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Intermediate Layer Optimization
for Inverse Problems using Deep Generative Models
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Abstract

We propose Intermediate Layer Optimization
(ILO), a novel optimization algorithm for solving
inverse problems with deep generative models.
Instead of optimizing only over the initial latent
code, we progressively change the input layer ob-
taining successively more expressive generators.
To explore the higher dimensional spaces, our
method searches for latent codes that lie within
a small /; ball around the manifold induced by
the previous layer. Our theoretical analysis shows
that by keeping the radius of the ball relatively
small, we can improve the established error bound
for compressed sensing with deep generative mod-
els. We empirically show that our approach out-
performs state-of-the-art methods introduced in
StyleGAN-2 and PULSE for a wide range of in-
verse problems including inpainting, denoising,
super-resolution and compressed sensing.

1. Introduction

We study how deep generators can be used as priors to solve
inverse problems like inpainting, super-resolution, denoising
and compressed sensing from random projections. Image
reconstruction methods can be either supervised (Pathak
et al., 2016; Richardson et al., 2020; Yu et al., 2018) or
unsupervised (Menon et al., 2020; Bora et al., 2017; Pajot
et al., 2019), see the recent survey (Ongie et al., 2020) for
a unified presentation. Such inverse problems naturally
appear in many applications including medical imaging,
single pixel reconstruction and other domains (Lustig et al.,
2007; 2008; Chen et al., 2008; Duarte et al., 2008; Qaisar
et al., 2013; Hegde et al., 2009).

We focus on unsupervised image reconstruction techniques
that rely on a pre-trained generator, building on the general
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framework introduced in CSGM (Bora et al., 2017). The
central optimization problem that appears in unsupervised
image reconstruction is the inversion of a deep generative
model, i.e. finding a latent code that explains the measure-
ments. This can be performed for different generators, e.g.
DCGAN or more recently the powerful StyleGAN-2 (Karras
etal., 2019; 2020) as shown in the excellent results obtained
by PULSE (Menon et al., 2020). Unfortunately, inverting a
generator with even 4 layers is NP-hard (Lei et al., 2019) so
approximate inversion methods are needed.

The CSGM framework (Bora et al., 2017) used gradient
descent to minimize the measurement mean squared error
(MSE) and showed good empirical performance for numer-
ous inverse problems including inpainting and compressed
sensing with random Gaussian measurements using DC-
GAN. However, this does not work as well for deeper gen-
erators e.g. BigGAN as discussed in Daras et al. (2020).
PULSE (Menon et al., 2020) improved the CSGM frame-
work focusing specifically on super-resolution, by refin-
ing the latent space optimization and using the StyleGAN-
2 (Karras et al., 2019; 2020) generator.

We propose a novel optimization method for solving gen-
eral inverse problems using a technique we call Interme-
diate Layer Optimization (ILO). Our method adaptively
changes which layer is optimized, moving from the initial
latent code to intermediate layers closer to the pixels. By
optimizing intermediate layers we expand the range of the
generator to better satisfy the measurements. This has to be
done carefully since intermediate layers can produce non-
realistic images and therefore inversion must be regularized.

1.1. Our Contributions

1. We propose a novel optimization method for solv-
ing general inverse problems by adaptively changing
which layer variables are optimized. Our method extends
PULSE (Menon et al., 2020) beyond super-resolution, to all
inverse problems with differentiable forward operators.

2. To avoid over-expanding the range of the generator to
non-realistic images, we only search for latent codes within
a small /; ball around the manifold induced by the previous
layer. Conceptually, our method generalizes the framework
introduced in Dhar et al. (2018); instead of allowing sparse
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deviations only in the image space, we allow small devia-
tions from the manifold of any layer of the generator.

3. We theoretical analyze our framework by establishing
sample complexity and error bounds. We show that by re-
stricting the radius of the latent searches, we can improve
the established error bound of CSGM (Bora et al., 2017).
4. Experimentally, our method significantly outperforms
the previous state-of-the-art techniques for solving inverse
problems with deep generative models for a wide range of
tasks including inpainting, denoising and super-resolution.
5. To illustrate the power of inverse problems with general
differentiable forward operators, we use a classifier as a
measurement process. Specifically, we show how we can
use a classifier to bias generators to produce human images
that look like ImageNet classes like frogs, corals and gold-
fishes. Our method uses gradients from classifiers trained
to achieve robustness to adversarial attacks as proposed
in (Santurkar et al., 2019), but guiding generative latent
codes as opposed to pixels directly.

6. We open-source all our code to encourage further re-
search in this area: https://github.com/giannisdaras/ilo. A
demo of our code is available under this URL.

2. Algorithm
2.1. Setting

The key step in our approach is to decompose pre-trained
generative models as compositions of feed-forward neural
networks. Given a (pre-trained) generative model G(z) €
R™ that produces images from latent codes z € R*, we
decompose it as a G = G5 o G where G : R¥ — RP and
G5 : R? — R™. As usual, the latent vectors z*¥ € R* were
sampled according to a simple distribution P,, typically
Gaussian and independent.

Our observations are formed by a known measurement ma-
trix

y = Az + noise, (D

where A : R™*™ where x € R" is the real image we want
to recover. We emphasize that our algorithm can be applied
when the measurement process is a general differentiable
operator y = A(z) but our theory only applies to linear
inverse problems. Since we will be working with latent
vectors in different layers we indicate the dimension as a
superscript, so z* denotes an initial latent vector in R¥ and
zP an intermediate vector in RP.

2.2. Approach

Our approach is described in Algorithm 1. The first step
of our method is the same as in CSGM (Bora et al., 2017);
we optimize over a k-dimensional latent code, 2*_ which
is the input of the first layer of the generator. In practice,

to obtain the solution of line 1 of Algorithm 1, we pick
an initial z* from the latent distribution of the generator
and we optimize the loss function ||AG(z*) — Ax|| using
gradient descent. Once we solve this optimization problem,
we obtain a solution, 2*, that we map to the p-dimensional
space using (G1. By doing that, we get an intermediate latent
representation, 2P = G (2%).

From that point onwards, our algorithm proceeds in rounds.
At the beginning of each round, we optimize on the p-
dimensional input space of G5 but we only allow solutions
that lie within an [, ball centered at ZP. Intuitively, we allow
deviations from the range of GG; to increase the expressitiv-
ity of the model, but we restrict those deviations to avoid
overfitting on the measurements (see Experiments section).

Once we obtain the solution of line 4 of Algorithm 1, i.e.
once we find the latent code, zP, that best explains the
measurements and lies inside an /; ball of the previous
latent, we project this solution back to the range of the
generator. To do that, we search for the latent code P
such that G (2") is as close as possible to zP (line 5 of
Algorithm 1). This problem is solved by initializing a latent
vector 2P to zZP and then minimizing using gradient descent
the loss ||G1(2¥) — 2P||. The solution of this problem forms
a new 2* vector which is in turn projected again to the
intermediate code 27 = G(2*). Our algorithm attempts
to explore the set we call the extended range: the range of
vectors realizable by the previous layer, dilated by an [; ball
of sparse deviations. Within this set we would like to find
the latent vector that best explains the measurements.

We emphasize that our theoretical analysis provides per-
formance bounds for the global optimum in this extended
range, while our algorithm is based on projected gradient
descent for a non-convex problem and therefore can be stuck
in local optima. It may be possible to prove that such local
optimization algorithms obtain global minima under gen-
erator weight assumptions as achieved in the pioneering
work of Hand & Voroninski (2018); Hand et al. (2018) for
CSGM, but this remains open for future work.

3. Theoretical Analysis
3.1. Preliminaries

We begin our theoretical discussion by revisiting some im-
portant elements of the theory of compressed sensing with
deep generative models.

Definition 1 (S-REC (Bora et al., 2017)). Let S C R™. For
some parameters v,0 > 0, a matrix A € R™*™ is said to
satisfy S-REC(S,~, ) if V1, o € S, we have that:

[[A(x1 — x2)[|2 > 7[|lz1 — 22]]2 — 0. (2)

The S-REC condition, introduced in CSGM (Bora et al.,
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Figure 1. Results on the inpainting task. Rows 1, 2, 3 and 5 are real images (outside of the test set, collected from the web) while rows 4,
6 are StyleGAN-2 generated images. Column 2: the first five images have masks that were chosen to remove important facial features.
The last row is an example of randomized inpainting, i.e. a random 1% of the total pixels is observed. Columns 3-5: reconstructions using
the CSGM (Bora et al., 2017) algorithm with the StyleGAN-2 generator and the optimization setting described in PULSE (Menon et al.,
2020). While PULSE only applies to super-resolution, we extend it using MSE, LPIPS and jointly MSE+LPIPS loss. The experiments of
Columns 3-5 form an ablation study of the benefits of each loss function. Column 6: reconstructions with ILO (ours). As shown, ILO
consistently gives better reconstructions of the original image. Also, many biased reconstructions can be corrected by our method. In the
last two rows, recovery of the image is still possible from very few pixel observations using our method.

2017), guarantees that if two vectors, z1,22 € R", are
very different (right side of the equation), then their mea-
surements will be significantly different as well (left side
of the equation). In CSGM, the set S of interest is the
range of the generator. Therefore, S-REC is a key prop-
erty for proving small reconstruction error when observ-
ing Az. Bora et al. (2017) show that if 1) A is a ma-  Algorithm 1 ILO for one layer of the generator
trix with iid. Gaussian entries drawn from N'(0, L) // csGM solution

and 2) m = £ (klog (£24214)), then with probabil- 1 2 ¢« argmin,ic gy, ||AG(z") — Az|>

ity 1 — e~ S.REC(Go(G4(B¥(r1))),1 — a,8)) is 2 2 + G1(2")

satisfied. 3 fort < Otordo

// Best solution within an [; ball
centered around the prev. solution

[u

3.2. Intermediate Layer Optimization 4 P argmin,pc spe p (ry) || AG2(27) — Ax|
Our theoretical result is a sample complexity bound for { ,f Proje?tion back to kthewrange
the reconstruction algorithm that optimizes in the full ex- ° | * argm;nzkeBé(n) 1G1(=") = 27|
tended range of the generative model, similar in style to the ¢ 2P G (27)

CSGM (Bora et al., 2017) result. end

// Return the best solution within an [y
Let B (r1) denote a ball of radius r; measured in [, norm ~ ball of some point in the range
and @ denote the Minkowski sum operation, i.e. given sets 7 Feturn G2(2")
S1,Sa, the set

S1 @ So :{x+y|x651,y652}.

If the initial vector z* lies in a ball of radius 71, denoted as
Bk (r1), the range of the first generator is G1(B5(r1)). We
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are expanding this set to create the extended range:
G1(B3(r1)) @ BY(r2).

Our result is showing that minimizing the measurements
in this extended range gives a reconstruction that is close
to the best reconstruction that the extended generator G'a
can produce. This result is obtained with high probability
over the random measurement matrix A, if the number of
measurements is sufficiently large:

Theorem 1. Let G = G5 o Gy with G : R — RP pe
an Ly-Lipschitz function and Gy : RP — R™ be an Lo-
Lipschitz function. Let A € R™*™ be the measurements
matrix with A;; ~ N (0,1/m) i.i.d. entries.

Let K be a parameter of our choice where K < /p, and

Ty = IL%S. Consider the true optimum in the extended range

ZP = argminzF’EGl (BE(r1))®BY (r2) ||I - GQ(ZP) | ‘7 3)
and the measurements optimum in the extended range

7P = argmin, cq, (B

N@BP (ry) |[AT — AG2(27)]|.
4

Then, if the number of measurements is sufficiently large:

(r1

1 LngT’l
—F0Q |kl
(1) ( %

then with probability at least 1 — efQ((lfv)Q'm), we have
the following error bound:

m =

+ K? logp> , )

e — Ga(zP)]] < (1+ j) e — Ga(2?)]

oR(iK) B, P
+6 - I log P (6)

We will now try to develop intuition about the theorem. We
begin by explaining the sets involved in Equations (3), (4).
We consider B%(r1) to be a set containing all the latent
codes of the first layer of the generator that could be poten-
tially pre-images of any sensed signal 2. We refer to B% (1)
as the domain of G and to G (B%(r;)) as the range of G;.
The extended range contains all vectors that lie within an [y
ball of radius 7, from some point in the range of G;. This is
the set G1(B5(r1)) @ BY(r3) that both minimizations are
performed in.

Let’s now consider the error bound of (6). First, z? is the
latent code in the extended range that best explains the
image x. We refer to this as the true optimum latent code.
Next, zP, is the measurements optimum, i.e. the latent code
in the extended range that best explains the measurements
Az. It is important to realize that a reconstruction algorithm

only has access to this measurement error and can never
compute zP. Our goal is to show that zP produces an image
close to the one produced by zP.

Our theorem states that given enough measurements m,
the measurements optimum is nearly as good as the true
optimum (see (6) and Remark 3).

Remark 1 (Choice of K). The size of the extended range
affects the required number of measurements ((4)) and our
error bound (see (6)). Observe that the size of the extended
range is directly controlled by K, since, for any fixed 5, we
setro = Ig—j As K increases, we explore a bigger set and
both terms on the right side of (6) become smaller. However,
measurements scale quadratically with K. We can set K
to scale approximately as \/k (see Remark 3 for details on
how all the quantities can scale). For that choice of K,
observe that our result requires measurements that scale
linearly on k (and only logarithmic in p) while the CSGM
result requires measurements that scale linearly on p. The
costs for the small increase in the measurements, are 1)
the additive error scales with \/;B 2) we are restricted to
exploring a small radius.

In practice, these can be tuned as hyperparameters and our
experiments show that even small expansions significantly
outperform CSGM in numerous inverse problems.

Remark 2 (CSGM sample bound applied directly on the
intermediate layer). We compare to the result we obtain by
applying CSGM to the intermediate layer generator. That
would yield measurements that scale as:

m =) </<:10g <L11(';2r1> + plog (L2T2)> .

These many measurements result in an additive error term
of O(8). Our new bound requires fewer measurements when
the free parameter K is smaller than /p.

Remark 3 (Parameter Scaling). There are various ways to
set the parameters in our bounds, depending on the scaling
of sizes of the intermediate layers and the Lipschitz con-
stants. For typical piecewise linear networks with d layers
and maximum n neurons in each layer, we know that the
end-to-end Lipschitz constant L < Ly - Lo might scale as
n? for bounded maximum weights. Hence, as in CSGM, we
may set r1 to scale as n®. The error term ||x — G2(ZP)||
scales linearly with n. Hence, we need to choose 6, K such
that the additive term in inequality (6) scales sublinearly.

We may set § to scale as ﬁ. To get the same order of mea-

surements as CSGM, we may set K to scale as \'k. For that
choice of parameters, the radius for the intermediate search,

i.e. ro scales as \/%n’d% where ds is the depth of Gs.
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3.3. Sketch of the proof

The central novelty of our proof is how we upper bound the
metric entropy of the epsilon nets used to cover the extended
range of the generator, i.e. the set Gy (B%(r1)) ® BY(r2).
First, we observe that if Sy is a epsilon net for G (B5 (r}))
and S5 is an epsilon net for Bf (r2), then a simple bound for
the size of an epsilon net on the extended range will have at
most |Sy| - |S2| elements.

CSGM uses a volumetric argument to upper bound the size
of the epsilon net for S;. Our key idea is that using the
same method to bound the size of the cover for the {; ball is
sub-optimal for small radii. Instead, we use Maurey’s empir-
ical method or the related Sudakov’s minoration inequality
(Pisier, 1986; Wainwright, 2019) yielding logarithmic (in-
stead of linear) dependence on the dimension p. Maurey’s
bound poses technical challenges that we need to address
when extending the chaining argument of the CSGM proof.
With Maurey’s method, successive nets in the chaining can
have significantly higher metric entropy for large radii. To
minimize the additive error in our bound during chaining,
we switch from volumetric epsilon-nets to Maurey’s method
at the right selected scale. The full proof of our Theorem
can be found in the Appendix.

3.4. S-REC for partial circulant matrices

We extend the theory of matrices that satisfy the S-REC con-
dition beyond i.i.d. Gaussian measurements. To establish
that a family of random matrices satisfies this condition (and
hence obtains sample complexity bounds), three conditions
must be proved with high probability (Bora et al., 2017;
Baraniuk et al., 2008): (1) The random matrix A should
satisfy the Johnson-Lindenstrauss (JL) lemma on a suitable
e-net, (2) The matrix operator norm should be bounded:
[l1Allop < v/n, and (3) for a fixed vector x, || Az|| < 2||z]|.

Here we establish that randomly signed partial circulant
matrices satisfy the S-REC condition for a number of mea-
surements scaling similarly to Gaussian i.i.d. measurements.

Lemma 1. Consider the setting of Theorem 1. Let g =
[g1,- -, gn] be a vector with i.i.d. Gaussian entries of vari-
ance 1/m, let F € R™*™ be a partical circulant matrix
that has g in its first row, and let D € R™*" be a diagonal
matrix with uniform %1 entries along its diagonal. Then

Q (ﬁ(l@log Lilers 4 K2 og p) 10g4(n)),
F D satisfies S-REC(Go(G1(B%(r1)) ® BY(r2)),1— 1,6 -
M . % log %) with probability 1 — e=?(m)

for m =

Our proof of this lemma can be found in the Appendix
and relies on previous results establishing JL properties
for partial circulant matrices post-multiplied by random
diagonal matrices (Krahmer & Ward, 2011; Hinrichs &
Vybiral, 2011).

There is an important computational benefit in such struc-
tured measurement matrices. We are sensing high resolution
images that are 1024 x 1024 for 3 color channels resulting
in signal dimension n being 3 million. If measurements are
at ten percent (a typically challenging compressed sensing
regime), that results to m X n matrices that are 300k x 3m
which require gigabytes to store and hit GPU memory limi-
tations. Therefore random Gaussian measurement matrices
cannot be implemented for high resolution imaging. Partial
circulant matrices require orders of magnitude less memory
due to their structure and matrix-vector products can be
computed much faster using FFT. We expect that these ben-
efits will have a key role for future high-resolution imaging
systems.

4. Experiments
4.1. Algorithmic adaptations to StyleGAN

Up to this point, we have presented and theoretically an-
alyzed the ILO algorithm. Our method is not tied to any
specific architecture and it only assumes access to a genera-
tive model and the underlying domain of the latent space of
the initial layer. In this section, we present empirical innova-
tions on how to use our framework with the state-of-the-art
generative model StyleGAN-2 (Karras et al., 2020).

StyleGAN-2 has several peculiarities that need to be taken
into account for the design of a compressed sensing algo-
rithm. First, in StyleGAN-2 the initial latent code 2k € RF
is not fed directly to the model. Instead, it is first mapped
through a multilayer linear network, the mapping network,
to an intermediate representation w* € R¥. We refer to the
domains of z*, w* as Z, W respectively. During training,
a 2" is sampled according to a distribution on Z, it gets
transformed through the mapping network to a w® € W
and one copy of w* is fed to each one of the 18 layers of
StyleGAN-2. Additionally, each one of the layers receives
a noise vector u* (unique for each layer).

4.1.1. OPTIMIZATION SETTING

The first thing to decide is which intermediate layer will be
used to split the StyleGAN-2 generator. We observe that
we obtain better results with multiple splits. We consider
the generator of StyleGAN-2 as a composition of layers
G1 0 Gy o ... o G1g and we run Algorithm (1) in rounds,
where in each round the initial layer is discarded.

To ensure that we stay in an /; ball around the manifold at
each layer, we use Projected Gradient Descent (PGD) (Nes-
terov, 2003). To implement the projection to an [y ball
around the current best solution (see line 4 of Algorithm
(1)), we use the method of Duchi et al. (2008). Guided by
our theory, we increase the maximum allowed deviation as
we move to higher dimensional latent spaces. The radii of
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the balls are tuned separately as hyperparameters, for a full
description see the Appendix.

For all inverse problems, it is helpful to allow the w* vectors
to deviate (Menon et al., 2020), i.e. we can optimize over a
sequence {w?}18,. The deviations are typically regularized
with an additional term in the loss function, which captures
the geodesic distance of the vectors. PULSE reports that op-
timizing only over the first five noise vectors, i.e. {uiC ,‘?:1,
yields better reconstructions for super-resolution comparing
to optimizing over the whole sequence. We show that this
is not necessarily true if this optimization is performed se-
quentially. Our method starts by optimizing only the first
five noise vectors (as in PULSE), but we gradually allow
optimization of the rest of the latent vectors as we move to
higher dimensional latent spaces.

4.2. Loss functions and adaptation to general inverse
problems

Here we consider the effect of different loss functions in
solving general inverse problems. It has been observed
that LPIPS yields optimal performance with image size
256 x 256 (Karras et al., 2020). Therefore, we downsam-
ple images from 1024 x 1024 to 256 x 256 pixels. If the
given image is inpainted, missing pixels are mixed with
observed pixels during this downsampling. We observe that
this blending leads to distorted reconstructions when using
the LPIPS loss. Hence, for inpainting under scarce measure-
ments we use only the MSE loss. We note that unlike the
previously proposed methods, ILO can work for inpainting
with extremely few observed pixels — even with less than
1% of the whole image. If we observe a significant por-
tion of the image, then we use both LPIPS and MSE. To
address these distortion issues, we minimize the perceptual
distance between the generated image and a superimposed
reconstruction, i.e. we replace the missing pixels of the
observed image with the ones generated by StyleGAN prior
to downsampling.

For super-resolution, we use a weighted average of LPIPS
and MSE (as in inpainting with sufficient measurements). To
compare the high-resolution and low-resolution images, we
first downsample with cubic interpolation (Keys, 1981) as in
PULSE. We also consider the problem of denoising, where
Gaussian noise is added to the image. As usual, we assume
knowledge to the forward operator A(z). Simply inverting
a noisy high-resolution image creates grainy reconstructions
due to the expressive power of StyleGAN-2. We address this
in the optimization process by adding gaussian noise to the
generated images before using them in the loss function. We
call this new technique Stochastic Noise Addition (SNA).

4.3. Results

We show that ILO obtains state-of-the-art unsupervised per-
formance for solving inverse problems with deep gener-
ative models in four different settings: inpainting, super-
resolution, denoising and compressed sensing with circulant
matrices. We compare with different variants of the CSGM
algorithm using optimization and loss function innovations
introduced in PULSE and StyleGAN. Unless stated other-
wise, we will denote with CSGM + MSE the optimization
procedure described in PULSE for the StyleGAN genera-
tor. Through a wide variety of experiments, we observe
that ILO largely outperforms alternative techniques, both
in terms of visual quality and in terms of true MSE error.
We measure the latter on images sampled randomly from
Celeba-HQ (Liu et al., 2018; Lee et al., 2020). Finally, to
show the benefits of extending the range of the generator, we
illustrate how one can use an adversarially robust classifier
to guide the generation of human faces that look like objects
from ImageNet (Deng et al., 2009).

Inpainting: For inpainting, the algorithm tries to complete
missing pixels to a given image. The measurement process
corresponds to a linear matrix that has rows that are a subset
of the identity. Results for inpainting are shown in Figure
1. We perform two types of experiments. First, we mask
important facial features from real images (collected from
the web) and generated images from StyleGAN-2. Next, we
do randomized inpainting, i.e. we inpaint pixels of a given
image independently with a pre-defined probability. We
experiment with observation probabilities up to 1%. This
is a very challenging scenario: a human observer cannot
distinguish face characteristics from such few pixels, e.g.
see Figure 1 last row, second column. As shown in the
Figure, ILO gives reconstructions that look much closer to
the hidden image than the other methods. Our method is
able to give surprisingly accurate reconstructions even under
extreme scarce measurements (see last column, last row of
Figure 1). To quantify the performance of the different
methods we randomly select a few images from Celeba-
HQ (Liu et al., 2018; Lee et al., 2020) and reconstruct at
different levels of sparsity. Figure 2 column 1 shows that
ILO is 2x better in terms of reconstruction error anywhere
between 5% — 100% observed pixels.

Denoising: Our next experiment is on denoising. To ablate
the SNA framework we introduced, we show results with
and without our technique on an image with additive noise
of standard deviation o = 30. Results are summarized in
Table 1. Since it is clear that SNA consistently improves
reconstruction, we use it in all subsequent denoising experi-
ments.

We compare with the CSGM framework using MSE, only
LPIPS or a combination of both loss functions. For ILO, we
only use a weighted combination of MSE and LPIPS. We
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Figure 2. Plots showing the true MSE error on Celeba-HQ images, i.e. the MSE between the real image (that we never observe) and the
reconstructed image from the measurements. From left to right: Inpainting, Denoising, Super-resolution and Compressed sensing with
partial circulant matrices. As shown, ILO significantly outperforms all previous methods except in the very noisy regime.

Algorithm | SNA | PSRN (dB)

X 19.89
cSaM ‘ v ‘ 21.38
X 28.34
Lo ‘ v ‘ 32.92

Table 1. Results with and without SNA for a noisy image (o = 30).

also compare with a standard denoising method, the BM3D
algorithm (Dabov et al., 2006). We vary the noise standard
deviation from 5 to 256 and clip the perturbed values to the
range [0, 255] (RGB). Results are shown in Figure 2, second
column. We observe that ILO outperforms all the previously
proposed CSGM based methods by a large margin. For
the typical setting of o = 25, ILO is 1.8 better than the
best performing CSGM baseline. BM3D shows excellent
performance, outperforming all other methods in the very
low noise regime but rapidly deteriorates for harder settings.
We refer the reader to the for visual results and additional
denoising experiments.

Super-resolution: We report results on super-resolution,
the only task PULSE was actually designed for. We sam-
ple images from Celeba-HQ, downsample using Bicubic
Downsampling (as done in PULSE) and measure the recon-
struction error. Three example reconstructions are shown in
Figure 3. We also report reconstruction error on Celeba-HQ.
Results are reported in Figure 2, third column. As shown,
ILO outperforms significantly all the other methods, includ-
ing PULSE (CSGM + MSE). To give some examples, when
the image is downscaled from 1024 x 1024 to 64 x 64 (scal-
ing factor 16), ILO is 1.65x better than PULSE in terms
of reconstruction error. For 32 x 32 images, ILO is 1.4 %
better than PULSE.

As shown, our method not only generates reconstructions
that look much closer to the true image, but also appears
to generate more racially diverse samples (Jain et al., 2020;

el
LR (x16) CSG

Ours

;M MSE
(PULSE)

Original

Figure 3. Results on the super-resolution task. ILO (ours) gives
more accurate reconstructions comparing to PULSE (third column)
and other baselines. Many biased reconstructions can be corrected
by applying ILO on the weighted combination of MSE and LPIPS.

Tan et al., 2020; Menon et al., 2020), e.g. see third row.

Compressed sensing with partial circulant matrices:
For an experiment with observations of random projections
we used partial circulant measurement matrices with ran-
dom signs. Lemma 1 establishes that such matrices satisfy
the conditions for Theorem 1. Figure 2, column 4, shows
the reconstruction error when varying the number of mea-
surement rows. When the number of measurements is 5%
of the dimension n, ILO performs 2 x better than CSGM in
terms of reconstruction error.

Out of Distribution generation: Our method can generate
images that lie outside of the range of the pre-trained gener-
ator. By choosing the radius of the /; ball for each layer, we
control the trade-off between how natural (comparing to the
dataset the model was trained on) these images look, and
the out-of-distribution generation capability of our model.

To demonstrate this, we run the following experiment; we
remove entirely the loss functions that relate the generated
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Figure 4. Illustration of using a classifier as a differentiable for-
ward operator. Here we assume that the only observation is
y = A(z|class) where A is an ImageNet classifier. The classes
used in this Figure are (from top-left): Frog, Coral, Irish Wolf
Dog, Goldfish, Boston Terrier Dog and Apple. We use a robust
classifier as proposed by Santurkar et al. (2019) and solve the
inverse problem to generate images that look like these classes.
The difference with Santurkar et al. (2019) is that we perform the
search using ILO in the StyleGAN-2 generator latent spaces as
opposed to pixels and that keeps images closer to human faces.

images with a reference image (i.e. MSE and LPIPS) and
we add a new classification loss term using an external clas-
sifier trained on a different domain. Essentially, we search
for latent codes that lie in an /; ball around the range of
intermediate layers and maximize the probability that the
generated image belongs to a certain category. We consider
a classifier trained on ImageNet (Deng et al., 2009). This
optimization problem is one of the simplest methods to cre-
ate adversarial examples (Xiao et al., 2018) and hence the
generated images will not be visually interesting. However,
if our classifier is adversarially robust, then even optimizing
directly over the pixel space leads to an interesting genera-
tive process (Santurkar et al., 2019). We use the latent space
of StyleGAN-2 to generate images of faces with fruit or
animal characteristics. The radius of the [ projection at dif-
ferent layers controls the distance of the generated images
to human faces. The results are shown in Figure 4.

Running time: Our algorithm runs CSGM as the first step
and therefore initially seems to be strictly slower. Surpris-
ingly, ILO can find better solutions than CSGM in fewer
total steps. StyleGAN-2 typically requires 300 — 1000 op-
timization steps (on the first layer) for a good reconstruc-
tion (Karras et al., 2019; 2020). However, we observe that
running 50 steps in each one of the first four layers outper-
forms CSGM. That said, ILO continues to improve with
more iterations, also depending on task, number of mea-
surements and hyperparameters. In practice, the obtained

inverse problems required approximately 30 — 60 seconds
per image on a single 1080Ti GPU. For a discussion on
hyperparameters, their effects on running times and compar-
isons to other baselines see the Appendix.

Related Work: There has been significant recent work
in unsupervised methods for inverse problems using pre-
trained generative models. Recently, Liu & Scarlett (2020)
showed that the sample scaling of CSGM is near-optimal
in the absence of further assumptions. Hand & Voroninski
(2018) proved algorithmic convergence guarantees for solv-
ing non-convex linear inverse problems with deep generative
priors under random weight assumptions. Faster recovery al-
gorithms were proposed by Raj et al. (2019); Shah & Hegde
(2018) while Pandit et al. (2019) analyzed approximate
message passing (AMP) for inverse problems in the high-
dimensional random limit. Beyond AMP, Regularization-
by-Denoising (RED) methods have shown excellent recent
performance in imaging, see e.g. Sun et al. (2019). Deep
generative models have been developed for MRI (Mardani
et al., 2018) and benefited from task-awareness (Kabkab
etal., 2018), meta-learning (Wu et al., 2019) and specifically
designed autoencoders (Mousavi et al., 2019).

The theoretical framework we introduce is related to the
ideas proposed by Dhar et al. (2018) on allowing additive
sparse deviations in the generated images. In that case, the
recovered signals have the form G(z) + v, where G : R* —
R™ is a deep generative model, z € R¥ is a latent variable
and v € R"™ is an [-sparse vector. The additive term allows
the recovery of signals that lie outside of the range. Our
approach is very close to this framework but generalizes
it since it allows sparse deviations anywhere in the latent
space.

Another related recent work is that on GAN surgery (Park
et al., 2020). In that paper, the range of the generator is
expanded by optimizing intermediate layers directly. The
main difference is in the optimization procedure; it is not
performed sequentially nor regularized by a previous search
in the lower dimensional space as we propose in this pa-
per. Our paper also benefits from the StyleGAN-2 architec-
ture (Karras et al., 2019; 2020) and builds on several key
ideas from PULSE (Menon et al., 2020).

Finally, there is significant prior work on deep learning meth-
ods that do not rely on pre-trained generators, see e.g. (Lucas
et al., 2018; Yu et al., 2019; Liu et al., 2019; Sun & Chen,
2020; Sun et al., 2020; Yang et al., 2019; Tian et al., 2020;
Tripathi et al., 2018). Such methods can show excellent per-
formance but require training a network specifically for each
reconstruction task. This is in contrast with our framework
that can solve all inverse problems universally, leveraging
the same pre-trained network.
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5. Conclusions and Future Work

We proposed a novel framework for solving inverse prob-
lems leveraging pre-trained generative models. Our method
expands the range of the generator by optimizing different
intermediate layers and achieves excellent performance for
several tasks. On the theory side, a central open problem
would be to establish global convergence of ILO, possibly
following the ideas of (Hand & Voroninski, 2018; Hand
et al., 2018) or surfing (Song et al., 2019).

On the empirical side, a central open problem would be the
application of our framework in other domains like medi-
cal imaging, but that would require pre-trained generative
models e.g. for high-resolution MRI images. Another open
direction that is particularly exciting is the use of classifiers
to generate out-of-distribution samples. Our generated sam-
ples show the powerful modularity of combining pre-trained
generators with differentiable forward operators that can
guide image reconstruction in a data-driven way.

6. Intended Use

ILO is intended as a proof of concept for solving inverse
problems by leveraging pre-trained Generative models. The
intended use of our implementation using StyleGAN2 and
also the classifier is purely as an art project. Our primary
goal is to demonstrate that a classifier can produce images
outside the range of a pre-trained generator (i.e. human
faces) by leveraging intermediate layer optimization. This
model is not suitable, for face recognition or any real subject
identification or any real subject image manipulation. We
are not releasing the classifier transformation code in public
because of the potential for abuse. Interested artists can
contact us for code.

The training dataset of the used generator (StyleGAN) has
been noted to have imbalance of white faces compared to
faces of people of color. Furthermore, different reconstruc-
tion optimization methods may be biasing reconstructions,
an issue we are investigating in on-going work. Our method
can be used with any generative model and perhaps a model
trained e.g. with FairFace would be better but this is part of
our on-going research.
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7. Appendix
Symbols
N(6,0,]|-||q) 0-cover of © w.rt. || - || norm

M(6,0,]||-|lq) d-packing of © w.r.t. || - ||, norm
BF(r) k-dimensional ball of radius 7 w.r.t. || - ||; norm

S1 ® Sy Minkowski sum of the sets S7, .55, i.e. the set
{x+y|x € S,y € SQ}

G(T') Gaussian complexity of set T’
[M] Set{1,...,M}

7.1. Proofs
7.1.1. METRIC ENTROPY FOR THE [; BALL

Definition 2 (Covering number (Wainwright, 2019)). A
d-covering of a set T with respect to a metric p is a set
{0%,...,0M} C T such that for each 6 € T, there exists
some i € [N] such that p(0,0") < 6. The S-covering
number N (6, T, p) is the cardinality of the smallest d-cover.
Definition 3 (Packing number (Wainwright, 2019)). A 6-
packing of a set T with respect to a metric p is a set
{6, ...,0MY C T such that p(0°,67) > & for all distinct
i,j € [M]. The d-packing number M (0, T, p) is the cardi-
nality of the largest 0-packing.

Lemma 2 (Wainwright (2019)). For all § > 0, the packing
and covering numbers are related as follows:

M (20, T,p) < N(6,T,p) < M(5,T,p). (7)

Theorem 2 (Maurey’s Empirical Method (Pisier, 1986)).
Let Bd(r) = {z € R | ||z||1 < r}. Then,

2
log N (&, B (r), || |}2) < 55 log(2d +1). (8

A short proof of this result follows.

Proof. Fix x € R%. Let Z be the following RV:

7 {sgn(xi)rei, le.lp. wr ©)
0, wp.l— 1=

Observe that: F[Z;] = sgn(z;)r - ‘ﬁ—‘ =x;and V[Z;] =

|z

r?. = r|x|.

Let

Z:

| =

t
>z (10)
i=1
where Z; are independent copies of Z.

‘We have that:

d
ElZ -2l = E | (Z; — ;) (11)
=1
d ) d )
= ZE [(ZJ - ac])2] = V(Z;) (12)
j=1 =1
d 1
=2V (t Z(Zi)j) = (13)
j=1 =1
1 & 1 2
t—QtZV(Zj) = ;Zrlxil = THf”l < % (14)
j=1 Jj=1

If we choose ¢ such that: % < 42, then, we have that

E[||Z — z||*] < 6°. Hence, for t > g—z, by the Pigeonhole
Principle, we have that there is a Z such that: ||Z — z|| < 6.
In other words, the set of all possible Z form an j—net for
Bi(r) for t > g—z. Set ¢ :73—2. We will now count how
many Z there are. For each Z, we have ¢ choices, each one
of which can take one value among 2d + 1 values. Hence,
there are (2d + 1)* different Z. Therefore, we can create an
2
S-net of B¢(r) that has (2d + 1) 52 elements, i..
2
r
log N (8, B(r), | -[l2) < 5 lo(2d + 1)

O

The same result (up to constants) for the size of the e-net for
an [; ball follows from Sudakov’s minoration inequality.
Theorem 3 (Sudakov minoration (Sudakov, 1969; Wain-
wright, 2019)). Let { Xy, 0 € T} be a zero-mean Gaussian
process on T C R®. Then,

6(1) > S\ g MG T px), (9

with PX (91, 02) =
Corollary 1.

E[(X91 - X92)2]'

log N3, B{(r). |- ) < O og . (16)

Proof. Observe that:
G(Bi(r)) = E, ”S‘l|1p< uTw] (17)
<rEy [||w||oo}_ (18)

< 2r4/logd. (19)
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By Inequality (15),

)
G(T) > 5\/1og M(3/2,T,px) = (20)
2
r
log M(8/2, BY(r),[| - [l2) <1655 logd.  (21)
It follows from the definition of the covering number that:
M8, T, [ - |l2) < M(6/2,T, || - [[2)-

By Inequality (7), we also have:

NOTI- ) < MET ). @)

Hence,
log N5, BY(r). |- 12) < " logd.  @3)
O

Theorem 4 (Volume rations and metric entropy (Wain-
wright, 2019)). Let © be an arbitrary set. Then,

vol(©) vol (20 & Bg(l))
WMSN(@@»H‘HOS vol(B(1))
(24)
Corollary 2.
d 4y
log N3, BI(), || |l2) < dlog 5 (29)

Proof. By Theorem 4, we have that:

vol (3B{(r) ® B3(1))

N6, B{(r),]]-|l2) < vol(Bg(1)) .
vol (2B4(r) ® BI() _ (20’
6VO1(Bg(1)) < (5 + 1) 27
4r\“
5 -
O

Remark 4. Observe that by Theorem 2 and Corollary 2,
we get two different upper bounds regarding the covering
of the l1-ball. With Maurey’s method, the covering number
depends logarithmically in the dimension but polynomially
on % On the other hand, the volumetric argument gives
polynomial dependence on the dimension and logarithmic
dependence on % The Maurey’s bound is tighter when

=0 ()

7.1.2. S-REC

Lemma 3 (S-REC for nested [1-ball). Let G = G5 o Gy
with G1 : R¥ — R? be an L, -Lipschitz function and G5 -
RP — R™ be an Lo-Lipschitz function. Let A € R™*™ be
a random matrix with A;; ~ N(0,1/m) i.i.d. entries.

Then, if

1 L1L2’I“1 2
= —=0O | klog———— + K°1 29
m TEIE ( og—s—+ 0gp> (29)

K-6
ro = I, 1<K </p 30)

wp. 1 — e*Q((I*V)Zm), we have that A satisfies S-
REC(G2(G (B (r1)) ® BY (r2)), 7, log (4K) - Y2 log %2,

Proof. Using Theorem 4, we get that:

J k
N — B . <
(Ll'L27 2(T1)7‘| |2> =

k k
(2L1§2T1 +1) < (4L1§/2T1> 31

Using the fact that G5 o G is L1 Ly Lipschitz, we get that:

ALy Loty \*
NGB < () e

Using Maurey’s Empirical Method (see Theorem 2), we get
that:

5y r2L32
log N faB1 (r2), [ l2 | < log(2p +1). (33)
2

52

Setting ro = Iz—f and using the fact that G is Lo-Lipschitz,
we get:

log N (8,Ga(B{(r2)), || - [l2) < K*log3p  (34)

By (32), (34), we get that:

log N (8, G2(G1(B3 (1)) ® BY (r2)), ]| - [|2) <

4L1L27‘1

klog + K? log 3p. 35)

By JL lemma, if m = L.Q (klog 1fars 4 K2 ]og 3p),
then w.p. 1 — e~ a"m) e have that:

|AG2(25) — AGa(27)|| =
(1= a)l|G2(25) — G2(E)I], V41,25 € S (36)

where S is a minimal 6-net of G2(G1(B5(r1)) @ BY (r2)).
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Let 20, 20 € Gi(B5(r)) © BY(ry) and 27 =

argminzr gl[27 — 27|, 23 = argminzp ¢ g[|2 — Z3||. Then,
[[AG2(25) — AG2(27)|| = [|[AG2(25) — AG2(27)]|
—[[AG2(25) — AG2(23)|| — |[AG2(2]) — AG2(27)]]  (37)
> (1= a)||G2(25) — G2(27)|| — [|AG2(2%) — AG2(25)]]
—[[AG2(27) — AG2(27)]| (38)
> (1= a)||G2(25) — G2(27) |-

(1 —a) ([|G2(25) — G2(£5)|| + [|G2(27) — G2(Z7)]])

—[[AG2(23) — AG2(23)]| - ||AG2(Z1) AG2 ()|l (39)
> (1= a)||G2(23) — G2(27)]] — 20

—|[AG2(25) — AG2(25)]| — ||AG2(2]) — AG2(27)]]  (40)
By Lemma 4, we have that w.p. 1 — e $m)

|[AGo(25) — AG(25)| + [J[AG2(2]) — AG2(27)|| =

O(log(4K) VP -log K) 0. Leta = 1 — ~. Hence,

[AG2(25) — AG2(27)|| = 7||G2(25) — G2(27)|
_ VP e VP
log(4K) 7 log % d. 41)
O]
Lemma 4. Let G = G5 0 Gy with G, : RF — RP

be an L, -Lipschitz function and G2 : RP — R"™ be an
Lo-Lipschitz function. Let A € R™*™ be a random ma-
trix with A;; ~ N(0,1/m) iid. entries. Let M, be
a L‘s net of G1(B%(r1)) @ BY(r3) such that log |My| <

klog (74L1L2”) + K?log 3p.
Then, if
1L
m=Q (kl (2”) +K2logp> ,
K-o
ro = 7 1< K </p. (42)
2

then for any * € Go(G1(BE(r1)) @ BY(rp)), if o' =
argming e, (v llr — 2|, wp. 1 — e ™) we have that:

[|A(z — 2")|| = O (log(4K) }C }C) 25, (43)

Proof. From Lemma 8.2 of (Bora et al., 2017), we have that
ife>2+4 logf then

P(||Az[| > (1 +¢€)||z]]) < f. (44)
Let Ng C N7 C ... € N, be a chain of minimal §;-nets of
G2(G1(B5(r1)) @ BY (r2)).
Let also:
T; = {wiy1 — ilwig1 € Nig1,m € Ni} (45)

By union bound,

P(|AH] < 1+ e)|t]l, Wi€l0,...1—1], WeT)>
-1

1= ITlfi, (46)
=0

where ¢; = 2 + % log % We want to choose f; such that
Zi;é |T;| f; decays exponentially with m.
First notice that:

log T3] < log | Niv1| + log | Ni| “7)

To develop bounds for log | V;|, log | N; 41| we first need to
decide how §; decays and then whether we are going to use
Maurey’s method or the volumetric argument.

We choose §;
klog (LlLQ”)

= 2. Now assume m = KZlog(3p) +

For 0 <7 < log % we will use Maurey’s method.
log| T3] < 2log |Ni 1| (48)

2
<2 <( Ko ) log(3p) + klog <L1L2T1>> (49)
61‘4—1 0;

<2. <4i+1K2 log(3p) + klog (ngm) +k(i+ 1))

(50)

2. (4”1[(2 log(3p) + 2k log <L1§2T1> (i + 1))
(51)
< 2.4y, (52)

To get probability that decays exponentially with m, we
choose:

log f; = —3-4"'m (53)
€ =O(1) + 3471 (54)

For log % <1 <[ —1, we will use the volumetric argu-
ment.

log |T;| < plog 4Ké +plog | 4K 0 +
0 dit1

klog (ngﬂl) + klog <L1L2T1) (55)

% 6i+1
< 2plog (4K) + p(2i + 1)+

2k log (Llff“) +E(2i+ 1) (56)

LiL
< 2plog (4K) + 3pi + 2k log (152“> +3ki (57)

L1L27’1 )

(58)

< 5iplog(4K) + 5ik log < 3
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We choose:

log f; = —6iplog(4K) — 6ik log (Ll?“) (59)

e <0(1) + log(4K)% +i. (60)

Notice that:

LL
log |T;|f; < —iplog(4K) — iklog ( ! 527"1) < —im.

(61)
For that choice of parameters, observe that:
P(||At]| < (1 +e)lltl], Viel0,..,l-1], VteT)
(62)
=1—¢ %M, (63)

Let x be the image we want to recostruct and x; be the
closest point of that image to the §; net. Then,

-1
$7$0:Z(Ii+17$i)+zfl‘l:>
1=0
-1
Az — Amo|| <) ||Azigs — Axi|| + || Az — Azy|.
=0

(64)

(65)

Now w.h.p. ||Az; 41— Ax;|| < (1+4¢€;)||zit1 — ;|| There-
fore, w.h.p.:

= Azl € 30+ )i — ]|+ 1Az — Asi]
=0

(66)
-1
<) (1 +€)d + || Az — Axy| (67)
i=0
log %,1 5
< 1 N
< ; (0(1) +3-4) =+

Py

i=log %

ip N o
log(4K —
) =+ log( )K210g3p Jrl) 2ZJr

+||Az — Azy|| (68)

go(log(u() VP log\[) 6+ ||Az — 2. (69)

Observe that:
Az — Az || < [|A]] - [z — =] (70)
< 2vn|lz — x| (71)
< 2\2@. 72)

For [ = log n, we have that ||Ax — Ax;|| < 6. Hence,

||Az — Azol| < O (log(4K) : g -log \I/f) 5. (73)

7.1.3. PROOF OF MAIN THEOREM

Proof of Theorem 1. Let §;, = (log(4K) . % log %) é.
Then,

[|G2(2P) — G2(2P)]| < (74)
[ AG2(2) — fiGz(Zp)ll + 0y (75)
_ =P _ 5P
_ 142 = AGy(=)]| + ||z = AGH ()| + 6, e
Y
< 2|| Az — AG5(zP)|| + 41, 77)
Y
P) _
< 4||G2(zP) — z|| + 5l1_ (78)
Y
Finally, observe that:
|G2(2) — zf| < ||G2(2) — z|| + [|G2(2") — G2(2")]|
(79)
4 )
< (1+)|x—G2(zp)||+ b (80)
Y "Y
O

Remark 5. Similar to the analysis of the CSGM paper (see
Lemma 4.3), 7y is a constant that we control and we may set
ittoy = % to get the same scaling term with CSGM.

7.1.4. PROOF OF LEMMA 1

Lemma 5. Consider the setting of Theorem 1. Let g =
[91, -, gn] be a vector with i.i.d. Gaussian entries of vari-
ance 1/m, let F € R™*™ be a partical circulant matrix
that has g in its first row, and let D € R™*" be a diagonal
matrix with uniform +1 entries along its diagonal. Then

for m = Q ((1_17)2 (klog Lalem 4 K21og p) log4(n)),
F D satisfies S-REC(G2(G1(B%(r1)) ® B} (r2)),1 — 7,6 -

M . % log %) with probability 1 — e~ ™).

Proof. The proof follows from the proof of Lemma 3 above
and Theorem 3.1 in (Krahmer & Ward, 2011). The proof of
Lemma 3 requires the Johnson-Lindenstrauss guarantee for
a set of size 20 and invoking Theorem 3.1 in (Krahmer
& Ward, 2011), this is guaranteed to hold for the matrix
FD.
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The proof of Lemma 3 also requires || F'D||,, < y/n. This
is also guaranteed by noting that

|IFD|lop < ||FD|r < vn, wpl — e M),

7.2. Code

Our source-code is available under the following url:
https://github.com/giannisdaras/ilo.

Our code is implemented in PyTorch (Paszke
et al.,, 2019). Our code is based on the follow-
ing open-source implementations of StyleGAN-
2: https://github.com/rosinality/stylegan2-pytorch,

https://github.com/NVlabs/stylegan2. We also draw
inspiration from the open-source implementation of
PULSE: https://github.com/tg-bomze/Face-Depixelizer. A
Tensorflow (Abadi et al., 2016) implementation is in the
works.

Our current repository includes:

* Detailed instructions on how to setup the environment
and download the dependencies.

* Code for image pre-processing, such as random in-
painting, interactive masks, noise addition, automatic
face alignment, etc.

* Examples on how to run inpainting, denoising, super-
resolution and compressed-sensing with circulant ma-
trices for custom images.

* Code for out-of-distribution generation on 1000 Im-
ageNet (Deng et al., 2009) classes using a robust
classifier. =~ We use a robust classifier from the
robustness (Engstrom et al., 2019) library.

* Code for evaluating the performance of ILO and previ-
ous methods on Celeba-HQ (Liu et al., 2018; Lee et al.,
2020).

* Tools to visualize performance and track experiments.
e Code for generating GIF files by collecting frames
during the optimization.

Our code is GPU/CPU compatible.

7.3. Experimental details

We performed all our experiments on a single GPU. As
mentioned in the paper, obtaining a solution for a single
inverse problem requires less than a minute on a single
1080Ti. All the experiments can be reproduced in less than
a day on a single GPU.

Unless mentioned otherwise, we use Adam (Kingma &
Ba, 2014) optimizer with an initial learning rate of 0.1 for
each layer. During a single layer optimization, learning
rate ramps up linearly and is ramped down using a cosine
scheduler, as proposed by (Karras et al., 2020).

Loss functions are changed for each task as explained in the
paper. For all tasks, we use a geodesic loss with coefficient
0.01. For random inpainting, we use both MSE and LPIPS
when we have more than 20% observed pixels, otherwise
we only use MSE. When both MSE and LPIPS are used, we
search co-efficients in the set {0.5,1, 2,5} for each of the
terms. For inpainting with continuous black boxes, we used
both MSE and LPIPS. For the experiments of Figure 1 of
the main paper, we used the same co-efficient for both MSE
and LPIPS.

Our optimization algorithm is Projected Gradient De-
scent (Nocedal & Wright, 2006). First, we project each
latent code to the unit sphere. Next, when optimizing over
deeper layers, we use [y projection to stay close to the mani-
fold induced by the previous layers. The projection in that
case includes the solution of the previous layers, the latent
codes (i.e. w;) and the noises, (i.e. u;). We tune seperately
the [; radii for each one of the optimization variables and
for each one of the layers. Empirically, we find that the
following radii for the first four layers works decently for
most of the tasks/images:

¢ Radius of noises: 300, 2000, 2000, 4000.
¢ Radius of latent codes: 300, 500, 1000, 2000.

* Radius of previous solutions: 500, 1000, 2000.

Projection to the [; ball allows for optimization on deep lay-
ers of the generator (that is not possible without projections).
By doing that we get better reconstruction that comes with
the cost of increased number of optimization steps. Gener-
ally, tuning the radii for each layer is an especially difficult
procedure. Even worse, these hyperparameters do not trans-
fer across tasks. For the first four layers, we encourage the
reader to use the parameters mentioned above.

To obtain the plots of Figure 2, we sampled (randomly) 5
images from Celeba-HQ and we reported the best score for
each point on the horizontal axis over 5 different runs (25
runs in total for each method for each point in the plot) with
different hyperparameters. The error bars are computed
across the experiments for different images. For the plots
of Figure 2, we searched over the following combinations
of number of steps for each layer (starting from the first):
{300, 200, 200, 100}, {300, 200, 100},

{300, 200, 200, 100, 50}, {50, 50, 50, 50, 500},

{100, 100, 100, 100, 100}. Each reported point is the aver-
age (across images) of the minimums of those runs.
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7.4. Additional Experiments

In this section, we list additional Figures and Experiments
that could not fit in the paper due to space limit.

Figure 5 shows that by combining MSE loss to a refer-
ence image and the classification probability, we can morph
a given person to an ImageNet (Deng et al., 2009) class.
We observe experimentally that better results are obtained
by only using MSE and LPIPS loss during the first ILO
rounds and only using the additional classification term in
the deeper layers of the generator. An extra benefit of this
method is that we can interpolate intermediate frames to
see how actually a human face can be transformed to an
imagenet class since the generator first matches the phase
and then uses the classifier to alter it.

Figure 6 shows visual results for the task of denoising. As
shown, ILO gives superior visual reconstructions and better
actual performance comparing to the (adapted for denoising)
PULSE and the classical BM3D method.

Finally, in order to show that our method can be successfully
in other datasets as well, we perform inpainting experiments
using a pre-trained StyleGAN-2 generators on cats. Results
are shown in Figure 7.
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Figure 5. Morphing using a classifier for Bull Frog class, keeping also a loss term for distance to a well-known machine learning researcher,
with his permission.

b d;’ /
‘ Original ~ Noisy
(21.8dB)

Figure 6. Results on the task of denoising. Gaussian noise (o = 25, known) is added to the original image and recovered with various
methods. The MSE images indicate the reconstructed images obtained by inverting the noisy image.

MSE  BM3D Ours
23.0dB)  (244dB)  (27.1dB)
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Figure 7. Inpainting using a StyleGAN trained to generate cat images. First column: Original image (never observed). Second column:
Observed image. Third column: ILO reconstruction.
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7.5. Ethical Considerations

Previous research has reported that StyleGAN leads to bi-
ased generations (Menon et al., 2020; Jain et al., 2020; Tan
et al., 2020; Salminen et al., 2020). In practice, we observe
that by extending the range of the generator we obtain more
diverse generations. A similar finding has been reported by
Abdal et al. (2019). Even though we observe less biased
reconstructions, we encourage a lot more research on this
topic.

Admittedly, our method makes the creation of Deep-
Fakes (Korshunov & Marcel, 2018) easier, since it expands
the range of the generator. Arguably, the technology be-
hind DeepFakes is already very powerful so the negative
effect of this work will be diminishing. An interesting
topic of research is whether existing defences against Deep-
Fakes (Matern et al., 2019; Giiera & Delp, 2018; Nguyen
et al., 2019; Yang et al., 2020) are robust to images that lie
outside of the range of the GAN.

Experiments with a robust classifier combined with similar-
ity to a reference image can be abused to generate images
that are offensive in various ways. In this paper we are
only exploring with what is possible, but future work should
consider detecting and preventing such abuse.

7.6. Things that did not work

We share some negative results we encountered during the
process of writing this paper. Our goal is to inform the
research community about some methods that failed so that
future research can avoid them, reformulate them or even
contradict our findings. We also suggest ways to mitigate
some of the issues we experienced.

First, we observed that joint optimization of all noise vectors
leads to poor visual reconstructions. Even in cases where the
MSE loss to the unobserved image was going down, joint-
optimization of all noise vectors was giving blurry and/or
unrealistic reconstructions. Thus we believe that expanding
the generator space without sequential optimization and
constraints fails since it makes it too powerful.

We also tried to establish a criterion on how many steps
to run per layer. In practice, we observed that a working
heuristic is to move to the next layer when the observed
MSE error flattens. Even though this idea works well for
the first layers, it can lead to unrealistic reconstructions
when applied to deeper layers of the generator. To mitigate
this issue, we choose very small radii when optimizing in
deep layers. Tuning the hyperparameters (learning rates,
number of steps and optimization radii) for each of the
layers can be a particularly toilsome procedure. Sadly, we
observed that these parameters do not generalize across
different tasks (even though they mostly generalize across
different images).

On the theoretical side, we tried (unsuccessfully) to obtain
similar results for an [» dilation of the range of the first
generator. The main bottleneck is the measurements bound;
for the /5 ball, we cannot avoid linear dependence on the
intermediate dimension. It is not clear yet whether a similar
result for the 5 case could be proved. In practice, we did not
observe significant difference between projecting in I or I5
balls. Moreover, it is known that [; projection encourages
sparsity in some cases, e.g. see LASSO (Tibshirani, 1996).
Establishing a connection between the [y and the [; solutions
is left as future work.
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