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Abstract

Motivation: Researchers need a rich trove of genomic datasets that they can leverage to gain a better
understanding of the genetic basis of the human genome and identify associations between phenotypes
and specific parts of DNA. However, sharing genomic datasets that include sensitive genetic or medical
information of individuals can lead to serious privacy-related consequences if data lands in the wrong
hands. Restricting access to genomic datasets is one solution, but this greatly reduces their usefulness
for research purposes. To allow sharing of genomic datasets while addressing these privacy concerns,
several studies propose privacy-preserving mechanisms for data sharing. Differential privacy is one of
such mechanisms that formalize rigorous mathematical foundations to provide privacy guarantees while
sharing aggregated statistical information about a dataset. Nevertheless, it has been shown that the original
privacy guarantees of DP-based solutions degrade when there are dependent tuples in the dataset, which
is a common scenario for genomic datasets (due to the existence of family members).
Results: In this work, we introduce a near-optimal mechanism to mitigate the vulnerabilities of the inference
attacks on differentially private query results from genomic datasets including dependent tuples. We
propose a utility-maximizing and privacy-preserving approach for sharing statistics by hiding selective
SNPs of the family members as they participate in a genomic dataset. By evaluating our mechanism on a
real-world genomic dataset, we empirically demonstrate that our proposed mechanism can achieve up to
40% better privacy than state-of-the-art DP-based solutions, while near-optimally minimizing utility loss.
Availability: https://github.com/CMU-SAFARI/SNP-Selective-Hiding
Contact: omutlu@ethz.ch, otastan@sabanciuniv.edu, exa208@case.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
As technologies improve the cost and scale of sequencing, it has become
possible to sequence genomes from large cohorts of patients. Today,
researchers have access to large genomic datasets, whereby they can study
associations between variants and complex traits. However, as shown by
earlier studies, the public availability of genomic data - even in anonymized
form - raises serious privacy concerns (?). Hence, many institutions (i.e.,
data owners who collect genomic data), rather than publicly releasing
their genomic datasets, provide limited access to these datasets through
queries. Such queries typically seek to extract statistical information about
the dataset (referred to as a "statistical dataset"). They are formed and
submitted by the researchers, computed at the data owner institution,
and only the final results are shared with the querying researchers. One
prominent example of such approach is the access to the results of
genome-wide association studies (GWAS) (?).

Although this approach provides stronger privacy protection for the
dataset participants, previous work has shown that such statistical genomic

datasets are prone to membership and attribute inference attacks (?). An
adversary, using the results of the queries, the genotype of a target, and the
publicly available minor allele frequencies (MAFs) of the single nucleotide
polymorphisms (SNPs) used in the study, can infer the membership of
the target to the corresponding dataset (or to the case group of the
corresponding GWAS) (?) . This attack is considered serious because
in most cases, dataset participants are associated with known sensitive
information (e.g., cancer predisposition).

Differential privacy (DP) (?) is one of the privacy protection concepts
that has received widespread popularity for sharing aggregate statistics
from human genomic datasets due to its theoretical guarantees (??). Such
that, even if there is only one different tuple in two datasets (called
neighbouring datasets), it is hard to differentiate between the query results
of these two datasets. The probability of distinguishing the results of the
neighbouring datasets is controlled by a parameter called privacy budget
ε. However, DP has a known drawback as it makes no assumption about
the correlation between dataset tuples. This may degrade the privacy
guarantees of DP and give the adversary a stronger ability to extract more
sensitive information if the dataset includes dependent tuples, which is a
common situation for genomic datasets as genomes of family members
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are correlated. Previous work show how dependency between dataset
tuples may reduce the privacy guarantees of DP (???) and propose
general mechanisms to tackle this problem. Recently, ?? analyze and
show the privacy risk due to the inference attacks on differentially-private
query results by exploiting the dependency between tuples in a genomic
dataset. To mitigate this privacy risk, ? formalize the notion of ε-DP
for genomic datasets with dependent tuples to avoid the inference of
sensitive information by any adversary with prior knowledge about the
tuples correlation.

However, to provide privacy guarantees for the dependent tuples in
genomic datasets, existing DP-based solutions suggest changing the value
of the privacy parameter ε (i.e., adding more noise to the released statistics
based on the number of dependent tuples and the strength of relationship
between them). Such higher noise amounts significantly degrade the utility
of the shared GWAS statistics, especially when the query results also
include data from independent tuples in the dataset. On the other hand,
medical research necessitates highly accurate information for high-quality
and effective research outcomes. Therefore, it is also crucial to develop
utility-preserving countermeasures for this privacy risk.

In this work, we propose a novel privacy-preserving and utility-
preserving mechanism for sharing statistics from genomic datasets to
attain privacy guarantees while taking into consideration the dependency
between tuples. As discussed, the main reason for the aforementioned
privacy risk is the existence of dependent tuples in the genomic datasets due
to familial relationships. Therefore, our goal is to reduce the level of such
dependency without significantly weakening the utility. To achieve this,
inspired from our previous work (?), we propose an optimization-based
countermeasure to selectively hide genomic data of dataset participants
to distort the dependencies (familial relations) among them without
significantly degrading dataset responses, thus, the utility.

The key idea of our proposed "selective hiding" mechanism is to
hide some selected SNPs of family members (as they join to the genomic
dataset) to 1) reduce the kinship relationship between them, and 2) keep the
utility of the shared GWAS statistics high. By doing so, the constructed
GWAS dataset includes only the obfuscated genomes of the dependent
tuples. Thus, in case of a data breach, familial relationships between
the GWAS participants are also protected. Also, the proposed method
selectively hides only the dependent tuples, keeping the genomes of
independent tuples intact (which improves utility).

We assume that the GWAS dataset shares the kinship coefficients
between its participants (e.g., as a part of its metadata) and a potential
adversary uses this information along with the published GWAS statistics
in order to infer sensitive attributes about the dataset participants. Even if
metadata about the dataset is not shared, an adversary can infer the kinship
coefficient between dataset participants by issuing several queries to the
dataset. We evaluate the proposed algorithm against such an adversary by
using real-life genomic datasets. The optimality of our proposed DP-based
mechanism can be proven by preventing the adversary from utilizing the
dependencies among the dataset tuples to infer more sensitive attributes
about dataset participants. In other words, we are aiming at achieving
the privacy and utility guarantees of the standard DP assuming all the
participants of the dataset are independent. Considering our adversarial
scenario (discussed in detail in Section 3), our results show that the
proposed approach can near-achieve both the privacy and utility guarantees
of standard DP (i.e., under independent tuples assumption) compared
to existing work. As a result of our proposed countermeasure, dataset
owners will share data realizing that the privacy of the dataset participants,
including families, will be protected. Also, families will be more open
to donating their data to medical datasets for research knowing their
privacy is uncompromised. Finally, researchers will know that they receive
high-utility information from medical datasets.

The rest of this paper is organized as follows. Section 2 presents
related prior works on genomics privacy, DP mechanisms under dependent
tuples, and our contributions. Section 3 explores our privacy threat
model, followed by Section 4, which explains our approach. In Section
5 we evaluate our proposed strategy and compare it to the state-of-art
mechanisms. Section 6 presents conclusions and highlights future research
directions that are pointed by this paper.

2 Related Work
In this section, we summarize the state-of-the-art published studies on
genomic privacy and differential privacy in particular.

2.1 Privacy of Genomic Data

In recent years, privacy-preserving publishing of genomic data has
received much attention. One of the widely-used promising privacy-
preserving solutions is the DP framework. DP provides rigorous
mathematical mechanisms for limiting the information leakage through
adding noise to the statistics results in GWAS (???). We provide all
the theoretical details about DP in Section 1.2 in the Supplementary
Materials. Existing works basically utilize the privacy guarantee of DP as
a protective measure against inference attack scenarios (e.g., membership
attack discovered by (?)) even if the attacker has access to external
auxiliary information. (???) proposed differentially-private algorithms to
release the aggregate human genomic statistical results from genomic
datasets as GWAS. Using a controlled amount of noise from Laplace
distribution (?), helps enhance the privacy of all participants in a GWAS.
In these algorithms, researchers submit genomic queries e.g., cell counts,
MAF, and χ2 statistics, and receive the query results in a privacy-
preserving manner through DP algorithms. However, these proposed DP
mechanisms assume that all the dataset tuples are independent, which may
degrade the privacy guarantees when such correlations exist between the
tuples in the dataset.

2.2 Differential Privacy under Dependent Tuples

The adversary can exploit auxiliary channels to get information about the
tuples correlation within the genomic dataset. ? were the first to show this
DP vulnerability. Therefore, they propose the Pufferfish framework (?) as
a generalization of DP to handle this threat. Following the Pufferfish,
several studies (????) provide perturbation mechanisms to handle the
correlation between tuples for various applications. Recently, ? show that
an adversary can utilize the pairwise dependencies within a location dataset
to predict the participant’s location from the differentially private query
results (?). To mitigate this privacy threat, ? propose a Laplace mechanism
defined as dependent differential privacy (DDP) to tackle the pairwise
correlation between any two tuples in the dataset. To improve the privacy
and utility guarantees of (?), ? present a new definition of the DDP, which
can handle numeric and non-numeric queries, to address any adversary
with arbitrary correlation knowledge. Moreover, ?? discuss attribute and
membership inference attacks against differential privacy mechanisms,
when the datasets include dependent tuples. As a countermeasure for these
attacks, ? adjust the global sensitivity of the query before applying Laplace
perturbation mechanism (LPM) to the query results.

2.3 Contribution of This Work

DP-based solutions that aim at addressing the privacy risks due to the
existence of dependent tuples in statistical datasets (including GWAS),
require the addition of high noise values to the results of statistics queries.
Hence, it causes a significant loss in the utility of the query responses. In
this work, we propose a different approach to address the same problem.
Our proposed solutions rely on selective masking of genomic loci in a
GWAS dataset to 1) decrease the estimated kinship coefficients between
relatives in the dataset, 2) provide privacy against an adversary that utilizes
correlations in the published statistics, and 3) provide privacy for dataset
participants (e.g., against kinship inference) in case the dataset is breached.
Other recent studies have attempted to propose general mechanisms to
tackle kinship privacy such as (?), which target interdependent privacy in
their work. Here, we compare our model (in terms of privacy and utility)
with the existing similar approaches (e.g., ?) under the same goal of sharing
DP-based query results from genomic datasets with dependent tuples. Our
results show that the proposed scheme provides both better privacy and
higher utility than the existing solutions.

3 System and Threat Models
The dataset owner maintains a statistical datasetD and responds to users’
statistical queries. To provide statistical information about the dataset in
a privacy-preserved way, the dataset owner computes randomized query
results A(D) using LPM-based DP (as in Section 1.2 in Supplementary
Materials), and sends it back to the users. The adversary in our scenario
can be one of the users. The adversary can send various statistical queries
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to the dataset. In recent work, we discuss the vulnerability of dependent
tuples in a statistical dataset due to different statistical queries (?). Here,
for simplicity, we focus on a "count query", in which the adversary forms
its query asking about the sum of values of a specific SNP j among the
dataset participants sharing the same demographic data, such as location or
age (we assume an SNP value of 0, 1, or 2, representing the number of its
minor alleles). Limiting the scope of the query to a small number of dataset
participants allows the adversary to have a higher inference power about
the sensitive genomic information of a target, especially if the query result
is computed over the target and target’s family members. The kinship
data is not always available in the GWAS studies due to the sensitivity
of family information. However, this is a realistic attack scenario since
we assume that statistical relationships between dataset participants are
typically shared in the metadata of several genomic datasets. We build our
assumption upon the fact that pedigree structures are a piece of metadata
that is included in many family-related genetic studies such as (????).
These structures contain rich information, especially when large kinships
are available. Moreover, the family members of the individuals who publish
their genomic data on online genomic datasets (i.e., openSNP) can be
found on social media sites, such as Facebook (?). With the availability
of such information, considering an attribute inference attack, in which
1) the adversary does not have any prior knowledge about genotypes of
individuals in the dataset, and 2) the goal of the adversary is to infer
genomic data of a target individual using the released query results, we
have the following assumptions:

• The adversary knows the membership information of all individuals in
the dataset. The membership of an individual in a dataset means that
the corresponding individual is included in the dataset.

• The adversary knows the dependencies (e.g., kinship coefficient)
between the individuals in the dataset. As discussed, the adversary can
obtain this information from the metadata of the dataset. Alternatively,
the adversary can also estimate the kinship coefficients between the
dataset participants using the responses to its queries.

4 Proposed Work
Let dataset D includes N individuals and m SNPs. We assume a statistical
query to the dataset is computed over q dataset participants, including a
target i and other p dataset participants (q = 1+p).Dj

i represents the value
of SNP j for target individual i and Dj

p represents the sum of the SNP j
values for other (p) participants that are involved in the query computation.
We let (δ) be the added Laplace noise with scale 2/ε. Set F (|F| = f )
includes individuals from the same family (i.e., target i and his/her family
members), and set U (|U| = u) includes the other unrelated members
(non-relatives) in the dataset. Note that there may be more than one family
in the dataset and the privacy risk for each family can be shown similarly.
Therefore, for the sake of simplicity, we assume the dataset includes only
one family. We show the overview of the proposed algorithm in Figure 1.

Similarly to the previous work (?), we assume family members share
their data in a sequential order. For each new incoming family member to
the dataset, we hide some selected SNPs to decrease kinship coefficients
among family members and preserve their familial privacy. The main
differences of this work are:

• The original selective sharing scheme in (?) considers a publicly
available dataset and it aims to reduce the kinship coefficients between
the dataset participants to hide the familial relationships. Here, the
statistical dataset is not public. Therefore, our aim is not to specifically
hide the relation of participants. Instead, our goal is to reduce the
kinship coefficients so that (1) privacy vulnerability (caused by the
sharing of statistics computed over dependent tuples) is minimized,
and (2) utility of the shared statistics still remain high. As a result, we
exclude the outlier constraints part (details provided in Supplementary
Materials, Section 1.1) in the optimization model. We focus on
satisfying the kinship constraints only. For completeness, below we
describe the part of the formulation and the approach that we propose
in (?) and we also use here.

• We design the proposed method to hide overlapping regions among
the family members first, and solve the optimization later. The goal is
to have better privacy and higher utility.

Dataset Owner

Adversary

Queries
Queries

Responses
Responses

("# + "$) 

%("# + "$)

D

LPM 
PerturbationSelective 

Data Hiding

Background Knowledge
• Familial Relationship
• Membership Information

Fig. 1: Our proposed model. (1) The dataset owner selectively hides SNPs
from the family members included in the dataset during data collection.
(2) The adversary sends the count queries to the dataset owner. (3) The
dataset owner applies LPM to the query results and sends them to the
adversary. (4) The adversary runs the attribute inference attack against
the target i by using i) results of differentially-private count queries, ii)
dependency between the target and target’s family members that are in
the dataset D, and iii) Mendel’s law. In our threat settings, the adversary
can obtain: i) the membership information of all dataset participants, and
ii) the kinship coefficient between the dataset participants, from using the
metadata released along with the dataset (e.g., in 1000 Genomes Project
phases, 23andMe services).

To reduce the kinship coefficient, we hide positions based on their SNP
configurations. Hence, we use a notation to denote the positions with
different SNP configurations for 1) an individual, and 2) a family. For an
individual i, a particular genomic position can hold a SNP configuration
si, where si takes values in {0,1,2}. We denote the total number of
positions the individual owns with SNP configuration si as nsi (e.g., n0

is the number of positions with SNPs’ value of 0). nsi shows how many
genomic locations are 1) recessive homozygous, and 2) heterozygous, and
3) dominant homozygous. For the setting of representing more than one
individual, we refer to all genomic positions (with their SNP configuration)
for all individuals from the family members. For example, if we have a
family of three members, n121 indicates the number of positions in which
the first individual’s SNP value is 1, the second’s is 2, and the third’s is 1.
If an individual i can hold any of the SNP values (i.e., si = 0, 1, or 2), we
denote si with ∗.

To calculate the kinship coefficient between two individuals i and k,
we use the robust kinship estimator proposed by ?:

φik = (2n11 − 4(n02 + n20)− n∗1 + n1∗)/4n1∗ (1)

when n1∗ < n∗1, it means that kth individual has more heterozygous
positions than the ith member. n11 presents the number of genomic
position where both individuals are heterozygous.n20 andn02 indicate the
number of SNPs when the individuals i and k hold homozygous dominant
SNPs (e.g., si = 0) or homozygous recessive SNPs (e.g., si = 2).

Our solutions find the appropriate positions to hide based on the
SNP configuration. We define a variable, xsi , to denote the number of
a particular SNP configuration we need to hide from the most recent
entrants (i.e., last arrived family member). Using Equation 2, one can
easily calculate x11; the number of heterozygous genomic positions to be
removed in order to decrease the kinship coefficient down to a preset φ′

value between two individuals, as:

x11 =
2n11−4(n02+n20)−n1∗+(1−4φ′ik)n∗1

2(1−2φ′ik)
(2)

To have a kinship coefficient lower than a preset Φ, Equation (2) can be
cast as an integer programming problem as follows:

min x11

subject to

2n11−4(n02+n20)−n1∗+(1−4Φ)n∗1≤(2−4Φ)x11

x11≤n11 (3)
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min x101 + x111 + x121 + x110 + x112

s.t.

2n11∗−[4(n02∗+n20∗)]−n1∗∗+[(1−4Φ)n∗1∗]≤ [(2−4Φ)x11∗]−x101−x121

2n1∗1−[4(n2∗0+n0∗2)]−n1∗∗+[(1−4Φ)n∗∗1]≤ [(2−4Φ)x1∗1]−x110−x112

2n∗11−[4(n∗02+n∗20)]−n∗∗1+[(1−4Φ)n∗1∗]≤ [(1−4Φ)x11∗]+2x111−x1∗1

x11∗ = x111 + x110 + x112

x1∗1 = x111 + x101 + x121

x101, x111, x121, x110, x112 ∈ Z≥0. (4)

Equation 4 shows the extended optimization model (in Equation 3)
for a three members family.The objective function in the mixed integer
programming model (shown in Equation 4) minimizes the number of SNP
positions we need to hide, subject to kinship constraints derived using the
kinship formula in ?. For larger families with more than two members,
the optimization model considers all the pairwise kinship coefficients
among the related members. We use CPLEX (IBM Inc.) to solve the
mixed-integer programming problem ?. In our model, the number of
constraints increases exponentially with the augmentation of family size,
thus, becoming more difficult. The optimization model is run regularly
when a new family member arrives at the dataset. First, we consider the
overlapping SNP positions among the family members in the dataset. Once
the number of positions and their configurations is determined by the
optimization procedure, we select these positions from the overlapping
region. If the number of SNPs to hide is larger than the number of SNPs
in the overlapping region (i.e., not enough SNPs exist in the overlapping
region), we run the model to remove the rest of SNPs (i.e., outside the
overlapping region) from the latest arrived member. Since the dataset is
not public, we assume that the dataset owner knows the previously removed
SNPs from the former arrivals. If not, alternatively, after completing the
data collection, the dataset owner can 1) identify the families, and 2)
process the genomes one by one to apply the selective hiding process,
before sharing any statistical query from the dataset.

Hiding the overlapping SNPs among the family members allows to
(1) preserve higher utility guarantees: it reduces the kinship estimation
between multiple family members by hiding less number of SNPs, and
(2) preserve higher privacy guarantees: it hides multiple SNPs for an
SNP position to confuse a potential adversary trying to know sensitive
information from the query results. Figure 2 shows how to hide from the
new SNP set by choosing the SNPs overlapped with the previously hidden
set. Note that the adversary (who sends statistical queries to the dataset)
cannot observe the hidden SNPs as the dataset is not published.

Current Approach Previous Approach

Father Mother
Manuel 
Corpas

SNP 1

SNP 3
SNP 2

SNP m

.

.

.

.

.

Father Mother
Manuel 
Corpas

SNP 1

SNP 3
SNP 2

SNP m

.

.

.

.

.

Fig. 2: Comparison of our proposed approach and the one in (?). The
green-colored areas denote the available SNP positions that can be hidden.
Red-colored areas are the removed regions. In the proposed approach, we
aim to hide from the region with maximal overlap.

In the following, we provide a toy example describing how the
proposed selective hiding process work for the individuals in the Manual
Corpas family tree (described in detail in Section 5.1.2 and the family tree
is shown in Figure 3)).

1. Manual Corpas arrives to the dataset (or his genome is processed the
first). No SNPs are hidden from his genome.

2. When the father arrives (or father’s genome is processed), we first
calculate the number of required SNPs to be hidden from the father
using the optimization model with the aim of reducing the kinship
between the son and the father. Then, we pick the required SNPs from
the overlapping region, and the rest of the SNPs are selected randomly.
We hide these SNPs from the father.

3. When the mother arrives, since we already removed the overlapping
region before, her and the son’s kinship coefficient is already
decreased by one familial degree compared to their original value.
No need to hide extra SNPs from the mother. (This step shows how
the heuristic approach minimizes the random selection).

4. The aunt arrives. We run the optimization model for four people in
such a way that kinship coefficients between both aunt-mother and
aunt-son decrease while preserving the decreased kinship coefficients
in the previous steps.

After repeating this selective hiding process for each dataset
participant, sequentially, all (required) records in the dataset become
obfuscated and the dataset can now accept statistical queries. We consider
here the count query by the users (or the adversary). Following the attack
scenario proposed by ?, to limit the number of dataset members included
in the query results, the adversary sends its query specified by some
demographic properties (e.g., age, address). Dataset owner computes the
result of the query on the dataset with missing SNPs (missing SNPs of some
dataset participants are due to the proposed selective hiding algorithm).
Dataset owner reports (1) the query result (sum of all SNP values for the
dataset participants that are considered in the query computation), and (2)
the number of dataset participants that are used to compute the query results
(q). Note that if a dataset participant is involved in the query computation,
but its corresponding SNP has been hidden (due to the proposed selective
hiding algorithm), that participant still contributes to the number of dataset
participants q, which are used to compute the query result (i.e., from the
adversary’s point of view, the query is still computed over q individuals).
In a response to a count query for a SNP j, the dataset owner computes a

noisy query result D̃j
pi, by adding Laplace noise with parameter 2/ε. The

query result includes the sum of the SNP j values for a target i (Dj
i ) and

other p participants included in the query results (Dj
p). We assume that

the adversary has access to 1) auxiliary information about the membership
of each participant including the target i, and 2) familial relationship R
between the target and other individuals in the dataset (that is computed
over the obfuscated dataset with the hidden SNPs and released as metadata
by the dataset owner). After receiving the noisy query result D̃j

pi, the
adversary can use the coin change algorithm (?) to obtain all possible
partitions of total count (for SNP values) as a combination of the set {0, 1,
2}, where each partition should only include≤ (p+ 1) individuals. Next,
for each valid partition, the adversary validates all the unique permutations
using law. Once validated, the adversary computes the probability of each
permutation from law by considering potential values of SNP j (0, 1, and
2) for the target i. Hence, the adversary can infer the value ofDj

i for target
i using the SNP values of dependent people related to the target that is used
to compute the query result, as shown in (?). To evaluate the privacy and
utility performance of our proposed selective hiding algorithm, we use the
correctness and utility loss metrics over a real-world genomic dataset to
show the robustness of our mechanism. We next discuss our evaluation in
detail.

5 Evaluation

5.1 Dataset Description

For the evaluation, our dataset D contains partial DNA sequences from
two sources:

• 1000 Genomes phase 3 data (?)
• Manuel Corpas Family Pedigree (?)

5.1.1 1000 Genomes Phase 3 data
We use data from 1000 Genomes Phase 3 (?), to obtain data for the
unrelated individuals from the same or different population of the target
and his family members. We extract the genotypes from chromosome
22 for 176 participants from the European population using the Beagle
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genetic analysis package (?) to convert the values of genotypes to 0, 1, or
2 according to the number of minor alleles for each SNP.
5.1.2 Manuel Corpas (MC) Family Pedigree
Manuel Corpas (?) released his and his family members’ genomes for
research purposes. The dataset contains the DNA sequences in variant
call format (VCF) for the father, mother, son (Manuel Corpas), daughter,
and aunt. The family tree of the individuals in this dataset is illustrated
in Figure 3. We choose the son to be the target and we use the genomic
records of his first and second-degree family members (father, mother, and
aunt).

We extract the common SNPs from all MC family members and 1000
Genomes members for the evaluation of the proposed algorithm. Finally,
we combine the family genomic data with the unrelated individuals.

Fig. 3: Manuel Corpas family tree.

5.2 Evaluation Settings

To evaluate the proposed countermeasure against the attribute inference
attack, we defined a case-control dataset D. D includes N individuals (N=
180) from European population from the 1000 Genomes project dataset
and MC family, in which (N

2
= 90) are cases and (N

2
= 90) are controls.

As discussed in Section 3, the adversary aims to inferm SNPs for a target
i using the results of queries over dataset D. Here, we assume that the
adversary knows 1) the true number of participated individuals (i.e., true
number of SNPs) in the query result, and 2) the kinship coefficients of
the dataset participants (e.g., from the metadata of the dataset). Note that
kinship coefficients shared by the dataset are computed after the proposed
selective sharing algorithm (reflecting the actual kinship coefficients in the
final dataset), and hence they are obfuscated to provide robustness.

5.3 Evaluation Metrics

To evaluate the performance of the proposed algorithm against attribute
inference attack, we use the correctness metric. Utilizing the notion of the
expected estimation error, the correctness of the adversary quantifies the
distance (Dist) between 1) Dj

i , which is the true value of SNP j for the

target individual i, and 2) ˜
Dj

i , which is the inferred value of SNP j for the
target individual i by the adversary. We compute the correctness for allm
targeted SNPs of the target i as follows:

C = 1−
m∑

j=1

P
(
Dj

i |
˜
Dj

pi

) ∣∣∣Dist(Dj
i ,

˜
Dj

i

)∣∣∣ , (5)

To quantify the utility loss (in terms of the quality or accuracy of the
shared query responses) due to the proposed mechanism, we calculate the
average change in the actual query result Dj

pi and the noisy query result
˜
Dj

pi considering all m targeted SNPs as follows:

U =
1

m

m∑
j=1

|Dist(Dj
pi,

˜
Dj

pi)|, (6)

5.4 Experimental Results

In an inference attack, we assume the differentially private query results
are computed by accounting for: (1) target i and multiple first and second-
degree family members in F; and (2) target i, multiple family members in
F, and multiple other unrelated members (non-relatives) inU. We evaluate
the performance of the attack under two assumptions:

• Independent assumption (w/o dep): the adversary assumes that there
is no correlation between the participants in D.

• Dependent assumption (w/ dep): the adversary utilizes the familial
relationships between the participants in D to perform the genome
reconstruction for target i.

We also compare the proposed algorithm with the one proposed in (?),
which aims to adjust the privacy parameter of DP to provide privacy
guarantees for the dependent tuples in the dataset. According to (??), if
all the tuples in the dataset are independent, then the noisy query output
achieves DP with the same privacy budget ε. However, if the dataset
includes dependent tuples, one needs to augment the scale of Laplace
noise using a smaller ε value (or a larger query sensitivity) to achieve DP.
Using the notion of "leaked information" ratio for different privacy budgets
ε, (?) adjust the global sensitivity of the query to mitigate the information
leaks resulting from the attribute inference attack. In the following, we
(1) compare the dependent (referred to as "no hiding w/ dep" in the
figure) and independent assumptions (referred to as "no hiding w/o dep"
in the figure) to show the vulnerability due to independent assumption,
(2) show the performance of our proposed mitigation algorithm (by hiding
selective SNPs from the family members) against an adversary that uses the
dependencies in its attack (referred to as "selective hiding" in the figure),
(3) hide random SNPs (without using any optimization) from the family
members rather than selective hiding, to show the benefits of selective
hiding (referred to as "random hiding" in the figure), and (4) compare the
proposed mitigation algorithm with the one in (?) to assess the proposed
algorithm (referred to as "dependent sensitivity" in the figure).
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Fig. 4: The effect of different values of the privacy budget, ε, on the
adversary’s correctness in inferring the targeted SNPs, considering a
different number of family members in F (|F|= f ) included in the noisy
results of count query. The query results include (a) MT: mother and target,
(b) FT: father and target, (c) FMT: father, mother, and target (d) FMTA:
father, mother, target, and aunt.

5.4.1 Privacy Performance
In Figure 4, we evaluate the effect of different values of the privacy budget,
ε, on the adversary’s correctness in inferring the targeted m SNPs. We
also analyze the robustness of our proposed mechanism to the inference
attack and compare it with the most similar existing work (?). Here the
query results include the statistics from the family members only. We start
including 1 first-degree family member with the target i. First, we include
the mother to the query results as in Figure 4(a), then we include the father
of the target as in Figure 4(b)). Third, we include both the father and the
mother in the query results, as in Figure 4(c). Last, we consider a second-
degree family member (aunt of target i) in the query results along with the
father and the mother of the target (Figure 4(a)).

Using the results of count queries over the case-control dataset D, we
make the following key observations: (1) The correctness of the adversary
with the knowledge of the data dependency is up to 50% more compared
to the case in which the adversary does not consider the data dependency in
the query results (Figure 4). (2) In accordance with the results of ?, the most
accurate inference of the adversary is achieved when the query computation
includes target i along with his father and mother (Figure 4(c)). Including
a second-degree family member as in (Figure 4(d)) can enlarge the range
of possible SNP values for the target, and hence make it more difficult to
accurately infer the correct SNP value with a high probability. (3) Proposed
selective hiding mechanism achieves better privacy for various privacy



picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2023/4/10 — page 2 — #6

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

2 Almadhoun Alserr et al.

0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

0 1 2 3 4 5
Privacy budget Epsilon

0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

0 1 2 3 4 5

Co
rr
ec
tn
es
s

Privacy budget Epsilon

Selective hiding No hiding  w/ dep No hiding w/o dep
Random hiding Dependent sensitivity

(a) u= 5 (b) u= 10
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

0 1 2 3 4 5
Privacy budget Epsilon

(b) u= 20

Fig. 5: The effect of different values of the privacy budget, ε, on the adversary’s correctness in inferring the targeted SNPs, considering 2 first-degree
relatives (father and mother) with different numbers of non-relatives in U (|U|= u) included in the noisy results of count query. The query results include
5, 10, and 20 unrelated members in (a),(b), and (c) respectively.

budgets, compared to the random hiding for different family members
included in the query results, as illustrated in Figure 4.

Figure 5 shows the effect of different values of ε on adversary’s success
in terms of its correctness in inferring m SNPs of target i. We increase
the number of non-relatives (from 5 to 20) that are included in the query
computation along with first-degree family members of the victim. From
these experimental results, we make the following observations:

(1) In accordance with our previous observations in Figure 4, the
probability of inferring the true value of the targeted m SNPs slightly
increases (mostly 2%-20%) depending on the knowledge of the adversary
about the dependency between tuples, as the value of the privacy budget,
ε, increases from 0.1 to 5. Hence, even when including a different number
of non-relatives in the query results (e.g., the size of U changes from 5
to 20), there is a significant increase in the correctness of the adversary
if the adversary has the knowledge of the data dependency, as shown
Figure 5. However, in Figure 5, we observe that the difference between
the correctness of the inferred SNPs with and without the knowledge of the
data dependency is about 3 times less than when the query results include
data for only family members of target i (Figure 4).

(2) Applying our proposed countermeasure by selectively hiding the
family members’ SNP values is superior to the dependent sensitivity
mechanism in terms of correctness metric. Compared to the optimal DP
privacy guarantees, in which we consider all the tuples to be independent
((No hiding w/o dep) in Figure 5), our proposed mechanism achieves
(∼5%) less privacy, while dependent sensitivity mechanism achieves
(∼15%) less privacy guarantees under the same privacy budget, ε.

(3) Randomly hiding the SNPs of the family members results in
achieving less privacy guarantees, even if we compare it with the
correctness results of the attribute inference attack, where no hiding
method is applied (e.g., no hiding w/ dep in (Figure 5(a) and (b) for privacy
budget, ε > 2.5).

Fig. 6: The effect of different values of the privacy budget, ε, on the
adversary’s correctness in inferring the targeted SNPs, using a different
number of family members in F (|F|= f ) included in the noisy results of
count query.

Next, Figure 6 shows the effect of different values of the privacy budget,
ε, used in DP, on the correctness of the adversary, when we apply selective
hiding mechanism for family SNPs, considering a different number of

(a) (b)

Fig. 7: The relationship between different numbers of (a) family members
in F (|F|= f and (b) non-relatives in U (|U|= u) included in the noisy
results of count query, and the adversary’s correctness in inferring the
targeted SNPs.

family members to be included in the query results. The results illustrate
the association between the privacy budget, ε, and the correctness of the
adversary for inferring the actual values of the targeted m SNPs. The
probability of inferring the correct values increases significantly (by 30%)
as the budget privacy, ε, increases from 0.1 to 5, as shown in Figure 6. This
is expected as the more ε values we use in the LPM-based DP, the less the
added noise, and hence increasing the success of the inference attack.

Finally, we explore the robustness of the selective hiding mechanism
for a different number of related and unrelated people in the query results,
without applying differential privacy. Figure 7 shows the relationship
between the number of family members (as in Figure 7(a)) or the number
of non-relatives (as in Figure 7(b)) in the query results and the probability
of inferring the true SNPs value by the adversary when we apply selective
hiding mechanism. The results show that increasing the number of family
members or unrelated individuals included in the query result, using
selective hiding mechanism slightly decreases the correctness of the
adversary, thus improving privacy.

5.4.2 Utility Performance
Publishing statistics of genomic datasets results in utility gain for society
as a whole. However, publishing these statistics could also result in
privacy loss for the participants of the dataset, especially if the dataset
includes correlated tuples. Hence, the goal of our proposed mechanism is
to ensure that the privacy loss is restricted to an acceptable level, without
causing a high loss in the potential utility gain, when compared with
the case of publishing the original statistical results. Using the utility
loss metric introduced in Section 5.3, in the following we compare our
proposed mechanism (referred to as "selective hiding" in the figure) with
the existing dependent sensitivity countermeasure proposed in ? (referred
to as "dependent sensitivity" in the figure) and random hiding mechanism
(referred to as "random hiding" in the figure) in terms of utility, using a
MAF query over a dataset D with m=100 SNPs. Figure 8 and Figure 9
show the utility loss caused by hiding selective SNPs from the family
members participating in the datasetD and then adding noise to achieve ε-
DP by considering the dependence between tuples. As in Section 5.4.1, we
consider the query results to include the statistics from the family members
only (Figure 8). Then, we calculate the utility performance of the three
mechanisms considering query results with different numbers of unrelated
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individuals (Figure 9). The results show that with smaller ε values, utility
loss caused by the three mechanisms decreases. As previously discussed,
the main idea of the dependent sensitivity mechanism (?) is augmenting
the Laplace noise by decreasing the privacy budget, ε, value to achieve
DP for any dataset with dependent tuples. Our proposed mechanism adds
a significantly smaller amount of noise, when ε ≤ 1, and hence provides
better utility. For example, when ε = 0.5, and the query results include
5 unrelated individuals along with the family members (Figure 9(a)), the
amount of utility loss caused by our mechanism is 33% of utility loss
caused by the dependent sensitivity.
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Fig. 8: The effect of different values of the privacy budget, ε, on the utility
loss caused by applying different mechanisms as countermeasures against
the attribute inference attack, using a different number of family members
in F (|F|= f ) included in the noisy results of MAF query.
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Fig. 9: The effect of different values of the privacy budget, ε, on the utility
loss caused by applying different mechanisms as countermeasures against
the attribute inference attack, using a different number of non-relatives in
U (|U|= u) included in the noisy results of MAF query.

6 Conclusion
Developing new privacy-preserving techniques that facilitate sharing the
outcomes of human genomic studies is necessary. The main goal of such
techniques is to preserve the privacy of dataset donors without undermining
the utility of the dataset, and hence the research outcomes. Differential
privacy-based data perturbation techniques have known privacy limitations
while sharing statistics from genomic dataset that contains dependent
tuples. In this paper, we propose a "selective hiding" mechanism to mitigate
the privacy risks caused by the correlations between the dataset tuples.
We assume a strong adversary who can send one query about one SNP,
then the dataset owner can choose the appropriate privacy budget ε to
release a noisy query result according to i) the required level of privacy
and utility of the released data, and ii) the sensitive nature of the genomic
dataset. We evaluate our perturbation mechanism over real-world genomic
datasets and proved that it can achieve high privacy guarantees while
minimizing the utility loss. Our results show that the proposed scheme
achieves both significantly better privacy and utility than the existing DP-
based mechanisms. However, as a limitation of our scheme, we believe that
sending multiple queries per one SNP may degrade the privacy guarantees
of DP. It may be possible for us to consider this setting in our future research
directions.


