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Abstract

We propose Intermediate Layer Optimization

(ILO), a novel optimization algorithm for solving

inverse problems with deep generative models.

Instead of optimizing only over the initial latent

code, we progressively change the input layer ob-

taining successively more expressive generators.

To explore the higher dimensional spaces, our

method searches for latent codes that lie within

a small l1 ball around the manifold induced by

the previous layer. Our theoretical analysis shows

that by keeping the radius of the ball relatively

small, we can improve the established error bound

for compressed sensing with deep generative mod-

els. We empirically show that our approach out-

performs state-of-the-art methods introduced in

StyleGAN-2 and PULSE for a wide range of in-

verse problems including inpainting, denoising,

super-resolution and compressed sensing.

1. Introduction

We study how deep generators can be used as priors to solve

inverse problems like inpainting, super-resolution, denoising

and compressed sensing from random projections. Image

reconstruction methods can be either supervised (Pathak

et al., 2016; Richardson et al., 2020; Yu et al., 2018) or

unsupervised (Menon et al., 2020; Bora et al., 2017; Pajot

et al., 2019), see the recent survey (Ongie et al., 2020) for

a unified presentation. Such inverse problems naturally

appear in many applications including medical imaging,

single pixel reconstruction and other domains (Lustig et al.,

2007; 2008; Chen et al., 2008; Duarte et al., 2008; Qaisar

et al., 2013; Hegde et al., 2009).

We focus on unsupervised image reconstruction techniques

that rely on a pre-trained generator, building on the general
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framework introduced in CSGM (Bora et al., 2017). The

central optimization problem that appears in unsupervised

image reconstruction is the inversion of a deep generative

model, i.e. finding a latent code that explains the measure-

ments. This can be performed for different generators, e.g.

DCGAN or more recently the powerful StyleGAN-2 (Karras

et al., 2019; 2020) as shown in the excellent results obtained

by PULSE (Menon et al., 2020). Unfortunately, inverting a

generator with even 4 layers is NP-hard (Lei et al., 2019) so

approximate inversion methods are needed.

The CSGM framework (Bora et al., 2017) used gradient

descent to minimize the measurement mean squared error

(MSE) and showed good empirical performance for numer-

ous inverse problems including inpainting and compressed

sensing with random Gaussian measurements using DC-

GAN. However, this does not work as well for deeper gen-

erators e.g. BigGAN as discussed in Daras et al. (2020).

PULSE (Menon et al., 2020) improved the CSGM frame-

work focusing specifically on super-resolution, by refin-

ing the latent space optimization and using the StyleGAN-

2 (Karras et al., 2019; 2020) generator.

We propose a novel optimization method for solving gen-

eral inverse problems using a technique we call Interme-

diate Layer Optimization (ILO). Our method adaptively

changes which layer is optimized, moving from the initial

latent code to intermediate layers closer to the pixels. By

optimizing intermediate layers we expand the range of the

generator to better satisfy the measurements. This has to be

done carefully since intermediate layers can produce non-

realistic images and therefore inversion must be regularized.

1.1. Our Contributions

1. We propose a novel optimization method for solv-

ing general inverse problems by adaptively changing

which layer variables are optimized. Our method extends

PULSE (Menon et al., 2020) beyond super-resolution, to all

inverse problems with differentiable forward operators.

2. To avoid over-expanding the range of the generator to

non-realistic images, we only search for latent codes within

a small l1 ball around the manifold induced by the previous

layer. Conceptually, our method generalizes the framework

introduced in Dhar et al. (2018); instead of allowing sparse
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deviations only in the image space, we allow small devia-

tions from the manifold of any layer of the generator.

3. We theoretical analyze our framework by establishing

sample complexity and error bounds. We show that by re-

stricting the radius of the latent searches, we can improve

the established error bound of CSGM (Bora et al., 2017).

4. Experimentally, our method significantly outperforms

the previous state-of-the-art techniques for solving inverse

problems with deep generative models for a wide range of

tasks including inpainting, denoising and super-resolution.

5. To illustrate the power of inverse problems with general

differentiable forward operators, we use a classifier as a

measurement process. Specifically, we show how we can

use a classifier to bias generators to produce human images

that look like ImageNet classes like frogs, corals and gold-

fishes. Our method uses gradients from classifiers trained

to achieve robustness to adversarial attacks as proposed

in (Santurkar et al., 2019), but guiding generative latent

codes as opposed to pixels directly.

6. We open-source all our code to encourage further re-

search in this area: https://github.com/giannisdaras/ilo. A

demo of our code is available under this URL.

2. Algorithm

2.1. Setting

The key step in our approach is to decompose pre-trained

generative models as compositions of feed-forward neural

networks. Given a (pre-trained) generative model G(z) ∈
R

n that produces images from latent codes z ∈ R
k, we

decompose it as a G = G2 ◦G1 where G1 : Rk → R
p and

G2 : Rp → R
n. As usual, the latent vectors zk ∈ R

k were

sampled according to a simple distribution Pz , typically

Gaussian and independent.

Our observations are formed by a known measurement ma-

trix

y = Ax+ noise, (1)

where A : Rm×n where x ∈ R
n is the real image we want

to recover. We emphasize that our algorithm can be applied

when the measurement process is a general differentiable

operator y = A(x) but our theory only applies to linear

inverse problems. Since we will be working with latent

vectors in different layers we indicate the dimension as a

superscript, so zk denotes an initial latent vector in R
k and

zp an intermediate vector in R
p.

2.2. Approach

Our approach is described in Algorithm 1. The first step

of our method is the same as in CSGM (Bora et al., 2017);

we optimize over a k-dimensional latent code, zk, which

is the input of the first layer of the generator. In practice,

to obtain the solution of line 1 of Algorithm 1, we pick

an initial zk from the latent distribution of the generator

and we optimize the loss function ||AG(zk)− Ax|| using

gradient descent. Once we solve this optimization problem,

we obtain a solution, ẑk, that we map to the p-dimensional

space using G1. By doing that, we get an intermediate latent

representation, ẑp = G1(ẑ
k).

From that point onwards, our algorithm proceeds in rounds.

At the beginning of each round, we optimize on the p-

dimensional input space of G2 but we only allow solutions

that lie within an l1 ball centered at ẑp. Intuitively, we allow

deviations from the range of G1 to increase the expressitiv-

ity of the model, but we restrict those deviations to avoid

overfitting on the measurements (see Experiments section).

Once we obtain the solution of line 4 of Algorithm 1, i.e.

once we find the latent code, z̃p, that best explains the

measurements and lies inside an l1 ball of the previous

latent, we project this solution back to the range of the

generator. To do that, we search for the latent code zk

such that G1(z
k) is as close as possible to z̃p (line 5 of

Algorithm 1). This problem is solved by initializing a latent

vector zp to ẑp and then minimizing using gradient descent

the loss ||G1(z
k)− z̃p||. The solution of this problem forms

a new ẑk vector which is in turn projected again to the

intermediate code ẑp = G1(ẑ
k). Our algorithm attempts

to explore the set we call the extended range: the range of

vectors realizable by the previous layer, dilated by an l1 ball

of sparse deviations. Within this set we would like to find

the latent vector that best explains the measurements.

We emphasize that our theoretical analysis provides per-

formance bounds for the global optimum in this extended

range, while our algorithm is based on projected gradient

descent for a non-convex problem and therefore can be stuck

in local optima. It may be possible to prove that such local

optimization algorithms obtain global minima under gen-

erator weight assumptions as achieved in the pioneering

work of Hand & Voroninski (2018); Hand et al. (2018) for

CSGM, but this remains open for future work.

3. Theoretical Analysis

3.1. Preliminaries

We begin our theoretical discussion by revisiting some im-

portant elements of the theory of compressed sensing with

deep generative models.

Definition 1 (S-REC (Bora et al., 2017)). Let S ⊆ R
n. For

some parameters γ, δ > 0, a matrix A ∈ R
m×n is said to

satisfy S-REC(S, γ, δ) if ∀x1, x2 ∈ S, we have that:

||A(x1 − x2)||2 ≥ γ||x1 − x2||2 − δ. (2)

The S-REC condition, introduced in CSGM (Bora et al.,
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are expanding this set to create the extended range:

G1(B
k
2 (r1))⊕Bp

1(r2).

Our result is showing that minimizing the measurements

in this extended range gives a reconstruction that is close

to the best reconstruction that the extended generator G2

can produce. This result is obtained with high probability

over the random measurement matrix A, if the number of

measurements is sufficiently large:

Theorem 1. Let G = G2 ◦ G1 with G1 : Rk → R
p be

an L1-Lipschitz function and G2 : Rp → R
n be an L2-

Lipschitz function. Let A ∈ Rm×n be the measurements

matrix with Aij ∼ N (0, 1/m) i.i.d. entries.

Let K be a parameter of our choice where K ≤ √
p, and

r2 = Kδ
L2

. Consider the true optimum in the extended range

z̄p = argminzp∈G1(Bk
2
(r1))⊕B

p
1
(r2)||x−G2(z

p)||, (3)

and the measurements optimum in the extended range

z̃p = argminzp∈G1(Bk
2
(r1))⊕B

p
1
(r2)||Ax−AG2(z

p)||.
(4)

Then, if the number of measurements is sufficiently large:

m =
1

(1− γ)2
Ω

(

k log
L1L2r1

δ
+K2 log p

)

, (5)

then with probability at least 1 − e−Ω((1−γ)2·m), we have

the following error bound:

||x−G2(z̃
p)|| ≤

(

1 +
4

γ

)

||x−G2(z̄
p)||

+δ · log(4K)

γ
·
√
p

K
log

√
p

K
. (6)

We will now try to develop intuition about the theorem. We

begin by explaining the sets involved in Equations (3), (4).

We consider Bk
2 (r1) to be a set containing all the latent

codes of the first layer of the generator that could be poten-

tially pre-images of any sensed signal x. We refer to Bk
2 (r1)

as the domain of G and to G1(B
k
2 (r1)) as the range of G1.

The extended range contains all vectors that lie within an l1
ball of radius r2 from some point in the range of G1. This is

the set G1(B
k
2 (r1))⊕Bp

1(r2) that both minimizations are

performed in.

Let’s now consider the error bound of (6). First, z̄p is the

latent code in the extended range that best explains the

image x. We refer to this as the true optimum latent code.

Next, z̃p, is the measurements optimum, i.e. the latent code

in the extended range that best explains the measurements

Ax. It is important to realize that a reconstruction algorithm

only has access to this measurement error and can never

compute z̄p. Our goal is to show that z̃p produces an image

close to the one produced by z̄p.

Our theorem states that given enough measurements m,

the measurements optimum is nearly as good as the true

optimum (see (6) and Remark 3).

Remark 1 (Choice of K). The size of the extended range

affects the required number of measurements ((4)) and our

error bound (see (6)). Observe that the size of the extended

range is directly controlled by K, since, for any fixed δ, we

set r2 = Kδ
L2

. As K increases, we explore a bigger set and

both terms on the right side of (6) become smaller. However,

measurements scale quadratically with K. We can set K
to scale approximately as

√
k (see Remark 3 for details on

how all the quantities can scale). For that choice of K,

observe that our result requires measurements that scale

linearly on k (and only logarithmic in p) while the CSGM

result requires measurements that scale linearly on p. The

costs for the small increase in the measurements, are 1)

the additive error scales with
√
p, 2) we are restricted to

exploring a small radius.

In practice, these can be tuned as hyperparameters and our

experiments show that even small expansions significantly

outperform CSGM in numerous inverse problems.

Remark 2 (CSGM sample bound applied directly on the

intermediate layer). We compare to the result we obtain by

applying CSGM to the intermediate layer generator. That

would yield measurements that scale as:

m = Ω

(

k log

(

L1L2r1
δ

)

+ p log

(

L2r2
δ

))

.

These many measurements result in an additive error term

of O(δ). Our new bound requires fewer measurements when

the free parameter K is smaller than
√
p.

Remark 3 (Parameter Scaling). There are various ways to

set the parameters in our bounds, depending on the scaling

of sizes of the intermediate layers and the Lipschitz con-

stants. For typical piecewise linear networks with d layers

and maximum n neurons in each layer, we know that the

end-to-end Lipschitz constant L ≤ L1 · L2 might scale as

nd for bounded maximum weights. Hence, as in CSGM, we

may set r1 to scale as nd. The error term ||x − G2(z̄
p)||

scales linearly with n. Hence, we need to choose δ,K such

that the additive term in inequality (6) scales sublinearly.

We may set δ to scale as 1√
p

. To get the same order of mea-

surements as CSGM, we may set K to scale as
√
k. For that

choice of parameters, the radius for the intermediate search,

i.e. r2 scales as
√

k
p
n−d2 , where d2 is the depth of G2.
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3.3. Sketch of the proof

The central novelty of our proof is how we upper bound the

metric entropy of the epsilon nets used to cover the extended

range of the generator, i.e. the set G1(B
k
2 (r1)) ⊕ Bp

1(r2).
First, we observe that if S1 is a epsilon net for G1(B

k
2 (r1))

and S2 is an epsilon net for Bp
1(r2), then a simple bound for

the size of an epsilon net on the extended range will have at

most |S1| · |S2| elements.

CSGM uses a volumetric argument to upper bound the size

of the epsilon net for S1. Our key idea is that using the

same method to bound the size of the cover for the l1 ball is

sub-optimal for small radii. Instead, we use Maurey’s empir-

ical method or the related Sudakov’s minoration inequality

(Pisier, 1986; Wainwright, 2019) yielding logarithmic (in-

stead of linear) dependence on the dimension p. Maurey’s

bound poses technical challenges that we need to address

when extending the chaining argument of the CSGM proof.

With Maurey’s method, successive nets in the chaining can

have significantly higher metric entropy for large radii. To

minimize the additive error in our bound during chaining,

we switch from volumetric epsilon-nets to Maurey’s method

at the right selected scale. The full proof of our Theorem

can be found in the Appendix.

3.4. S-REC for partial circulant matrices

We extend the theory of matrices that satisfy the S-REC con-

dition beyond i.i.d. Gaussian measurements. To establish

that a family of random matrices satisfies this condition (and

hence obtains sample complexity bounds), three conditions

must be proved with high probability (Bora et al., 2017;

Baraniuk et al., 2008): (1) The random matrix A should

satisfy the Johnson-Lindenstrauss (JL) lemma on a suitable

ε-net, (2) The matrix operator norm should be bounded:

‖A‖op ≤ √
n, and (3) for a fixed vector x, ‖Ax‖ ≤ 2‖x‖.

Here we establish that randomly signed partial circulant

matrices satisfy the S-REC condition for a number of mea-

surements scaling similarly to Gaussian i.i.d. measurements.

Lemma 1. Consider the setting of Theorem 1. Let g =
[g1, · · · , gn] be a vector with i.i.d. Gaussian entries of vari-

ance 1/m, let F ∈ R
m×n be a partical circulant matrix

that has g in its first row, and let D ∈ R
n×n be a diagonal

matrix with uniform ±1 entries along its diagonal. Then

for m = Ω
(

1
(1−γ)2 (k log

L1L2r1
δ

+K2 log p) log4(n)
)

,

FD satisfies S-REC(G2(G1(B
k
2 (r1))⊕Bp

1(r2)), 1− γ, δ ·
log(4K)

γ
·
√
p

K
log

√
p

K
) with probability 1− e−Ω(m).

Our proof of this lemma can be found in the Appendix

and relies on previous results establishing JL properties

for partial circulant matrices post-multiplied by random

diagonal matrices (Krahmer & Ward, 2011; Hinrichs &

Vybı́ral, 2011).

There is an important computational benefit in such struc-

tured measurement matrices. We are sensing high resolution

images that are 1024× 1024 for 3 color channels resulting

in signal dimension n being 3 million. If measurements are

at ten percent (a typically challenging compressed sensing

regime), that results to m× n matrices that are 300k × 3m
which require gigabytes to store and hit GPU memory limi-

tations. Therefore random Gaussian measurement matrices

cannot be implemented for high resolution imaging. Partial

circulant matrices require orders of magnitude less memory

due to their structure and matrix-vector products can be

computed much faster using FFT. We expect that these ben-

efits will have a key role for future high-resolution imaging

systems.

4. Experiments

4.1. Algorithmic adaptations to StyleGAN

Up to this point, we have presented and theoretically an-

alyzed the ILO algorithm. Our method is not tied to any

specific architecture and it only assumes access to a genera-

tive model and the underlying domain of the latent space of

the initial layer. In this section, we present empirical innova-

tions on how to use our framework with the state-of-the-art

generative model StyleGAN-2 (Karras et al., 2020).

StyleGAN-2 has several peculiarities that need to be taken

into account for the design of a compressed sensing algo-

rithm. First, in StyleGAN-2 the initial latent code zk ∈ R
k

is not fed directly to the model. Instead, it is first mapped

through a multilayer linear network, the mapping network,

to an intermediate representation wk ∈ R
k. We refer to the

domains of zk, wk as Z,W respectively. During training,

a zk is sampled according to a distribution on Z , it gets

transformed through the mapping network to a wk ∈ W
and one copy of wk is fed to each one of the 18 layers of

StyleGAN-2. Additionally, each one of the layers receives

a noise vector uk (unique for each layer).

4.1.1. OPTIMIZATION SETTING

The first thing to decide is which intermediate layer will be

used to split the StyleGAN-2 generator. We observe that

we obtain better results with multiple splits. We consider

the generator of StyleGAN-2 as a composition of layers

G1 ◦ G2 ◦ ... ◦ G18 and we run Algorithm (1) in rounds,

where in each round the initial layer is discarded.

To ensure that we stay in an l1 ball around the manifold at

each layer, we use Projected Gradient Descent (PGD) (Nes-

terov, 2003). To implement the projection to an l1 ball

around the current best solution (see line 4 of Algorithm

(1)), we use the method of Duchi et al. (2008). Guided by

our theory, we increase the maximum allowed deviation as

we move to higher dimensional latent spaces. The radii of



Intermediate Layer Optimization for Inverse Problems

the balls are tuned separately as hyperparameters, for a full

description see the Appendix.

For all inverse problems, it is helpful to allow the wk vectors

to deviate (Menon et al., 2020), i.e. we can optimize over a

sequence {wk
i }18i=1. The deviations are typically regularized

with an additional term in the loss function, which captures

the geodesic distance of the vectors. PULSE reports that op-

timizing only over the first five noise vectors, i.e. {uk
i }5i=1,

yields better reconstructions for super-resolution comparing

to optimizing over the whole sequence. We show that this

is not necessarily true if this optimization is performed se-

quentially. Our method starts by optimizing only the first

five noise vectors (as in PULSE), but we gradually allow

optimization of the rest of the latent vectors as we move to

higher dimensional latent spaces.

4.2. Loss functions and adaptation to general inverse

problems

Here we consider the effect of different loss functions in

solving general inverse problems. It has been observed

that LPIPS yields optimal performance with image size

256 × 256 (Karras et al., 2020). Therefore, we downsam-

ple images from 1024 × 1024 to 256 × 256 pixels. If the

given image is inpainted, missing pixels are mixed with

observed pixels during this downsampling. We observe that

this blending leads to distorted reconstructions when using

the LPIPS loss. Hence, for inpainting under scarce measure-

ments we use only the MSE loss. We note that unlike the

previously proposed methods, ILO can work for inpainting

with extremely few observed pixels – even with less than

1% of the whole image. If we observe a significant por-

tion of the image, then we use both LPIPS and MSE. To

address these distortion issues, we minimize the perceptual

distance between the generated image and a superimposed

reconstruction, i.e. we replace the missing pixels of the

observed image with the ones generated by StyleGAN prior

to downsampling.

For super-resolution, we use a weighted average of LPIPS

and MSE (as in inpainting with sufficient measurements). To

compare the high-resolution and low-resolution images, we

first downsample with cubic interpolation (Keys, 1981) as in

PULSE. We also consider the problem of denoising, where

Gaussian noise is added to the image. As usual, we assume

knowledge to the forward operator A(x). Simply inverting

a noisy high-resolution image creates grainy reconstructions

due to the expressive power of StyleGAN-2. We address this

in the optimization process by adding gaussian noise to the

generated images before using them in the loss function. We

call this new technique Stochastic Noise Addition (SNA).

4.3. Results

We show that ILO obtains state-of-the-art unsupervised per-

formance for solving inverse problems with deep gener-

ative models in four different settings: inpainting, super-

resolution, denoising and compressed sensing with circulant

matrices. We compare with different variants of the CSGM

algorithm using optimization and loss function innovations

introduced in PULSE and StyleGAN. Unless stated other-

wise, we will denote with CSGM + MSE the optimization

procedure described in PULSE for the StyleGAN genera-

tor. Through a wide variety of experiments, we observe

that ILO largely outperforms alternative techniques, both

in terms of visual quality and in terms of true MSE error.

We measure the latter on images sampled randomly from

Celeba-HQ (Liu et al., 2018; Lee et al., 2020). Finally, to

show the benefits of extending the range of the generator, we

illustrate how one can use an adversarially robust classifier

to guide the generation of human faces that look like objects

from ImageNet (Deng et al., 2009).

Inpainting: For inpainting, the algorithm tries to complete

missing pixels to a given image. The measurement process

corresponds to a linear matrix that has rows that are a subset

of the identity. Results for inpainting are shown in Figure

1. We perform two types of experiments. First, we mask

important facial features from real images (collected from

the web) and generated images from StyleGAN-2. Next, we

do randomized inpainting, i.e. we inpaint pixels of a given

image independently with a pre-defined probability. We

experiment with observation probabilities up to 1%. This

is a very challenging scenario: a human observer cannot

distinguish face characteristics from such few pixels, e.g.

see Figure 1 last row, second column. As shown in the

Figure, ILO gives reconstructions that look much closer to

the hidden image than the other methods. Our method is

able to give surprisingly accurate reconstructions even under

extreme scarce measurements (see last column, last row of

Figure 1). To quantify the performance of the different

methods we randomly select a few images from Celeba-

HQ (Liu et al., 2018; Lee et al., 2020) and reconstruct at

different levels of sparsity. Figure 2 column 1 shows that

ILO is 2× better in terms of reconstruction error anywhere

between 5%− 100% observed pixels.

Denoising: Our next experiment is on denoising. To ablate

the SNA framework we introduced, we show results with

and without our technique on an image with additive noise

of standard deviation σ = 30. Results are summarized in

Table 1. Since it is clear that SNA consistently improves

reconstruction, we use it in all subsequent denoising experi-

ments.

We compare with the CSGM framework using MSE, only

LPIPS or a combination of both loss functions. For ILO, we

only use a weighted combination of MSE and LPIPS. We
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Figure 4. Illustration of using a classifier as a differentiable for-

ward operator. Here we assume that the only observation is

y = A(x|class) where A is an ImageNet classifier. The classes

used in this Figure are (from top-left): Frog, Coral, Irish Wolf

Dog, Goldfish, Boston Terrier Dog and Apple. We use a robust

classifier as proposed by Santurkar et al. (2019) and solve the

inverse problem to generate images that look like these classes.

The difference with Santurkar et al. (2019) is that we perform the

search using ILO in the StyleGAN-2 generator latent spaces as

opposed to pixels and that keeps images closer to human faces.

images with a reference image (i.e. MSE and LPIPS) and

we add a new classification loss term using an external clas-

sifier trained on a different domain. Essentially, we search

for latent codes that lie in an l1 ball around the range of

intermediate layers and maximize the probability that the

generated image belongs to a certain category. We consider

a classifier trained on ImageNet (Deng et al., 2009). This

optimization problem is one of the simplest methods to cre-

ate adversarial examples (Xiao et al., 2018) and hence the

generated images will not be visually interesting. However,

if our classifier is adversarially robust, then even optimizing

directly over the pixel space leads to an interesting genera-

tive process (Santurkar et al., 2019). We use the latent space

of StyleGAN-2 to generate images of faces with fruit or

animal characteristics. The radius of the l1 projection at dif-

ferent layers controls the distance of the generated images

to human faces. The results are shown in Figure 4.

Running time: Our algorithm runs CSGM as the first step

and therefore initially seems to be strictly slower. Surpris-

ingly, ILO can find better solutions than CSGM in fewer

total steps. StyleGAN-2 typically requires 300− 1000 op-

timization steps (on the first layer) for a good reconstruc-

tion (Karras et al., 2019; 2020). However, we observe that

running 50 steps in each one of the first four layers outper-

forms CSGM. That said, ILO continues to improve with

more iterations, also depending on task, number of mea-

surements and hyperparameters. In practice, the obtained

inverse problems required approximately 30− 60 seconds

per image on a single 1080Ti GPU. For a discussion on

hyperparameters, their effects on running times and compar-

isons to other baselines see the Appendix.

Related Work: There has been significant recent work

in unsupervised methods for inverse problems using pre-

trained generative models. Recently, Liu & Scarlett (2020)

showed that the sample scaling of CSGM is near-optimal

in the absence of further assumptions. Hand & Voroninski

(2018) proved algorithmic convergence guarantees for solv-

ing non-convex linear inverse problems with deep generative

priors under random weight assumptions. Faster recovery al-

gorithms were proposed by Raj et al. (2019); Shah & Hegde

(2018) while Pandit et al. (2019) analyzed approximate

message passing (AMP) for inverse problems in the high-

dimensional random limit. Beyond AMP, Regularization-

by-Denoising (RED) methods have shown excellent recent

performance in imaging, see e.g. Sun et al. (2019). Deep

generative models have been developed for MRI (Mardani

et al., 2018) and benefited from task-awareness (Kabkab

et al., 2018), meta-learning (Wu et al., 2019) and specifically

designed autoencoders (Mousavi et al., 2019).

The theoretical framework we introduce is related to the

ideas proposed by Dhar et al. (2018) on allowing additive

sparse deviations in the generated images. In that case, the

recovered signals have the form G(z)+v, where G : Rk →
R

n is a deep generative model, z ∈ R
k is a latent variable

and v ∈ R
n is an l-sparse vector. The additive term allows

the recovery of signals that lie outside of the range. Our

approach is very close to this framework but generalizes

it since it allows sparse deviations anywhere in the latent

space.

Another related recent work is that on GAN surgery (Park

et al., 2020). In that paper, the range of the generator is

expanded by optimizing intermediate layers directly. The

main difference is in the optimization procedure; it is not

performed sequentially nor regularized by a previous search

in the lower dimensional space as we propose in this pa-

per. Our paper also benefits from the StyleGAN-2 architec-

ture (Karras et al., 2019; 2020) and builds on several key

ideas from PULSE (Menon et al., 2020).

Finally, there is significant prior work on deep learning meth-

ods that do not rely on pre-trained generators, see e.g. (Lucas

et al., 2018; Yu et al., 2019; Liu et al., 2019; Sun & Chen,

2020; Sun et al., 2020; Yang et al., 2019; Tian et al., 2020;

Tripathi et al., 2018). Such methods can show excellent per-

formance but require training a network specifically for each

reconstruction task. This is in contrast with our framework

that can solve all inverse problems universally, leveraging

the same pre-trained network.
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5. Conclusions and Future Work

We proposed a novel framework for solving inverse prob-

lems leveraging pre-trained generative models. Our method

expands the range of the generator by optimizing different

intermediate layers and achieves excellent performance for

several tasks. On the theory side, a central open problem

would be to establish global convergence of ILO, possibly

following the ideas of (Hand & Voroninski, 2018; Hand

et al., 2018) or surfing (Song et al., 2019).

On the empirical side, a central open problem would be the

application of our framework in other domains like medi-

cal imaging, but that would require pre-trained generative

models e.g. for high-resolution MRI images. Another open

direction that is particularly exciting is the use of classifiers

to generate out-of-distribution samples. Our generated sam-

ples show the powerful modularity of combining pre-trained

generators with differentiable forward operators that can

guide image reconstruction in a data-driven way.

6. Intended Use

ILO is intended as a proof of concept for solving inverse

problems by leveraging pre-trained Generative models. The

intended use of our implementation using StyleGAN2 and

also the classifier is purely as an art project. Our primary

goal is to demonstrate that a classifier can produce images

outside the range of a pre-trained generator (i.e. human

faces) by leveraging intermediate layer optimization. This

model is not suitable, for face recognition or any real subject

identification or any real subject image manipulation. We

are not releasing the classifier transformation code in public

because of the potential for abuse. Interested artists can

contact us for code.

The training dataset of the used generator (StyleGAN) has

been noted to have imbalance of white faces compared to

faces of people of color. Furthermore, different reconstruc-

tion optimization methods may be biasing reconstructions,

an issue we are investigating in on-going work. Our method

can be used with any generative model and perhaps a model

trained e.g. with FairFace would be better but this is part of

our on-going research.
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7. Appendix

Symbols

N(δ, Θ, || · ||q) δ-cover of Θ w.r.t. || · ||q norm

M(δ, Θ, || · ||q) δ-packing of Θ w.r.t. || · ||q norm

Bk
q (r) k-dimensional ball of radius r w.r.t. || · ||q norm

S1 ⊕ S2 Minkowski sum of the sets S1, S2, i.e. the set

{x+ y|x ∈ S1, y ∈ S2}

G(T ) Gaussian complexity of set T

[M ] Set {1, ...,M}

7.1. Proofs

7.1.1. METRIC ENTROPY FOR THE l1 BALL

Definition 2 (Covering number (Wainwright, 2019)). A

δ-covering of a set T with respect to a metric ρ is a set

{θ1, ..., θM} ⊂ T such that for each θ ∈ T, there exists

some i ∈ [N ] such that ρ(θ, θi) ≤ δ. The δ-covering

number N(δ,T, ρ) is the cardinality of the smallest δ-cover.

Definition 3 (Packing number (Wainwright, 2019)). A δ-

packing of a set T with respect to a metric ρ is a set

{θ1, ..., θM} ⊂ T such that ρ(θi, θj) > δ for all distinct

i, j ∈ [M ]. The δ-packing number M(δ,T, ρ) is the cardi-

nality of the largest δ-packing.

Lemma 2 (Wainwright (2019)). For all δ > 0, the packing

and covering numbers are related as follows:

M(2δ,T, ρ) ≤ N(δ, T, ρ) ≤ M(δ, T, ρ). (7)

Theorem 2 (Maurey’s Empirical Method (Pisier, 1986)).

Let Bd
1 (r) = {x ∈ R

d | ||x||1 ≤ r}. Then,

logN(δ, Bd
1 (r), || · ||2) ≤

r2

δ2
log(2d+ 1). (8)

A short proof of this result follows.

Proof. Fix x ∈ R
d. Let Z be the following RV:

Z =

{

sgn(xi)rei, w.p.
|xi|
r

0, w.p.1− ||x||1
r

(9)

Observe that: E[Zi] = sgn(xi)r · |xi|
r

= xi and V [Zi] =

r2 · |xi|
r

= r|xi|.

Let

Z̄ =
1

t

t
∑

i=1

Zi (10)

where Zi are independent copies of Z.

We have that:

E[||Z̄ − x||2] = E





d
∑

j=1

(Z̄j − xj)
2



 (11)

=

d
∑

j=1

E
[

(Z̄j − xj)
2
]

=

d
∑

j=1

V (Z̄j) (12)

=

d
∑

j=1

V

(

1

t

t
∑

i=1

(Zi)j

)

= (13)

1

t2
t

d
∑

j=1

V (Zj) =
1

t

d
∑

j=1

r|xi| =
r||x||1

t
≤ r2

t
. (14)

If we choose t such that: r2

t
≤ δ2, then, we have that

E[||Z̄ − x||2] ≤ δ2. Hence, for t ≥ r2

δ2
, by the Pigeonhole

Principle, we have that there is a Z̄ such that: ||Z̄ − x|| ≤ δ.

In other words, the set of all possible Z̄ form an δ−net for

Bd
1 (r) for t ≥ r2

δ2
. Set t = r2

δ2
. We will now count how

many Z̄ there are. For each Z̄, we have t choices, each one

of which can take one value among 2d+ 1 values. Hence,

there are (2d+ 1)t different Z̄. Therefore, we can create an

δ-net of Bd
1 (r) that has (2d+ 1)

r2

δ2 elements, i.e.

logN(δ, Bd
1 (r), || · ||2) ≤

r2

δ2
log(2d+ 1).

The same result (up to constants) for the size of the ε-net for

an l1 ball follows from Sudakov’s minoration inequality.

Theorem 3 (Sudakov minoration (Sudakov, 1969; Wain-

wright, 2019)). Let {Xθ, θ ∈ T} be a zero-mean Gaussian

process on T ⊂ Rd. Then,

G(T ) ≥ δ

2

√

logM(δ/2, T, ρX), (15)

with ρX(θ1, θ2) =
√

E[(Xθ1 −Xθ2)
2].

Corollary 1.

logN(δ, Bd
1 (r), || · ||2) ≤

16r2

δ2
log d. (16)

Proof. Observe that:

G(Bd
1 (r)) = Ew

[

sup
||u||1≤r

uTw

]

(17)

≤ rEw [||w||∞] (18)

≤ 2r
√

log d. (19)
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By Inequality (15),

G(T ) ≥ δ

2

√

logM(δ/2, T, ρX) ⇒ (20)

logM(δ/2, Bd
1 (r), || · ||2) ≤ 16

r21
δ2

log d. (21)

It follows from the definition of the covering number that:

M(δ, T, || · ||2) ≤ M(δ/2, T, || · ||2).

By Inequality (7), we also have:

N(δ, T, || · ||2) ≤ M(δ, T, || · ||2). (22)

Hence,

logN(δ, Bd
1 (r), || · ||2) ≤

16r2

δ2
log d. (23)

Theorem 4 (Volume rations and metric entropy (Wain-

wright, 2019)). Let Θ be an arbitrary set. Then,

vol(Θ)

vol(δBd
q (1))

≤ N(δ,Θ, || · ||q) ≤
vol
(

2
δ
Θ⊕Bd

q (1)
)

vol(Bd
q (1))

(24)

Corollary 2.

logN(δ, Bd
1 (r), || · ||2) ≤ d log

4r

δ
(25)

Proof. By Theorem 4, we have that:

N(δ, Bd
1 (r), || · ||2) ≤

vol
(

2
δ
Bd

1 (r)⊕Bd
2 (1)

)

vol(Bd
2 (1))

(26)

vol
(

2
δ
Bd

2 (r)⊕Bd
2 (1)

)

vol(Bd
2 (1))

≤
(

2r

δ
+ 1

)d

(27)

≤
(

4r

δ

)d

. (28)

Remark 4. Observe that by Theorem 2 and Corollary 2,

we get two different upper bounds regarding the covering

of the l1-ball. With Maurey’s method, the covering number

depends logarithmically in the dimension but polynomially

on 1
ε
. On the other hand, the volumetric argument gives

polynomial dependence on the dimension and logarithmic

dependence on 1
ε
. The Maurey’s bound is tighter when

ε = Ω
(

r√
d

)

.

7.1.2. S-REC

Lemma 3 (S-REC for nested l1-ball). Let G = G2 ◦ G1

with G1 : Rk → R
p be an L1-Lipschitz function and G2 :

R
p → R

n be an L2-Lipschitz function. Let A ∈ Rm×n be

a random matrix with Aij ∼ N (0, 1/m) i.i.d. entries.

Then, if

m =
1

(1− γ)2
Ω

(

k log
L1L2r1

δ
+K2 log p

)

(29)

r2 =
K · δ
L2

, 1 < K <
√
p (30)

w.p. 1 − e−Ω((1−γ)2m), we have that A satisfies S-

REC(G2(G1(B
k
2 (r1))⊕Bp

1(r2)), γ, log(4K) ·
√
p

K
· log

√
p

K
).

Proof. Using Theorem 4, we get that:

N

(

δ

L1 · L2
, Bk

2 (r1), || · ||2
)

≤
(

2L1L2r1
δ

+ 1

)k

≤
(

4L1L2r1
δ

)k

(31)

Using the fact that G2 ◦G1 is L1L2 Lipschitz, we get that:

N(δ,G(Bk
2 (r1)), || · ||2) ≤

(

4L1L2r1
δ

)k

(32)

Using Maurey’s Empirical Method (see Theorem 2), we get

that:

logN

(

δ

L2
, Bp

1(r2), || · ||2
)

≤ r22L
2
2

δ2
log(2p+ 1). (33)

Setting r2 = K·δ
L2

and using the fact that G2 is L2-Lipschitz,

we get:

logN (δ,G2(B
p
1(r2)), || · ||2) ≤ K2 log 3p (34)

By (32), (34), we get that:

logN
(

δ,G2(G1(B
k
2 (r1))⊕Bp

1(r2)), || · ||2
)

≤

k log
4L1L2r1

δ
+K2 log 3p. (35)

By JL lemma, if m = 1
a2Ω

(

k log 4L1L2r1
δ

+K2 log 3p
)

,

then w.p. 1− e−Ω(a2m), we have that:

||AG2(ẑ
p
2)−AG2(ẑ

p
1)|| ≥

(1− a)||G2(ẑ
p
2)−G2(ẑ

p
1)||, ∀ẑp1 , ẑp2 ∈ S (36)

where S is a minimal δ-net of G2(G1(B
k
2 (r1))⊕Bp

1(r2)).
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Let zp1 , z
p
2 ∈ G1(B

k
2 (r1))) ⊕ Bp

1(r2) and ẑp1 =
argminz̃p

1
∈S ||zp1− z̃p1 ||, ẑp2 = argminz̃p

2
∈S ||zp2− z̃p2 ||. Then,

||AG2(z
p

2
)−AG2(z

p

1
)|| ≥ ||AG2(ẑ

p

2
)−AG2(ẑ

p

1
)||

−||AG2(z
p

2
)−AG2(ẑ

p

2
)|| − ||AG2(z

p

1
)−AG2(ẑ

p

1
)|| (37)

≥ (1− a)||G2(ẑ
p

2
)−G2(ẑ

p

1
)|| − ||AG2(z

p

2
)−AG2(ẑ

p

2
)||

−||AG2(z
p

1
)−AG2(ẑ

p

1
)|| (38)

≥ (1− a)||G2(z
p

2
)−G2(z

p

1
)||−

(1− a) (||G2(z
p

2
)−G2(ẑ

p

2
)||+ ||G2(z

p

1
)−G2(ẑ

p

1
)||)

−||AG2(z
p

2
)−AG2(ẑ

p

2
)|| − ||AG2(z

p

1
)−AG2(ẑ

p

1
)|| (39)

≥ (1− a)||G2(z
p

2
)−G2(z

p

1
)|| − 2δ

−||AG2(z
p

2
)−AG2(ẑ

p

2
)|| − ||AG2(z

p

1
)−AG2(ẑ

p

1
)|| (40)

By Lemma 4, we have that w.p. 1 − e−Ω(m),

||AG2(z
p
2) − AG2(ẑ

p
2)|| + ||AG2(z

p
1) − AG2(ẑ

p
1)|| =

O
(

log(4K) ·
√
p

K
· log

√
p

K

)

· δ. Let a = 1− γ. Hence,

||AG2(z
p
2)−AG2(z

p
1)|| ≥ γ||G2(z

p
2)−G2(z

p
1)||

− log(4K) ·
√
p

K
· log

√
p

K
· δ. (41)

Lemma 4. Let G = G2 ◦ G1 with G1 : R
k → R

p

be an L1-Lipschitz function and G2 : R
p → R

n be an

L2-Lipschitz function. Let A ∈ Rm×n be a random ma-

trix with Aij ∼ N (0, 1/m) i.i.d. entries. Let M0 be

a δ
L2

net of G1(B
k
2 (r1)) ⊕ Bp

1(r2) such that log |M0| ≤
k log

(

4L1L2r1
δ

)

+K2 log 3p.

Then, if

m = Ω

(

k log

(

4L1L2r1
δ

)

+K2 log p

)

,

r2 =
K · δ
L2

, 1 < K <
√
p. (42)

then for any x ∈ G2(G1(B
k
2 (r1)) ⊕ Bp

1(r2)), if x′ =
argminx̂∈G2(M0)||x− x̂||, w.p. 1− eΩ(m), we have that:

||A(x− x′)|| = O

(

log(4K) ·
√
p

K
· log

√
p

K

)

· δ. (43)

Proof. From Lemma 8.2 of (Bora et al., 2017), we have that

if ε ≥ 2 + 4
m
log 2

f
, then

P (||Ax|| ≥ (1 + ε)||x||) ≤ f. (44)

Let N0 ⊆ N1 ⊆ ... ⊆ Nl be a chain of minimal δi-nets of

G2(G1(B
k
2 (r1))⊕Bp

1(r2)).

Let also:

Ti = {xi+1 − xi|xi+1 ∈ Ni+1, xi ∈ Ni}. (45)

By union bound,

P (||At|| ≤ (1 + εi)||t||, ∀i ∈ [0, ..., l − 1], ∀t ∈ Ti) ≥

1−
l−1
∑

i=0

|Ti|fi, (46)

where εi = 2 + 4
m
log 2

fi
. We want to choose fi such that

∑l−1
i=0 |Ti|fi decays exponentially with m.

First notice that:

log |Ti| ≤ log |Ni+1|+ log |Ni| (47)

To develop bounds for log |Ni|, log |Ni+1| we first need to

decide how δi decays and then whether we are going to use

Maurey’s method or the volumetric argument.

We choose δi = δ
2i . Now assume m = K2 log(3p) +

k log
(

L1L2r1
δ

)

.

For 0 ≤ i < log
√
p

K
we will use Maurey’s method.

log |Ti| ≤ 2 log |Ni+1| (48)

≤ 2

(

(

Kδ

δi+1

)2

log(3p) + k log

(

L1L2r1
δi

)

)

(49)

≤ 2 ·
(

4i+1K2 log(3p) + k log

(

L1L2r1
δ

)

+ k (i+ 1)

)

(50)

≤ 2 ·
(

4i+1K2 log(3p) + 2k log

(

L1L2r1
δ

)

(i+ 1)

)

(51)

≤ 2 · 4i+1m. (52)

To get probability that decays exponentially with m, we

choose:

log fi = −3 · 4i+1m (53)

εi = O(1) + 3 · 4i+1. (54)

For log
√
p

K
≤ i ≤ l − 1, we will use the volumetric argu-

ment.

log |Ti| ≤ p log

(

4K
δ

δi

)

+ p log

(

4K
δ

δi+1

)

+

k log

(

L1L2r1
δi

)

+ k log

(

L1L2r1
δi+1

)

(55)

≤ 2p log (4K) + p(2i+ 1)+

2k log

(

L1L2r1
δ

)

+ k(2i+ 1) (56)

≤ 2p log (4K) + 3pi+ 2k log

(

L1L2r1
δ

)

+ 3ki (57)

≤ 5ip log(4K) + 5ik log

(

L1L2r1
δ

)

(58)
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We choose:

log fi = −6ip log(4K)− 6ik log

(

L1L2r1
δ

)

(59)

εi ≤ O(1) + log(4K)
ip

m
+ i. (60)

Notice that:

log |Ti|fi ≤ −ip log(4K)− ik log

(

L1L2r1
δ

)

≤ −im.

(61)

For that choice of parameters, observe that:

P (||At|| ≤ (1 + εi)||t||, ∀i ∈ [0, ..., l − 1], ∀t ∈ Ti)
(62)

= 1− e−Ω(m). (63)

Let x be the image we want to recostruct and xi be the

closest point of that image to the δi net. Then,

x− x0 =
l−1
∑

i=0

(xi+1 − xi) + x− xl ⇒ (64)

||Ax−Ax0|| ≤
l−1
∑

i=0

||Axi+1 −Axi||+ ||Ax−Axl||.

(65)

Now w.h.p. ||Axi+1−Axi|| ≤ (1+εi)||xi+1−xi||. There-

fore, w.h.p.:

||Ax−Ax0|| ≤
l−1
∑

i=0

(1 + εi)||xi+1 − xi||+ ||Ax−Axl||

(66)

≤
l−1
∑

i=0

(1 + εi)δi + ||Ax−Axl|| (67)

≤
log

√

p

K
−1

∑

i=0

(

O(1) + 3 · 4i+1
) δ

2i
+

+

l−1
∑

i=log
√

p

K

(

O(1) + log(4K)
ip

K2 log 3p
+ i

)

δ

2i
+

+||Ax−Axl|| (68)

≤ O

(

log(4K) ·
√
p

K
· log

√
p

K

)

· δ + ||Ax− xl||. (69)

Observe that:

||Ax−Axl|| ≤ ||A|| · ||x− xl|| (70)

≤ 2
√
n||x− xl|| (71)

≤ 2

√
n

2l
δ. (72)

For l = log n, we have that ||Ax−Axl|| ≤ δ. Hence,

||Ax−Ax0|| ≤ O

(

log(4K) ·
√
p

K
· log

√
p

K

)

· δ. (73)

7.1.3. PROOF OF MAIN THEOREM

Proof of Theorem 1. Let δl1 =
(

log(4K) ·
√
p

K
log

√
p

K

)

δ.

Then,

||G2(z̄
p)−G2(z̃

p)|| ≤ (74)

||AG2(z̃
p)−AG2(z̄

p)||+ δl1
γ

(75)

≤ ||Ax−AG2(z̄
p)||+ ||Ax−AG2(ẑ

p)||+ δl1
γ

(76)

≤ 2||Ax−AG2(z̄
p)||+ δl1

γ
(77)

≤ 4||G2(z̄
p)− x||+ δl1
γ

. (78)

Finally, observe that:

||G2(z̃
p)− x|| ≤ ||G2(z̄

p)− x||+ ||G2(z̄
p)−G2(z̃

p)||
(79)

≤
(

1 +
4

γ

)

||x−G2(z̄
p)||+ δl1

γ
. (80)

Remark 5. Similar to the analysis of the CSGM paper (see

Lemma 4.3), γ is a constant that we control and we may set

it to γ = 4
5 to get the same scaling term with CSGM.

7.1.4. PROOF OF LEMMA 1

Lemma 5. Consider the setting of Theorem 1. Let g =
[g1, · · · , gn] be a vector with i.i.d. Gaussian entries of vari-

ance 1/m, let F ∈ R
m×n be a partical circulant matrix

that has g in its first row, and let D ∈ R
n×n be a diagonal

matrix with uniform ±1 entries along its diagonal. Then

for m = Ω
(

1
(1−γ)2 (k log

L1L2r1
δ

+K2 log p) log4(n)
)

,

FD satisfies S-REC(G2(G1(B
k
2 (r1))⊕Bp

1(r2)), 1− γ, δ ·
log(4K)

γ
·
√
p

K
log

√
p

K
) with probability 1− e−Ω(m).

Proof. The proof follows from the proof of Lemma 3 above

and Theorem 3.1 in (Krahmer & Ward, 2011). The proof of

Lemma 3 requires the Johnson-Lindenstrauss guarantee for

a set of size 2O(m), and invoking Theorem 3.1 in (Krahmer

& Ward, 2011), this is guaranteed to hold for the matrix

FD.
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The proof of Lemma 3 also requires ‖FD‖op ≤ √
n. This

is also guaranteed by noting that

‖FD‖op ≤ ‖FD‖F ≤ √
n, w.p.1− e−Ω(m).

7.2. Code

Our source-code is available under the following url:

https://github.com/giannisdaras/ilo.

Our code is implemented in PyTorch (Paszke

et al., 2019). Our code is based on the follow-

ing open-source implementations of StyleGAN-

2: https://github.com/rosinality/stylegan2-pytorch,

https://github.com/NVlabs/stylegan2. We also draw

inspiration from the open-source implementation of

PULSE: https://github.com/tg-bomze/Face-Depixelizer. A

Tensorflow (Abadi et al., 2016) implementation is in the

works.

Our current repository includes:

• Detailed instructions on how to setup the environment

and download the dependencies.

• Code for image pre-processing, such as random in-

painting, interactive masks, noise addition, automatic

face alignment, etc.

• Examples on how to run inpainting, denoising, super-

resolution and compressed-sensing with circulant ma-

trices for custom images.

• Code for out-of-distribution generation on 1000 Im-

ageNet (Deng et al., 2009) classes using a robust

classifier. We use a robust classifier from the

robustness (Engstrom et al., 2019) library.

• Code for evaluating the performance of ILO and previ-

ous methods on Celeba-HQ (Liu et al., 2018; Lee et al.,

2020).

• Tools to visualize performance and track experiments.

• Code for generating GIF files by collecting frames

during the optimization.

Our code is GPU/CPU compatible.

7.3. Experimental details

We performed all our experiments on a single GPU. As

mentioned in the paper, obtaining a solution for a single

inverse problem requires less than a minute on a single

1080Ti. All the experiments can be reproduced in less than

a day on a single GPU.

Unless mentioned otherwise, we use Adam (Kingma &

Ba, 2014) optimizer with an initial learning rate of 0.1 for

each layer. During a single layer optimization, learning

rate ramps up linearly and is ramped down using a cosine

scheduler, as proposed by (Karras et al., 2020).

Loss functions are changed for each task as explained in the

paper. For all tasks, we use a geodesic loss with coefficient

0.01. For random inpainting, we use both MSE and LPIPS

when we have more than 20% observed pixels, otherwise

we only use MSE. When both MSE and LPIPS are used, we

search co-efficients in the set {0.5, 1, 2, 5} for each of the

terms. For inpainting with continuous black boxes, we used

both MSE and LPIPS. For the experiments of Figure 1 of

the main paper, we used the same co-efficient for both MSE

and LPIPS.

Our optimization algorithm is Projected Gradient De-

scent (Nocedal & Wright, 2006). First, we project each

latent code to the unit sphere. Next, when optimizing over

deeper layers, we use l1 projection to stay close to the mani-

fold induced by the previous layers. The projection in that

case includes the solution of the previous layers, the latent

codes (i.e. wi) and the noises, (i.e. ui). We tune seperately

the l1 radii for each one of the optimization variables and

for each one of the layers. Empirically, we find that the

following radii for the first four layers works decently for

most of the tasks/images:

• Radius of noises: 300, 2000, 2000, 4000.

• Radius of latent codes: 300, 500, 1000, 2000.

• Radius of previous solutions: 500, 1000, 2000.

Projection to the l1 ball allows for optimization on deep lay-

ers of the generator (that is not possible without projections).

By doing that we get better reconstruction that comes with

the cost of increased number of optimization steps. Gener-

ally, tuning the radii for each layer is an especially difficult

procedure. Even worse, these hyperparameters do not trans-

fer across tasks. For the first four layers, we encourage the

reader to use the parameters mentioned above.

To obtain the plots of Figure 2, we sampled (randomly) 5

images from Celeba-HQ and we reported the best score for

each point on the horizontal axis over 5 different runs (25

runs in total for each method for each point in the plot) with

different hyperparameters. The error bars are computed

across the experiments for different images. For the plots

of Figure 2, we searched over the following combinations

of number of steps for each layer (starting from the first):

{300, 200, 200, 100}, {300, 200, 100},
{300, 200, 200, 100, 50}, {50, 50, 50, 50, 500},
{100, 100, 100, 100, 100}. Each reported point is the aver-

age (across images) of the minimums of those runs.
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7.4. Additional Experiments

In this section, we list additional Figures and Experiments

that could not fit in the paper due to space limit.

Figure 5 shows that by combining MSE loss to a refer-

ence image and the classification probability, we can morph

a given person to an ImageNet (Deng et al., 2009) class.

We observe experimentally that better results are obtained

by only using MSE and LPIPS loss during the first ILO

rounds and only using the additional classification term in

the deeper layers of the generator. An extra benefit of this

method is that we can interpolate intermediate frames to

see how actually a human face can be transformed to an

imagenet class since the generator first matches the phase

and then uses the classifier to alter it.

Figure 6 shows visual results for the task of denoising. As

shown, ILO gives superior visual reconstructions and better

actual performance comparing to the (adapted for denoising)

PULSE and the classical BM3D method.

Finally, in order to show that our method can be successfully

in other datasets as well, we perform inpainting experiments

using a pre-trained StyleGAN-2 generators on cats. Results

are shown in Figure 7.
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Figure 5. Morphing using a classifier for Bull Frog class, keeping also a loss term for distance to a well-known machine learning researcher,

with his permission.

Original Noisy
(23.9dB)

MSE
(26.5dB)

BM3D
(27.6dB)

Ours
(30.0dB)

Original Noisy
(21.8dB)

MSE
(23.0dB)

BM3D
(24.4dB)

Ours
(27.1dB)

Figure 6. Results on the task of denoising. Gaussian noise (σ = 25, known) is added to the original image and recovered with various

methods. The MSE images indicate the reconstructed images obtained by inverting the noisy image.
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Figure 7. Inpainting using a StyleGAN trained to generate cat images. First column: Original image (never observed). Second column:

Observed image. Third column: ILO reconstruction.
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7.5. Ethical Considerations

Previous research has reported that StyleGAN leads to bi-

ased generations (Menon et al., 2020; Jain et al., 2020; Tan

et al., 2020; Salminen et al., 2020). In practice, we observe

that by extending the range of the generator we obtain more

diverse generations. A similar finding has been reported by

Abdal et al. (2019). Even though we observe less biased

reconstructions, we encourage a lot more research on this

topic.

Admittedly, our method makes the creation of Deep-

Fakes (Korshunov & Marcel, 2018) easier, since it expands

the range of the generator. Arguably, the technology be-

hind DeepFakes is already very powerful so the negative

effect of this work will be diminishing. An interesting

topic of research is whether existing defences against Deep-

Fakes (Matern et al., 2019; Güera & Delp, 2018; Nguyen

et al., 2019; Yang et al., 2020) are robust to images that lie

outside of the range of the GAN.

Experiments with a robust classifier combined with similar-

ity to a reference image can be abused to generate images

that are offensive in various ways. In this paper we are

only exploring with what is possible, but future work should

consider detecting and preventing such abuse.

7.6. Things that did not work

We share some negative results we encountered during the

process of writing this paper. Our goal is to inform the

research community about some methods that failed so that

future research can avoid them, reformulate them or even

contradict our findings. We also suggest ways to mitigate

some of the issues we experienced.

First, we observed that joint optimization of all noise vectors

leads to poor visual reconstructions. Even in cases where the

MSE loss to the unobserved image was going down, joint-

optimization of all noise vectors was giving blurry and/or

unrealistic reconstructions. Thus we believe that expanding

the generator space without sequential optimization and

constraints fails since it makes it too powerful.

We also tried to establish a criterion on how many steps

to run per layer. In practice, we observed that a working

heuristic is to move to the next layer when the observed

MSE error flattens. Even though this idea works well for

the first layers, it can lead to unrealistic reconstructions

when applied to deeper layers of the generator. To mitigate

this issue, we choose very small radii when optimizing in

deep layers. Tuning the hyperparameters (learning rates,

number of steps and optimization radii) for each of the

layers can be a particularly toilsome procedure. Sadly, we

observed that these parameters do not generalize across

different tasks (even though they mostly generalize across

different images).

On the theoretical side, we tried (unsuccessfully) to obtain

similar results for an l2 dilation of the range of the first

generator. The main bottleneck is the measurements bound;

for the l2 ball, we cannot avoid linear dependence on the

intermediate dimension. It is not clear yet whether a similar

result for the l2 case could be proved. In practice, we did not

observe significant difference between projecting in l1 or l2
balls. Moreover, it is known that l1 projection encourages

sparsity in some cases, e.g. see LASSO (Tibshirani, 1996).

Establishing a connection between the l0 and the l1 solutions

is left as future work.
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