.1. if t = 1 or Rt−1 ∪ {σt} is not satisfiable: let Rt−1 = ∅ and empty the cache — start new

phase
1.2. let Rt = Rt−1 ∪ {σt}
1.3. if Ct−1 satisfies σt = ⟨p, S⟩: let Ct = Ct−1 — redundant request
1.4. else: — non-redundant request
1.4.1. find sequences ⟨s1, . . . , sm⟩, ⟨S0 = S, S1, . . . , Sm−1⟩, and ⟨p0 = p, p1, . . . , pm−1⟩ s.t.

(i) Si−1 ⊊ Si and slot si ∈ Si−1 of Ct−1 satisfies ⟨pi, Si⟩ ∈ rep(Rt−1),
for 1 ≤ i < m, and

(ii) Slot sm ∈ Sm−1 of Ct−1 either
(ii.1) does not satisfy any requests in rep(R), or
(ii.2) satisfies a request ⟨p, S′⟩ ∈ rep(Rt−1) such that S′ ⊋ Sm−2

1.4.2. to obtain Ct and satisfy ⟨pi−1, Si−1⟩, place pi−1 in slot si, for 1 ≤ i ≤ m

Figure 4 Deterministic online Slot-Laminar Paging algorithm RefSearch. Note that in Step 1.4.1
we have m ≤ k + 1 − |S|, and that in (ii), if sm satisfies ⟨p, S′⟩ ∈ rep(Rt−1) then m ≥ 2 (because
Ct−1 does not satisfy σt); thus Sm−2 is well-defined.

satisfied by the current configuration, are ignored (Step 1.3). To serve a non-redundant
request σt = ⟨p, S⟩, the cache content is rearranged to free a slot in S. This rearrangement
involves shifting the content of some slots that serve requests in rep(R) along the path from
S to the root, to find a slot that is either unused or holds p (Step 1.4.2).

For technical reasons, in the analysis of Algorithm RefSearch it will be useful to
introduce a slightly refined concept of configurations. Given a request set R, an R-
configuration is a configuration D in which each request in rep(R) is served by exactly
one slot. (By Lemma 11(i), each slot can serve only one request in rep(R), but in general in
a configuration serving R there may be multiple slots that serve the same request in rep(R).)
Slots in D that do not serve requests in rep(R) are called free in D. Observe that each
configuration Ct of Algorithm RefSearch implicitly is an Rt-configuration – due to the
assignment of slots in Step 1.4.2. Also, if the slot sm chosen by the algorithm in Step 1.4.1
satisfies condition (ii.1) then sm is a free slot of D, according to our definition.

The following helper claim, which characterizes when a particular request is not satisfied
by a given configuration, follows directly from Lemma 11(iii).

▷ Claim 12. Let R be a set of requests and D be an R-configuration. Let also r = ⟨p, S⟩ be
a request such that D does not satisfy r, yet R ∪ {r} is satisfiable. Then D has a slot s in S

that is either free or satisfies a request ⟨p′, S′⟩ ∈ rep(R) where S ⊊ S′.

The following lemma establishes the validity of Steps 1.4.1 and 1.4.2 of Algorithm
RefSearch. We defer the proof of Lemma 13 and the full proof of Theorem 10 to
Appendix A.

▶ Lemma 13. Let R be a set of requests and D be an R-configuration. Let r = ⟨p0, S0⟩ be a
request such that r is not satisfied by D and R∪ {r} is satisfiable. Then there exist sequences
⟨s1, . . . , sm⟩, ⟨S0, S1, . . . , Sm−1⟩, and ⟨p0, p1, . . . , pm−1⟩ such that (i) Si−1 ⊊ Si and si ∈ Si−1
is currently satisfying request ⟨pi, Si⟩ ∈ rep(R), for 1 ≤ i < m, and (ii) sm ∈ Sm−1 is either
a free slot or is currently satisfying ⟨p0, S′⟩ ∈ rep(R) for some S′ ⊋ Sm−2. Furthermore,
transforming D by moving page pi−1 to slot si (and modifying the slot assignment in D

accordingly), for 1 ≤ i ≤ m, yields an (R ∪ {r})-configuration.

M. Chrobak et al. 23:15

input: Weighted All-Or-One Paging instance (k, σ), where σt = ⟨pt, st⟩ for t ∈ [T]
1. initialize cap[t]← credit[t]← 0 for each t ∈ [T]
2. assume that ⟨pt, st⟩ = ⟨0, t⟩ for t ∈ [k] — k specific requests to artificial weight-0 page in

each slot
3. for t← k + 1, k + 2, . . . , T :
3.1. if ⟨pt, st⟩ is a specific request with no equivalent request t′ (s.t. ⟨pt′ , st′⟩ = ⟨pt, st⟩) in

the cache:
3.1.1. evict any cached general request to page pt, and any cached request in slot st

3.1.2. put t in slot st — note cap[t] = credit[t] = 0
3.2. else if ⟨pt, st⟩ is a general request not satisfied by any cached request t′ (s.t. pt′ = pt):

3.2.1. let


ℓt(s) := max{t′ ≤ t : st′ = s} for s ∈ [k] — most recent specific request to s

A := {s ∈ [k] : cap[ℓt(s)] ≥ 1
2 wt(pt), s does not hold a specific request}

B := {s ∈ [k] : slot s holds a general request of weight at least 1
2 wt(pt)}

3.2.2. while |A| ≤ |B|:
3.2.2.1. continuously raise cap[ℓt(s)] for s ∈ [k] and credit[t′] for each cached request t′, at

unit rate,
3.2.2.2. evicting each request t′ such that credit[t′] = wt(pt′), and updating A and B

continuously
3.2.3. choose a slot s ∈ A \B; evict the request t′ currently in slot s (if any)
3.2.4. put t in slot s — note credit[t] = 0
3.3. else: classify the (already satisfied) request as redundant and ignore it

Figure 5 An O(k)-competitive online algorithm for Weighted All-Or-One Paging. For technical
convenience, we present the algorithm as caching request times rather than pages, with the
understanding that request t represents page pt.

5 Weighted All-Or-One Paging

This section initiates the study of Heterogenous k-Server in non-uniform metrics. Weighted
All-Or-One Paging is the natural weighted extension of All-or-One Paging (allowing general
and specific requests) in which the pages have weights and the cost of retrieving a page is
its weight. (This is equivalent to Heterogenous k-Server in star metrics with requestable set
family S = {[k]} ∪ {{s} : s ∈ [k]}.) This section proves the following theorem:

▶ Theorem 14. Weighted All-Or-One Paging has a deterministic O(k)-competitive online
algorithm.

The bound is optimal up to a small constant factor, as the optimal ratio for standard
Weighted Paging is k. Figure 5 shows the algorithm. It is implicitly a linear-programming
primal-dual algorithm. Note that the standard linear program for standard Weighted Paging
doesn’t have constraints that force pages into specific slots — indeed, those constraints
make even the unweighted problem an NP-hard special case of Multicommodity Flow. As a
small example that illustrates the challenge, consider a cache of size k = 2, and repeatedly
make three requests: a general request to a weight-1 page, and specific requests to different
weight-zero pages in slots 1 and 2. The weight-zero requests force the weight-1 page to be
evicted with each round, so the optimal cost is the number of rounds. But the solution of the
the classical linear-program relaxation will have value 1. Thus this linear program cannot be
used to bound the competitive ratio.

STACS 2023

23:16 Online Paging with Heterogeneous Cache Slots

Proof sketch of Theorem 14. Fix an optimal solution C, that is opt(σ) = cost(C). For each
t ∈ [T], let xt ∈ {0, 1} be an indicator variable for the event that C evicts request t before
satisfying another request t′ > t with the same page/slot pair that satisfied t. Let R ⊆ [T]
be the set of all specific requests, and for each t ∈ R, let yt be the amount C pays to retrieve
pages into slot st before the next specific request to slot st (if any). Define the pseudo-cost
of the optimal solution to be

∑T
t=1 wt(pt)xt +

∑
t∈R yt. The pseudo-cost is at most 2 opt(σ).

As the algorithm proceeds, define the residual cost to be
∑T

t=1 max(0, wt(pt)xt − credit[t]) +∑
t∈R max(0, yt − cap[t]). The residual cost is initially the pseudo-cost (at most 2 opt(σ)),

and remains non-negative throughout, so the total decrease in the residual cost is at most
2 opt(σ). In Appendix B, we show in Lemma 15 that whenever the algorithm is raising credits
and capacities at time t, there is either a cached request t′ with xt′ = 1 and credit[t′] < wt(pt′),
or there is a slot s with yt′ > cap[t′], where t′ = ℓt(s) ∈ R. It follows that the residual cost is
decreasing at least at unit rate in Step 3.2.2.1.

On the other hand, the algorithm is raising k capacities and at most k credits, so the
value of ϕ =

∑T
t=1 credit[t] +

∑
t∈R cap[t] is increasing at rate at most 2k. So, the final value

of ϕ is at most 4k opt(σ). To finish, we show by a charging argument that the algorithm’s
cost is at most 6 ϕ + 3 opt(σ) ≤ (24k + 3) opt(σ). We defer the full proof to Appendix B. ◀

6 Open Problems

The results here suggest many open problems and avenues for further research. Closing or
tightening gaps left by our upper and lower bounds would be of interest. In particular:

For Slot-Heterogenous Paging, is the upper bound in Theorem 5 tight for every S ⊆
2[k] \ {∅}, within poly(k) factors?
For Page-Laminar Paging it is easy to show a lower bound of Ω(h), even for k = 1
and for randomized algorithms. But it still may be possible to eliminate or reduce the
multiplicative dependence on h. For example, is it possible to achieve ratio O(h + k)
with a deterministic algorithm and O(h + Hk) with a randomized algorithm? Similarly,
does Slot-Laminar Paging (where h ≤ k) admit an O(k) deterministic ratio and O(log k)
randomized ratio?
For deterministic All-or-One Paging, we conjecture that the optimal ratio is 2k − 1. (For
k = 2 we can show an upper bound of 3.) In the randomized case, can ratio 2Hk − 1 be
achieved?
For Weighted All-Or-One Paging, is the optimal randomized ratio O(polylog(k))?
The status of Heterogenous k-Server in arbitrary metric spaces is widely open. Can ratio
dependent only on k be achieved? This question, while challenging, could still be easier
to resolve for Heterogenous k-Server than for Generalized k-Server.

References
1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized

paging algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000. doi:10.1016/
S0304-3975(98)00116-9.

2 C. J. Argue, Anupam Gupta, Ziye Tang, and Guru Guruganesh. Chasing convex bodies
with linear competitive ratio. Journal of the ACM, 68(5):32:1–32:10, August 2021. doi:
10.1145/3450349.

3 Nikhil Ayyadevara and Ashish Chiplunkar. The randomized competitive ratio of weighted
k-server is at least exponential. CoRR, abs/2102.11119, 2021. arXiv:2102.11119.

https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1145/3450349
https://doi.org/10.1145/3450349
http://arxiv.org/abs/2102.11119

M. Chrobak et al. 23:17

4 Nikhil Bansal, Niv Buchbinder, Aleksander Mądry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k-server problem. In Rafail Ostrovsky, editor, IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011, pages 267–276. IEEE Computer Society, 2011. doi:10.1109/FOCS.
2011.63.

5 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm for
weighted paging. In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages 507–517. IEEE
Computer Society, 2007. doi:10.1109/FOCS.2007.7.

6 Nikhil Bansal, Marek Eliás, and Grigorios Koumoutsos. Weighted k-server bounds via
combinatorial dichotomies. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 493–504. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.52.

7 Nikhil Bansal, Marek Eliáš, Grigorios Koumoutsos, and Jesper Nederlof. Competitive
algorithms for generalized k-server in uniform metrics. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 992–1001, 2018. doi:10.1137/1.9781611975031.64.

8 Nikhil Bansal, Joseph (Seffi) Naor, and Ohad Talmon. Efficient online weighted multi-level
paging. In Kunal Agrawal and Yossi Azar, editors, SPAA ’21: 33rd ACM Symposium on
Parallelism in Algorithms and Architectures, Virtual Event, USA, 6-8 July, 2021, pages 94–104.
ACM, 2021. doi:10.1145/3409964.3461801.

9 Nathan Beckmann, Phillip B. Gibbons, Bernhard Haeupler, and Charles McGuffey. Writeback-
aware caching. In Bruce M. Maggs, editor, 1st Symposium on Algorithmic Principles of
Computer Systems, APOCS 2020, Salt Lake City, UT, USA, January 8, 2020, pages 1–15.
SIAM, 2020. doi:10.1137/1.9781611976021.1.

10 L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Systems
Journal, 5(2):78–101, 1966. doi:10.1147/sj.52.0078.

11 Marcin Bienkowski, Łukasz Jeż, and Pawel Schmidt. Slaying Hydrae: Improved bounds
for generalized k-server in uniform metrics. In Pinyan Lu and Guochuan Zhang, editors,
30th International Symposium on Algorithms and Computation, ISAAC 2019, volume 149
of LIPIcs, pages 14:1–14:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ISAAC.2019.14.

12 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

13 Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for metrical
task system. J. ACM, 39(4):745–763, 1992. doi:10.1145/146585.146588.

14 Mark Brehob, Richard J. Enbody, Eric Torng, and Stephen Wagner. On-line restricted caching.
J. Sched., 6(2):149–166, 2003. doi:10.1023/A:1022989909868.

15 Mark Brehob, Stephen Wagner, Eric Torng, and Richard J. Enbody. Optimal replacement is
NP-hard for nonstandard caches. IEEE Trans. Computers, 53(1):73–76, 2004. doi:10.1109/
TC.2004.1255792.

16 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Mądry.
K-server via multiscale entropic regularization. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 3–16.
ACM, 2018. doi:10.1145/3188745.3188798.

17 Sébastien Bubeck, Yuval Rabani, and Mark Sellke. Online multiserver convex chasing and
optimization. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2093–2104. SIAM, 2021.

18 Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive algorithms for restricted caching
and matroid caching. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms –
ESA 2014 – 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014.
Proceedings, volume 8737 of Lecture Notes in Computer Science, pages 209–221. Springer,
2014. doi:10.1007/978-3-662-44777-2_18.

STACS 2023

https://doi.org/10.1109/FOCS.2011.63
https://doi.org/10.1109/FOCS.2011.63
https://doi.org/10.1109/FOCS.2007.7
https://doi.org/10.1109/FOCS.2017.52
https://doi.org/10.1137/1.9781611975031.64
https://doi.org/10.1145/3409964.3461801
https://doi.org/10.1137/1.9781611976021.1
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.4230/LIPIcs.ISAAC.2019.14
https://doi.org/10.4230/LIPIcs.ISAAC.2019.14
https://doi.org/10.1145/146585.146588
https://doi.org/10.1023/A:1022989909868
https://doi.org/10.1109/TC.2004.1255792
https://doi.org/10.1109/TC.2004.1255792
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1007/978-3-662-44777-2_18

23:18 Online Paging with Heterogeneous Cache Slots

19 Niv Buchbinder, Christian Coester, and Joseph (Seffi) Naor. Online k-taxi via double coverage
and time-reverse primal-dual. In Mohit Singh and David P. Williamson, editors, Integer
Programming and Combinatorial Optimization – 22nd International Conference, IPCO 2021,
Atlanta, GA, USA, May 19-21, 2021, Proceedings, volume 12707 of Lecture Notes in Computer
Science, pages 15–29. Springer, 2021. doi:10.1007/978-3-030-73879-2_2.

20 Jannik Castenow, Björn Feldkord, Till Knollmann, Manuel Malatyali, and Friedhelm Meyer auf
der Heide. The k-server with preferences problem. In SPAA ’22: 34rd ACM Symposium on
Parallelism in Algorithms and Architectures, 2022. To appear. URL: https://arxiv.org/
abs/2205.11102.

21 Ashish Chiplunkar and Sundar Vishwanathan. Metrical service systems with multiple servers.
Algorithmica, 71(1):219–231, 2015. doi:10.1007/s00453-014-9903-7.

22 Ashish Chiplunkar and Sundar Vishwanathan. Randomized memoryless algorithms for the
weighted and the generalized k-server problems. ACM Trans. Algorithms, 16(1), December
2019. doi:10.1145/3365002.

23 Marek Chrobak, Samuel Haney, Mehraneh Liaee, Debmalya Panigrahi, Rajmohan Rajaraman,
Ravi Sundaram, and Neal E. Young. Online paging with heterogeneous cache slots, 2022.
arXiv:2206.05579.

24 Marek Chrobak and John Noga. Competitive algorithms for relaxed list update and multilevel
caching. J. Algorithms, 34(2):282–308, 2000. doi:10.1006/jagm.1999.1061.

25 Christian Coester and Elias Koutsoupias. The online k-taxi problem. In Moses Charikar and
Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1136–1147. ACM, 2019.
doi:10.1145/3313276.3316370.

26 Christian Coester and Elias Koutsoupias. Towards the k-server conjecture: A unifying potential,
pushing the frontier to the circle. In 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
volume 198 of LIPIcs, pages 57:1–57:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ICALP.2021.57.

27 Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
Non-monopolizable caches: Low-complexity mitigation of cache side channel attacks. ACM
Trans. Archit. Code Optim., 8(4), January 2012.

28 Esteban Feuerstein. Uniform service systems with k servers. In Gerhard Goos, Juris Hartmanis,
Jan van Leeuwen, Cláudio L. Lucchesi, and Arnaldo V. Moura, editors, LATIN’98: Theoretical
Informatics, volume 1380, pages 23–32, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
doi:10.1007/BFb0054307.

29 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator,
and Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.
doi:10.1016/0196-6774(91)90041-V.

30 Amos Fiat, Manor Mendel, and Steven S. Seiden. Online companion caching. In Rolf Möhring
and Rajeev Raman, editors, Algorithms — ESA 2002, pages 499–511, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

31 Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server problem. Theor.
Comput. Sci., 130(1):85–99, 1994. doi:10.1016/0304-3975(94)90154-6.

32 Samuel Haney. Algorithms for Networks With Uncertainty. PhD thesis, Duke University, 2019.
URL: https://dukespace.lib.duke.edu/dspace/handle/10161/18661.

33 Shahin Kamali and Helen Xu. Multicore paging algorithms cannot be competitive. In
Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures,
pages 547–549, 2020.

34 Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel Dominic Sleator. Competitive
snoopy caching. Algorithmica, 3:77–119, 1988. doi:10.1007/BF01762111.

35 Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971–983, 1995. doi:10.1145/210118.210128.

https://doi.org/10.1007/978-3-030-73879-2_2
https://arxiv.org/abs/2205.11102
https://arxiv.org/abs/2205.11102
https://doi.org/10.1007/s00453-014-9903-7
https://doi.org/10.1145/3365002
http://arxiv.org/abs/2206.05579
https://doi.org/10.1006/jagm.1999.1061
https://doi.org/10.1145/3313276.3316370
https://doi.org/10.4230/LIPIcs.ICALP.2021.57
https://doi.org/10.1007/BFb0054307
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.1016/0304-3975(94)90154-6
https://dukespace.lib.duke.edu/dspace/handle/10161/18661
https://doi.org/10.1007/BF01762111
https://doi.org/10.1145/210118.210128

M. Chrobak et al. 23:19

36 Elias Koutsoupias and David Scot Taylor. The CNN problem and other k-server variants.
Theor. Comput. Sci., 324(2-3):347–359, 2004. doi:10.1016/j.tcs.2004.06.002.

37 Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser, and Ruby B.
Lee. CATalyst: Defeating last-level cache side channel attacks in cloud computing. In 2016
IEEE International Symposium on High Performance Computer Architecture (HPCA), pages
406–418, 2016. doi:10.1109/HPCA.2016.7446082.

38 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms for
server problems. J. Algorithms, 11(2):208–230, 1990. doi:10.1016/0196-6774(90)90003-W.

39 Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized paging
algorithm. Algorithmica, 6(6):816–825, 1991. doi:10.1007/BF01759073.

40 M. Mendel and Steven S. Seiden. Online companion caching. Theoretical Computer Science,
324(2):183–200, 2004. Online Algorithms: In Memoriam, Steve Seiden. doi:10.1016/j.tcs.
2004.05.015.

41 Jignesh Patel. Restricted k-server problem. Master’s thesis, Michigan State University, 2004.
URL: https://d.lib.msu.edu/etd/32678.

42 Mark Sellke. Chasing convex bodies optimally. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms (SODA), Proceedings, pages 1509–1518. Society for
Industrial and Applied Mathematics, 2020. doi:10.1137/1.9781611975994.92.

43 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

44 Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software cache-based side
channel attacks. In Proceedings of the 34th Annual International Symposium on Computer
Architecture, ISCA ’07, pages 494–505, New York, NY, USA, 2007. doi:10.1145/1250662.
1250723.

45 Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. COLORIS: A dynamic cache partitioning
system using page coloring. In 2014 23rd International Conference on Parallel Architecture
and Compilation Techniques (PACT), pages 381–392, 2014. doi:10.1145/2628071.2628104.

46 Wei Zang and Ann Gordon-Ross. CaPPS: cache partitioning with partial sharing for multi-
core embedded systems. Des. Autom. Embed. Syst., 20(1):65–92, 2016. doi:10.1007/
s10617-015-9168-7.

A Proofs for Slot-Laminar Paging

A.1 General upper bounds via reduction to page-laminar paging
Proof of Lemma 9. We first define the Page-Laminar Paging relaxation of a given Slot-
Laminar Paging instance. The idea is to relax the constraint that each slot can hold at most
one page, while keeping the capacity constraint. The relaxed problem is equivalent to a
Page-Laminar Paging instance over “virtual” pages v(p, s) corresponding to page/slot pairs
(p, s). This virtual page can be placed in any slot, although it represents p being in slot s.

Formally, this relaxation is defined as follows. Fix any k-slot Slot-Heterogenous Paging
instance σ = (σ1, . . . , σT) with requestable slot-set family S. For any page p and S ∈ S,
define V (p, S) = {v(p, s) : s ∈ S}, where v(p, s) is a virtual page for the pair (p, s). Define
the relaxation of σ to be the k-slot Page-Subset Paging instance π = (P1, . . . , PT) defined
by Pt = V (pt, St) (where σt = ⟨pt, St⟩, for t ∈ [T]). The requestable set family for π is
P =

{
V (p, S) : p is any page and S ∈ S

}
. Crucially, if S is slot-laminar with height h, then

P is page-laminar with the same height h.
Instance π is a relaxation of σ in the sense that for any solution C for σ there is a solution

D for π with cost(D) ≤ cost(C). (Namely, have D keep in its cache the virtual pages v(p, s)
such that C has page p cached in slot s.) It follows that opt(π) ≤ opt(σ).

STACS 2023

https://doi.org/10.1016/j.tcs.2004.06.002
https://doi.org/10.1109/HPCA.2016.7446082
https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1007/BF01759073
https://doi.org/10.1016/j.tcs.2004.05.015
https://doi.org/10.1016/j.tcs.2004.05.015
https://d.lib.msu.edu/etd/32678
https://doi.org/10.1137/1.9781611975994.92
https://doi.org/10.1145/2786.2793
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/2628071.2628104
https://doi.org/10.1007/s10617-015-9168-7
https://doi.org/10.1007/s10617-015-9168-7

23:20 Online Paging with Heterogeneous Cache Slots

Next we define the algorithm B. Fix an fh(k)-approximation algorithm A for Page-
Laminar Paging. Fix the input σ with σt = ⟨pt, St⟩ (for t ∈ [T]) to Slot-Laminar Paging
algorithm B. We assume for ease of presentation that Algorithm A is an online algorithm,
and present Algorithm B as an online algorithm. If A is not online, B can easily be executed
as an offline algorithm instead.

Assume that the family S has just one root R with |R| ≤ k. (This is without loss of
generality, as multiple roots, being disjoint, naturally decouple any Slot-Laminar Paging
instance into independent problems, one for each root.)

For each S ∈ S, define S’s Slot-Laminar Paging subinstance σS to be obtained from
σ by deleting all requests that are not subsets of S. Let πS denote the (Page-Laminar
Paging) relaxation of σS . Algorithm B on input σ executes, simultaneously, A(πS) for every
requestable set S ∈ S, giving each execution A(πS) its own independent cache of size |S|
composed of copies of the slots in S.

For each such S, Algorithm B will build its own solution, denoted B(σS), for σS , also
using its own independent cache of size |S| composed of copies of the slots in S. The desired
solution to σ will then be B(σR) (note that σ = σR).

For internal bookkeeping purposes only, in presenting Algorithm B, we consider each
virtual page v(p, s) (as defined for Page-Laminar Paging) to be a copy of page p, and we
have B maintain cache configurations that place these virtual pages in specific slots, with the
understanding that the actual cache configurations are obtained by replacing each virtual
page v(p, s) (in whatever slot it’s in) by a copy of page p. This virtual copy v(p, s) is
functionally equivalently to p; for example, if placed in slot s′, it will satisfy any request
⟨p, S′⟩ with s′ ∈ S′. When we analyze the cost, we will consider two copies v(p, s) and
v(p′, s′) to be distinct unless (p′, s′) = (p, s). In particular, if B evicts v(p, s) while retrieving
v(p, s′) (with s′ ̸= s) in the same slot, this contributes 1 to the cost of B. We will upper
bound B’s cost overestimated in this way.

Correctness. the following invariant over time. For each requestable set S, for each virtual
page v(p, s) currently cached by A(πS):
1. the solution B(σS) caches v(p, s) in some slot in S, and
2. if S has a child c with s ∈ c, and B(σc) has v(p, s) in its cache c, then in B(σS) copy
v(p, s) is in the same slot as in B(σc).

The invariant suffices to guarantee correctness of the solution B(σS) for each instance σS .
Indeed, when B(σS) receives a request ⟨pt, St⟩, its relaxation A(πS) has just received the
request {v(pt, s) : s ∈ St}, so A(πS) is caching a virtual page v(pt, s) (for some s ∈ St) in
S. By Condition 1, then, B(σS) also has v(pt, s) in some slot in S. In the case S = St, this
suffices for B(σS) to satisfy the request. In the remaining case S has a child c with St ⊆ c,
and B(σC) just received the same request, so (assuming inductively that B(σc) is correct
for σc) B(σc) has v(pt, s) in some slot s′ in St, so by Condition 2 of the invariant B(σS) has
v(pt, s) in the same slot s′ in St, as required. In particular, B(σR) will be correct for σR.

To maintain the invariant B does the following for each requestable set S. Whenever
the relaxed solution A(πS) evicts a page v(p, s), the solution B(σS) also evicts v(p, s). After
this eviction both Conditions 1 and 2 will be preserved. Whenever A(πS) retrieves a page
v(p, s), the solution B(σS) also retrieves v(p, s), into any vacant slot in S (there must be one,
because A(σS) caches at most |S| pages). This retrieval can cause up to two violations of
Condition 2 of the invariant: one at B(σS), because v(p, s) is already cached by a child B(σc)
but in some slot s1 ̸= s′; the other at the parent B(σP) of B(σS) (if any), because v(p, s) is
already cached by the parent, but in some slot s2 ≠ s′. In the case that the retrieval does

M. Chrobak et al. 23:21

before
slot s1 slot s′ slot s2

root R : x1 y1 z1
...

...
...

xi yi zi

parent B(σP) : xi+1 yi+1 v(p, s)
B(σS) : xi+2 v(p, s) zi+2

child B(σc) : v(p, s) yi+3 zi+3

=⇒

after
slot s1 slot s′ slot s2

z1 x1 y1
...

...
...

zi xi yi

v(p, s) xi+1 yi+1
v(p, s) xi+2 zi+2
v(p, s) yi+3 zi+3

Figure 6 “Rotating” slots in B(σS) and ancestors to preserve the invariant. Pages in grey are
not moved.

create two violations (and s1 ̸= s2), B restores the invariant by “rotating” the contents of the
slots s1, s′, and s2 in B(σS) and in each ancestor, as shown in Figure 6. Note that yi+3 and
zi+2 cannot be v(p, s), so moving v(p, s) out of slots s′ and s2 doesn’t introduce a violation
there. Thus this rotation indeed restores the invariant, at the expense of three retrievals
at the root. (The retrievals at other nodes only modify the internal state of B.) There are
three other cases: two violations with s1 = s2, one violation at B(σS), or one violation at its
parent, but all these three cases can be handled similarly, also with at most three retrievals
(in fact at most two) at the root.

Total cost. Each retrieval by A(πS) causes at most 3 retrievals in B(σR), so cost(B(σR))

≤
∑
S∈S

3 cost(A(πS)) ≤
∑
S∈S

3 fh(|S|)opt(πS) ≤ 3fh(k)
∑
S∈S

opt(σS) ≤ 3hfh(k) opt(σR).

The second step uses that A(πS) is fh(|S|)-competitive for πS . The third step uses that πS is
a relaxation of σS so opt(πS) ≤ opt(σS), and that |S| ≤ k so fh(|S|) ≤ fh(k).1 The last step
uses that the sets within any given level i ∈ {1, 2, . . . , h} of the laminar family are disjoint,
so opt(σR) is at least the sum, over the sets S within level i, of opt(σS). This shows that
B is a 3hfh(k)-approximation algorithm. To finish, we observe that B is polynomial-time,
online, and/or deterministic if A is. ◀

A.2 Improved upper bound for deterministic case
Proof of Lemma 13. The proof is by induction on the depth of S0 in the laminar hierarchy.
For the induction base, consider S0 = [k]. Since r is not satisfied by D, R ∪ {r} is satisfiable,
and every requestable slot set is subset of [k], we obtain from Claim 12 that there is a free slot
s1 ∈ S0. The desired claim of the lemma holds with m = 1 and sequences ⟨s1⟩, ⟨S0⟩ and ⟨p0⟩
which satisfy (i). Since s1 is free, bringing page p0 to slot s1 yields a (R ∪ {r})-configuration.

We now establish the induction step. Let R, D, and r = ⟨p0, S0⟩ be as given. By Claim 12
there are two cases. In the first case, there is a free slot s1 ∈ S0 in D. Then the desired
claim holds with m = 1, and sequences ⟨s1⟩, ⟨S0⟩ and ⟨p0⟩. Furthermore, as in the base case,
since s1 is free, bringing page p0 to slot s1 yields an (R ∪ {r})-configuration.

1 We assume here that fh(k′) ≤ fh(k) for k′ ≤ k, which is without loss of generality as one can simulate
a cache of size k′ using a cache of size k by introducing artificial requests that force k − k′ slots to be
continuously occupied.

STACS 2023

23:22 Online Paging with Heterogeneous Cache Slots

The remainder of this proof concerns the second case, in which there is a slot s1 ∈ S0
currently satisfying a request r′ = (p1, S1) in rep(R) with S0 ⊊ S1. Let D′ denote the
configuration that is identical to D except that D has p0 in slot s1. Since D is an R-
configuration, no other slot satisfies r′ in D; the same holds in D′. Hence, D′ does not satisfy
r′. Furthermore, D′ satisfies every request in rep(R) other than r′. Let R′ = R∪{r}\anc(r′, R).
In D′, s1 satisfies r. Consider any request x in R \ anc(r′, R). By definition of rep(R), there
exists a request x′ in rep(R) that is a descendant of x. Since R′ does not include any ancestors
of r′, x′ is not r′ and hence is satisfied by some slot in D′. We thus obtain that D′ satisfies
R′ and, in fact D′ is an R′-configuration. In D′ slot s1 is assigned to r, and if there is a
request (p, S′) in rep(R) then its assigned slot is designated as free in D′. At the same time,
D′ does not satisfy r′. Further, since R′ ∪ {r′} is a subset of R ∪ {r}, which is satisfiable,
R′ ∪ {r′} is also satisfiable. Since S1 ⊋ S0, by the induction hypothesis, there are sequences
⟨s2, . . . , sm⟩, ⟨S1, S2, . . . Sm−1⟩ and ⟨p1, p2, . . . , pm−1⟩ such that (i) Si−1 ⊊ Si and si ∈ Si−1
is currently satisfying (pi, Si) ∈ rep(R′), for 2 ≤ i < m; and either (ii.1) sm is a free slot in D′

or (ii.2) is currently satisfying a request (p1, S′) ∈ rep(R′) for some S′ ⊋ S1. Note, however,
that that sm has to be a free slot in D′ since (ii.2) above cannot hold: any request (p1, S′) is
in anc(r′, R), all requests of which are excluded from R′. Furthermore, transforming D′ to
D′′ by moving page pi−1 to si for 2 ≤ i ≤ m, satisfies R′ ∪ {r′}.

We now establish the desired claim for D, R, and r. Consider sequences ⟨s1, . . . , sm⟩,
⟨S0, S1, . . . Sm−1⟩ and ⟨p0, . . . , pm−1⟩. The desired condition (i) follows from (i) of the
induction step above and the fact that in D, s1 ∈ S0 is currently satisfying a request (p1, S1)
in rep(R) with S0 ⊊ S1. For (ii), note that since sm is a free slot in D′, either sm is a free slot
in D or (p0, S′) is in rep(R) for some S′ ⊋ Sm−2, thus establishing (ii). Finally, transforming
D to D′′ by moving pi−1 to si for 1 ≤ i ≤ m, satisfies R′ ∪ {r′}. Since any request satisfying
r′ also satisfies all ancestors of r′, we have rep(R ∪ {r}) = rep(R′ ∪ {r′}), implying that D′′

also satisfies R ∪ {r}. This completes the induction step and the proof of the lemma. ◀

Proof of Theorem 10. We first argue that at any time t, configuration Ct of RefSearch
satisfies the set Rt of requests from the current phase of the algorithm. The proof is by
induction on the number of steps within a phase. When the phase is about to start at time t

then Rt−1 is set to ∅, so the claim holds. For the induction step, consider a step t within a
phase and assume that Ct−1 satisfies Rt−1. If Ct−1 satisfies new request σt, then by Step 3.3,
Ct satisfies Rt. Otherwise, Rt−1 ∪ {σt} is satisfiable but Ct−1 does not satisfy σt. Then,
by Lemma 13, Steps 1.4.1 and 1.4.2 derive a configuration Ct satisfying Rt, completing the
induction step and the argument that at any time t, Ct satisfies Rt.

We next analyze the competitive ratio. We first show that the number of page retrievals
during a phase of RefSearch is at most 2 ·mass(S). Let R denote the set of requests in the
current phase. We charge the cost in this phase to the depths of the requests in rep(R). The
cost of Step 1.4.2 is m. If sm satisfies condition (ii.1), then rep(R ∪ {σt}) = rep(R) ∪ {σt}
and the depth of S is at least m, so the charge per unit depth is at most 1. Otherwise,
condition (ii.2) holds and rep(R ∪ {σt}) = rep(R) ∪ {σt} \ {⟨p, S′⟩}. In this case we have σt

inherit the charges to ⟨p, S′⟩, and we charge the cost of m to the difference in depths of S and
S′, which is at least m− 1 (because Sm−2 ⊊ S′), so the charge per unit of depth is at most
m/(m− 1) ≤ 2. (Note that in this case m ≥ 2.) When the phase ends, a request at depth d

was charged at most d times, and these charges include at least a unit charge, so its total
charge is most 2d−1. So, the algorithm’s cost per phase is at most 2 ·mass(S)−k ≤ (2h−1)k.
The optimal cost in a phase is at least 1 as no configuration satisfies all requests in the phase
and the request that starts the next phase. The theorem follows. ◀

M. Chrobak et al. 23:23

B Proofs for Weighted All-Or-One Paging

Consider any execution of the algorithm on a k-slot instance σ. To ease notation and
streamline the analysis, without loss of generality we will make the following assumptions:

The first k requests are specific requests for an artificial 0-wt page in each of the k slots.
Each request is not redundant (per Step 3.3).
The last k requests are specific requests for an artificial 0-wt page in each of the k slots.

These assumptions can be made without loss of generality as the zero-weight requests do not
have any cost, the algorithm ignores redundant requests, and removing redundant requests
doesn’t increase the optimum cost. For technical convenience, we think of the algorithm and
the optimal solution as caching request times rather than pages, with the understanding that
request t represents page pt.

▶ Lemma 15. Suppose that, while responding to a general request t, the algorithm is executing
Step 3.2.2.1 (that is, the loop condition in Step 3.2.2 is satisfied). Then, in any solution C,
just after C has responded to request t, either
(i) C has evicted some request t′ currently cached by the algorithm, or
(ii) for some slot s ∈ [k], after the most recent specific request ℓt(s) to slot s solution C has
incurred cost more than cap[ℓt(s)] for retrievals into s.

Proof. If C satisfies property (i), we are done. If (i) doesn’t hold then, just after responding
to request t, in addition to the current general request pt, solution C caches every request
t′ that is cached by the algorithm. This, together with the loop condition, implies that
C has at least |B| + 1 ≥ |A| + 1 generally requested pages of weight at least 1

2 wt(pt) in
its cache. Thus one of these pages, say pt′ , is in a slot s /∈ A. The choice of pt′ and the
definition of A imply then that the cost of C for retrievals into s after time ℓt(s) is at least
wt(pt′) ≥ 1

2 wt(pt) > cap[ℓt(s)], so property (ii) holds. ◀

Proof of Theorem 14. Fix an optimal solution C, that is opt(σ) = cost(C). For each t ∈ [T],
let xt ∈ {0, 1} be an indicator variable for the event that C evicts request t before satisfying
another request t′ > t with the same page/slot pair that satisfied t. Let R ⊆ [T] be the set
of all specific requests, and for each t ∈ R, let yt be the amount C pays to retrieve pages
into slot st before the next specific request to slot st (if any). Define the pseudo-cost of
the optimal solution to be

∑T
t=1 wt(pt)xt +

∑
t∈R yt. The pseudo-cost is at most 2 opt(σ).

As the algorithm proceeds, define the residual cost to be
∑T

t=1 max(0, wt(pt)xt − credit[t]) +∑
t∈R max(0, yt − cap[t]). The residual cost is initially the pseudo-cost (at most 2 opt(σ)),

and remains non-negative throughout, so the total decrease in the residual cost is at most
2 opt(σ). By Lemma 15, whenever the algorithm is raising credits and capacities at time t,
there is either a cached request t′ with xt′ = 1 and credit[t′] < wt(pt′), or there is a slot s

with yt′ > cap[t′], where t′ = ℓt(s) ∈ R. It follows that the residual cost is decreasing at least
at unit rate in Step 3.2.2.1.

On the other hand, the algorithm is raising k capacities and at most k credits, so the
value of ϕ =

∑T
t=1 credit[t] +

∑
t∈R cap[t] is increasing at rate at most 2k. So, the final

value of ϕ is at most 4k opt(σ). To finish, we show that the algorithm’s cost is at most
6 ϕ + 3 opt(σ) ≤ (24k + 3) opt(σ). Count the costs that the algorithm pays as follows:
1. Requests remaining in the cache at the end (time T). By the assumption on the last k

requests, these cost nothing to bring in. All other requests are evicted.
2. Requests evicted in Line 3.2.2.2. Each such request t′ is evicted only after credit[t′] reaches

wt(pt′). So these have total weight at most
∑T

t′=1 credit[t′].

STACS 2023

23:24 Online Paging with Heterogeneous Cache Slots

3. Specific requests t′ evicted from slot st in Line 3.1.1. Throughout the time interval
[t′, t− 1], the algorithm has pt′ in slot st′ = st, and σ has neither an equivalent specific
request nor a general request to pt (by our non-redundancy assumption). The optimal
solution C has pt′ in slot st′ at time t′, but not at time t, so evicts it during [t′ + 1, t]. So
the total cost of such requests is at most the total weight of specific requests evicted by
C, and thus at most opt(σ).

4. General requests evicted from slot st in Line 3.1.1. By Line 3.2.3, any general request in
slot st at time t has weight at most 2 cap[ℓt−1(st)]. So the total weight of such requests
is at most 2

∑
t′∈R cap[t′].

5. General requests to page pt evicted in Line 3.1.1. The algorithm replaces each such
general request t′ by a specific request t (which it later evicts, unless the weight is zero) to
the same page. Have general request t′ charge its cost wt(pt′) = wt(pt), and any amount
charged to t′ (in Item 6 below), to specific request t. (We analyze the charging scheme
for Items 5 and 6 below.)

6. General requests t′ evicted in Line 3.2.3. Have request t′ charge the cost of its eviction,
and any amount charged to t′ to request t. Since the slot holding pt′ is not in B,
wt(pt′) < 1

2 wt(pt).

Each general request t receives at most one charge in Item 6, from a request t′ of at most
half the weight of t; this general request t′ may also receive such charges, forming a chain
of charges, but since the weights of the requests in this chain decrease geometrically, t is
charged at most its weight. In Item 5, each specific request t is charged by at most one
general request t′ of the same weight, that may also carry the chain charge not exceeding its
weight. So this specific request is charged at most twice its weight. Overall, the charge of
each request from Items 5 and 6 is at most twice its weight.

The total weight of evictions considered in Items 1, 2, 3, and 4 is at most 2 ϕ + opt(σ).
Adding also the charges to these items by evictions considered in Items 5 and 6, we obtain
that the total cost of the algorithm is bounded by 3 (2 ϕ + opt(σ)) = 6 ϕ + 3 opt(σ). ◀

	1 Introduction
	2 Formal Definitions
	3 Slot-Heterogenous Paging
	3.1 Lower bounds for Slot-Heterogenous Paging
	3.2 Upper bounds for deterministic Slot-Heterogenous Paging

	4 Slot-Laminar Paging
	4.1 Page-Laminar Paging
	4.2 Upper bounds for randomized and offline Slot-Laminar Paging
	4.3 Improved upper bound for deterministic Slot-Laminar Paging

	5 Weighted All-Or-One Paging
	6 Open Problems
	A Proofs for Slot-Laminar Paging
	A.1 General upper bounds via reduction to page-laminar paging
	A.2 Improved upper bound for deterministic case

	B Proofs for Weighted All-Or-One Paging

