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Sharp bound for embedded eigenvalues of
Dirac operators with decaying potentials

Vishwam Khapre, Kang Lyu and Andrew Yu

Abstract. We study eigenvalues of the Dirac operator with canonical form

u 0 *1 d u *Pp q,,,u
LogH I =H Il —H I+H IH "I
PaTly 1 0 dt v a p v’

where p and q are real functions. Under the assumption that
t

limsupx p2(x)+ g2(x) < @,

XYM¢
the essential spectrum of L,  is (*@, @). We prove that L, 4 has no eigen-
values if t
limsupx p2(x)+ g2(x) < E
x™@ 2

Givenany A g 32 and any , R, we construct functions p and g such that

lim SUP_. 4 xwp_z(ﬂ+_qz(ﬂ_: A and is an eigenvalue of the correspond-ing
Dirac operator L, 4. We also construct functions p and q so that the cor-
responding Dirac operator L, 4 has any prescribed set (nitely or countably
many) of eigenvalues.
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and the Dirac operator given by

*
u_ 0 119 gUpy oPu

= — P12, 4U
Loy1=10, 0 dx v Py pyyl0vl (2)
are two basic models in mathematics and physics. We are interested in the
embedded eigenvalue (eigenvalue embeds into the essential spectrum) prob-
lem of Schrodinger operators and Dirac operators. For Schrodinger operators,
the problem is well understood. Kato’s classical results [9] show that if
limsup xV(x)¢= A,
XTM¢

then the Schrédinger operator has no eigenvalues larger than A2. Wigner and
von Neumann’s examples [25] imply that there exist potentials with A = 8, such
that = 1isan eigenvalue of the associated Schrodinger operator. Finally, (see the
survey [23] for the history), Atkinson and Everitt [1] obtained the sharp

bound ;‘_AiThey proved that there are no eigenvalues larger than , 248 for anyO

< <" , thefe are potentials with lim SUP, g 6XV(x)g = A so that is an
eigenvalue of the associated Schrodinger operator.

Equations (1) and (2) are closely related. For example, by letting p1; = V,
and p1y = py1 = P22 = 0, one can obtain

*Uu 4+ Vu = 2u
from

Lo'1= 0 1.
\Y) \Y)

In this article, we study emt)»edded eigenvalue problems of a particular type
of Dirac operators on L2[0, @) L2[0, @), namely Dirac operators with canon-
ical form,

u 0 *1, d .u

*poa, U
Lpq0 1= 0 1201+0 10 1, (3)
v 1 0 dx v qg p Vv

where p , L2[0,@) and q , L2[0, @) are real functions (referred to as poten-
tials). The canonical form of Dirac operators plays an important role in spectral
theory [19, Theorem 5.1]. In the study of asymptotics of eigenvalues and the
inverse problems of Dirac operators, it is crucial to use the canonical form [10,
pp. 185-187], [27, 28]. We refer readers to [3, 4, 5, 6, 7, 20] for more recent
development about various types of Dirac operators.

For any g, [0,), under the boundary condition

u(0)sing * v(0)cosgy = O, (4)

the Dirac operator L, 4 dened by (3) is self-adjoint.
Denote by ¢ss(Lp ) the essential spectrum of L, 4. Recall that | o (Lp q) if
and only if there is an orthonormal sequence {'n}n:f’such that

86Lpq'n * 'n08 ™0, n ™ @,
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It is well known that

ess(LO,O) = (*¢I ¢);
and Lg o has no eigenvalues.

By [26, Theorem 6.4], if
t

p2(x) + q2(x) = o(1),

asx ™ @, then

ess(Lp,q) = (*¢, ¢)
In the rst part of our paper, under the assumption that p and q are Coulomb
type potentials (but without singularity at x = 0), we study the question when
Lp,q has embedded eigenvalues.

Theorem 1.1. If

t
= 1
limsupx p(x)2+ q(x)2=A< 2,
XTM¢ 2

then under any boundary condlition (4), L, o has no eigenvalues in (*@, @).

Theorem 1.2. Forany, , [0,), , (*®@, @), and Ag %, there exist

potentials p and q such that
t
limsupx p(x)2+ q(x)2= A,
XYM¢
and the Dirac operator Ly, 4 has an eigenvalue under the boundary condition

(4).

We say that the potential is C? if p, q are C?. In the second part of the paper,
we will construct C? potentials with which Lp,q has many embedded eigenval-
ues.

Theorem 1.3. LetS = {; }J.:'\i be a set of distinct real numbers. Let {; }J.:lN”
[0,) be a set of angles. There exist C @ potentials satisfying

‘ o(1)
1+ x’ )
where O(1) depends on S, such that the associated L, 4 has L>[0, @) ~ L?[0, @)
solutions (u;, v;)T satisfying

p(x)2 + q(x)? =

u
Lp,g 01= 01

with the boundary condition

forj =1,5,N.
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Theorem 1.4. LetS = {; }jz? be a set of distinct real numbers. Let {; }J.=1 v [0,)

be a set of angles. If h(x) is a positive function with lim,wgh(x) = @, then there

exist C @ potentials satisfying
t

h(x)
P(x)2+ a(x)? f ==

D
such that the associated Dirac operator L, 4 has L2[0, @) ’ L2[0, @) solutions
(uj, v;)T satisfying

’

u
Lp,q 0101
with the boundary condition
m = COtj,
v(0)

forj=1,2,5.

For Dirac operators with single embedded eigenvalue, Evans and Harris [2]
obtained the sharp bound for the separated Dirac equation with the form
u, _ 0 *1.d u p+1
fo,1=0; 0153:0,1+0 q b
where their results are under the assumption that q is locally absolutely contin-
uous. For more results on embedded single eigenvalue, one can referto [11, 15].

For many embedded eigenvalues of Schrédinger operators or Dirac opera-
tors, Naboko [18] constructed smooth potentials such that Ly 4 has dense (ra-
tionally independent) embedded eigenvalues. Naboko’s constructions work for
Schrodinger operators as well. Simon [22] constructed potentials such that the
associated Schrodinger operator has dense embedded eigenvalues. More re-
cently, Jitomirskaya and Liu [8] introduced a novel idea to construct embedded
eigenvalues for Laplacian on manifolds, which is referred to as piecewise con-
structions. This approach turns out to be quite robust. Liu and his collabora-
tors developed the approach of piecewise constructions to construct embedded
eigenvalues for various models [13, 15, 16, 17]. For more results on embedded
eigenvalue problems, one can refer to [12, 14, 21].

In this paper, we adapt the approach of piecewise construction to study em-
bedded eigenvalue problems of Dirac operators. The main strategy of proofs for
our main theorems follow from that of [8, 13, 17]. In the current case of Dirac
operators, new diculties and challenges arise from the Dirac operator being
vector valued and its potential consisting of a pair of functions p and q (unlike
the models in [8, 13, 15, 16, 17]).

9 19Uy -
¥ ,101= ovi',

2. Proof of Theorems 1.1 and 1.2

Let (u(x), v(x))T be a solution of

u —_—
Lpq 01 = 0 1.
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We dene the Prifer variables R(x) and (x) of by
u(x) = R(x) cos(x),
and
v(x) = R(x)sin (x).
Clearly, we have

Proposition 2.1. Let R(x) and (x) be the Priifer variables of . Then is an
eigenvalue of the Dirac operator if and only if R , L2(0, @).

By the equation
u
Lp,g Oy1= 01,
we obtain

% = *q(x) cos2(x) * p(x)Sin Z(X)' (5)
and
H= % 4+ g(x)sin2(x) * p(x)cos2(x). (6)

Set q(x) = V(x)cos’(x),p(x) = V(x)sin’(x). Note that p and gq are com-
pletely determined by V and’. By (5) and (6), one has

% = *V(x) cos(2(x) * "(x)), (7)

and
F= % 4 V(x)sin(2(x) * "(x)). (8)
It is obvious that equations (7) and (8) are equivalent to
u
Lpg O,1= 0 1.

By Proposition 2.1, we only need to study (7) and (8).

Proof of Theorem 1.1. Assume

t N
limsupdxV(x)d = limsupx p(x)2+ q(x)2= A< l (9)
x™@ x™ @ 2

For any > 0 (small enough sothat A + < 1),5there exists xg so that for any x

> Xg, one has

A+

oV(x)d f T+ x
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By (7) and (9), we have
X

InR(xg) * “V(t)cos(2(t) * ’(t))dt x,
1

o 1+t

O(1)* (A+ )Inx.

In R(x)

g Oo(1)* (A+)~ dt

By the assumption, there exists a positive constant k such that, for large x, we

have
* 1
R(x) g kx 2.
ThisimpliesthatR 1 L2(0, @). Hence by Proposition 2.1, is not an eigenvalue
of Ly q-

Proof of Theorem 1.2 for A > % We construct p and q as follows:

A
V(x) = T+ x *8 0,

and
"(x) = *2x+ 2(0), x g O.
By (8) and the uniqueness theorem (see for example [24, Theorem 2.2]), one
has foranyx g 0,
2(x) * "(x) " 0.
Thus from (7) we obtain
X
A
% o

In R(0) T
O(1) * Alnx.

In R(x)

dt

We immediately obtain that for some small > 0and any large x,

* 1x
R(x)f x 2 .

Therefore, R, L2(0, @) and by Proposition 2.1, is an eigenvalue of the corre-
sponding Dirac operator Ly 4.

Proof of Theorem 1.2 for A = % Let, = Zni,an = e, Set

Vi) = 250 fanana),
and
"(x) = *2x + 2(0).
By (8) and the uniqueness theorem, one has forany x g 0,
2(x) * "(x) "’ 0.
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By (7), one has

An+1
A+
InR(ans+1) * InR(ay) = * ° —"dx
X
an
= *(A+ )In 2 (10)
dn
Fort, [an, ans+1), we have
YA+
InR(t) * InR(a,) = *° —"dx
an X
= *(A+ )in = (11)
n
From (10), we obtain
rﬁ*l dj+1
InR(ay) = InR(ag) * (A+{)In
j=0 i
Therefore, one has
Fn*1 aj+1
T (A+)
R(ay) = O(1)e ' " 5
n*1 (A+) A
* +. +.
= 0(1) ajHJajJ
j=0
‘n . n*1
=0(1) a (A1) a?”
j=1 j=1
*1
*(Atper) " IR
= 0(1)q, CHR (12)
j=1
By (11) and (12), we conclude
* Ml t
R(t) = O(1)R(ag)e "M ar =
O(1)R(ap )t A*nlgh*n
n *
= 0(1) a"jj”t*<A+n). (13)

i=1
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It follows that

An+l Ap+1 - N E*L 1
R(t)2dt = O(1)° al Mt adt
an an j=1 .
" n
fo(1) e’ =
=1 @
n
f o5 (14)

This implies that R ;| L%(0, @), by Proposition 2.1, is an eigenvalue of the
corresponding Dirac operator L 4.

3. Proof of Theorems 1.3 and 1.4

We assume that and ; are dierent values. Denote the Prifer variables of and
i by R(x), (x) and Rj(x), ;(x), respectively.

Recall that V(x) and ’(x) uniquely determine p and gq. Dene V(x) =
V(x,b)and’(x) = '(x,,a, o) on [a, @) by

C

Vo) = e

(15)
and

‘(x,,a,%0) = *2(x * a)+ 2'°, (16)

where C is a constant will be dened later, a > band’ 0 = (a).
Lemma3.1. Fixb > 0. Let V(x) be dened by (15). Let ' (x) be dened by (16),

and ‘ j. LetJ(x) be a solution of

J.(rx) = x) + V(x) sin(2;(x) * "(x)), (17)
then we have

0O(1)

1
_— 2:(t) * '(t))dt = 18
. 1+t,,(IOCOS(J() (t)) o * b’ (18)
forany x > xg > a.
Proof. By (16) and (17) we have
0(1)
y _ .
Zj(:t)* (t)=2(*;)+ 1+W€md

2%(1) * () =

1+66P'
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It follows that

X

1 R
. mcos(ZJ(t) (t))dt
sin(2;(t) * *(t)) 1 " x 1
= + 0(1)° —+——5—dt
0(11+t*b 1+t* b)?2
20750+ 1+t*b %% | )
_o(1)
Xo* b’

Lemma 3.2. Fix b > 0. Let V(x) be dened by (15) on [a, @). Let '(x) be
dened by (16) on [a, @), and * ;. Let R(x), (x) and R;(x),(x) be the Priifer
variables of and j, respectively. For any x > a,

*

b
b +C, (19)

InR(x) f InR(a), (20)

where C is a large constant depending on and j, and for any x > xo g a with
large enough xo * b, we have

InR(x) * InR(a) f *100In ’;

Proof. By (8), (15) and (16), and the unigueness theorem, one has
2(x) * "(x) = 0.
Therefore, by (7) and (15), we have

C
— * ° _
InR(x) = InR(a) ] T bdt
me)*cmlilT%.
Then we immediately obtain (19) and (20).
By (5) and (18), we have
. X Ccos(2;(t) * ’(t))’4

n Ryx) 1+t*b

InRj(xq) *

Xo
0O(1)
Xo * b

In Rj(xq) +
Hence we obtain (21).

Proposition 3.3. Let andS = {»} Ee distinct real numbers. Given 0 . [0,),
ifxy > Xg > b, then there ex:st constants 5( S), C(,S) (lndependent of b, xg and
x1)andV(x,,S, xo, X1, b) , and ’(x,,S, Xg, X1, b,’g) such that
forxg * b> K(,S) thefo//owmg holds:
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(1): forxo f x f xq, supp(VY) ™ (xq,x1), and

C(,S
oV(x,,S, X, X1, b)d f ( *). (22)
X
(2): the solution of Dirac equation
u
Lpq0,1= 0 1,
with the boundary condition 3((:0)) = cot’ satises
0
. % p 100
R(x) f C(,S)0 =% R(x), (23)
0
and forxg < X < Xy,
R(x) f 2R(xo). (24)

(3): the solution of Dirac equation
u
Lp,q 01= 501,

with any boundary condition satises for xg < x f x4,
Rj(x) f 2R;j(xo). (25)

Proof. Let V(x) be given by (15) and ’ (x) be given by (16), with a = xg and C
= C(,S). Let x = x; in (19), (20) and (21). We smooth V(x) near xg, x; to
obtain V(x). Notice that by (7), a small perturbation of V(x) will only give a
small change of R(x) and Rj(x). Hence Lemma 3.2 still holds with slightly
larger constants. We complete the proof.

Proof of Theorems 1.3 and 1.4. With the help of Proposition 3.3, the proofs of
Theorems 1.3 and 1.4 follow from the construction step by step as appearing in
[8, 13, 17] %

We only give an outline of the proof here. Let {N}, ;+ be a non-decreasing
sequence which goes to innity arbitrarily slowly depending on h(x) 2. We fur-
ther assume N,;; = N, + 1 when N,;; > N,. At the rth step, we take N,
eigenvalues into consideration. Applying Proposition 3.3, we construct poten-
tials with N, pieces, where each piece comes from (22) with being an eigen-
value. The main diculty is to control the size of each piece (denote by T,). The
construction in [8, 13, 17] only uses inequalities (22), (23) and (24) to ob-tain
appropriate T, and N,. Hence Proposition 3.3 implies Theorems 1.3 and 1.4.

1\We should mention that although models in [8, 13, 17] are second-order dierential equa-

tions, the rststep is to write those equations in a system of two rst order dierential equations. ZEor
mostr , N, we have N,,; = N, and when N.,; > N,, we take N,,; = N, 4+ 1. This will

ensure N, increases to innity slowly.
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