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Abstract

Mixed Membership Models (MMMs) are a popular family of latent structure models for
complex multivariate data. Instead of forcing each subject to belong to a single cluster,
MMMs incorporate a vector of subject-specific weights characterizing partial membership
across clusters. With this flexibility come challenges in uniquely identifying, estimating, and
interpreting the parameters. In this article, we propose a new class of Dimension-Grouped
MMMs (Gro-M3s) for multivariate categorical data, which improve parsimony and inter-
pretability. In Gro-M3s, observed variables are partitioned into groups such that the latent
membership is constant for variables within a group but can differ across groups. Tradi-
tional latent class models are obtained when all variables are in one group, while traditional
MMMs are obtained when each variable is in its own group. The new model corresponds
to a novel decomposition of probability tensors. Theoretically, we derive transparent iden-
tifiability conditions for both the unknown grouping structure and model parameters in
general settings. Methodologically, we propose a Bayesian approach for Dirichlet Gro-M3s
to inferring the variable grouping structure and estimating model parameters. Simulation
results demonstrate good computational performance and empirically confirm the identi-
fiability results. We illustrate the new methodology through applications to a functional
disability survey dataset and a personality test dataset.
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1. Introduction

Mixed membership models (MMMs) are a popular family of latent structure models for
complex multivariate data. Building on classical latent class and finite mixture models
(McLachlan and Peel, 2000), which assign each subject to a single cluster, MMMs include a
vector of probability weights characterizing partial membership. MMMs have seen many ap-
plications in a wide variety of fields, including social science surveys (Erosheva et al., 2007),
topic modeling and text mining (Blei et al., 2003), population genetics and bioinformatics
(Pritchard et al., 2000; Saddiki et al., 2015), biological and social networks (Airoldi et al.,
2008b), collaborative filtering (Mackey et al., 2010), and data privacy (Manrique-Vallier
and Reiter, 2012); see Airoldi et al. (2014) for more examples.

Although MMMs are conceptually appealing and very flexible, with the rich modeling
capacity come challenges in identifying, accurately estimating, and interpreting the param-
eters. MMMs have been popular in many applications, yet key theoretical issues remain
understudied. The handbook of Airoldi et al. (2014) emphasized theoretical difficulties of
MMMs ranging from non-identifiability to multi-modality of the likelihood. Finite mixture
models have related challenges, and the additional complexity of the individual-level mixed
membership incurs extra difficulties. A particularly important case is MMMs for multivari-
ate categorical data, such as survey response (Woodbury et al., 1978; Erosheva et al., 2007;
Manrique-Vallier and Reiter, 2012). In this setting, MMMs provide an attractive alterna-
tive to the latent class model of Goodman (1974). However, little is known about what is
fundamentally identifiable and learnable from observed data under such models.

Identifiability is a key property of a statistical model, meaning that the model parame-
ters can be uniquely obtained from the observables. An identifiable model is a prerequisite
for reproducible statistical inferences and reliable applications. Indeed, interpreting param-
eters estimated from an unidentifiable model is meaningless, and may lead to misleading
conclusions in practice. It is thus important to study the identifiability of MMMs and
to provide theoretical support to back up the conceptual appeal. Even better would be
to expand the MMM framework to allow variations that aid interpretability and identifia-
bility. With this motivation, and focused on mixed membership modeling of multivariate
categorical data, this paper makes the following key contributions.

We propose a new class of models for multivariate categorical data, which retains the
same flexibility offered by MMMs, while favoring greater parsimony and interpretability.
The key innovation is to allow the p-dimensional latent membership vector to belong to
G (G � p) groups; memberships are the same for different variables within a group but
can differ across groups. We deem the new model the Dimension-Grouped Mixed Mem-
bership Model (Gro-M3). Gro-M3 improves interpretability by allowing the potentially
high-dimensional observed variables to belong to a small number of meaningful groups.
Theoretically, we show that both the continuous model parameters, and the discrete vari-
able grouping structure, can be identified from the data for models in the Gro-M3 class
under transparent conditions on how the variables are grouped. This challenging identifi-
ability issue is addressed by carefully leveraging the dimension-grouping structure to write
the model as certain structured tensor products, and then invoking Kruskal’s fundamen-
tal theorem on the uniqueness of three-way tensor decompositions (Kruskal, 1977; Allman
et al., 2009).
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To illustrate the methodological usefulness of the proposed class of models, we consider a
special case in which each subject’s mixed membership proportion vector follows a Dirichlet
distribution. This is among the most popular modeling assumptions underlying various
MMMs (Blei et al., 2003; Erosheva et al., 2007; Manrique-Vallier and Reiter, 2012; Zhao
et al., 2018). For such a Dirichlet Gro-M3, we employ a Bayesian inference procedure
and develop a Metropolis-Hastings-within-Gibbs algorithm for posterior computation. The
algorithm has excellent computational performance. Simulation results demonstrate this
approach can accurately learn the identifiable quantities of the model, including both the
variable-grouping structure and the continuous model parameters. This also empirically
confirms the model identifiability result.

The rest of this paper is organized as follows. Section 2 reviews existing mixed mem-
bership models, introduces the proposed Gro-M3, and provides an interesting probabilistic
tensor decomposition perspective of the models. Section 3 is devoted to the study of the
identifiability of the new model. Section 4 focuses on the Dirichlet distribution induced
Gro-M3 and proposes a Bayesian inference procedure. Section 5 includes simulation studies
and Section 6 applies the new model to reanalyze the NLTCS disability survey data. Section
7 provides discussions.

2. Dimension-Grouped Mixed Membership Models

2.1 Existing Mixed Membership Models

In this subsection, we briefly review the existing MMM literature to give our proposal
appropriate context. Let K be the number of extreme latent profiles. Denote the K-
dimensional probability simplex by ∆K−1 = {(π1, . . . , πK) : πk ≥ 0 for all k,

∑K
k=1 πk = 1}.

Each subject i has an individual proportion vector πi = (πi,1, . . . , πi,K) ∈ ∆K−1, which
indicates the degrees to which subject i is a member of the K extreme profiles. The
general mixed membership models summarized in Airoldi et al. (2014) have the following
distribution,

p

({
y
(r)
i,1 , . . . , y

(r)
i,p

}R

r=1

)
=

∫

∆K−1

p∏

j=1

R∏

r=1

(
K∑

k=1

πi,kf(y
(r)
i,j | λj,k)

)
dDα(πi), (1)

where πi = (πi,1, . . . , πi,K) follows the distribution Dα and is integrated out; the α refers
to some generic population parameters depending on the specific model. The hierarchical
Bayesian representation for the model in (1) can be written as follows.

y
(1)
ij , . . . , y

(R)
ij | zij = k

i.i.d.
∼ Categorical([dj ]; λj,k), j ∈ [p];

zi1, . . . , zip | πi
i.i.d.
∼ Categorical([K]; πi), i ∈ [n];

π1, . . . ,πn
i.i.d.
∼ Dα.

where “i.i.d.” is short for “independent and identically distributed”. The number p in (1)
is the number of “characteristics”, and R is the number of “replications” per characteristic.
As shown in (1), for each characteristic j, there are a corresponding set of K conditional
distributions indexed by parameter vectors {λj,k : k = 1, . . . ,K}. Many different mixed
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membership models are special cases of the general setup (1). For example, the popular
Latent Dirichlet Allocation (LDA) (Blei et al., 2003; Blei, 2012; Anandkumar et al., 2014)
for topic modeling takes a document i as a subject, and assumes there is only p = 1 distinct
characteristic (one single set of K topics which are distributions over the word vocabulary)
with R > 1 replications (a document i contains R words which are conditionally i.i.d.
given πi); LDA further specifies Dα(πi) to be the Dirichlet distribution with parameters
α = (α1, . . . , αK).

Focusing on MMMs for multivariate categorical data, there are generally many char-
acteristics with p � 1 and one replication of each characteristic with R = 1 in (1). Each
variable yi,j ∈ {1, . . . , dj} takes one of dj unordered categories. For each subject i, the
observables yi = (yi,1, . . . , yi,p)

> are a vector of p categorical variables. MMMs for such
data are traditionally called Grade of Membership models (GoMs) (Woodbury et al., 1978).
GoMs have been extensively used in applications, such as disability survey data (Erosheva
et al., 2007), scholarly publication data (Erosheva et al., 2004), and data disclosure risk
and privacy (Manrique-Vallier and Reiter, 2012). GoMs are also useful for psychological
measurements where data are Likert scale responses to psychology survey items, and edu-
cational assessments where data are students’ correct/wrong answers to test questions (e.g.
Shang et al., 2021).

In GoMs, the conditional distribution f(yi,j | λj,k) in (1) can be written as P(yi,j |

λj,k) =
∏dj

cj=1 λ
I(yi,j=cj)
j,cj ,k

. Hence, the probability mass function of yi in a GoM is

pGoM (yi,1, . . . , yi,p | Λ,α) =

∫

∆K−1

p∏

j=1




K∑

k=1

πi,k

dj∏

cj=1

λ
I(yi,j=cj)
j,cj ,k


 dDα(πi). (2)

The hierarchical Bayesian representation for the model in (2) can be written as follows.

yij | zij = k
i.i.d.
∼ Categorical([dj ]; λj,k), j ∈ [p];

zi1, . . . , zip | πi
i.i.d.
∼ Categorical([K]; πi), i ∈ [n];

π1, . . . ,πn
i.i.d.
∼ Dα.

See a graphical model representation of the GoM with sample size n in Figure 1(b), where
individual latent indicator variables (zi,1, . . . , zi,p) ∈ [K]p are introduced to better describe
the data generative process.

We emphasize that the case with p > 1 and R = 1 is fundamentally different from
the topic models with p = 1 and R > 1, with the former typically involving many more
parameters. This is because the “bag-of-words” assumption in the topic model with R > 1
disregards word order in a document and assumes all words in a document are exchangeable.
In contrast, our mixed-membership model for multivariate categorical data does not assume
a subject’s responses to the p items in a survey/questionnaire are exchangeable. In other
words, given a subject’s mixed membership vector πi, his/her responses to the p items are
independent but not identically distributed (because they follow categorical distributions
governed by p different sets of parameters {λj,k ∈ R

d : k ∈ [K} for j = 1, . . . , p); whereas
in a topic model, given a document’s latent topic proportion vector πi, the p words in the
document are independent and identically distributed, following the categorical distribution
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yi,1 yi,2 · · · · · · · · · yi,p

zi zi ∈ [K]

ν

n

Λ1,:,: Λ2,:,: · · · · · · · · · Λp,:,:

(a) Latent Class Model

(Probabilistic CP Decomposition)

yi,1 yi,2 · · · · · · · · · yi,p

zi,1 · · · · · · · · · · · · zi,p

πi πi ∈ ∆K−1

α

n

Λ1,:,: Λ2,:,: · · · · · · · · · Λp,:,:

(b) Grade of Membership Model, zi,j ∈ [K]

(Probabilistic Tucker Decomposition)

n

yi,1 yi,2 · · · · · · · · · yi,p

zi,1 · · · zi,G

ηi f(ηi) ∈ ∆K−1

L µ Σ

Λ1,:,: Λ2,:,: · · · · · · · · · Λp,:,:

(c) (New) Gro-M3, f(ηi) logit normal

(Probabilistic Hybrid Decomposition)

n

yi,1 yi,2 · · · · · · · · · yi,p

zi,1 · · · zi,G

πi πi ∈ ∆K−1

L α

Λ1,:,: Λ2,:,: · · · · · · · · · Λp,:,:

(d) (New) Gro-M3, πi Dirichlet

(Probabilistic Hybrid Decomposition)

Figure 1: Graphical model representations of LCMs in (a), GoMs in (b), and the proposed
family of Gro-M3s with two examples in (c), (d). Shaded nodes {yi,j} are observed variables,
white nodes are latent variables, quantities outside each solid box are population parameters.
In (c) and (d), the dotted red box is the key dimension-grouping structure, where the red
edges from {zi,g} to {yi,j} correspond to entries of “1” in the grouping matrix L.

with the same set of parameters {λk ∈ R
V : k ∈ [K]} (here V denotes the vocabulary size).

In this sense, the GoM model has greater modeling flexibility than topic models and are
more suitable for modeling item response data, where it is inappropriate to assume that the
items in the survey/questionnaire are exchangeable or share the same set of parameters.
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This fact is made clear also in Figure 1(b), where for each j ∈ [p] there is a population
quantity, the parameter node Λj,:,: (also denoted by Λj for simplicity), that governs its
distribution. Thus identifiability is a much greater challenge for GoM models. To our
best knowledge, the identifiability issue of the grade-of-membership (GoM) models for item
response data considered in Woodbury et al. (1978) and Erosheva et al. (2007) has not
been rigorously investigated so far. Motivated by the difficulty of identifying GoM in its
original setting due to the large parameter complexity, we next propose a new modeling
grouping component to enhance identifiability. Our resulting model still does not make
any exchangeability assumption of the items, but rather leverages the variable grouping
structure to reduce model complexity.

2.2 New Modeling Component: the Variable Grouping Structure

Generalizing Grade of Membership models for multivariate categorical data, we propose a
new structure that groups the p observed variables in the following sense: any subject’s
latent membership is the same for variables within a group but can differ across groups.
To represent the key structure of how the p variables are partitioned into G groups, we
introduce a notation of the grouping matrix L = (`j,g). The L is a p×G matrix with binary
entries, with rows indexed by the p variables and columns by the G groups. Each row j of
L has exactly one entry of “1” indicating group assignment. In particular,

L = (`j,g)p×G, `j,g =

{
1, if the jth variable belongs to the gth group;

0, otherwise.
(3)

Our key specification is the following generative process in the form of a hierarchical
Bayesian representation,

Gro-M3: {yi,j}`j,g=1 | zi,g = k
ind.
∼ Categorical

(
[dj ];

(
λj,1,k, · · · , λj,dj ,k

))
, g ∈ [G];

zi,1, . . . , zi,G | πi
i.i.d
∼ Categorical([K]; πi); (4)

π1, . . . ,πn
i.i.d.
∼ Dα.

where “ind.” is short for “independent”, meaning that conditional on zi,g = k, subject
i’s observed responses to items in group g are independently generated. Hence, given the
population parameters (L,Λ,α), the probability distribution of yi can be written as

pGro-M3
(yi,1, . . . , yi,p | L,Λ,α) =

∫

∆K−1

G∏

g=1




K∑

k=1

πi,k
∏

j: `j,g=1

dj∏

cj=1

λ
I(yi,j=cj)
j,cj ,k


 dDα(πi).

For a sample with n subjects, assume the observed responses y1, . . . ,yn are independent
and identically distributed according to the above model.

We visualize the proposed model as a probabilistic graphical model to highlight connec-
tions to and differences from existing latent structure models for multivariate categorical
data. In Figure 1, we show the graphical model representations of two popular latent struc-
ture models for multivariate categorical data in (a) and (b), and for the newly proposed
Gro-M3 in (c) and (d). The Λj for j ∈ [p] denotes a dj × K matrix with entries λj,cj ,k.
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Each column of Λj characterizes a conditional probability distribution of variable yj given
a particular extreme latent profile. We emphasize that the variable grouping is done at the
level of the latent allocation variables z, and that the Λj parameters are still free without
constraints just as they are in traditional LCMs or GoMs. From the visualizations in Figure
1 we can also easily distinguish our proposed model from another popular family of methods,
the co-clustering methods (Dhillon et al., 2003; Govaert and Nadif, 2013). Co-clustering
usually refers to simultaneously clustering the subjects and clustering the variables, where
subjects within a cluster exhibit similar behaviors and variables within a cluster also share
similar characteristics. Our Gro-M3, however, does not restrict the p variables to have sim-
ilar characteristics within groups, but rather allows them to have entirely free parameters
Λ1, . . . ,Λp. The “dimension-grouping” happens at the latent level by constraining the la-
tent allocations behind the p variables to be grouped into G statuses. Such groupings give
rise to a novel probabilistic hybrid tensor decomposition visualized in Figure 1(c)–(d); see
the next Section 2.3 for details.

Other than facilitating model identifiability (see Section 3), our dimension-grouping
modeling assumption is also motivated by real-world applications. In general, our new
model Gro-M3 with the variable grouping component can apply to any multivariate cat-
egorical data to simultaneously model individual mixed membership and capture variable
similarity. For example, Gro-M3 can be applied to survey/questionnaire response data in so-
cial sciences, where it is not only of interest to model subjects’ partial membership to several
extreme latent profiles, but also of interest to identify blocks of items which share similar
measurement goals within each block. We next provide numerical evidence to demonstrate
the merit of the variable grouping modeling component. For a dataset simulated from Gro-
M3 (in the setting as the later Table 2) and also the real-world IPIP personality test dataset
(analyzed in the later Section 6), we calculate the sample Cramer’s V between item pairs.
Cramer’s V is a classical measure of association between two categorical variables, which
gives a value between 0 and 1, with larger values indicating stronger association. Figure
2 presents the plots of the sample Cramer’s V matrix for the simulated data and the real
IPIP data. This figure shows that the pairwise item dependence for the Gro-M3-simulated
data looks quite similar to the real-world personality test data. Indeed, after fitting the
Gro-M3 to this IPIP personality test dataset, the estimated model-based Cramer’s V shown
in Figure 2(c) nicely and more clearly recovers the item block structure. We conjecture that
many real world datasets in other applied domains exhibit similar grouped dependence.

2.3 Probabilistic Tensor Decomposition Perspective

The Gro-M3 class has interesting connections to popular tensor decompositions. For a
subject i, the observed vector yi resides in a contingency table with

∏p
j=1 dj cells. Since

the MMMs for multivariate categorical data (both traditional GoM and the newly pro-
posed Gro-M3) induce a probability of yi being in each of these cells, such probabilities
{p (yi,1 = c1, . . . , yi,p = cp | −) ; cj ∈ [dj ] for each j ∈ [p]} can be arranged as a p-way
d1 × d2 × · · · × dp array. This array is a tensor with p modes and we denote it by P;
Kolda and Bader (2009) provided a review of tensors. The tensor P has all the entries
nonnegative and they sum up to one, so we call it a probability tensor. We next describe in
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(a) Simulated data. (b) IPIP data, sample CRV. (c) IPIP data, Gro-M3 CRV.

Figure 2: (a): Sample Cramer’s V (abbreviated as CRV) for a simulated dataset. (b):
Sample Cramer’s V for the IPIP data. (c) Gro-M3 based Cramer’s V for the IPIP data.

detail the tensor decomposition perspective of our model; such a perspective will turn out
to be useful in the study of identifiability.

The probability mass function of yi under the traditional GoM model can be written as
follows by exchanging the order of product and summation,

pGoM (yi,1 = c1, . . . , yi,p = cp | Λ,α) =

∫

∆K−1

p∏

j=1

[
K∑

k=1

πi,kλj,cj ,k

]
dDα(πi)

=
K∑

k1=1

· · ·
K∑

kp=1

p∏

j=1

λj,cj ,kj

∫

∆K−1

πi,k1 · · ·πi,kpdDα(πi)

︸ ︷︷ ︸
=: φGoM

k1,...,kp

. (5)

Then ΦGoM :=
(
φGoM
k1,...,kp

; kj ∈ [K]
)

forms a tensor with p modes, and each mode has

dimension K. Further, this tensor Φ is a probability tensor, because φk1,...,kp ≥ 0 and it
is not hard to see that its entries sum up to one. Viewed from a tensor decomposition
perspective, this is the popular Tucker decomposition (Tucker, 1966); more specifically
this is the nonnegative and probabilistic version of the Tucker decomposition. The ΦGoM

represents the Tucker tensor core, and the product of {λj,cj ,k} form the Tucker tensor arms.
It is useful to compare our modeling assumption to that of the the Latent Class Model

(LCM; Goodman, 1974), which follows the graphical model shown in Figure 1(a). The LCM
is essentially a finite mixture model assuming each subject i belongs to a single cluster. The
distribution of yi under an LCM is

pLC (yi,1 = c1, . . . , yi,p = cp | Λ,ν) =
K∑

k=1

P(zi = k)

p∏

j=1

P(yi,j | zi = k) =
K∑

k=1

νk

p∏

j=1

λj,cj ,k.

(6)

Based on the above definition, each subject i has a single variable zi ∈ [K] indicating which
latent class it belongs to, rather than a mixed membership proportion vector πi. Denoting
νLC = (νk; k ∈ [K]), then (6) corresponds to the popular CP decomposition of tensors
(Hitchcock, 1927), where the CP rank is at most K.
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Finally, consider our proposed Gro-M3,

pGro-M3
(yi,1, . . . , yi,p | L,Λ,α) =

∫

∆K−1

G∏

g=1




K∑

k=1

πi,k
∏

j: `j,g=1

f(yi,j | λj,cj ,k)


 dDα(πi)

=
K∑

k1=1

· · ·
K∑

kG=1

G∏

g=1

∏

j: `j,g=1

f(yi,j | λj,cj ,kg)

∫

∆K−1

πi,k1 · · ·πi,kGdDα(πi)

︸ ︷︷ ︸
=: φGro-M3

k1,...,kG

, (7)

where f(yi,j |λj,cj ,k) generally denotes the conditional distribution of variable yi,j given pa-
rameter λj,cj ,k. In our Gro-M3, λj,cj ,k specifically refer to the categorical distribution param-
eters for the random variable yi,j ; that is, λj,cj ,k = P(yi,j = cj | zi,j = k) denotes the proba-
bility of responding cj to item j given that the subject’s realization of the latent profile for

item j is the kth extreme latent profile. In this case, ΦGro-M3
:=
(
φGro-M3

k1,...,kG
; kg ∈ [K]

)
forms

a tensor with G modes, and each mode has dimension K. There still is
∑K

k1=1 · · ·
∑K

kG=1

φGro-M3

k1,...,kG
= 1. This reduces the size of the core tensor in the classical Tucker decomposition

because G < p. The Gro-M3 incorporates aspects of both the CP and Tucker decompo-
sitions, providing a probabilistic hybrid decomposition of probability tensors. The CP is
obtained when all variables are in the same group, while the Tucker is obtained when each
variable is in its own group; see Figure 1 for a clear illustration of this fact.

Gro-M3 is conceptually related to the collapsed Tucker decomposition (c-Tucker) of
Johndrow et al. (2017), though they did not model mixed memberships, used a very dif-
ferent model for the core tensor Φ, and did not consider identifiability. Nonetheless and
interestingly, our identifiability results can be applied to establish identifiability of c-Tucker
decomposition (see Remark 7 in Section 4). Another work related to our dimension-grouping
assumption is Anandkumar et al. (2015), which considered the case of overcomplete topic
modeling with the number of topics exceeding the vocabulary size. For such scenarios, the
authors proposed a “persistent topic model” which assumes the latent topic assignment per-
sists locally through multiple words, and established identifiability. Our dimension-grouped
mixed membership assumption is similar in spirit to this topic persistence assumption.
However, the setting we consider here for general multivariate categorical data has the
multi-characteristic single-replication nature (p > 1 and R = 1); as mentioned before,
this is fundamentally different from topic models with a single characteristic and multiple
replications (p = 1 and R > 1).

3. Identifiability of Dimension-Grouped MMMs

Identifiability is an important property of a statistical model, generally meaning that model
parameters can be uniquely recovered from the observables. Identifiability serves as a fun-
damental prerequisite for valid statistical estimation and inference. The study of identifi-
ability, however, can be challenging for complicated models and especially latent variable
models, including the Gro-M3s considered here. In subsections 3.1 and 3.2, we propose
easily checkable and practically useful identifiability conditions for Gro-M3s by carefully
inspecting the inherent algebraic structures. Specifically, we will exploit the variable group-
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ings to write the model as certain highly structured mixed tensor products, and then prove
identifiability by invoking Kruskal’s theorem on the uniqueness of tensor decompositions
(Kruskal, 1977). We point out that such proof procedures share a similar spirit to those
in Allman et al. (2009), but the complicated structure of the new Gro-M3s requires some
special care to handle. We provide a high-level summary of our proof approach. First, we
write the probability mass function of the observed p-dimensional multivariate categorical
vector as a probabilistic tensor with p modes. Second, we unfold this tensor into a G-way
tensor with each mode corresponding to a variable group. Third, we further concatenate the
transformed tensor and leverage Kruskal’s Theorem on the uniqueness of three-way tensor
decomposition to establish the identifiability of the model parameters under our proposed
Gro-M3. Our theoretical developments provide a solid foundation for performing estimation
of the latent quantities and drawing valid conclusions from data.

3.1 Strict Identifiability Conditions

For LDA and closely related topic models, there is a rich literature investigating identifi-
ability under different assumptions (Anandkumar et al., 2012; Arora et al., 2012; Nguyen,
2015; Wang, 2019). Typically, when there is only one characteristic (p = 1), R ≥ 2 is nec-
essary for identifiability; see Example 2 in Wang (2019). However, there has been limited
consideration of identifiability of mixed membership models with multiple characteristics
and one replication, i.e., p > 1 and R = 1. GoM models belong to this category, as does
the proposed Gro-M3s, with GoM being a special case of Gro-M3s.

We consider the general setup in (1), whereΦ denotes theG-mode tensor core induced by
any distribution D(πi) on the probability simplex ∆K−1. The following definition formally
defines the concept of strict identifiability for the proposed model.

Definition 1 (Strict Identifiability of Gro-M3s) A parameter space Θ of a Gro-M 3

is said to be strictly identifiable, if for any valid set of parameters (L,Λ,Φ) ∈ Θ, the
following equations hold if and only if (L,Λ,Φ) and the alternative (L,Λ,Φ) are identical
up to permutations of the K extreme latent profiles and permutations of the G variable
groups,

P(y = c | L,Λ,Φ) = P(y = c | L,Λ,Φ), ∀c ∈ ×p
j=1[dj ]. (8)

Definition 1 gives the strongest possible notion of identifiability of the considered pop-
ulation quantities (L,Λ,Φ) in the model. In particular, the strict identifiability notion in
Definition 1 requires identification of both the continuous parameters Λ and Φ, and the dis-
crete latent grouping structure of variables in L. The following theorem proposes sufficient
conditions for the strict identifiability of Gro-M3s.

Theorem 2 Under a Gro-M 3, the following two identifiability conclusions hold.

(a) Suppose each column of L contains at least three entries of “1”s, and the corresponding
conditional probability table Λj = (λj,cj ,k)dj×K for each of these three j has full column
rank. Then the Λ and Φ are strictly identifiable.

(b) In addition to the conditions in (a), if Λ satisfies that for each j ∈ [p], not all the
column vectors of Λj are identical, then L is also identifiable.
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Example 1 Denote by IG a G × G identity matrix. Suppose p = 3G and the matrix L
takes the following form,

L = (IG IG IG)
>. (9)

Also suppose for each j ∈ {1, . . . , 3G}, the Λj of size dj ×K has full column rank K. Then
the conditions in Theorem 2 hold, so Λ, L and Φ are identifiable. Theorem 2 implies that if
L contains any additional row vectors other than those in (9) the model is still identifiable.

Theorem 2 requires that each of the G variable groups contains at least three variables,
and that for each of these 3G variables, the corresponding conditional probability table Λj

has linearly independent columns. Theorem 2 guarantees not only the continuous param-
eters are identifiable, but also the discrete variable grouping structure summarized by L
is identifiable. This is important practically as typically the appropriate variable grouping
structure is unknown, and hence needs to be inferred from the data.

The conditions in Theorem 2 essentially requires at least 3G conditional probability
tables, each being a matrix of size dj×K, to have full column rank. This implicitly requires
dj ≥ K. Tan and Mukherjee (2017) proposed a moment-based estimation approach for
traditional mixed membership models and briefly discussed the identifiability issue, also
assuming dj ≥ K with some full-rank requirements. However, the cases where the number
of categories dj ’s are small but the number of extreme latent profiles K is much larger
can arise in applications; for example, the disability survey data analyzed in Erosheva
et al. (2007) and Manrique-Vallier (2014) have binary responses with d1 = · · · = dp =
2 while the considered K ranges from 2 to 10. Our next theoretical result establishes
weaker conditions for identifiability that accommodates dj < K, by taking advantage of the
dimension-grouping property of our proposed model class.

Before stating the theorem, we first introduce two useful notions of matrix products.
Denote by

⊗
the Kronecker product of matrices and by

⊙
the Khatri-Rao product. Con-

sider two matrices A = (ai,j) ∈ R
m×r, B = (bi,j) ∈ R

s×t; and another two matrices
C = (ci,j) = (c:,1 | · · · | c

:,k) ∈ R
n×k, D = (di,j) = (d:,1 | · · · | d

:,k) ∈ R
`×k, then there are

A
⊗

B ∈ R
ms×rt and C

⊙
D ∈ R

n`×k with

A
⊗

B =



a1,1B · · · a1,rB

...
...

...
am,1B · · · am,rB


 , C

⊙
D =

(
c:,1
⊗
d:,1 | · · · | c:,k

⊗
d
:,k

)
.

The above definitions show the Khatri-Rao product is the column-wise Kronecker product.
The Khatri-Rao product of matrices plays an important role in the technical definition of
the proposed dimension-grouped MMM. The following Theorem 3 exploits the grouping
structure in L to relax the identifiability conditions in the previous Theorem 2.

Theorem 3 Denote by Ag = {j ∈ [p] : `j,g = 1} the set of variables that belong to group g.
Suppose each Ag can be partitioned into three sets Ag = ∪3

m=1Ag,m, and for each g ∈ [G]

and m ∈ {1, 2, 3} the matrix Λ̃g,m defined below has full column rank K.

Λ̃g,m :=
⊙

j∈Ag,m

Λj . (10)
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Also suppose for each j ∈ [p], not all the column vectors of Λj are identical. Then the model
parameters L, Λ, and Φ are strictly identifiable.

Compared to Theorem 2, Theorem 3 relaxes the identifiability conditions by lifting the
full-rank requirement on the individual matrices Λj ’s. Rather, as long as the Khatri-Rao
product of several different Λj ’s have full column rank as specified in (10), identifiability
can be guaranteed. Recall that the Khatri-Rao product of two matrices Λj1 of size dj1 ×K
and Λj2 of size dj2 ×K has size (dj1dj2) ×K. So intuitively, requiring Λj1

⊙
Λj2 to have

full column rank K is weaker than requiring each of Λj1 and Λj2 to have full column rank
K. The following Example 2 formalizes this intuition.

Example 2 Consider d1 = d2 = 2, K = 3 with the following conditional probability tables

Λ1 =

(
a1 a2 a3

1− a1 1− a2 1− a3

)
; Λ2 =

(
b1 b2 b3

1− b1 1− b2 1− b3

)
.

Suppose variables j = 1, 2 belong to the same group, e.g., `1,: = `2,:. Then since K >
d1 = d2, both Λ1 and Λ2 can not have full column rank K. However, if we consider their
Khatri-Rao product, it has size 4× 3 in the following form

Λ1

⊙
Λ2 =




a1b1 a2b2 a3b3
a1(1− b1) a2(1− b2) a3(1− b3)
(1− a1)b1 (1− a2)b2 (1− a3)b3

(1− a1)(1− b1) (1− a2)(1− b2) (1− a3)(1− b3)


 .

Indeed, Λ1
⊙

Λ2 has full column rank for “generic” parameters θ := (a1, a2, a3, b1, b2, b3);
precisely speaking, for θ varying almost everywhere in the parameter space [0, 1]6 (the 6-
dimensional hypercube), the subset of θ that renders Λ1

⊙
Λ2 rank-deficient has Lebesgue

measure zero in R
6. To see this, let x = (x1, x2, x3)

> ∈ R
3 such that (Λ1

⊙
Λ2)x = 0, then





a1b1x1 + a2b2x2 + a3b3x3 = 0;

a1(1− b1)x1 + a2(1− b2)x2 + a3(1− b3)x3 = 0;

(1− a1)b1x1 + (1− a2)b2x2 + (1− a3)b3x3 = 0;

(1− a1)(1− b1)x1 + (1− a2)(1− b2)x2 + (1− a3)(1− b3)x3 = 0;

invertible transform
⇐⇒





a1b1x1 + a2b2x2 + a3b3x3 = 0;

a1x1 + a2x2 + a3x3 = 0;

b1x1 + b2x2 + b3x3 = 0;

x1 + x2 + x3 = 0.

Based on the last four equations above, one can use basic algebra to obtain the following set
of equations about (x1, x2, x3),

(
b1 − b3 b3 − b2
a1 − a3 a3 − a2

)(
x1
x2

)
=

(
b2 − b1 b1 − b3
a2 − a1 a1 − a3

)(
x2
x3

)
=

(
0
0

)
.
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This implies as long as the following inequalities hold, there must be x1 = x2 = x3 = 0,

{
(b1 − b3)(a3 − a2)− (a1 − a3)(b3 − b2) 6= 0;

(b2 − b1)(a1 − a3)− (a2 − a1)(b1 − b3) 6= 0
(11)

Now note that the subset of the parameter space {(a1, a2, a3, b1, b2, b3) ∈ [0, 1]6 : Eq. (11) holds}
is a Lebesgue measure zero subset of [0, 1]6. This means for such “generic” parameters vary-
ing almost everywhere in the parameter space [0, 1]6, the (Λ1

⊙
Λ2)x = 0 implies x = 0

which means Λ1
⊙

Λ2 has full column rank K = 3.

Example 2 shows that the Khatri-Rao product of two matrices seems to have full rank
under fairly mild conditions. This indicates that the conditions in Theorem 3 are much
weaker than those in Theorem 2 by imposing the full-rankness requirement only on a certain
Khatri-Rao product of the Λj-matrices, instead of on individual Λjs. To be more concrete,
the next Example 3 illustrates Theorem 3, as a counterpart of Example 1.

Example 3 Consider the following grouping matrix L with G = 3 and p = 6G = 18,

L =



L1

L1

L1


 , where L1 =




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1



. (12)

Then L contains six copies of the identity matrix IG after a row permutation. Thanks
to greater variable grouping compared to the previous Example 1, we can use Theorem 3
(instead of Theorem 2) to establish identifiability. Specifically, consider binary responses
with d1 = · · · = d18 =: d = 2 and K = 3 extreme latent profiles. For g = 1, define
sets Ag,1 = {1, 2}, Ag,2 = {7, 8}, Ag,3 = {13, 14}; for g = 2, define sets Ag,1 = {3, 4},
Ag,2 = {5, 6}, Ag,3 = {7, 8}; and for g = 3, define sets Ag,1 = {5, 6}, Ag,2 = {11, 12},

Ag,3 = {17, 18}. Then for each (g,m) ∈ {1, . . . , G} × {1, 2, 3}, the Λ̃g,m =
⊙

j∈Ag,m
Λj

defined in Theorem 3 has size d2 ×K which is 4× 3, similar to the structure in Example 2.
Now from the derivation and discussion in Example 2, we know such a Λ̃g,m has full rank for
almost all the valid parameters in the parameter space. So the conditions in Theorem 3 are
easily satisfied, and for almost all the valid parameters of such a Gro-M3, the identifiability
conclusion follows.

3.2 Generic Identifiability Conditions

Example 2 shows that the Khatri-Rao product of conditional probability tables easily has
full column rank in a toy case, and Example 3 leverages this observation to establish iden-
tifiability for almost all parameters in the parameter space using Theorem 3. We next
generalize this observation to derive more practical identifiability conditions, under the
generic identifiability notion introduced by Allman et al. (2009). Generic identifiability
generally means that the unidentifiable parameters belong to a set of Lebesgue measure
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zero with respect to the parameter space. Its definition adapted to the current Gro-M3s is
given as follows.

Definition 4 (Generic Identifiability of Gro-M3s) Under a Gro-M 3, a parameter space
T for (Λ,Φ) is said to be generically identifiable, if there exists a subset N ⊆ T that has
Lebesgue measure zero with respect to T such that for any (Λ,Φ) ∈ T \ N and an asso-
ciated L matrix, the following holds if and only if (L,Λ,Φ) and the alternative (L,Λ,Φ)
are identical up to permutations of the K extreme latent profiles and that of the G variable
groups,

P(y = c | L,Λ,Φ) = P(y = c | L,Λ,Φ), ∀c ∈ ×p
j=1[dj ].

Compared to the strict identifiability notion in Definition 1, the generic identifiability
notion in Definition 4 is less stringent in allowing the existence of a measure zero set of
parameters where identifiability does not hold; see the previous Example 2 for an instance
of a measure-zero set. Such an identifiability notion usually suffices for real data analyses
(Allman et al., 2009). In the following Theorem 5, we propose simple conditions to ensure
generic identifiability of Gro-M3s.

Theorem 5 For the notation Ag = {j ∈ [p] : `j,g = 1} defined in Theorem 3, suppose each
Ag can be partitioned into three non-overlapping sets Ag = ∪3

m=1Ag,m, such that for each
g and m the following holds,

∏

j∈Ag,m

dj ≥ K. (13)

Then the matrix
⊙

j∈Ag,m
Λj has full column rank K for generic parameters. Further, the

Λ, L, and Φ are generically identifiable.

Compared to Theorem 3, Theorem 5 lifts the explicit full-rank requirements on any
matrix. Rather, Theorem 5 only requires that certain products of dj ’s should not be smaller
than the number of extreme latent profiles, which in turn guarantees that the Khatri-Rao
products of matrices have full column rank for generic parameters. Intuitively, the more
variables belonging to a group and the more categories each variable has, the easier the
identifiability conditions are to satisfy. This illustrates the benefit of dimension-grouping
to model identifiability.

4. Dirichlet Gro-M3 and Bayesian Inference

4.1 Dirichlet model and identifiability

The previous section studies identifiability of general Gro-M3s, not restricting the distri-
bution Dα(·) of the mixed membership scores to be a specific form. Next we focus on an
interesting special case where Dα(·) is a Dirichlet distribution with unknown parameters α.
Among all the possible distributions for the individual mixed-membership proportions, the
Dirichlet distribution is the most popular. It is widely used in applications including social
science survey data (Erosheva et al., 2007; Wang et al., 2015), topic modeling (Blei et al.,
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2003; Griffiths and Steyvers, 2004), and data privacy (Manrique-Vallier and Reiter, 2012).
We term the Gro-M3 with πi following a Dirichlet distribution the Dirichlet Gro-M3, and
propose a Bayesian inference procedure to estimate both the discrete variable groupings and
the continuous parameters. Such a Dirichlet Gro-M3 has the graphical model representation
in Figure 1(d).

For an unknown vector α = (α1, . . . , αK) with αk > 0 for all k ∈ [K], suppose

Dirichlet Gro-M3: πi = (πi,1, . . . , πi,K)
i.i.d.
∼ Dirichlet(α1, . . . , αK). (14)

The vector α characterizes the distribution of membership scores. As αk → 0, the model
simplifies to a latent class model in which each individual belongs to a single latent class.
For larger αk’s, there will tend to be multiple elements of πi that are not close to 0 or 1.

Recall that the previous identifiability conclusions in Theorems 2–5 generally apply to L,
Λ, and Φ, where Φ is the core tensor with KG entries in our hybrid tensor decomposition.
Now with the core tensor Φ parameterized by the Dirichlet distribution in particular, we
can further investigate the identifiability of the Dirichlet parameters α. The following
proposition establishes the identifiability of α for Dirichlet Gro-M3s.

Proposition 6 Consider a Dirichlet Gro-M 3. If G ≥ 2, then following conclusions hold.

(a) If the conditions in Theorem 2 or Theorem 3 are satisfied, then the Dirichlet param-
eters α = (α1, . . . , αK) are strictly identifiable.

(b) If the conditions in Theorem 5 are satisfied, then the Dirichlet parameters α =
(α1, . . . , αK) are generically identifiable.

Remark 7 Our identifiability results have implications for the collapsed Tucker (c-Tucker)
decomposition for multivariate categorical data (Johndrow et al., 2017). Our assumption
that the latent memberships underlying several variables are in one state is similar to that in
c-Tucker. However, c-Tucker does not model mixed memberships, and the c-Tucker tensor
core, Φ in our notation, is assumed to arise from a CP decomposition (Goodman, 1974)
with φk1,...,kG =

∑r
v=1wv

∏G
g=1 ψg,kg ,v. We can invoke the uniqueness of the CP decom-

position (e.g., Kruskal, 1977; Allman et al., 2009) to obtain identifiability of parameters
w = (wv; v ∈ [r]) and ψ = (ψg,k,v; g ∈ [G], k ∈ [K], v ∈ [r]). Hence, under our assump-
tions on the variable grouping structure in Section 3, imposing existing mild conditions on
w and ψ will yield identifiability of all the c-Tucker parameters.

4.2 Bayesian inference

Considering the complexity of our latent structure model, we adopt a Bayesian approach.
We next describe the prior specification for L, Λ, and α in Dirichlet Gro-M3s. The number
of variable groups G and number of extreme latent profiles K are assumed known; we relax
this assumption in Section 5. Recall the indicators s1, . . . , sp ∈ [G] are defined as sj = g if
and only if `j,g = 1, so there is a one-to-one correspondence between the matrix L and the
vector s = (s1, . . . , sp). We adopt the following prior for the sj ’s,

s1, . . . , sp
i.i.d.
∼ Categorical([G], ξ1, . . . , ξG),
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where Categorical([G], ξ1, . . . , ξG) is a categorical distribution over G categories with pro-
portions ξg ≥ 0 and

∑G
g=1 ξg = 1. We choose uniform priors over the probability simplex

for (ξ1, . . . , ξG) and each column of Λj . We remark that if certain prior knowledge about
the variable groups is available for the data, then it is also possible to employ informa-
tive priors such as those in Paganin et al. (2021) for the sj ’s. For the Dirichlet parame-

ters α, defining α0 =
∑K

k=1 αk and η = (α1/α0, . . . , αK/α0), we choose the hyperpriors
α0 ∼ Gamma(aα, bα) and η is uniform over the (K − 1)-probability simplex.

Given a sample of size n, denote the observed data by Y = {yi; i = 1, . . . , n}. We
propose a Metropolis-Hastings-within-Gibbs sampler and also a Gibbs sampler for posterior
inference of L, Λ, and α based on the data Y.

Metropolis-Hastings-within-Gibbs Sampler. This sampler cycles through the fol-
lowing steps.

Step 1–3. Sample each column of the conditional probability tables Λj ’s, the individual
mixed-membership proportions πi’s, and the individual latent assignments zi,g’s from
their full conditional posterior distributions. Define indicator variables yi,j,c = I(yi,j =
c) and zi,g,k = I(zi,g = k). These posteriors are

{λj,:,k | −}sj=g ∼ Dirichlet

(
1 +

n∑

i=1

zi,g,kyi,j,1, . . . , 1 +
n∑

i=1

zi,g,kyi,j,dj

)
;

πi | − ∼ Dirichlet


α1 +

G∑

g=1

zi,g,1, . . . , αK +
G∑

g=1

zi,g,K


 ;

P(zi,g = k | −) =
πi,k

∏
j: sj=g

∏dj
c=1 λ

yi,j,c
j,c,k

∑K
k′=1 πi,k′

∏
j: sj=g

∏dj
c=1 λ

yi,j,c
j,c,k′

, k ∈ [K].

Step 4. Sample the variable grouping structure (s1, . . . , sp). The posterior of each sj is

P(sj = g | −) =
ξg
∏n

i=1 λj,yi,j ,zi,g∑G
g′=1 ξg′

∏n
i=1 λj,yi,j ,zi,g′

, g ∈ [G].

The posterior of (ξ1, . . . , ξG) is

(ξ1, . . . , ξG) | − ∼ Dirichlet


1 +

p∑

j=1

I(sj = 1), . . . , 1 +

p∑

j=1

I(sj = G)


 .

Step 5. Sample the Dirichlet parameters α = (α1, . . . , αK) via Metropolis-Hastings sam-
pling. The conditional posterior distribution of α (or equivalently, α0 and η) is

p(α | −) ∝ Gamma(α0 | a, b)×Dirichlet(η | 1K)×
n∏

i=1

Dirichlet(πi | α)
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∝ αaα−1
0 exp(−bαα0)×

[
Γ(α0)∏K
k=1 Γ(αk)

]n
×

K∏

k=1

[
n∏

i=1

πi,k

]αk

,

which is not an easy-to-sample-from distribution. We use a Metropolis-Hastings sam-
pling strategy in Manrique-Vallier and Reiter (2012). The steps are detailed as follows.

• Sample each entry of α? = (α?
1, . . . , α

?
K) from independent lognormal distribu-

tions (proposal distribution g(α? | α)) as

α?
k

ind.
∼ lognormal(logαk, σ

2
α), (15)

where σα is a tuning parameter that affects the acceptance ratio of the draw.
Based on our preliminary simulations, σ should be relatively small to avoid the
acceptance ratio to be always too close to zero.

• Let α?
0 =

∑K
k=1 α

?
k. Define

r? =
p(α? | −)g(α | α?)

p(α | −)g(α? | α)

=

(
α?
0

α0

)aα−1

exp (−bα(α
?
0 − α0))×

(
Γ(α∗

0)

Γ(α0)
·

∏K
k=1 Γ(αk)∏K
k=1 Γ(α

?
k)

)n

×
K∏

k=1

(
n∏

i=1

πi,k

)α?
k
−αk

×
K∏

k=1

α?
k

αk

The Metropolis-Hastings acceptance ratio of the proposed α? is r = min {1, r?}.

We track the acceptance ratio in the Metropolis-Hastings step along the MCMC iterations
in a simulation study. Figure 3 shows the boxplots of the average acceptance ratios for
various sample sizes in the same simulation as the later Table 3. This figure shows that the
Metropolis-Hastings acceptance ratio is generally high and mostly exceeds 80%.

Gibbs Sampler. We also develop a fully Gibbs sampling algorithm for our Gro-M3,
leveraging the auxiliary variable method in Zhou (2018) to sample the Dirichlet parameters
α. Especially, since we have proved in Proposition 6 that the entire Dirichlet parameter
vector α = (α1, . . . , αK) is identifiable from the observed data distribution, we choose
to freely and separately sample all the entries α1, . . . , αK instead of constraining these
K entries to be equal as in Zhou (2018). Recall that for each subject i, zi,g ∈ [K] for
g ∈ [G] denotes the latent profile realization for the gth group of items. Introduce new
notation Zmult

ik =
∑G

g=1 1(zi,g = k) for i ∈ [N ] and k ∈ [K]. Then (Zmult
i1 , . . . , Zmult

i1 )
follows the Dirichlet-Multinomial distribution with parameters G and (α1, . . . , αK). We
introduce auxiliary Beta variables qi for i ∈ [N ] and auxiliary Chinese Restaurant Table
(CRT) variables tik for i ∈ [N ] and k ∈ [K]. Endowing the Dirichlet parameter αk with the
prior αk ∼ Gamma(a0, b0), we have the following Gibbs updates for sampling αk.
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Figure 3: Metropolis-Hastings average acceptance ratio in the simulation setting (p,G,K) =
(30, 6, 4), corresponding to the first setting in Table 3 in the manuscript.

Step 5? Sample the auxiliary variables qi, tik and the Dirichlet parameters αk from the
following full conditional posteriors:

qi ∼ Beta

(
K∑

k=1

Zmult
ik ,

K∑

k=1

αk

)
, i ∈ [n];

tik ∼ CRT(Zmult
ik , αk), i ∈ [n], k ∈ [K];

αk ∼ Gamma

(
a0 +

n∑

i=1

tik, b0 −
n∑

i=1

log(1− qi)

)
, k ∈ [K].

Replacing the previous Step 5 in the Metropolis-within-Gibbs sampler with the above Step
5? gives a fully Gibbs sampling algorithm for Gro-M3.

Our simulations reveal the following empirical comparisons between the Gibbs sam-
pler and the Metropolis-Hastings-within-Gibbs (MH-within-Gibbs) sampler. In terms of
Markov chain mixing, the Gibbs sampler mixes faster than the MH-within-Gibbs sampler
as expected, and requires fewer MCMC iterations to generate quality posterior samples
if initialized well. However, in terms of estimation accuracy, we observe that the MH-
within-Gibbs sampler tends to have better accuracy in estimating the identifiable model
parameters. This is likely because that the MH-within-Gibbs sampler performs better on
exploring the entire posterior space through the proposal distributions; whereas the Gibbs
sampler tends to be more heavily influenced by the initial value of the parameters and can
converge to suboptimal distributions if not initialized well. We next provide the experimen-
tal evidence behind the above observations.

Figure 4 provides typical traceplots for the MH-within-Gibbs sampler (left) and the
Gibbs sampler (middle and right) in one simulation trial in the same setting as the later
Table 3. The four horizontal lines in each panel denote the true parameter values α =
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(α1, α2, α3, α4) = (0.4, 0.5, 0.6, 0.7). The left and middle panels of Figure 4 are traceplots
of αk in MCMC chains initialized randomly with the same initial value, whereas the right
panel corresponds to a chain initialized with the true parameter value α. Figure 4 shows
that when initialized randomly with the same value, the MH-within-Gibbs chain converges
to distributions much closer to the truth than the Gibbs sampler; in contrast, the Gibbs
chain only manages to converge to the desirable posteriors when initialized with the true
α. Furthermore, Figure 5 plots the root mean squared error quantitles (25%, 50%, 75%)
of α estimated using the two samplers from the 50 simulation replicates in each setting.
The parameter initialization in each replicate for the two samplers is random and identical.
Figure 5 clearly shows that the MH-within-Gibbs sampler has lower estimation error for α.
In summary, when initialized randomly using the same mechanism, the MH-within-Gibbs
sampler has higher parameter estimation accuracy despite that the Gibbs sampler mixes
faster. Therefore, we choose to present the estimation results of the MH-within-Gibbs
sampler in the later Section 5.

Figure 4: Traceplots of the MH-within-Gibbs sampler (left) and the Gibbs sampler (middle
and right) applied to one simulated dataset with (n, p,G,K) = (500, 30, 6, 4). The horizontal
lines in each panel denote the true α = (α1, α2, α3, α4) = (0.4, 0.5, 0.6, 0.7). The left and
middle panels correspond to chains initialized randomly with the same initial value, whereas
the right panel corresponds to a chain initialized with the true parameter value α.

After collecting posterior samples from the output of the MCMC algorithm, for those
continuous parameters in the model we can calculate their posterior means as point esti-
mates. As for the discrete variable grouping structure, we can obtain the posterior modes

of each sj . That is, given the T posterior samples of s(t) = (s
(t)
1 , . . . , s

(t)
p ) for t = 1, . . . , T ,

we define point estimates s and L with entries

sj = argmax
g∈[G]

T∑

t=1

I(s
(t)
j = g); `j,g =

{
1, if sj = g;

0, otherwise.
(16)

5. Simulation Studies

In this section, we carry out simulation studies to assess the performance of the proposed
Bayesian estimation approach, while verifying that identifiable parameters are indeed esti-
mated more accurately as sample size grows. In Section 5.1, we perform a simulation study
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Figure 5: Root mean squared errors (RMSE) quantiles (25%, 50%, 75%) for the MH-
within-Gibbs sampler and the Gibbs sampler obtained from 50 simulation replicates for
each sample size. In each simulation replicate, the initializations of the Gibbs chain and
the MH-within-Gibbs chain are identical.

to assess the estimation accuracy of the model parameters, assuming the number of extreme
latent profiles K and the number of variable groups G are known. This is the same assump-
tion as in many existing estimation methods of traditional MMMs (e.g., Manrique-Vallier
and Reiter, 2012). In Section 5.2, to facilitate the use of our estimation method in appli-
cations, we propose data-driven criteria to select K and G and perform a corresponding
simulation study.

5.1 Estimation of Grouping Structure and Model Parameters

In this simulation study, we assess the proposed algorithm’s performance in estimating the
(L,Λ,α) in Dirichlet Gro-M3s. We consider various simulation settings, with K = 2, 3, or
4, and (p,G) = (30, 6), (60, 12), or (90, 15). The number of categories of each yj is specified
to be three, i.e., d1 = · · · = dp = 3. The true Λ-parameters are specified as follows: in the
most challenging case with K = 4 and (p,G) = (90, 15), for u = 0, 1, . . . , p/6− 1 we specify

Λ6u+1 =



0.1 0.7 0.3 0.1
0.8 0.2 0.4 0.1
0.1 0.1 0.3 0.8


 ; Λ6u+2 =



0.1 0.8 0.1 0.2
0.2 0.1 0.6 0.5
0.7 0.1 0.3 0.3


 ; Λ6u+3 =



0.1 0.8 0.2 0.9
0.2 0.1 0.5 0.05
0.7 0.1 0.3 0.05


 ;

Λ6u+4 =



0.1 0.1 0.8 0.3
0.8 0.2 0.1 0.6
0.1 0.7 0.1 0.1


 ; Λ6u+5 =



0.2 0.7 0.3 0.1
0.6 0.2 0.4 0.1
0.2 0.1 0.3 0.8


 ; Λ6u+6 =



0.1 0.8 0.1 0.2
0.2 0.1 0.1 0.6
0.7 0.1 0.8 0.2


 .

As for other simulation settings with smaller K and (p,G), we specify the Λj ’s by taking a
subset of the above matrices and retaining a subset of columns from each of these matrices.
The true Dirichlet parameters α are set to (0.4, 0.5) for K = 2, (0.4, 0.5, 0.6) for K = 3,
and (0.4, 0.5, 0.6, 0.7) for K = 4. The true grouping matrix L of size p × G is specified to
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containing p/G copies of identity submatrices IG up to a row permutation. Under these
specifications, our identifiability conditions in Theorem 3 are satisfied. We consider sample
sizes n = 250, 500, 1000, 1500. In each scenario, 50 independent datasets are generated and
fitted with the proposed MCMC algorithm described in Section 4. In our MCMC algorithm
under all simulation settings, we take hyperparameters to be (aα, bα) = (2, 1) and σα = 0.02.
The MCMC sampler is run for 15000 iterations, with the first 10000 iterations as burn-in
and every fifth sample is collected after burn-in to thin the chain.

We observed good mixing and convergence behaviors of the model parameters from
examining the trace plots. In particular, simulations show that the estimation of the discrete
variable grouping structure in matrix L (equivalently, vector s) is quite accurate in general,
and the posterior means of the continuous Λ and α are also close to their truth. Next
we first present details of two typical simulation trials as an illustration, before presenting
summaries across the independent simulation replicates.

Two random simulation trials were taken from the settings (n, p,G,K) = (500, 30, 6, 2)
and (n, p,G,K) = (500, 90, 15, 2). All the parameters were randomly initialized from their
prior distributions. In Figure 6, the left three plots in each of the first two rows show the
sampled Liter. in the MCMC algorithm, after the 1st, 201st, and 401st iterations, respec-
tively; the fourth plot show the posterior mode L defined in (16), and the last plot shows
the simulation truth L. If an L̃ equals the true L after a column permutation then it indi-
cates L̃ and L induce identical variable groupings. The bottom two plots in Figure 6 show
the Adjusted Rand Index (ARI, Rand, 1971) of the variable groupings of Liter. (siter.) with
respect to the true L (true s) along the first 1000 MCMC iterations. The ARI measures
the similarity between two clusterings, and it is appropriate to compare a true s and an
estimated s because they each summarizes a clustering of the p variables into G groups.
The ARI is at most 1, with ARI = 1 indicating perfect agreement between two clusterings.
The bottom row of Figure 6 shows that in each simulation trial, the ARI measure starts
with values around 0 due to the random MCMC initialization, and within a few hundred
iterations the ARI increases to a distribution over much larger values. For the simulation
with (n, p,G,K) = (500, 90, 15, 2), the posterior mode of L exactly equals the truth, and
the corresponding plot on the bottom right of Figure 6 shows the ARI is distributed very
close to 1 after just about 500 MCMC iterations. In general, our MCMC algorithm has
excellent performance in inferring the L from randomly initialized simulations; also see the
later Tables 1–3 for more details.

We next present estimation accuracy results of both L and (Λ,α) summarized across 50
simulation replicates in each setting. For continuous parameters (Λ,α), we calculate their
Root Mean Squared Errors (RMSEs) to evaluate the estimation accuracy. To obtain the
estimation error of (Λ,α) after collecting posterior samples, we need to find an appropriate
permutation of the K extreme latent profiles in order to compare the (Λ,α) and the true
(Λ,α). To this end, we first reshape each of Λ and Λ to a (

∑p
j=1 dj) × K matrix Λmat

and Λmat, calculate the inner product matrix (Λmat)
>Λmat, and then find the index ik of

the largest entry in each kth row of the inner product matrix. Such a vector of indices
(i1, . . . , iK) gives a permutation of the K profiles, and we will compare Λj,:,(i1,...,iK) to Λj

and compare α(i1,...,iK) to α. In Tables 1–3, we present the RMSEs of (Λ,α) and the ARIs of
L under the aforementioned 36 different simulation settings. The median and interquartile
range of the ARIs or RMSEs across the simulation replicates are shown in these tables.
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Figure 6: Estimation of L (from s) in two random simulation trials, one under (n, p,G,K) =
(500, 30, 6, 2) and the other under (n, p,G,K) = (500, 90, 15, 2). In each of the first two rows,
the left three plots record the sampled Liter. after the 1st, 201st, and 401st MCMC iteration,
respectively. The fourth plot shows the posterior mode L and the last shows the true L.
The two plots in the bottom row record the ARI of the clustering of p variables given by
Liter. along the first 1000 MCMC iterations, for each of the two simulation scenarios.

Tables 1–3 show that under each setting of true parameters with a fixed (p,G,K), the
ARIs of the variable grouping L generally increase as sample size n increases, and the RMSEs
of Λ and α decreases as n increases. This shows the increased estimation accuracy with
an increased sample size. In particular, the estimation accuracy of the variable grouping
structure is quite high across the considered settings. The estimation errors are slightly
larger for larger values of K in Table 3 compared to smaller values of K in Tables 1 and
2. Overall, the simulation results empirically confirm the identifiability and estimability of
the model parameters in our Dirichlet Gro-M3.
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{p, G} n
ARI of L RMSE of Λ RMSE of α

Median (IQR) Median (IQR) Median (IQR)

(30, 6)

250 0.74 (0.18) 0.042 (0.005) 0.064 (0.056)
500 0.88 (0.17) 0.030 (0.004) 0.031 (0.043)

1000 0.91 (0.29) 0.023 (0.014) 0.027 (0.028)
1500 0.91 (0.31) 0.018 (0.022) 0.026 (0.045)

K = 2 (60, 12)

250 0.73 (0.13) 0.042 (0.004) 0.039 (0.041)
500 0.79 (0.14) 0.032 (0.003) 0.031 (0.021)

1000 0.85 (0.20) 0.027 (0.010) 0.018 (0.029)
1500 0.81 (0.21) 0.028 (0.016) 0.024 (0.025)

(90, 15)

250 0.95 (0.05) 0.042 (0.003) 0.045 (0.045)
500 1.00 (0.00) 0.026 (0.002) 0.032 (0.023)

1000 1.00 (0.00) 0.018 (0.001) 0.019 (0.021)
1500 1.00 (0.08) 0.015 (0.010) 0.017 (0.017)

Table 1: Simulation results of the Dirichlet Gro-M3 for K = 2. “ARI” of L is the Adjusted
Rand Index of the estimated variable groupings with respect to the truth. “RMSE” of Λ
and α are Root Mean Squared Errors. “Median” and “IQR” are based on 50 replicates in
each simulation setting.

(p, G) n
ARI of L RMSE of Λ RMSE of α

Median (IQR) Median (IQR) Median (IQR)

(30, 6)

250 1.00 (0.00) 0.045 (0.004) 0.046 (0.048)
500 1.00 (0.00) 0.033 (0.003) 0.046 (0.059)

1000 1.00 (0.00) 0.023 (0.022) 0.039 (0.037)
1500 1.00 (0.00) 0.019 (0.023) 0.029 (0.032)

K = 3 (60, 12)

250 1.00 (0.00) 0.045 (0.004) 0.044 (0.030)
500 1.00 (0.00) 0.032 (0.002) 0.030 (0.018)

1000 1.00 (0.00) 0.023 (0.002) 0.021 (0.017)
1500 1.00 (0.00) 0.018 (0.002) 0.020 (0.017)

(90, 15)

250 1.00 (0.00) 0.045 (0.002) 0.047 (0.036)
500 1.00 (0.00) 0.031 (0.002) 0.026 (0.022)

1000 1.00 (0.00) 0.022 (0.001) 0.021 (0.013)
1500 1.00 (0.21) 0.019 (0.024) 0.024 (0.023)

Table 2: Simulation results of the Dirichlet Gro-M3 for K = 3. See the caption of Table 1
for the meanings of columns.

Our MCMC algorithm can be viewed as a novel algorithm for Bayesian factorization of
probability tensors. To see this, note that the observed response vector ranges in the p-way
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(p, G) n
ARI of L RMSE of Λ RMSE of α

Median (IQR) Median (IQR) Median (IQR)

(30, 6)

250 1.00 (0.00) 0.064 (0.007) 0.078 (0.056)
500 1.00 (0.00) 0.046 (0.006) 0.062 (0.072)

1000 1.00 (0.00) 0.032 (0.004) 0.043 (0.046)
1500 1.00 (0.00) 0.026 (0.004) 0.032 (0.036)

K = 4 (60, 12)

250 1.00 (0.00) 0.064 (0.005) 0.060 (0.031)
500 1.00 (0.00) 0.043 (0.003) 0.047 (0.027)

1000 1.00 (0.00) 0.031 (0.002) 0.032 (0.014)
1500 1.00 (0.00) 0.025 (0.001) 0.023 (0.017)

(90, 15)

250 1.00 (0.00) 0.046 (0.004) 0.053 (0.036)
500 1.00 (0.00) 0.041 (0.003) 0.037 (0.022)

1000 1.00 (0.00) 0.029 (0.001) 0.026 (0.027)
1500 1.00 (0.00) 0.024 (0.001) 0.026 (0.020)

Table 3: Simulation results of the Dirichlet Gro-M3 for K = 4. See the caption of Table 1
for the meanings of columns.

contingency table yi ∈ [d1]×[d2] · · ·×[dp], and the marginal probabilities of a random vector
yi falling each of the

∏p
j=1 dj cells therefore form a probability tensor with p modes. Our

Gro-M3 model provides a general and interpretable hybrid tensor factorization; it reduces
to the nonnegative CP decomposition when the grouping matrix equals the p×1 one-vector
and reduces to the nonnegative Tucker decomposition when the grouping matrix equals
the p × p identity matrix. Specifically, our estimated Dirichlet parameters α help define
the tensor core and our estimated conditional probability parameters λj,k constitute the
tensor arms. In this regard, we view our proposed MCMC algorithm as contributing a new
tensor factorization method with nice uniqueness guarantee (i.e., identifiability guarantee)
and good empirical performance.

We conduct a simulation study to empirically verify the theoretical identifiability results.
Specifically, in the simulation setting (p,G,K) = (30, 6, 4), corresponding to the first setting
in Table 3, we now consider more sample sizes n ∈ {250, 500, 750, 1000, 1250, 1500}. For
each sample size, we conducted 50 independent simulation replications and calculated the
average root mean squared errors (RMSEs) of the model parametersΛ and α. Figure 7 plots
the RMSEs versus the sample size n and shows that as n increases, the RMSEs decrease
gradually. This trend provides an empirical verification of identifiability, and corroborates
the conclusion that under an identifiable model, the model parameters can be estimated
increasingly accurately as one collects more and more samples.

5.2 Selecting G and K from Data

In Section 3, model identifiability is established under the assumption that G and K are
known, like many other latent structure models; for example, generic identifiability of latent
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Figure 7: Empirical verification of identifiability. Root mean square errors (RMSEs) of
model parameters averaged across simulation replicates decrease as sample size increases.
The simulation setting is (p,G,K) = (30, 6, 4), which is the first setting in Table 3.

class models in Allman et al. (2009) is established assuming the number of latent classes
is known. But in order to provide a practical estimation pipeline applicable to real-world
applications, we next briefly discuss how to select G and K in a data-driven way.

Our basic rationale is to use a practically useful criterion that favors a model with
good out-of-sample predictive performance while remaining parsimonious. Gelman et al.
(2014) contains a comprehensive review of various predictive information criteria for evalu-
ating Bayesian models. We first considered using the Deviance Information Criterion (DIC,
Spiegelhalter et al., 2002), a traditional model selection criteria for Bayesian models. How-
ever, our preliminary simulations imply that DIC does not work well for selecting the latent
dimensions in Gro-M3s. In particular, we observed that DIC sometimes severely overselects
the latent dimensions in our model, while that the WAIC (Widely Applicable Information
Criterion, Watanabe, 2010) has better performance in our simulation studies (see the next
paragraph for details). Our observation about DIC agrees with previous studies on the
inconsistency of DIC in several different settings (Gelman et al., 2014; Hooten and Hobbs,
2015; Piironen and Vehtari, 2017).

Watanabe (2010) proved that WAIC is asymptotically equal to Bayesian leave-one-out
cross validation and provided a solid theoretical justification for using WAIC to choose
models with relatively good predictive ability. WAIC is particularly useful for models with
hierarchical and mixture structures, making it well suited to selecting the latent profile
dimension K and variable group dimension G in our proposed model. Denote the posterior
samples by θ(t), t = 1, . . . , T . For each i ∈ [n] and t ∈ [T ], denote

p(yi | θ
(t)) =

G∏

m=1




K∑

k=1

π
(t)
ik

∏

`
(t)
j,m=1

dj∏

c=1

(
λ
(t)
j,c,k

)yi,j,c

 .

In particular, Gelman et al. (2014) recommended using the following version of the WAIC,
where “lppd” refers to log pointwise predictive density and pWAIC2 measures the model
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complexity through the variance,

WAIC = −2 (lppd− pWAIC2) (17)

= −2
n∑

i=1

log

(
1

T

T∑

t=1

p(yi | θ
(t))

)
+ 2

n∑

i=1

varTt=1

(
log p

(
yi | θ

(t)
))

,

where varTt=1 refers to the variance based on T posterior samples, with definition varTt=1(at) =

1/(T − 1)
∑T

t=1

(
at−

∑T
t′=1 at′/T

)2
. Based on the above definition, the WAIC can be easily

calculated based on posterior samples. The model with a smaller WAIC is favored.

We carried out a simulation study to evaluate how WAIC performs on selecting G and
K, focusing on the previous setting where 50 independent datasets are generated from
(n, p,G,K) = (1000, 30, 6, 3). When fixing the candidate K to the truth K = 3 and
varying the candidate Gcandi ∈ {4, 5, 6, 7, 8}, the percentages of the datasets that each of
G = 4, 5, 6, 7, 8 is selected are 0%, 0%, 74% (true G), 20%, 6%, respectively. When fixing
the candidate G to the truth G = 6 and varying Kcandi ∈ {2, 3, 4, 5, 6}, the percentages of
the datasets that each of K = 2, 3, 4, 5, 6 is selected are 0%, 80% (true K), 6%, 4%, 10%,
respectively. Further, when varying (K,G) in the grid of 25 possible pairs {2, 3, 4, 5, 6} ×
{4, 5, 6, 7, 8}, the percentage of the datasets for which the true pair (K,G) = (3, 6) is
selected by WAIC is 58% and neither K nor G ever gets underselected. In general, our
simulations show that the WAIC does not tend to underselect the latent dimensions K and
G, and that it generally has a reasonably good accuracy of selecting the truth. We remark
that here our goal was to pick a practical selection criterion that can be readily applied
in real-world applications. To develop a selection strategy for deciding on the number of
latent dimensions with rigorous theoretical guarantees under the proposed models would
need future investigations.

6. Real Data Applications

6.1 NLTCS Disability Survey Data

In this section we apply Gro-M3 methodology to a functional disability dataset extracted
from the National Long Term Care Survey (NLTCS), created by the former Center for
Demographic Studies at Duke University. This dataset has been widely analyzed, both
with mixed membership models (Erosheva et al., 2007; Manrique-Vallier, 2014), and with
other models for multivariate categorical data (Dobra and Lenkoski, 2011; Johndrow et al.,
2017). Here we reanalyze this dataset as an illustration of our dimension-grouped mixed
membership approach.

The NLTCS dataset was downloaded from at http://lib.stat.cmu.edu/datasets/. It
is an extract containing responses from n = 21574 community-dwelling elderly Americans
aged 65 and above, pooled over 1982, 1984, 1989, and 1994 survey waves. The disability
survey contains p = 16 items, with respondents being either coded as healthy (level 0) or as
disabled (level 1) for each item. Each respondent provides a 16-dimensional response vector
yi = (yi,1, . . . , yi,16) ∈ {0, 1}× · · ·×{0, 1}, where each variable yi,j follows a special categor-
ical distribution with two categories, i.e., a Bernoulli distribution, with parameters specific
to item j. Among the p = 16 NLTCS disability items, functional disability researchers
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distinguish six activities of daily living (ADLs) and ten instrumental activities of daily liv-
ing (IADLs). Specifically, the first six ADL items are more basic and relate to hygiene
and personal care: eating, getting in/out of bed, getting around inside, dressing, bathing,
and getting to the bathroom or using a toilet. The remaining ten IADL items are related
to activities needed to live without dedicated professional care: doing heavy house work,
doing light house work, doing laundry, cooking, grocery shopping, getting about outside,
travelling, managing money, taking medicine, and telephoning.

Here, we apply the MCMC algorithm developed for the Dirichlet Gro-M3 to the data; the
Dirichlet distribution was also used to model the mixed membership scores in Erosheva et al.
(2007). Our preliminary analysis of the NLTCS data indicates the Dirichlet parameters α
are relatively small, so we adopt a small σα = 0.002 in the lognormal proposal distribution
in Eq. (15) in the Metropolis-Hastings sampling step. For each setting of (G,K), we run
the MCMC for 40000 iterations and consider the first 20000 as burn-in to be conservative.
We retain every 10th sample after the burn-in. The candidate values for the (G,K) are all
the combinations of G ∈ {2, 3, . . . , 15, 16} and K ∈ {6, 7, . . . , 11, 12}.

For selecting the values of latent dimensions (G,K) in practice, we recommend picking
the (G?,K?) that provide the lowest WAIC value and also do not contain any empty groups
of variables. In particular, for certain pairs of (G,K) (in our case, for all G > 10) under
the NLTCS data, we observe that the posterior mode of the grouping matrix, L, has some
all-zero columns. If G̃ denotes the number of not-all-zero columns in L, this means after
model fitting, the number of groups occupied by the p variables is G̃ < G. Models with
G̃ < G are difficult to interpret because empty groups that do not contain any variables
cannot be assigned meaning. Therefore, we focus only on models where L does not contain
any all-zero columns and pick the one with the smallest WAIC among these models. Using
this criterion, for the NLTCS data, the model with G? = 10 and K? = 9 is selected. We
have observed reasonably good convergence and mixing of our MCMC algorithm for the
NLTCS data. The proposed new dimension-grouping model provides a better fit in terms
of WAIC and a parsimonious alternative to traditional MMMs.

We provide the estimated L under the selected model withG? = 10 andK? = 9 in Figure
8. The estimated variable groupings are given in Figure 8. Out of the G? = 10 groups, there
are three groups that contain multiple items. In Figure 8, the item labels of these three
groups are colored in blue (j = 1, 2, 4, 5), red (j = 9, 10, 16), and yellow (j = 12, 13) for
better visualization. These groupings obtained by our model lead to several observations.
First, four out of six ADL variables (j = 1, 2, 4, 5) are categorized into one group. This
group of items are basic self-care activities that require limited mobility. Second, the three
IADL variables (j = 9, 10, 16) in one group may be related to traditional gender roles –
these items correspond to activities performed more frequently by women than by men.
Finally, the two items j = 12 “getting about outside” and j = 13 “traveling” that require
high level of mobility form another group. Note that such a model-based grouping of the
items is different than the established groups (ADL and IADL), and could not have been
obtained by applying previous mixed membership models (Erosheva et al., 2007).

In addition to the variable grouping structures, we plot posterior means of the positive
response probabilities Λ:,1,: in Figure 9 for the selected model. For each survey item j ∈ [p]
and each extreme latent profile k ∈ [K], the Λj,1,k records the conditional probability of
giving a positive response of being disabled on this item conditional on possessing the kth
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Figure 8: Estimated variable grouping structure s (i.e., L) for the NLTCS data with
(G?,K?) = (10, 9). The first six items are ADL “activities of daily living” and the remaining
ten items are IADL “instrumental activities of daily living”. Out of the G? = 10 variable
groups, the three groups containing multiple items are colored coded in blue (j = 1, 2, 4, 5),
red (j = 9, 10, 16), and yellow (j = 12, 13) for better visualization.

latent profile. The K? = 9 profiles are quite well separated and can be interpreted as usual
in mixed membership analysis. For example, in Figure 9, the leftmost column for k = 1
represents a relatively healthy latent profile, the rightmost column for k = 9 represents a
relatively severely disabled latent profile. As for the Dirichlet parameters α, their posterior
means are α = (0.0245, 0.0289, 0.0074, 0.0176, 0.0231, 0.0193, 0.0001, 0.0001, 0.0242).
Such small values of the Dirichlet parameters imply that membership score vectors tend
to be dominated by one component for a majority of individuals. This observation is
consistent with Erosheva et al. (2007). Meanwhile, here we obtain a simpler model than
that in Erosheva et al. (2007) as each subject can partially belong to up to G latent profiles
according to the grouping of variables, rather than p = 16 ones as in the traditional MMMs.

We emphasize again that the bag-of-words topic models make the exchangeability as-
sumption, which is fundamentally different from, and actually more restrictive than, our
Gro-M3 when modeling non-exchangeable item response data. Specifically, the exchange-
ability assumption would force all the item parameters {λj,k ∈ R

d : k ∈ [K]} across all
the items j ∈ [p] to be identical, which is unrealistic for the survey response data (or the
personality test data to be analyed in Section 6.2) in which different items clearly have
different characteristics. For example, if one were to use a topic model such as LDA to
analyze the NLTCS disability survey data, then a plot of the 16×K conditional probability
table like Figure 9 would not have been possible, because all the p = 16 items would share
the same K-dimensional vector of conditional Bernoulli probabilities.
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Figure 9: Estimated positive response probabilities Λ:,1,: for the NLTCS data with
(G?,K?) = (10, 9). Each column represents one extreme latent profile. Entries are con-
ditional probabilities of giving a positive response (1 = disabled) to each item given that
latent profile.

6.2 International Personality Item Pool (IPIP) Personality Test Data

We also apply the proposed method to analyze a personality test dataset containing mul-
tivariate polytomous responses: the International Personality Item Pool (IPIP) personality
test data. This dataset is publicly available from the Open-Source Psychometrics Project
website https://openpsychometrics.org/_rawdata/. The dataset contains nall = 1005
subjects’ responses to p = 40 Likert rated personality test items in the International Person-
ality Item Pool. After dropping those subjects who have missing entries in their responses,
there are n = 901 complete response vectors left. Each subject’s observed response vector
is 40-dimensional, where each dimension ranges in {1, 2, 3, 4, 5} with d1 = d2 = · · · = dp = 5
categories. Each of these 40 items was designed to measure one of the four personality
factors: Assertiveness (short as “AS”), Social confidence (short as “SC”), Adventurousness
(short as “AD”), and Dominance (short as “DO”). Specifically, items 1-10 measure AS,
items 11-20 measure SC, items 21-30 measure AD, and items 31-40 measure DO. The re-
sponses of certain reversely-termed items (i.e., items 7–10, 16–20, 25–30) are preprocessed
to be ỹij = 6− yij . We apply our new model to analyze this dataset for various numbers of
variable groups G ∈ {3, 4, 5, 6, 7} and K = 4 extreme latent profiles, and the WAIC selects
the model with G = 5 groups. We plot the posterior mode of the estimated grouping matrix
in Figure 10, together with the content of each item.

Figure 10 shows that our new modeling component of variable grouping is able to reveal
the item blocks that measure different personality factors in a totally unsupervised man-
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ner. Moreover, the estimated variable grouping cuts across the four established personality
factors to uncover a more nuanced structure. For example, the group of items {AS1, SC4,
SC10} concerns the verbal expression aspect of a person; the group of items {AS3–AS10,
SC5, SC7} concerns a person’s intention to lead and influence other people. In summary,
for this new personality test dataset, the proposed Gro-M3 not only provides better model
fit than the usual GoM model (since G = 5 � p = 40 is selected by WAIC), but also enjoys
interpretability and uncovers meaningful subgroups of the observed variables.

Figure 10: IPIP personality test items grouping structure estimated from our Gro-M3.
Item type abbreviations are: “AS” represents “Assertiveness”, “SC” represents “Social
confidence”, “AD” represents “Adventurousness”, and “DO” represents “Dominance”.

We also conduct experiments to compare our probabilistic hybrid decomposition Gro-
M3 with the probabilistic CP decomposition (the latent class model in Dunson and Xing
(2009)) and the probabilistic Tucker decomposition (the GoM model in Erosheva et al.
(2007)) on the IPIP personality test data. After fitting each tensor decomposition method
to the data, we calculate the model-based Cramer’s V measure between each pair of items
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and see how different methods perform on recovering meaningful item dependence structure.
Figure 11 presents the model-based pairwise Cramer’s V calculated using the three tensor
decompositions, along with the model-free Cramer’s V calculated directly from data. Figure
11 shows that our Gro-M3 decomposition clearly outperforms probabilistic CP and Tucker
decomposition in recovering the meaningful block structure of the personality test items.

Figure 11: Upper two panels: Cramer’s V posterior means for item pairs obtained using the
usual CP decomposition (latent class model) and the usual Tucker decomposition (grade
of membership model). Bottom left: Cramer’s V posterior means for item pairs obtained
using the Gro-M3. Bottom right: Sample Cramer’s V for item pairs calculated directly from
data.

7. Discussion

We have proposed a new class of mixed membership models for multivariate categorical data,
dimension-grouped mixed membership models (Gro-M3s), studied its model identifiability,
and developed a Bayesian inference procedure for Dirichlet Gro-M3s. On the methodology
side, the new model strikes a nice balance between model flexibility and model parsimony.
Considering popular existing latent structure models for multivariate categorical data, the
Gro-M3 bridges the parsimonious yet insufficiently flexible Latent Class Model (correspond-
ing to CP decomposition of probability tensors) and the very flexible yet not parsimonious
Grade of Membership Model (corresponding to Tucker decomposition of probability ten-
sors). On the theory side, we establish the identifiability of population parameters that
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govern the distribution of Gro-M3s. The quantities shown to be identifiable include not only
the continuous model parameters, but also the key discrete structure – how the variables’
latent assignments are partitioned into groups. The obtained identifiability conclusions lay
a solid foundation for reliable statistical analysis and real-world applications. We have per-
formed Bayesian estimation for the new model using a Metropolis-Hastings-within-Gibbs
sampler. Numerical studies show that the method can accurately estimate the quantities
of interest, empirically validating the identifiability results.

For the special case of binary responses with d1 = · · · = dp = 2, as pointed out by a re-
viewer, models with Bernoulli-to-latent-Poisson link in Zhou et al. (2016) and the Bernoulli-
to-latent-Gaussian link in multivariate item response theory models in Embretson and Reise
(2013) are useful tools that can capture certain lower-dimensional latent constructs. Our
model differs from these models in terms of statistical and practical interpretation. In our
Gro-M3, each subject’s latent variables are a mixed membership vector πi ranging in the
probability simplex ∆K−1, and can be interpreted as that each subject is a partial member
of each of the K extreme latent profiles. For k ∈ [K], the kth extreme latent profile also
can be directly interpreted by inspecting the estimated item parameters {λj,k : j ∈ [p]}.
Geometrically, the entry πik captures the relative proximity of each subject to the kth
extreme latent behavioral profile. Such an interpretation of individual-level mixtures are
highly desirable in applications such as social science surveys (Erosheva, 2003) and medical
diagnosis (Woodbury et al., 1978), where each extreme latent profile represents a prototyp-
ical response pattern. Therefore, in these applications, the mixed membership modeling is
more interpretable and preferable to using a nonlinear transformation of certain underlying
Gaussian or Poisson latent variables to model binary matrix data (such as the Bernoulli-
to-latent-Poisson or Bernoulli-to-latent-Gaussian link).

We remark that our proposed Gro-M3 covers the usual GoM model as a special case. In
fact, the GoM model can be readily recovered by setting our grouping matrix L to be the
p×p identity matrix (i.e., L = Ip). In terms of practical estimation, we can simply fix L = Ip
throughout our MCMC iterations and estimate other quantities in the same way as in our
current algorithm. Using this approach, we have compared the performance of our flexible
Gro-M3 and the classical GoM model in the real data analyses. Specifically, for both the
NLTCS disability survey data and the IPIP personality test data, fixing L = Ip with G = p
variable groups gives larger WAIC values than the selected more parsimonious model with
G � p. This indicates that the traditional GoM model is not favored by the information
criterion and gives a poorer model fit to the data. We also point out that our MCMC
algorithm can be viewed as a novel Bayesian factorization algorithm for probability tensors,
in a similar spirit to the existing Bayesian tensor factorization methods such as Dunson
and Xing (2009) and Zhou et al. (2015). Our Bayesian Gro-M3 factorization outperforms
usual probabilistic tensor factorizations in recovering the item dependence structure in the
IPIP personality data analysis. Therefore, we view our proposed MCMC algorithm as
contributing a new type of tensor factorization approach with nice uniqueness guarantee
(i.e., identifiability guarantee) and a Bayesian factorization procedure with good empirical
performance.

Our modeling assumption of the variable grouping structure can be useful to other
related models. For example, Manrique-Vallier (2014) proposed a longitudinal MMM to
capture heterogeneous pathways of disability and cognitive trajectories of elderly population
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for disability survey data. The proposed dimension-grouping assumption can provide an
interesting new interpretation to such longitudinal settings. Specifically, when survey items
are answered in multiple time points, it may be plausible to assume that a subject’s latent
profile locally persists for a block of items, before potentially switching to a different profile
for the next block of items. This can be readily accommodated by the dimension-grouping
modeling assumption, with the slight modification that items belonging to the same group
should be forced to be close in time. Our identifiability results can be applied to this setup.
Similar computational procedures can also be developed. Furthermore, although this work
focuses on modeling multivariate categorical data, the applicability of the new dimension-
grouping assumption is not limited to such data. A similar assumption may be made in
other mixed membership models; examples include the generalized latent Dirichlet models
for mixed data types studied in Zhao et al. (2018).

In terms of identifiability, the current work has focused on the population quantities,
including the variable grouping matrix L, the conditional probability tables Λ, and the
Dirichlet parameters α. In addition to these population parameters, an interesting future
question is the identification of individual mixed membership proportions {πi; i = 1, . . . , n}
for subjects in the sample. Studying the identification and accurate estimation of πi’s pre-
sumably requires quite different conditions from ours. A recent work (Mao et al., 2020)
considered a similar problem for mixed membership stochastic block models for network
data. Finally, in terms of estimation procedures, in this work we have employed a Bayesian
approach to Dirichlet Gro-M3s, and the developed MCMC sampler shows excellent com-
putational performance. In the future, it would also be interesting to consider method-of-
moments estimation for the proposed models related to Zhao et al. (2018) and Tan and
Mukherjee (2017).

This work has focused on proposing a new interpretable and identifiable mixed mem-
bership model for multivariate categorical data, and our MCMC algorithm has satisfactory
performance in real data applications. In the future, it would be interesting to develop scal-
able and online variational inference methods, which would make the model more applicable
to massive-scale real-world datasets. We expect that it is possible to develop variational
inference algorithms similar in spirit to Blei et al. (2003) for topic models and Airoldi et al.
(2008a) for mixed membership stochastic block models to scale up computation. In addi-
tion, just as the hierarchical Dirichlet process (Teh et al., 2006) is a natural nonparametric
generalization of the parametric latent Dirichlet allocation (Blei et al., 2003) model, it
would also be interesting to generalize our Gro-M3 to the nonparametric Bayesian setting
to automatically infer K and G. Developing a method to automatically infer K and G will
be of great practical value, because in many situations there might not be enough prior
knowledge for these quantatities. We leave these directions for future work.
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Supplementary Material

This Supplementary Material contains two sections. The first section Supplement A
contains the proofs of all the theoretical results in the paper. The second section Supple-
ment B presents a note on the pairwise mutual information measures between categorical
variables.

Supplement A: Proofs of Theoretical Results

7.1 Proof of Theorem 2

For notational simplicity, from now on we will omit the subscript i of subject-specific ran-
dom variables without loss of generality; all such variables including y and z should be
understood as associated with a random subject. Denote by z = (z1, . . . , zG) ∈ [K]G a con-
figuration of the latent profiles realized for the G groups of variables. Recall that given a
fixed grouping matrix L, the associated group assignment vector s = (s1, . . . , sp) is defined
as sj = g if and only if `j,g = 1. We next introduce a new notation. For each variable j ∈ [p],
each category cj ∈ [dj ], and each possible latent profile configuration z ∈ {1, . . . ,K}G, de-
fine a new parameter γj,cj ,z to be

γj,cj ,z = λj,cj ,zsj . (18)

Collect all the γ-parameters in Γ = (γj,cj ,z), then Γ is a three-way array (which is a tensor of
size p× d×KG if d1 = · · · = dp = d) since j ∈ [p], cj ∈ [dj ], and z ∈ [K]G. For each j ∈ [p],
we will denote the dj × KG matrix Γj,:,: by Γj for simplicity. The representation in (18)
implies that many entries in Γ are equal. Specifically, for two arbitrary latent assignment
vectors z = (z1, . . . , zG) and z′ = (z′1, . . . , z

′
G) with z 6= z′, as long as zsj = z′sj there

would be γj,cj ,z = γj,cj ,z′ . We choose to use the over-parameterization in (18) since this
notation facilitates the study of identifiability through the underlying tensor decomposition
structure, as will be revealed soon. In particular, the Γj ’s have the following property.

Lemma 8 Under the definition in (18), for any set of indices S ⊆ [p] such that {sj : j ∈
S} ⊇ [G], there is

G⊗

g=1




⊙

j∈S: sj=g

Λj


 =

⊙

j∈S

Γj . (19)

Now we can equivalently rewrite the previous model specification (7) as follows,

P
C-M3

(y1 = c1, . . . , yp = cp | L,Λ,Φ) = πc1,...,cp

=

K∑

z1=1

· · ·
K∑

zG=1

φz1,...,zG

p∏

j=1

λj,cj ,zsj =

K∑

z1=1

· · ·
K∑

zG=1

φz1,...,zG

p∏

j=1

γj,cj ,z

=
∑

z∈[K]G

φz

p∏

j=1

γj,cj ,z = P(y1 = c1, . . . , yp = cp | Γ,Φ), (20)

38



Gro-M3s

where c = (c1, . . . , cp) ∈ ×p
j=1[dj ]. Denote by Φ = (φz1,...,zG) a G-th order tensor of size

K × · · ·×K. Denote by vec(Π) the vectorized version of Π, so vec(Π) is a vector of length∏p
j=1 dj ; in particular, this vector has entries defined as follows,

vec(Π)c1+(c2−1)d1+···+(cp−1)d1···dp−1
= πc1,c2,··· ,cp (21)

for any c = (c1, . . . , cp) ∈ ×p
j=1[dj ]. Suppose alternative parameters (L,Λ,Φ) lead to the

same distribution of the observed variables; that is P(y = c | L,Λ,Φ) = P(y = c | L,Λ,Φ)
holds for each possible response pattern c ∈ ×p

j=1[dj ]. Then by the equivalence in (20), we

also have P(y = c | Γ,Φ) = P(y = c | Γ,Φ) for all c ∈ ×p
j=1[dj ].

The following two lemmas will be useful.

Lemma 9 Without loss of generality, suppose the first
∑p

j=1 `j,1 variables belong to the first
group, the second

∑p
j=1 `j,2 variables belong to the second group, etc. That is, the matrix L

takes a block-diagonal form. The Gro-M 3 in (20) implies the following identity

vec(Π) =





G⊗

g=1

⊙

j: `j,g=1

Λj



 · vec(Φ). (22)

Lemma 10 Suppose there are two disjoint sets of G observed variables S(1) = {j
(1)
1 , . . . , j

(1)
G }

and S(2) = {j
(2)
1 , . . . , j

(2)
G } satisfying s

j
(1)
g

= s
j
(2)
g

= g for each g = 1, . . . , G. Then

G⊗

g=1

{
Λ

j
(1)
g

⊙
Λ

j
(2)
g

}
=





G⊗

g=1

Λ
j
(1)
g




⊙





G⊗

g=1

Λ
j
(2)
g



 up to a permutation of rows. (23)

If there further is s
j
(3)
G

= G for some j
(3)
G ∈ [p], then up to a permutation of rows there is

G−1⊗

g=1

{
Λ

j
(1)
g

⊙
Λ

j
(2)
g

}⊗{
Λ

j
(1)
G

⊙
Λ

j
(2)
G

⊙
Λ

j
(3)
G

}
(24)

=





G⊗

g=1

Λ
j
(1)
g




⊙





G−1⊗

g=1

Λ
j
(2)
g

⊗(
Λ

j
(2)
G

⊙
Λ

j
(3)
G

)


 .

We continue with the proof of Theorem 2. Under the conditions of the theorem, without
loss of generality we can assume that for each g ∈ [G], the first three variables (among the p
ones) belonging to the gth group have their corresponding Λj full-column-rank; denote the

indices of these three variables by j
(1)
g , j

(2)
g , j

(3)
g . For example, if L takes the block diagonal

form, then for g = 1 such three variables are indexed by
{
j
(1)
1 , j

(2)
1 , j

(3)
1

}
= {1, 2, 3}; for

g = 2 they are indexed by
{
j
(1)
2 , j

(2)
2 , j

(3)
2

}
=
{∑p

j=1 `j,1 + 1,
∑p

j=1 `j,1 + 2,
∑p

j=1 `j,1 + 3
}
,
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etc. Define the following sets of variable indices,

S(m) =
{
j
(m)
1 , . . . , j

(m)
G

}
for m = 1, 2, 3; S(0) = {1, . . . , p} \

3⋃

m=1

S(m).

Lemmas 9 and 10 imply that we can write vec(Π) under the true parameters as follows

vec(Π) =





G⊗

g=1

⊙

j: `j,g=1

Λj



 · vec(Φ)

=








G⊗

g=1

Λ
j
(1)
g




⊙





G⊗

g=1

Λ
j
(2)
g




⊙





G⊗

g=1


Λ

j
(3)
g

⊙



⊙

j∈S(0): `j,g=1

Λj











 · vec(Φ)

(?)
=








G⊙

g=1

Γ
j
(1)
g




⊙





G⊙

g=1

Γ
j
(2)
g




⊙





⊙

j∈S(3)∪S(0)

Γj






 · vec(Φ). (25)

The last equality (?) above follows from Lemma 8, by noting that for each m = 1, 2, 3, the

index set {j
(m)
1 , . . . , j

(m)
G } = [K]. The last equality in the above display results from the

property of the Khatri-Rao product. Define

f (1)(Γ) :=
G⊙

g=1

Γ
j
(1)
g

=
⊙

j∈S(1)

Γj , f (2)(Γ) :=
G⊙

g=1

Γ
j
(2)
g

=
⊙

j∈S(2)

Γj , f (3)(Γ) :=
⊙

j∈S(3)∪S(0)

Γj .

It can be seen that the definitions of the above three functions f (1)(·), f (2)(·), f (3)(·) of Γ
only depend on the two sets of variable indices S(1) and S(2), which in turn are determined
by the true grouping matrix L. Now (25) can be further written as

vec(Π) =
(
f (1)(Γ)

⊙
f (2)(Γ)

⊙
f (3)(Γ)

)
· vec(Φ) =

p⊙

j=1

Γj · vec(Φ).

So for true parameters (Γ,Φ) and alternative parameters (Γ,Φ) that lead to the same
distribution of the observed y, we have

vec(Π) =
(
f (1)(Γ)

⊙
f (2)(Γ)

⊙
f (3)(Γ)

)
· vec(Φ) (26)

=
(
f (1)(Γ)

⊙
f (2)(Γ)

⊙
f (3)(Γ)

)
· vec(Φ).

Recall that under the assumptions in the theorem and the current notation, for each
j ∈ S(1) ∪ S(2) ∪ S(3) the matrix Λj has full column rank K. According to the prop-

erty of the Kronecker product, the matrices
⊗G

g=1Λj
(1)
g

and
⊗G

g=1Λj
(2)
g

each has full

column rank KG. Further, since Λ
j
(3)
g

has full column rank K, the Khatri-Rao prod-

uct Λ
j
(3)
g

⊙(⊙
j∈S(0): `j,g=1Λj

)
must have full column rank K. Therefore the matrix
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{⊗G
g=1

(
Λ

j
(3)
g

⊙(⊙
j∈S(0): `j,g=1Λj

))}
also has full column rank KG. By definition of

f (m)(Γ)’s, the above full-rank assertions indeed mean that f (1)(Γ), f (2)(Γ), and f (3)(Γ) all
have full column rank KG.

We next invoke a useful lemma on the uniqueness of three-way tensor decompositions,
the Kruskal’s theorem established in Kruskal (1977), and then proceed similarly as the
proof procedures in Allman et al. (2009). For a matrix M, its Kruskal rank is defined to be
the largest number r such that any r columns of M are linearly independent. Denote the
Kruskal rank of matrix M by rankK(M).

Lemma 11 (Kruskal’s Theorem) Suppose M1,M2,M3 are three matrices of dimen-
sion am × K for m = 1, 2, 3, N1,N2,N3 are three matrices each with K columns, and⊙3

m=1Mm =
⊙3

m=1Nm. If rankK(M1)+rankK(M2)+rankK(M3) ≥ 2K+2, then there ex-
ists a permutation matrix P and three invertible diagonal matrices Dm with D1D2D3 = IK
and Nm = MmDmP for each m = 1, 2, 3.

If a matrix has full column rank K, then it must also have Kruskal rank K by definition.
As a corrolary of Lemma 11, if the three matrices M1, M2, M3 all have full column rank
K, then the condition rankK(M1) + rankK(M2) + rankK(M3) = 3K ≥ 2K + 2 is satisfied
and the uniqueness conclusion follows. We now take Mm = f (m)(Γ), Nm = f (m)(Γ) for
m = 1, 2, and define

M3 = f (3)(Γ) · diag(vec(Φ)), N3 = f (3)(Γ) · diag(vec(Φ)),

then there is vec(Π) =
⊙3

m=1Mm =
⊙3

m=1Nm. According to our argument right after
(26), rankK(Mm) = rankK(f (m)(Γ)) = K for m = 1, 2. As for M3, since f

(3)(Γ) has full
column rank K and the entries of Φ are positive, the M3 also has full column rank K.
Therefore, we can invoke Lemma 11 to establish that there exists a permutation matrix P
and three invertible diagonal matrices Dm with D1D2D3 = IK such that

f (m)(Γ) = Nm = MmDmP = f (m)(Γ)DmP

for m = 1, 2, 3.
The next step is to show that the diagonal matrices Di are all identity matrices.

Note that each column of the
∏

j∈S(1) dj × K matrix f (1)(Γ) =
⊙G

g=1 Γj
(1)
g

=
⊗G

g=1Λj
(1)
g

characterizes the conditional joint distribution of {yj : j ∈ S(1)} given the latent as-
signment vector z ∈ [K]G under the true Λ-parameters. And similarly, each column
of f (1)(Γ) =

⊙G
g=1 Γj

(1)
g

=
⊗G

g=1Λj
(1)
g

characterizes the conditional joint distribution of

{yj : j ∈ S(1)} given z ∈ [K]G under the alternative Λ. Therefore the sum of each column
of f (1)(Γ) or that of f (1)(Γ) equals one, which implies the diagonal matrix Dm is an identity
matrix for m = 1 or 2. Since Lemma 11 ensures D1D2D3 = IK , we also obtain D3 = IK .
By far we have obtained f (m)(Γ) = f (m)(Γ)P for m = 1, 2 and

f (3)(Γ) · diag(vec(Φ)) = f (3)(Γ) · diag(vec(Φ))P. (27)

Note that the permutation matrix P has rows and columns both indexed by latent assign-
ment vectors z ∈ [K]G. For m = 3, consider an arbitrary z1 ∈ [K]G and assume without
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loss of generality that z2 ∈ [K]G satisfies that the (z2, z1)th entry of matrix P is Pz2,z1 = 1.
Then the z1th column of the matrix equality f (3)(Γ)·diag(vec(Φ)) = f (3)(Γ)·diag(vec(Φ))P
takes the form

f (3)(Γ)c,z1 · vec(Φ)z1 = f (3)(Γ)c,z2 · vec(Φ)z2

for each c ∈ ×p
j=1[dj ]; summing the above equality over the index c ∈ ×j∈A1 [dj ] gives

vec(Φ)z1 = vec(Φ)z2 . Note we have generally established vec(Φ)z1 = vec(Φ)z2 whenever
Pz2,z1 = 1, which essentially implies vec(Φ)> = vec(Φ)> · P. Note that this shows the
identifiability of the tensor core in our hybrid tensor decomposition formulation of the Gro-
M3. Further, vec(Φ)> = vec(Φ)> ·P implies that

diag(vec(Φ)) = diag(vec(Φ) ·P) = diag(vec(Φ)) ·P.

Combining the above display to the previous (27), since diag(vec(Φ)) is a diagonal matrix
with positive diagonal entries, we can right multiply the inverse of this matrix with the LHS
of (27) and meanwhile right multiply the inverse of diag(vec(Φ)) ·P with the RHS of (27);
this gives f (3)(Γ) = f (3)(Γ)P.

Our final step of proving the theorem is to show that the established f (m)(Γ) = f (m)(Γ)P
for m = 1, 2, 3 implies the identifiability of Λ and L. First, since f (m)(Γ) is defined as
certain Khatri-Rao products of the individual Γj ’s, we claim that the f (m)(Γ) = f (m)(Γ)P
indeed implies that Γj = ΓjP for each j ∈ [p]. To see this, note that each column of
f (m)(Γ) and f (m)(Γ)P characterizes the conditional joint distribution of variables {yj :
j ∈ S(m)} given the z. So the conditional marginal distribution Γj can be obtained by
summing up appropriate row vectors of the matrices f (m)(Γ) and f (m)(Γ)P, corresponding
to marginalizing out other variables except the jth one. Now without loss of generality we
can assume that P = IKG , then Γj = ΓjP gives γ̄j,cj ,z = γj,cj ,z for all z ∈ [K]G. Now
it only remains to show that Γ uniquely determines Λ and L. By definition (18) there is
γj,cj ,z = λj,cj ,zsj . For arbitrary sj and sj , we first consider an arbitrary latent assignment

z ∈ [K]G such that zsj = zsj , then

λj,cj ,k = λj,cj ,zsj = γj,cj ,z = γj,cj ,z = λj,cj ,zsj = λj,cj ,k.

The above reasoning proves the identifiability of Λ. Thus far we have proved part (a) of
Theorem 2.

We next prove part (b) of the theorem. We use proof by contradiction to show the
identifiability of the grouping matrix L (or equivalently, the identifiability of the vector s).
If there exists some j ∈ [p] such that the jth rows of L and L are different, then sj 6= sj ;
denote sj =: g and sj =: g′. Next for arbitrary two different indices k, k′ ∈ [K] and k 6= k′,
we consider a latent assignment z ∈ [K]G such that zg = k and zg = k′. Then there are

λj,cj ,k = λj,cj ,zsj = γj,cj ,z = γj,cj ,z = λj,cj ,zsj = λj,cj ,k′ for all cj ∈ [dj ].

Since k 6= k′, the above equality means the kth and k′th columns of Λj are identical. Since
k and k′ are two arbitrary indices, this means all the column vectors in the matrix Λj are
identical. This contradicts the assumption in part (b) of the theorem. Therefore we have
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shown that sj = sj must hold for an arbitrary j ∈ [p]. This proves the identifiability of L
from Γ. This completes the proof of Theorem 2.

7.2 Proof of Theorem 3

The proof of this theorem is similar in spirit to the previous Theorem 2 by exploiting
the inherent tensor decomposition structure, but differing in taking advantage of the more
dimension-grouping structure under the assumptions here. Recall Ag = {g ∈ [p] : `j,g =
1} = ∪3

m=1Ag,m. We write vec(Π) under the true parameters as

vec(Π) =





G⊗

g=1

⊙

j∈Ag

Λj



 · vec(Φ)

=





G⊗

g=1




3⊙

m=1

⊙

j∈Ag,m

Λj






 · vec(Φ)

=








G⊗

g=1



⊙

j∈Ag,1

Λj







⊙





G⊗

g=1



⊙

j∈Ag,2

Λj







⊙





G⊗

g=1



⊙

j∈Ag,3

Λj









 · vec(Φ).

Since each Ag,m is nonempty under the assumption in the theorem and ∪G
g=1Ag,m ⊇ [G],

we can use Lemma 8 to obtain that

⊙

j∈∪G
g=1Ag,m

Γj =
G⊗

g=1



⊙

j∈Ag,m

Λj


 =

G⊗

g=1

Λ̃g,m,

where the second equality above follows from the definition of Λ̃g,m in the theorem. We
now define

f (m)(Γ) :=
⊙

j∈∪G
g=1Ag,m

Γj , m = 1, 2, 3.

Since the theorem has the assumption that each Λ̃g,m has full column rank K, we have that
f (m)(Γ) has full rank K. Note that each f (m)(·) is the Khatri-Rao product of certain Γj ’s
and f (m) depends on the true grouping matrix L. Also note that there is

vec(Π) =
(
f (1)(Γ)

⊙
f (2)(Γ)

⊙
f (3)(Γ)

)
· vec(Φ)

=
(
f (1)(Γ)

⊙
f (2)(Γ)

⊙
f (3)(Γ)

)
· vec(Φ).

Now the problem is in exactly the same formulation as that in the proof of Theorem 2, so
we can proceed in the same way to establish the identifiability of Φ and individual Γj ’s.
The identifiability of Γ further gives the identifiability of Λ and L. This finishes the proof
of Theorem 3. �
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7.3 Proof of Theorem 5

We first prove the following claim:

Claim 1. Under condition (13) that
∏

j∈Ag,m
dj ≥ K in the theorem, the following matrix

Λ̃g,m has full column rank K for generic parameters,

Λ̃g,m =
⊙

j∈Ag,m

Λj .

The Λ̃g,m above has the same definition as that in Theorem 3. The proof of this claim
is similar in spirit to that of Lemma 13 in Allman et al. (2009). Note that the statement
that the

∏
j∈Ag,m

dj ×K matrix Λ̃g,m does not have full column rank is equivalent to the

statement that the maps sending Λ̃g,m to its K ×K minors are all zero maps. There are

(∏
j∈Ag,m

dj

K

)

such maps, and each of this map is a polynomial with indeterminants λj,cj ,k’s. To show that

Λ̃g,m has full column rank K for generic parameters, we just need to show that these maps
are not all zero polynomials. According to the property of the polynomial maps, it indeed
suffices to find one particular set of {Λj ; j ∈ Ag,m} such that the resulting Khatri-Rao

product Λ̃g,m has full column rank.

Consider a set of distinct prime numbers denoted by {aj,c; j = 1, . . . , p, c = 1, . . . , dj}.
Define

Λ?
j =




1 aj,1 a2j,1 · · · aK−1
j,1

1 aj,2 a2j,2 · · · aK−1
j,2

...
...

...
...

...

1 aj,dj a2j,dj · · · aK−1
j,dj



, (28)

then Λ?
j is a dj × K Vandermonde matrix. Generally, for a d-dimensional vector b, let

VDM(b) = VDM(b1, . . . , bd) denote the the d × d Vandermonde matrix with the (i, c)th
entry being bc−1

i , so the Λ?
j defined in (28) can be written as Λ?

j = VDM(aj,1, . . . , aj,dj ).

Now consider a Λ̃
?

g,m defined as

Λ̃
?

g,m =
⊙

j∈Ag,m

Λ?
j .

Under the assumption (13) in the theorem that
∏

j∈Ag,m
dj ≥ K, the K columns of Λ̃g,m

are indeed the first K columns in the following Vandermonde matrix

Vg,m = VDM




∏

j∈Ag,m

aj,1, . . . ,
∏

j∈Ag,m

aj,dj


 .

Since by construction the aj,c’s are distinct prime numbers, for each j ∈ Sm the dj products∏
j∈Ag,m

aj,1, . . . ,
∏

j∈Ag,m
aj,dj are also distinct numbers. Therefore the Vg,m defined
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above has full rank
∏

j∈Sm
dj . Since

∏
j∈Ag,m

dj ≥ K and Λ̃
?

g,m has columns from the first

K columns of Vg,m, we have that Λ̃
?

g,m has full column rank K for this particular choice
of parameters. Note that the Λ?

j defined in (28) does not have each column summing up
to one, as is required in the parameterization of the probability tensor. But performing
a positive rescaling of the each column of Λ?

j to a conditional probability table Λj would
not change the above reasoning and conclusion about matrix rank; so we have proved the
earlier Claim 1 that each Λ̃g,m has full column rank K for generic parameters. Given this
conclusion, for generic parameters in the parameter space the situation is reduced back
to that under Theorem 3. So the identifiability condition in Theorem 2 carries over, and
we can obtain the conclusion that identifiability holds here for generic parameters. This
completes the proof of Theorem 5. �

7.4 Proof of Proposition 6

Recall that under the conditions of the previous theorem, we already have the conclusion
that Λ and Φ are identifiable. Next the question boils down to whether (α1, . . . , αK) are
identifiable from Φ = (φk1,...,kG). By the definition, we have

φk1,...,kG = E
π∼Dir(α) [πk1 · · ·πkG ] =

∫

∆K−1

πk1 · · ·πkGdDirα(π).

First we consider the case of G = 2. Denote α0 =
∑K

k=1 αk. Then according to the moment
property of the Dirichlet distribution, there is

E
π∼Dir(α) [πkπ`] =





αkα`

α0(α0 + 1)
, if k 6= `;

αk(αk + 1)

α0(α0 + 1)
, if k = `.

Therefore for k 6= `, consider x and y defined as follows,

x :=
E
π∼Dir(α)

[
π2k
]

E
π∼Dir(α) [πkπ`]

=
αk + 1

α`
,

y :=
E
π∼Dir(α)

[
π2`
]

E
π∼Dir(α) [πkπ`]

=
α` + 1

αk
.

Since x and y are already identified, then we can solve for αk and α` as follows

αk =
x+ 1

xy − 1
, α` =

y + 1

xy − 1
.

Since the above reasoning holds for arbitrary pairs of (k, `) with k 6= `, we have obtained
the identifiability of the entire vector α = (α1, . . . , αK).

Next we consider the general case of G > 2. For arbitrary 1 ≤ k 6= ` ≤ K, consider
two sequences (k, k, k3, . . . , kG), (k, `, k3, . . . , kG) ∈ [K]G. According to the property of the
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Dirichlet distribution, we have

E
π∼Dir(α) [πkπkπk3 · · ·πkG ]

E
π∼Dir(α) [πkπ`πk3 · · ·πkG ]

=
αk + 1

α`
, (29)

E
π∼Dir(α) [π`π`πk3 · · ·πkG ]

E
π∼Dir(α) [πkπ`πk3 · · ·πkG ]

=
α` + 1

αk
. (30)

Now that the left hand sides of the above two equations are identified by the previous
theorem, we denote them by u := LHS of (29) and v := LHS of (30). The u and v are
identified constants. Solving for αk and α` gives

αk =
u+ 1

uv − 1
, α` =

v + 1

uv − 1
.

Since k, ` are arbitrary, we have shown that the entire vectorα = (α1, . . . , αK) is identifiable.
This completes the proof of Proposition 6. �

7.5 Proof of Supporting Lemmas

Proof [Proof of Lemma 8] First note that the
⊙

j∈S Γj on the right hand side of (19)

has size
∏

j∈S dj × KG. Further, since {sj : j ∈ S} ⊇ [G], the set {j ∈ S : sj = g}
is nonempty. So the

⊙
j∈S: sj=g Λj has K columns and hence the left hand side of (19)

also has size
∏

j∈S dj × KG. Without loss of generality, suppose S = {1, 2, . . . , |S|},
where |S| denotes the cardinality of the set S. The (c1 + (c2 − 1)d1 + · · · + (c|S| −

1)d1 · · · d|S|−1, z1+(z2−1)K+· · ·+(zG−1)KG−1)th entry of the RHS of (19) is
∏

j∈S γj,cj ,z,

which by definition equals
∏

j∈S λj,cj ,zsj =
∏G

g=1

∏
j∈S: sj=g λj,cj ,zg ; this is exactly the

(c1 + (c2 − 1)d1 + · · · + (c|S| − 1)d1 · · · d|S|−1, z1 + (z2 − 1)K + · · · + (zG − 1)KG−1)th
entry of the LHS of (19). This completes the proof of Lemma 8.

Proof [Proof of Lemma 9] First note that both hand sides of (22) are vectors of size∏p
j=1 dj × 1. To see this for the right hand side of (22), note the matrix

⊙
j: `j,g=1Λj has

size
∏

j: `j,g=1 dj ×K
∑p

j=1 `j,g , and hence the matrix
⊗G

g=1

⊙
j: `j,g=1Λj has size

G∏

g=1

∏

j: `j,g=1

dj ×K
∑G

g=1

∑p
j=1 `j,g ,

which is just
∏p

j=1 dj ×KG. Further note that the vector vec(Φ) has size KG × 1, so the{⊗G
g=1

⊙
j: `j,g=1Λj

}
vec(Φ) on the right hand side of (22) has size

∏p
j=1 dj × 1, matching

the size of the left hand side. Next consider the individual entries of both hand sides of (22).
First, by definition of the vec() operator, the [c1 + (c2 − 1)d1 + · · ·+ (cp − 1)d1 · · · dp−1]-th
entry of the left hand side of (22) is πc1,...,cp . Next, according to (20), the πc1,...,cp can be
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written in the following way,

πc1,...,cp =

K∑

z1=1

· · ·
K∑

zG=1

φz1,...,zG

p∏

j=1

γj,cj ,z

=
K∑

z1=1

· · ·
K∑

zG=1

vec(Φ)z1+(z2−1)K+···+(zG−1)KG−1 ×
G∏

g=1

∏

j: `j,g=1

λj,cj ,zg

=

K∑

z1=1

· · ·
K∑

zG=1

vec(Φ)z1+(z2−1)K+···+(zG−1)KG−1

×





G⊗

g=1

⊙

j: `j,g=1

Λj





c1+(c2−1)d1+···+(cp−1)d1···dp−1, z1+(z2−1)K+···+(zG−1)KG−1

= vec(Φ)> ·





G⊗

g=1

⊙

j: `j,g=1

Λj





>

c1+(c2−1)d1+···+(cp−1)d1···dp−1, :

.

The last row in the above display exactly equals the [c1+(c2−1)d1+· · ·+(cp−1)d1 · · · dp−1]-
th entry of the RHS of (22). This proves the equality in (22) and completes the proof of
Lemma 9.

Proof [Proof of Lemma 10] In the LHS of (23), the term Λ
j
(1)
g

⊙
Λ

j
(2)
g

has size d
j
(1)
g
d
j
(2)
g

×K

and hence the Kronecker product
⊗G

g=1

{
Λ

j
(1)
g

⊙
Λ

j
(2)
g

}
has size

∏
j∈S(1)∪S(1) dj ×KG. In

the RHS of (23), the term
{⊗G

g=1Λj
(1)
g

}
has size

∏G
g=1 dj(1)g

×KG, and hence the Khatri-Rao

product of two such terms





G⊗

g=1

Λ
j
(1)
g




⊙





G⊗

g=1

Λ
j
(2)
g





has size
(∏G

g=1 dj(1)g
d
j
(2)
g

)
×KG. So both hand sides of (23) has size

∏
j∈S(1)∪S(2) dj ×KG.

The equality (23) can be similarly shown as in the proof of Lemma 9 by writing out and
checking the individual elements of the two matrices on the LHS and RHS of (23).

Similarly, the LHS and RHS of (24) both have size
∏

j∈S(1)∪S(1)∪
{

j
(3)
G

} dj ×KG and the

equality can be similarly shown as in the proof of Lemma 9.
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8. Supplement B: Pairwise Cramer’s V between Categorical Variables

According to the definition of mutual information in information theory, for two discrete
variables yj ∈ [dj ] and ym ∈ [dm], their Cramer’s V is

CRV(yj , ym) =





1

min(dj , dm)

∑

c1∈[dj ]

∑

c2∈[dm]

(
p(yj ,ym)(c1, c2)− pyj (c1)pym(c2)

)2

pyj (c1)pym(c2)





1/2

(31)

where pyj (c1) = P(yj = c1) denotes the marginal distribution of yj and p(yj ,ym)(c1, c2) =
P(yj = c1, ym = c2) denotes the joint distribution of yj and ym. The Cramer’s V measures
the the inherent dependence expressed in the joint distribution of two variables relative
to their marginal distributions under the independence assumption. Therefore, Cramer’s
V measures the dependence between variables and it equals zero if and only of the two
variables are independent; otherwise Cramer’s V is positive.

The expression of Cramer’s V in (31) is the population version. Given a sample
y1, . . . ,yn with yi = (yi,1, . . . , yi,p), the population quantities of the marginal and joint
distributions in (31) can be replaced by their sample estimates. That is, the previous
pyj (c1) and p(yj ,ym)(c1, c2) are replaced by the following,

psamp
yj (c1) =

1

n

n∑

i=1

I(yi,j = c1), psamp
(yj ,ym)(c1, c2) =

1

n

n∑

i=1

I(yi,j = c1, yi,m = c2).

Using the sample-based Cramer’s V measure, we calculate the Cramer’s V for all the pairs
of variables when j and m each range from 1 to p. For two randomly chosen simulated
datasets from the simulations settings p = 30, G = 6, K = 3, n = 1000 and p = 90, G =
15, K = 3, n = 1000 described in Section 5 in the main text, their pairwise Cramer’s V
plots are displayed in Figure 12.

(a) p = 30, G = 6, K = 3, n = 1000. (b) p = 90, G = 15, K = 3, n = 1000.

Figure 12: Cramer’s V of item pairs for two simulated datasets.
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By visual inspection, Figure 12 shows a block-diagonal structure of the p × p pairwise
Cramer’s V matrix for both simulation settings. In each of these settings, the true grouping
matrix L used to generate data takes the form that the first p/G variables belong to a same
group, the second p/G variables belong to another same group, etc. Therefore, Figure 12
implies in the simulations, the variables belonging to the same group tend to show higher
dependence than those variables belonging to different groups.
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