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Sharp bound for embedded eigenvalues of
Dirac operators with decaying potentials

Vishwam Khapre, Kang Lyu  and Andrew Yu

Abst r act.  We study eigenvalues of the Dirac operator with canonical form

Lp,q H v I  =  H1     
* 1

I  
dt 

H
u

I  +  H
*p

p I H v I ,

where p and q are real functions. Under the
 
assumption that

lim sup x     p2(x) +  q2(x) <  Ø ,
x ™ Ø

the essential spectrum of Lp,q is (*Ø, Ø) .  We prove that Lp,q has no eigen-
values if t

lim sup x     p2(x) +  q2(x) <      .
x ™ Ø

Given any A  g  
2 

and any  ¸  R ,  we construct functions p and q such that

lim sup x  p2(x) +  q2(x) =  A  and  is an eigenvalue of the correspond-ing
Dirac operator Lp,q . We also construct functions p and q so that the cor-
responding Dirac operator Lp,q has any prescribed set (nitely or countably
many) of eigenvalues.
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1. Introduction and main results

The Schrödinger operator given by

H u =  *u¤¤ +  Vu (1)
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and the Dirac operator given by

L  0v1 =  01
*11 d 0u1 +  0p11

21
p121 0u1 (2)22

are two basic models in mathematics and physics. We are interested in the
embedded eigenvalue (eigenvalue embeds into the essential spectrum) prob-
lem of Schrödinger operators and Dirac operators. For Schrödinger operators,
the problem is well understood. Kato’s classical results [9] show that if

lim sup xV(x) =  A,
x ™ Ø

then the Schrödinger operator has no eigenvalues larger than A2. Wigner and
von Neumann’s examples [25] imply that there exist potentials with A =  8, such
that  =  1 is an eigenvalue of the associated Schrödinger operator. Finally, (see the
survey [23] for the history), Atkinson and Everitt [1] obtained the sharp
bound 

2 
. They proved that there are no eigenvalues larger than 

2 
, and for any 0

<   <  4A , there are potentials with lim supx™Ø óxV(x)ó =  A  so that  is an
eigenvalue of the associated Schrödinger operator.

Equations (1) and (2) are closely related. For example, by letting p11 =  V ,
and p12 =  p21 =  p22 =  0, one can obtain

*u¤¤ +  Vu =  2u

from

L  0v1 =   0v1 .

In this article, we study embedded eigenvalue problems of a particular type
of Dirac operators on L2 [0, Ø) L2[0, Ø), namely Dirac operators with canon-
ical form,

Lp,q 0
u1 =  00     *11 

dx 
0u1 +  0*p q1 0u1 , (3)

where p ¸  L2 [0, Ø) and q ¸  L2 [0, Ø) are real functions (referred to as poten-
tials). The canonical form of Dirac operators plays an important role in spectral
theory [19, Theorem 5.1]. In the study of asymptotics of eigenvalues and the
inverse problems of Dirac operators, it is crucial to use the canonical form [10,
pp. 185-187], [27, 28]. We refer readers to [3, 4, 5, 6, 7, 20] for more recent
development about various types of Dirac operators.

For any 0 ¸  [0, ), under the boundary condition

u(0) sin 0 *  v(0) cos 0 =  0, (4)

the Dirac operator Lp,q dened by (3) is self-adjoint.
Denote by ess(Lp,q) the essential spectrum of Lp,q . Recall that  ¸  ess(Lp,q) if

and only if there is an orthonormal sequence {’n }n =1 such that

ððLp,q’n *  ’nðð ™ 0, n ™ Ø.
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It is well known that

ess(L0,0) =  (*Ø , Ø) ,
and L0,0 has no eigenvalues.

By [26, Theorem 6.4], if 
t

p2(x) +  q2(x) =  o(1),

as x  ™ Ø,  then

ess(Lp,q) =  (*Ø , Ø) .
In the rst part of our paper, under the assumption that p and q are Coulomb

type potentials (but without singularity at x  =  0), we study the question when
Lp,q has embedded eigenvalues.

Theorem 1.1. If

l im sup x
t
p(x)2

 
+  q(x)2 =  A  <  

1
,

x ™ Ø

then under any boundary condition (4), Lp,q has no eigenvalues in (*Ø, Ø) .

Theorem 1.2. For any 0 ¸  [0, ),  ¸  (*Ø, Ø) ,  and
potentials p and q such that

t
lim sup x p(x)2 +  q(x)2 =  A,

x ™ Ø

A  g  
2

, there exist

and the Dirac operator Lp,q has an eigenvalue  under the boundary condition
(4).

We say that the potential is C Ø  if p, q are C Ø .  In the second part of the paper,
we will construct C Ø  potentials with which Lp,q has many embedded eigenval-
ues.

Theorem 1.3. Let S =  {j } j =1 be a set of distinct real numbers. Let {j } j =1 ˇ
[0, ) be a set of angles. There exist C potentials satisfying

p(x)2 +  q(x)2 =  
O(1) 

,

where O(1) depends on S, such that the associated Lp,q has L 2 [0, Ø)
»

L 2 [0, Ø)
solutions (uj , vj )T satisfying

Lp,q 0v1 =  j  0v1

with the boundary condition

v(0) 
=  cot j ,

for j  =  1, 5 , N .
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Theorem 1.4. Let S =  {j } j =1 be a set of distinct real numbers. Let {j } j =1 ˇ  [0, )
be a set of angles. If h(x) is a positive function with limx ™Ø h(x) =  Ø ,  then there
exist C potentials satisfying

p(x)2 +  q(x)2 f  
h(x) 

,

such that the associated Dirac operator Lp,q has L 2 [0, Ø)
»

L 2 [0, Ø)  solutions
(uj , vj )T satisfying

Lp,q 0v1 =  j  0v1

with the boundary condition

v(0) 
=  cot j ,

for j  =  1, 2, 5 .

For Dirac operators with single embedded eigenvalue, Evans and Harris [2]
obtained the sharp bound for the separated Dirac equation with the form

L  0v1 =  01     
*11 

dt 
0u1 +  0p +  1     

p *  11 0v1 =   0v1 ,

where their results are under the assumption that q is locally absolutely contin-
uous. For more results on embedded single eigenvalue, one can refer to [11, 15].

For many embedded eigenvalues of Schrödinger operators or Dirac opera-
tors, Naboko [18] constructed smooth potentials such that L0,q has dense (ra-
tionally independent) embedded eigenvalues. Naboko’s constructions work for
Schrödinger operators as well. Simon [22] constructed potentials such that the
associated Schrödinger operator has dense embedded eigenvalues. More re-
cently, Jitomirskaya and Liu [8] introduced a novel idea to construct embedded
eigenvalues for Laplacian on manifolds, which is referred to as piecewise con-
structions. This approach turns out to be quite robust. Liu and his collabora-
tors developed the approach of piecewise constructions to construct embedded
eigenvalues for various models [13, 15, 16, 17]. For more results on embedded
eigenvalue problems, one can refer to [12, 14, 21].

In this paper, we adapt the approach of piecewise construction to study em-
bedded eigenvalue problems of Dirac operators. The main strategy of proofs for
our main theorems follow from that of [8, 13, 17]. In the current case of Dirac
operators, new diculties and challenges arise from the Dirac operator being
vector valued and its potential consisting of a pair of functions p and q (unlike
the models in [8, 13, 15, 16, 17]).

2. Proof of Theorems 1.1 and 1.2

Let (u(x), v(x))T be a solution of

Lp,q 0v1 =   0v1 .
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We dene the Prüfer variables R(x) and (x) of  by

u(x) =  R(x) cos (x),

and

v(x) =  R(x) sin (x).

Clearly, we have

Proposition 2.1. Let R(x) and (x) be the Prüfer variables of . Then  is an
eigenvalue of the Dirac operator if and only if R ¸  L2(0, Ø).

By the equation

we obtain

and

Lp,q 0v1 =   0v1 ,

¤

R =  *q(x) cos 2(x) *  p(
x
) sin 2(

x
), (5)

¤ =  *  +  q(x) sin 2(x) *  p(x) cos 2(x). (6)

Set q(x) =  V(x) cos ’(x), p(x) =  V(x) sin ’(x). Note that p and q are com-
pletely determined by V  and ’ .  By (5) and (6), one has

¤

R =  *V(x) cos(2(x) *  ’(x)), (7)

and

¤ =  *  +  V(x) sin(2(x) *  ’(x)). (8)

It is obvious that equations (7) and (8) are equivalent to

Lp,q 0v1 =   0v1 .

By Proposition 2.1, we only need to study (7) and (8).

Proof of Theorem 1.1. Assume

lim sup ðxV(x)ð =  l im sup x
t
p(x)2

 
+  q(x)2 =  A  <  1 . (9)

x ™ Ø x ™ Ø

For any  >  0 (small enough so that A  +   <  1 ), there exists x0
 so that for any x

>  x0, one has

ðV(x)ð f  1 +  x
 .
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By (7) and (9), we have
x

ln R(x) =  ln R(x0) *  ˚ V(t) cos(2(t) *  ’(t))dt x0

x

g  O(1) *  (A +  ) ˚ 1 +  t dt
0

=  O(1) *  (A +  ) ln x.

By the assumption, there exists a positive constant k such that, for large x, we
have

R(x) g  kx *
2  .

This implies that R Ì  L2(0, Ø). Hence by Proposition 2.1,  is not an eigenvalue
of Lp,q .

Proof of Theorem 1.2 for A  >  
2

. We construct p and q as follows:

V(x) =  1 +  x , x  g  0,

and

’ ( x )  =  * 2 x  +  2(0), x  g  0.

By (8) and the uniqueness theorem (see for example [24, Theorem 2.2]), one
has for any x  g  0,

2(x) *  ’ ( x )  ’ 0.
Thus from (7) we obtain

x

ln R(x) =  ln R(0) *  ˚
0 1 +  t dt

=  O(1) *  A ln x.

We immediately obtain that for some small  >  0 and any large x,

R(x) f  x *
2  

*.

Therefore, R ¸  L2(0, Ø) and by Proposition 2.1,  is an eigenvalue of the corre-
sponding Dirac operator Lp,q .

Proof of Theorem 1.2 for A  =  
2

. Let n =  
2n

, an =  en3 . Set

V(x) =  
A  +  n , x  ¸  [an, an+1),

and

’ ( x )  =  * 2 x  +  2(0).

By (8) and the uniqueness theorem, one has for any x  g  0,

2(x) *  ’ ( x )  ’ 0.
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By (7), one has

ln R(an+1) *  ln R(an) =  * ˚  
an+1 A  +  n dx

an

=  * (A  +   ) ln n+1 . (10)
n

For t ¸  [an, an+1), we have

ln R(t) *  ln R(an) =  * ˚  
t A  +  n dx

an

=  * (A  +   ) ln t . (11)
n

From (10), we obtain

ln R(an) =  ln R(a0) *  
n*1

(A +  j ) ln 
aj +1 

.
j = 0

Therefore, one has

R(an) =  O(1)e
*
‡

j = 0  (A+j ) ln 
aj +1

=  O(1) 
n*1 

a
*(A + j )

a
A + j

j = 0

=  O(1) 
n     

a
*(A+ j * 1 )  

n*1 

a
A + j

j = 1 j = 1

=  O(1)a*(A+n*1 ) 
n*1 

a j * j * 1 . (12)
j = 1

By (11) and (12), we conclude

R(t) =  O(1)R(an)e
*(A+n) ln 

an =

O(1)R(an)t*(A+n )aA+n

=  O(1)
˙
a j * j * 1 t * ( A + n ) . (13)

j = 1



˙ *

j
* 1 * 1

n

en

n

C

¤

1 O(1)

¤ O(1)

j
O(1)
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an+1 an+1       n 1 1

˚ R(t)2dt =  O(1) ˚ a j       j * 1  t n dt
an an j = 1

f  O ( 1 )
˙

e * j  n
2

j = 1

f  O(1)
en2 . (14)

This implies that R ¸  L2(0, Ø), by Proposition 2.1,  is an eigenvalue of the
corresponding Dirac operator Lp,q .

3. Proof of Theorems 1.3 and 1.4
We assume that  and j

 are dierent values. Denote the Prüfer variables of  and
j  by R(x), (x) and Rj (x), j (x), respectively.

Recall that V(x) and ’ ( x )  uniquely determine p and q. Dene V(x) =
V(x, b) and ’ ( x )  =  ’(x , , a , ’0 ) on [a, Ø) by

V(x, b) =  
1 +  x  *  b

, (15)

and

’(x , , a , ’0 ) =  *2(x *  a) +  2 ’0, (16)

where C  is a constant will be dened later, a >  b and ’ 0
 =  (a).

Lemma 3.1. Fix b >  0. Let V(x) be dened by (15). Let ’ ( x )  be dened by (16),

and  ‘ j .  Let j(x) be a solution of

j (x) =  * j
 +  V(x) sin(2j (x) *  ’(x)), (17)

then we have
x

˚
x 0      

1 +  t *  b 
cos(2j(t) *  ’(t))dt =  

x0 *  b
, (18)

for any x  >  x0 >  a.

Proof . By (16) and (17) we have

2j(t) *  ’¤(t) =  2( *  j ) +  
1 +  t *  b

, and

2¤¤(t) *  ’¤¤(t) =  
1 +  t *  b

.



1

O(1)
+  O(1) ˚= dt

= .

x  *  b

C

1 +  x  *  b

1 +  t *  b

0x  *  b

k

› Ø
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It follows that
x

˚
x 0      

1 +  t *  b 
cos(2j(t) *  ’(t))dt

sin(2j(t) *  ’(t)) 1
x x 1

2( *  j ) +  
1+t *b 

1 +  t *  bóx0
x0     

(1 +  t *  b)2

O(1)
x0 *  b

Lemma 3.2. Fix b >  0. Let V(x) be dened by (15) on [a, Ø). Let ’ ( x )  be
dened by (16) on [a, Ø), and  ‘ j .  Let R(x), (x) and Rj (x), j (x) be the Prüfer
variables of  and j , respectively. For any x  >  a,

ln R(x) *  ln R(a) f  *100 ln 
a *  b 

+  C,                                 (19)

ln R(x) f  ln R(a),                                                     (20)

where C is a large constant depending on  and j , and for any x  >  x0 g  a with
large enough x0 *  b, we have

Rj (x) f  1.5Rj(x0). (21)

Proof . By (8), (15) and (16), and the uniqueness theorem, one has

2(x) *  ’ ( x )  =  0.

Therefore, by (7) and (15), we have
x

ln R(x) =  ln R(a) *  ˚
a      1 +  t *  b

dt

=  ln R(a) *  C  ln 
1 +  a *  b

.

Then we immediately obtain (19) and (20).
By (5) and (18), we have

ln Rj (x) =  ln Rj (x0) *  ˚  
x  C  cos(2j(t) *  ’(t))

dt
x0

=  ln Rj (x0) +  
O(1) 

.

Hence we obtain (21).

Proposition 3.3. Let  and S =  {j } j =1 be distinct real numbers. Given ’ 0
 ¸  [0, ),

if x1 >  x0 >  b, then there exist constants K(, S), C(, S) (independent of b, x0 and
x1) and V(x, , S, x0, x1, b) ¸  C and ’(x, , S, x0 , x1 , b, ’0) such that
for x0 *  b >  K(, S) the following holds:



›

›
x  *  b

u u

0u(x )

1x  *  b

u u

›

2
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(1): for x0 f  x  f  x1 , supp(V) ˇ  (x0, x1), and

ðV(x, , S, x0, x1, b)ð f  
C(, S)

. (22)

(2): the solution of Dirac equation

Lp,q 0v1 =   0v1 ,

with the boundary condition 
v(x0) 

=  cot ’0 satises

*100

R(x1) f  C(, S) 0
x0 *  b

1 R(x0), (23)

and for x0 <  x  <  x1 ,

R(x) f  2R(x0). (24)

(3): the solution of Dirac equation

Lp,q 0v1 =  j  0v1 ,

with any boundary condition satises for x0 <  x  f  x1 ,

Rj (x) f  2Rj(x0). (25)

Proof . Let V(x) be given by (15) and ’ ( x )  be given by (16), with a =  x0 and C
=  C(, S). Let x  =  x1 in (19), (20) and (21). We smooth V(x) near x0 , x1 to
obtain V(x). Notice that by (7), a small perturbation of V(x) will only give a
small change of R(x) and Rj (x). Hence Lemma 3.2 still holds with slightly
larger constants. We complete the proof.

Proof of Theorems 1.3 and 1.4. With the help of Proposition 3.3, the proofs of
Theorems 1.3 and 1.4 follow from the construction step by step as appearing in
[8, 13, 17] 1.

We only give an outline of the proof here. Let {Nr }r ¸Z +  be a non-decreasing
sequence which goes to innity arbitrarily slowly depending on h(x) . We fur-
ther assume Nr+1 =  Nr +  1 when Nr+1 >  Nr. At the rth step, we take Nr
eigenvalues into consideration. Applying Proposition 3.3, we construct poten-
tials with Nr pieces, where each piece comes from (22) with  being an eigen-
value. The main diculty is to control the size of each piece (denote by Tr). The
construction in [8, 13, 17] only uses inequalities (22), (23) and (24) to ob-tain
appropriate Tr and Nr. Hence Proposition 3.3 implies Theorems 1.3 and 1.4.

1We should mention that although models in [8, 13, 17] are second-order dierential equa-
tions, the rst step is to write those equations in a system of two rst order dierential equations. 2For

most r ¸  N, we have Nr+1 = Nr, and when Nr+1 >  Nr, we take Nr+1 =  Nr + 1. This will
ensure Nr increases to innity slowly.
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