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Abstract
The equivalence principle has constituted one of the cornerstones of discussions in
the foundations of spacetime theories over the past century. However, up to this point
the principle has been considered overwhelmingly only within the context of rela-
tivistic physics. In this article, we demonstrate that the principle has much broader,
super-theoretic significance: to do so, we present a unified framework for understand-
ing the principle in its various guises, applicable to both relativistic and Newtonian
contexts. We thereby deepen significantly our understanding of the role played by the
equivalence principle in a broad class of spacetime theories.

1 Introduction

It is well-established and well-understood that, alongside Mach’s principle and the
action-reaction principle, Einstein’s equivalence principle was a critical heuristic
device in his path towards general relativity (Lehmkuhl 2021; Norton 1989). What
is significantly less well-established, and continues to be the subject of vigorous con-
temporary research, is the extent to which the equivalence principle plays a role in
illuminating the conceptual foundations of general relativity.

Philosophers have played an important role in these investigations. For instance,
Lehmkuhl (2021) has proposed that the equivalence principle be understood as a
‘bridge principle’ between general relativity on the one hand, and other spacetime
theories—notably Newtonian gravitation and special relativity—on the other. He thus
submits that if we are to construct a clear map of the ‘space of spacetime theories’
(Lehmkuhl 2017), it is important to have a clear understanding of the equivalence
principle. On the other hand, there is also a long tradition of scepticism about the
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foundational relevance of the equivalence principle. Synge, for example, declared
infamously in 1960 that

The Principle of Equivalence performed the essential office of midwife at the
birth of general relativity, but ... I suggest that the midwife be now buried with
appropriate honours ... (Synge 1960, pp. ix-x)

To put our cards on the table: we do not share Synge’s negative appraisal of the
conceptual import of the equivalence principle;1 rather, we believe that the principle
has an important role to play both within specific spacetime theories (for reasons to
which we will come), and—à la Lehmkuhl—as a principle that helps us to understand
the relationships between different theories of spacetime.2

Of course, vindication of these assertionsmandates investigation into how the equiv-
alence principle functions in spacetime theories other than general relativity. One goal
of this paper is to pursue such an investigation in the context of a natural analogue
of general relativity which has been much discussed by philosophers: Newton-Cartan
theory.3 What is the status of the equivalence principle in this context, and does it
parallel the role of the equivalence principle in general relativity?

In recent years, some preliminary work in this direction has been undertaken: for
example, with Newton’s Corollary VI in mind,4 Fox (2016), Knox (2014), Saunders
(1998, pp. 138–139, 148) and Stachel (2006) all discuss Newtonian versions of the
equivalence principle, qua unification of gravity and inertia. The topic is also addressed
in classic physics works such as (Misner et al. 1973; Thorne et al. 1973). However, it is
fair to say that essentially all of this work has focused on the ‘Newtonian equivalence
principle’ as articulated within non-geometrized Newtonian gravity, and although
e.g. Knox (2014), Saunders (2013) andWallace (2020) explore relationships between
such principles and Newton-Cartan theory, the fully general connections between
general relativistic equivalence principles on the one hand, and intrinsic Newton-
Cartan equivalence principles on the other, have yet to be clarified. It is the goal of the
present article to undertake exactly this task.

A caveat before we begin: we take ourselves to be working in the tradition of,
and indeed at the level of mathematical rigour of, the above-mentioned authors. We
recognise that there are issues with rendering mathematically precise some of the
versions of the equivalence principle discussed in this paper. To some extent, this is

1 Actually, the situation here is delicate. In his discussion, Synge has in mind what we call below NEP:
“that the effects of a gravitational field are indistinguishable from the effects of an observer’s acceleration”
(Synge 1960, p. ix). We concur with Synge, insofar as this principle makes no sense in a geometrized theory
of gravitation, such as general relativity. There are, however, other versions of the equivalence principle
which we do regard as being contentful in general relativity: in this sense, we disagree with the spirit of
Synge’s claim.
2 More precisely, what wemean here is this: ‘equivalence principle’ can be disambiguated inmany different
ways; some of the resulting principles holdwithin a theory, and can be deployed in order to better understand
its conceptual architecture; other resulting principles hold between theories.
3 For the locus classicus on this theory, see (Malament 2012, ch. 4).
4 Recall that Newton’s Corollary VI reads as follows: “If bodies are moving in any way whatsoever with
respect to one another and are urged by equal accelerative forces along parallel lines, they will all continue
to move with respect to one another in the same way as they would if they were not acted on by those
forces.” (Newton 2014, p. 99).
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mitigated by our focusing on ‘pointy’ equivalence principles (cf. Ghins and Budden
2001), rather than equivalence principles holding in a neighbourhood. But this does
not go all the way to addressing the concerns raised in e.g. (Dewar 2020; Fletcher
2020; Weatherall 2021): that, however, will have to wait for a future piece.

We begin our discussion in the present article by focusing on Knox’s formulation
of Newtonian equivalence principles, for she is the only author up to this point (to
our knowledge) to discuss explicitly the Newtonian version of the ‘strong equivalence
principle’ of general relativity. For our purposes, her discussion is especially telling
because of a subtle lacuna in the analysis: she slides between discussing the strong
equivalence principle in a geometrized theory of gravitation such as general relativ-
ity (where the principle is framed in terms of normal coordinates), to discussing a
non-geometrical (or at least: not obviously geometrical) form of the strong equiva-
lence principle in Newtonian gravity (where the principle is framed in terms of a joint
symmetry of the flat connection and the gravitational field). This raises an important
conceptual puzzle: how should a Newtonian strong equivalence principle be framed
in a geometrized theory such as Newton-Cartan theory, and what is the relationship
between this formulation and the non-geometrized formulation that Knox gives? Fur-
thermore, a moment’s reflection should push one to wonder whether, perhaps, the
analogous question for the relativistic strong equivalence principle is not as well-
understood as onemight have previously thought. For consider:what is the relationship
between the strong equivalence principle in general relativity (the geometrized ver-
sion) and the strong equivalence principle in the equivalent non-geometrized theory:
a theory now known as teleparallel gravity?5 In what follows, we will resolve these
questions; our analysis will, moreover, reveal a set of links between these resolutions
and other recent work in the foundations of spacetime theories—e.g., (Greaves and
Wallace 2014; Read et al. 2018; Wallace 2020).

The plan is as follows. In §2, we provide a detailed taxonomy of relativistic equiva-
lence principles, and present the first systematic taxonomy of Newtonian equivalence
principles. §2.1 begins with a review of some relevant facts about general relativity
and Newton-Cartan theory. §2.2 then lays out a taxonomy of relativistic equivalence
principles and shows that, in the relativity literature, there are really two versions of the
strong equivalence principle: a geometrized and a non-geometrized version. §2.3 then
turns to the non-relativistic scenario, and discusses the Newtonian analogues of these
versions of the equivalence principle. Building upon this work, §3 develops in the
relativistic case a more incisive approach to understanding the relationship between
the geometrized and non-geometrized strong equivalence principles. §3.1 recalls that
teleparallel gravity is a non-geometrized theory of relativistic spacetime that is (locally)
empirically equivalent to general relativity; for reasons that will become clear in our
discussion, it is often called a ‘recoveredmodel’ of general relativity. §3.2 then explains
why the non-geometrized strong equivalence principle is really just a way of unpack-
ing the content of the geometrized strong equivalence principle from the perspective
of teleparallel gravity. In §4, the strategy of §3 is applied to the non-relativistic setting.
§4.1 reviews the relationship between a Newton-Cartan spacetime (the geometric the-

5 See (Aldrovandi and Pereira 2013) for an introduction to this theory, and (Aldrovandi et al. 2003) for
some discussion of the equivalence principle in this theory complimentary to our own.
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ory) and its ‘recovered’ non-geometric models—viz., Newtonian gravitation—using
the machinery of teleparallelization. §4.2 then sets about the task of explaining in
this non-relativistic context why, once again, these two versions of the strong equiva-
lence principle align; the explanation is exactly parallel to that given in the relativistic
case. Drawing upon all this work, in §5 is presented a complete map of equivalence
principles, applicable to both the relativistic and Newtonian contexts. §6 concludes.

2 Equivalence Principles

In this section, we first recall the relevant details of general relativity and Newton-
Cartan theory (§2.1), and of the various important versions of the equivalence principle
which arise in the general relativity literature (§2.2). We then present, by analogy with
the latter, a taxonomy of Newtonian equivalence principles (§2.3).

2.1 General Relativity and Newton-Cartan Theory

Our interest lies with general relativity and Newton-Cartan theory. Models of the for-
mer are triples 〈M, gab, Tab〉, whereM is a differentiablemanifold, gab is a Lorentzian
metric field on M , and Tab represents the stress-energy content of matter fields. These
fields are subject to satisfaction of the Einstein equation

Gab = 8πTab, (1)

where Gab is the Einstein tensor, plus dynamical equations associated with the matter
fields. In general relativity, gravitating but force-free particles follow geodesics of the
connection, in the sense that6

ξa∇aξ
b = 0, (2)

where ξa is the velocity vector of the particle under consideration.
Models of Newton-Cartan theory are tuples 〈M, ta, hab,∇, ρ〉, where ta is a 1-form

onM representingNewtonian absolute time, hab is a degenerate (inverse) ‘metric’ field
on M of signature (0, 1, 1, 1) satisfying the orthogonality condition tahab = 0 and
representing spatial distance relations instantiated by absolute space, ∇ is a derivative
operator satisfying the compatibility conditions ∇atb = ∇ahbc = 0, and ρ is a scalar
matter density field. Models of Newton-Cartan theory are subject to the dynamical
equation

Rab = 4πρtatb, (3)

6 At this point, the following is stipulative, à la (Malament 2012, pp. 121–1, 252). There is a rich literature
on deriving geodesic motion in theories such as general relativity: see e.g. (Geroch and Jang 1975; Geroch
and Weatherall 2014; Tamir 2012).
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and the integrability conditions (see e.g. (Malament 2012; Teh 2018) for discussion
of the physical significance of these conditions)

Ra c
b d = Rc a

d b , (4)

Rab
cd = 0. (5)

Again, in Newton-Cartan theory, gravitating but force-free bodies traverse geodesics
of the connection, in the sense that (2) is satisfied.7

Given a model of Newton-Cartan theory, one can reconstruct a ‘degeometrized’
model of Newtonian gravity 〈M, ta, hab, ∇̄, ϕ, ρ〉, which now features a different
derivative operator ∇̄ still satisfying the compatibility conditions, and a real scalar
field ϕ representing the gravitational potential, with equations of motion

hab∇̄a∇̄bϕ = 4πρ, (6)

and particle force equation given by

ξa∇̄aξ
b = −hab∇̄aϕ, (7)

up to ‘Trautman gauge symmetry’,

∇̄ �→ ∇̄′ = (∇̄, tbtc∇̄aψ
)
, (8)

ϕ �→ ϕ′ = ϕ + ψ, (9)

where the scalar fieldψ must satisfy ∇̄a∇̄bψ = 0. Thus, one finds that an equivalence
class of solutions of Newtonian gravity is associated with a single solution of Newton-
Cartan theory. Note that models of Newton-Cartan theory do not lie on the Trautman
gauge orbits of their associated recovered models;8 this observation will be important
in our discussions of the equivalence principle.

2.2 Relativistic Equivalence Principles

We begin our presentation of relativistic equivalence principles by recalling three
versions of said principle; our taxonomy follows an illuminating recent article by
Lehmkuhl (2021), in which are distinguished ‘weak’, ‘Einstein’, and ‘strong’ versions
of the principle.9 First, we have the weak equivalence principle (Lehmkuhl 2021, p. 4).
This comes in two forms:

7 Some authors choose to include explicitly ξa in the models of general relativity and Newton-Cartan
theory; nothing significant (at least for our purposes) rides on this choice.
8 The case is thus distinguished from that of integrable Weyl geometries—cf. Almeida et al. 2014.
9 For other recent work on the equivalence principle, see (Brown and Read 2016; Di Casola et al. 2015;
Nobili et al. 2013).
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WEP1 All uncharged test bodies placed at an initial event in spacetime and given an
initial velocity follow the same trajectories.10

WEP2 For any body, the gravitational mass of that body is equal to its inertial mass.

RegardingWEP1: we offer a definition of ‘uncharged’ below; by ‘test body’, wemean,
following Will, a body “that has negligible self-gravitational energy (as estimated by
Newtonian theory) and that is small enough in size so that its coupling to inhomo-
geneities in external fields can be ignored” (Clifford 2018, p. 16). This is not to say
that WEP1 is thereby expunged of conceptual difficulties—for example, one might
still worry that the motions of uncharged test bodies can be functions of their inter-
nal constitutions (imagine, for example, a boisterous child on the rear seat of a car).
However, in the interests of making progress against our stated goals in this paper,
we simply register such concerns and hereby set them aside.11 Regarding WEP2:
one could weaken this principle to assert only the proportionality of gravitational and
inertial masses. While in this paper we have chosen to use the stronger version of the
principle (asserting equality), nothing will hinge upon this decision.

As Lehmkuhl states (2021, p. 4) (building on prior work by Ohanian (1977, p. 904)
and Will (2018, p. 16)),WEP2 impliesWEP1;12 it is worth rehearsing the reasoning
here. Suppose that WEP2 holds, and consider a test body with inertial mass mI and
gravitational mass mG in a gravitational field Ga ; its force equation is

Fa := mI ξ
b∇aξ

a = −mGG
a, (10)

where ξa is the body’s velocity vector. From this, we find that the acceleration of
this body is given by −mG

mI
Ga ; thus, all such uncharged bodies—the condition of

‘uncharged’ meaning that no further terms beyond that involving Ga can appear on
the right-hand side of (10)—located at the same initial spacetime point and given some
initial velocity there follow the same trajectories, which is WEP1.

Given this, a configuration of multiple particles in a uniform gravitational field will
preserve the same relative motions among themselves, regardless of the strength of
the uniform gravitation field in which they are situated. If one then assumes that such
is also the case for uniform inertial accelerations (this being a dynamical assumption
about the bodies under consideration, essentially equivalent to Newton’s Corollary

10 Our version ofWEP1 is very similar to that presented byLehmkuhl,who in turn draws on the presentation
of Will (2018, p. 16). Cf. also (Thorne et al. 1973, p. 3571).
11 We thank an anonymous referee for pushing us to be explicit about the conceptual difficulties encountered
byWEP1.
12 But not vice versa—see (Lehmkuhl 2021, p. 4).
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VI),13 then one recovers what Knox (2014, p. 873), following Stachel (2006), calls
the ‘Newstein equivalence principle’ (NEP):14

NEP: No experiment can distinguish between the effects of a homogeneous gravita-
tional field and the inertial effects arising in a uniformly accelerating frame.

Three remarks on NEP. First: although presented by both Knox and Stachel in the
Newtonian context, it is important to recognize that this principle is not uniquely
Newtonian; in this sense, it is also applicable in the relativistic context (hence its
inclusion here).15 Second: although one might be tempted to identify NEP with New-
ton’s Corollary VI, it is more conceptually careful to regard this principle as being
a consequence of Corollary VI, when combined with other salient assumptions.16

Third: NEP expresses the essential content of Einstein’s rocket thought experiment:
everything would look and touch and taste and smell and sound the same in a rocket
accelerating upwards at gms-2 as in a rocket stationary with respect to the surface of
the Earth.17 (We return to Einstein’s rocket in §5.)

NEPwas a crucial starting-point for Einstein in his construction of a new version of
the equivalence principle, which Lehmkuhl dubs the ‘Einstein equivalence principle’
(EEP). This principle conceptually unifies gravitational and inertial effects—which
NEP already declares to be empirically indistinguishable (Lehmkuhl 2021, p. 9):18

EEP: Gravity and inertia are the same in their very essence (‘wesensgleich’).

(Here, by ‘gravity’ is meant initially ‘a homogeneous gravitational field’, and by
‘inertia’ is meant initially ‘the effects associated with description with respect to

13 See footnote 4. Note also that this will hold only locally in the relativistic context: if one considers
a system of bodies at rest with respect to one another in special relativity, and then boosts to a Rindler
frame (i.e., a uniformly accelerating frame), then one finds that all such bodies are not necessarily subject
to the same inertial accelerations in that frame. Note also that this principle would be violated if different
bodies were to couple to different affine connections, for this would lead to different connection coefficients
appearing in their respective equations of motion when described in an accelerating frame. (Thus, we are
close here to Trautman’s version of the equivalence principle: that there is a privileged affine connection
(Trautman 1966).)
14 We have modified slightly Knox’s version of NEP to make explicit reference to a uniformly accelerating
frame; our version is closest to that presented by Saunders (2013, p. 37).
15 Importantly, throughout this paper, we intend ‘relativistic context’ to include both general relativity
and teleparallel gravity; likewise, we intend ‘Newtonian context’ to include both Newtonian gravity and
Newton-Cartan theory. This qualification is important, for strictly speaking a principle such as NEP makes
no sense within the framework of a geometrized theory such as general relativity: it only makes sense in
the corresponding force theory. See our discussion of EEP below for further details.
16 See footnote 13.
17 The rocket experiment is sometimes referred to as ‘Einstein’s elevator’. There are natural questions
regarding the parallels between the rocket and the earlier thought experiment of Galileo’s ship. In brief,
the difference are as follows. Galileo’s ship is intended to demonstrate the relativity principle: there is a
multiplicity of frames in which one’s description of a given physical scenario maximally simplifies, with
those frames being related by uniform boosts. By contrast, Einstein’s rocket is intended to demonstrate
an equivalence principle of the form NEP: modification of the original physical scenario to involve an
extra force (viz., that associated with a uniform gravitational field) is indistinguishable from describing the
original physical scenario in a non-inertial, accelerating frame of reference.
18 It is illuminating to contrast this conceptual unification on the part of Einstein (for more on which see
Lehmkuhl 2014) with his earlier unification of compensating Lorentz-Fitzgerald contraction effects is his
1905 presentation of special relativity (Einstein 1905).

123



J. Read, N. J. Teh

a uniformly accelerating frame’; however, from this one may then take the further
conceptual leap of bootstrapping to the unification of gravitational and inertial effects
tout court—this, indeed, is the leap taken by EEP.) On EEP, gravitational and inertial
effects are conceptually unified, so that the inertial frames of reference (in which
there are no inertial effects) just are the freely falling frames. For the purposes of
our discussion, it is important to be completely precise on what this statement of
EEP amounts to mathematically; in the ensuing, we take the above formulation to be
synonymous with the following mathematical rendering: (We thus label both ‘EEP’.)

EEP: Gravitational and inertial effects are conceptually unified, insofar as both are
represented by the components of the same (possibly curved) compatible
connection.

Thus, our EEP already implies a commitment towards a geometrized formulation of
the theory under consideration: indeed, in this paper we take whether EEP holds in
a theory to be definitional of whether that theory is ‘geometrized’. Using EEP (and,
as mentioned above, other heuristic inputs, such as Mach’s principle), Einstein was,
after a long struggle, able to complete his general theory of relativity in 1915.

Finally, we turn to the strong equivalence principle, which is to be articulated within
the completed framework of relativistic gravity. Versions of this principle ramify in a
number of directions; however, before we present the various options, it is important
to recall the following facts about ‘normal coordinates’ on a manifold M .

In a coordinate co-frame basis
{
eμ

}
, the connection components �

μ
νρ associated

to a derivative operator ∇ are defined by ∇ρeν =: �
μ
νρ eμ. Then, at any point p ∈ M

we can choose normal coordinates such that �μ

(νρ) (p) = 0 in those coordinates; for
a torsion-free derivative operator, we can in fact choose normal coordinates such that
�

μ
νρ (p) = 0. (Note that the connection components away from p will in general not

vanish.) Taking M to be equipped with a Lorentzian metric field gab, if the unique
torsion-free, metric compatible derivative operator is used, then in normal coordinates
we also have gμν,ρ (p) = 0, and one can further restrict to orthonormal coordinates
at p such that gμν (p) = diag (−1, 1, 1, 1). Since gμν (p) takes this diagonal form,
one might write gμν (p) = ημν . This notwithstanding, any claim that the metric
field ‘reduces’ to the Minkowski metric at p in such coordinates should be met with
suspicion—for in general, second (and higher) order derivatives of the metric field do
not vanish at p, in these coordinates.

With these facts in mind, we can now present various versions of the strong equiv-
alence principle. There are two different possible forms of this principle, depending
on whether EEP is endorsed. First assuming EEP, the principle reads as follows:

SEP1,EEP: At any p ∈ M , one can find an orthonormal normal frame in which
gravito-inertial effects, as represented by connection coefficients, vanish.

Note that the status of SEP1 is different if one does not assume EEP: in this case, the
principle states not that one can find a coordinate system such that connection coef-
ficients vanish, but rather that one can find a coordinate system such that connection
coefficients cancel gravitational effects, as represented by some tensor quantity (cf.
Knox 2014, p. 874).
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Thus, explicitly, one has:19

SEP1,EEP: At any p ∈ M , one can find a frame in which inertial effects, as represented
by connection coefficients, cancel gravitational effects, as represented by
some tensor quantity.

(In SEP1,EEP, by ‘cancellation’, we of course mean cancellation of the components
of the objects in question in some coordinate system.)

Sometimes,WEP1 is supplementedwith a statement about the classes of coordinate
frames in which the principle obtains, thereby leading to (two versions of) what we
dub SEP2. In the relativistic framework, these two versions of SEP2 read as follows:

SEP2,EEP: SEP1,EEP holds, and the frames in which this principle holds are related
by Lorentz transformations.

SEP2,EEP: SEP1,EEP holds, and the frames in which this principle holds are related
by Lorentz transformations.

When one has the geometrical construction of normal coordinates in mind, in the
case of Lorentzian manifolds, the Lorentz symmetries in SEP2 are inherited from
the Killing symmetries (that preserve points) of the tangent space via the standard
‘exponential map’ construction of those coordinates.20

There are three further important remarks which we must make on all the above
versions of the strong equivalence principle. First: we have chosen to focus on what
Ghins and Budden refer to as ‘pointy’ versions of the strong equivalence principle
(Ghins and Budden 2001), in order to avoid delicate issues of approximation which
enter the fold when one seeks to extend to ‘neighbourhood’ versions of the strong
equivalence principle: although we do think that such extensions can be made (see
Read et al. 2018 for details which we endorse), these are not our concern in this paper.
Second: often, presentations of the strong equivalence principle make reference to
the frames in which the dynamical equations governing non-gravitational fields take
their simplest form (see e.g. Knox 2013; Read et al. 2018). Our above versions of
the principle are compatible with such statements: the frames in which the dynamical
equations take their simplest formmay be understood to be the frames in which (in the
geometrized framework, say) connection coefficients can be made to vanish. Note that
on this dynamical understanding, very little is guaranteed ab initio—in particular, it is
not secured from the outset that all dynamical equations will take their simplest forms
in the same frames of reference;21 moreover, it is not guaranteed that these frames are
those in which the presentation of the geometrical structure of the theory simplifies
maximally. These are thus to be understood as two additional input assumptions, or
‘miracles’, in any particular spacetime theory—see (Read et al. 2018) for detailed
discussion. Third (and relatedly): in Read et al. (2018), the issue of second-order
equations leading to the appearance of curvature terms in dynamical equations, even

19 Cf. (Aldrovandi et al. 2003, p. 546).
20 Since in this paper we are dealing with pointwise constructions, we do not consider translations, hence
our focus on the Lorentz rather than the Poincaré group. It is worth noting, though, that there are various
ways of making sense of the notion of ‘local Poincaré symmetries’ which we endorse—for discussion, see
(Brown 1997; Fletcher 2020; Read et al. 2018).
21 Cf. again Trautman’s version of the equivalence principle, introduced in footnote 13.
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at a point p ∈ M , is discussed. Again, while this is an interesting issue, it will not bear
upon any of our constructions in this paper.22

Thus, to summarize, we have a tolerably clear web (albeit not a straightforward
hierarchy) of equivalence principles. WEP2 implies WEP1, which in turn implies
NEP (when combined with certain extra assumptions regarding the dynamics of the
matter under consideration, in particular assumptions akin to Newton’s Corollary VI).
EEP provides a conceptual unification of gravity and inertia. SEP1 regards the local
transforming away of gravitational/gravito-inertial effects; this can be read in two
different ways, depending upon whether EEP is also endorsed. SEP2 regards the
transformations which relate such local coordinate systems.

With this web of equivalence principles in hand, we turn now to Newtonian equiv-
alence principles; we will see that an analogous pattern of principles arises in that
context. Once the connections between these different versions of the equivalence
principle (in both the relativistic and Newtonian contexts) have been articulated in
more detail, we will present the links diagrammatically in §5.

2.3 Newtonian Equivalence Principles

There is nothing relativistic about WEP1, WEP2, and NEP: the possibility of their
holding applies in the Newtonian context just as much as in a relativistic framework.
(In a sense, of course, this is not surprising, since all three of these principles have
their origins in pre-relativistic physics!) Similarly, EEP is a conceptual unification
of gravitational and inertial effects; it applies equally well in the Newtonian as in the
relativistic context. (Indeed, there is a sense in which Trautman geometrization affords
the precise mathematical expression of EEP in the Newtonian case; as we will see
later, the analogous mathematical expression of EEP in the relativistic case would be
the geometrization of a teleparallel theory.) The only modification necessary is that
‘compatible’ in the Newtonian context means: compatible with ta and hab.

Thus, it is only at the level of the strong equivalence principle that there can be
any difference between the relativistic and Newtonian equivalence principles. Unsur-
prisingly, Knox dubs the Newtonian version of this principle the ‘Newtonian strong
equivalence principle’ (Knox 2014, p. 874). From context, it is clear that by this she
has in mind SEP1,EEP—i.e., the cancelling of gravitational effects in Newtonian grav-
ity on making a judicious choice of frame.23 Our first point to make here is that it is
also possible to articulate SEP1,EEP (i.e., the geometrized version of the strong equiv-
alence principle) in the Newtonian case: this is simply a statement of the existence
of normal coordinates in Newton-Cartan theory—a statement which is true, in light

22 One could say: our concern in this paper is with zero-dimensional observers—in which case, such
curvature terms cannot have any practical effect. Cf. (Aldrovandi et al. 2003).
23 Here is how she puts the principle: “To any required degree of approximation, given a sufficiently
small spatial region, it is possible to find a freely falling reference frame with respect to whose associated
coordinates the motions of bodies amongst themselves are indistinguishable from those expected in the
absence of external forces” (Knox 2014, p. 874).

123



Newtonian Equivalence Principles

of the fact that the Newton-Cartan derivative operator is torsion-free.24,25 What are
the transformations relating these normal coordinate systems? As before, we note
that, from a geometrical point of view, by the standard ‘exponential map’ construc-
tion of normal coordinates, this set will inherit the Killing symmetries that stabilize
a point of the tangent space. In our present Newton-Cartan setting, the tangent space
Killing symmetries are the Galilean transformations—see (Duval 1993). Knox does
not extend her Newtonian version of the strong equivalence principle to apply also to
the symmetries of the spacetime structure, but in light of this result, it is clear how to
do so:

SEP2,EEP: SEP1,EEP holds, and the frames in which this principle holds are related
by Galilean transformations.

SEP2,EEP: SEP1,EEP holds, and the frames in which this principle holds are related
by Galilean transformations.

Thus, up to the specific structure of the symmetry group in SEP2, we have exactly
the same web of equivalence principles in the Newtonian case as in the relativistic
context. With this established, in the following two sections we consider in greater
detail the mathematical details of these equivalence principles, and their interrelations.

3 Relativistic Equivalence Principles

In this section, we turn to the mathematical details of the above taxonomy of equiva-
lence principles in the relativistic context.Webegin in §3.1 by recalling the connections
between general relativity and teleparallel gravity. We then consider relativistic equiv-
alence principles in §3.2. We undertake the parallel tasks for Newtonian theories in
§4.

3.1 Relativistic Recovery

To present teleparallel gravity (which, recall, is a ‘degeometrized’ relativistic theory,
which is locally empirically equivalent to general relativity, but inwhich gravity acts as
a force: see (Aldrovandi and Pereira 2013) for relevant background, and (Knox 2011;
Read 2016; Read and Teh 2018; Wallace 2015) for philosophical discussion26), we
must first define a ‘vielbein’. When working with Lorentzian manifolds (as in general
relativity), at each p ∈ M we can always find objects e a

a such that

gabe
a

a e b
b = ηab. (11)

24 From the point of view of Knox exegesis, Knox takes the arbitrariness of the gravity-inertia split encap-
sulated in SEP1,EEP as prima facie evidence—assuming that symmetry-related solutions of a given theory
should be regarded as representing the same physical states of affairs (cf. Møller-Nielsen 2018)—for EEP,
and in turn for SEP1,EEP .
25 The concept of a normal frame can be generalized to the case of torsionful spacetimes by using non-
holonomic coordinates (Aldrovandi et al. 2003; Iliev 1998). See (Knox 2013, §4.2) for some philosophical
discussion of the physical content of such coordinate systems.
26 It has been put to us that teleparallel gravity is not empirically equivalent to general relativity, for (the
claim goes) it has more gravitational wave polarizations. But this is false: see e.g. (Bambaa et al. 2013).
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With this inmind, let a vielbein e a
a (p) : TpM → MpM be amap from tangent spaces

to fibres of a Minkowski vector bundle MM ; the e a
a are inverse vielbeins, such that

e a
a e b

a = δ b
a . Note that there is a gauge freedom here: a Lorentz transformation of

the internal indices of the vielbein would yield the same metric field gab (see e.g.
Aldrovandi et al. 2003, p. 550).

Given a vielbein, we define the components �̄
ρ
μν of a ‘Weitzenböck derivative

operator’ ∇̄ to be:27

�̄ρ
μν := eρ

a∂νe
a
μ. (12)

∇̄ is the derivative operator of teleparallel gravity. This in hand, we declare that models
of teleparallel gravity are triples 〈M, e a

a , Tab〉, where e a
a is a vielbein on M , and, as

in general relativity, Tab represents the stress-energy content associated with matter
fields. Analogously with general relativity (and in contrast with Newtonian gravity
and Newton-Cartan theory), the Weitzenböck derivative operator ∇̄ is not included
as a separate element in the model, for, given a vielbein e a

a , there exists a unique
such operator, defined via (12). Dynamically, solutions of vacuum teleparallel gravity
satisfy the field equation28

∂a

(
eS ab

a

)
− 4π

(
ej b

a

)
= 0, (13)

where e := det
(
e a
a

) := √−g with gμν defined as in (11) (Aldrovandi and Pereira
2013, p. 5), and the teleparallel gravitational current, superpotential, and Lagrangian
are respectively given by:

ej b
a = − 1

4π
ee c

a S eb
d T̄ d

ec + e b
a LG ,

Sbde = 1

2

(
Kdeb − gbeT̄ ad

a + gbd T̄ ae
a

)
,

LG = h

16π
SbdeT̄bde.

In the above, T̄ a
bc is the ‘torsion tensor’, which encodes the antisymmetric part of

the connection; the ‘contorsion tensor’ Ka
bc is defined as the difference between the

Weitzenböck and Levi-Civita connection components. Note that, unlike the Levi-
Civita derivative operator ∇ of general relativity, the torsion of the Weitzenböck
derivative operator ∇̄ of teleparallel gravity does not necessarily vanish. In teleparallel
gravity, gravitating but otherwise force-free test particles satisfy

ξa∇̄aξb = ξ cT̄cbaξ
a . (14)

27 Here we have already set the spin connection to vanish, so are dealing with ‘pure tetrad’ teleparallel
gravity. If we do not set the spin connection to vanish, (12) takes a more general form; in that case, we are
dealing with ‘covariant’ teleparallel gravity. Note that covariant teleparallel gravity is the now the preferred
form of the theory, for it does not face issues of consistency when coupling to spinorial matter. For more
on this, see e.g. (Kopczyński 1982; Leclerc 2005).
28 Here, ∂ is a coordinate derivative operator, in the sense of (Malament 2012, pp. 64–65).
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Thus, teleparallel gravity can be understood to be a force theory empirically equivalent
to general relativity (in several senses—including that Eq. (16) of teleparallel gravity
can be derived from the geodesic equation of general relativity (2), and vice versa—
see e.g. Aldrovandi and Pereira 2013; Knox 2011; Read 2016 for details), just as
Newtonian gravity is a force theory empirically equivalent to Newton-Cartan theory.29

3.2 Refined Relativistic Equivalence Principles

The above in hand, it is straightforward to articulate precisely SEP1,EEP, SEP2,EEP,
SEP1,EEP, and SEP2,EEP in the relativistic setting. Beginning with the former princi-
ple, this follows simply in virtue of the fact that, in general relativity, at any p ∈ M it is
always possible to find a normal coordinate system inwhich theLevi-Civita connection
coefficients �

ρ
μν vanish. Writing the geodesic Eq. (2) in a coordinate basis,

ξμ∂μξν + ξμξσ �ν
μσ = 0, (15)

we see that, in such normal coordinate systems, test particles follow flat spacetime
straight-line trajectories. As already discussed, the coordinate transformations relating
these normal frames are inherited via the exponential map from theKilling symmetries
of the tangent space—i.e., are the Lorentz transformations; this suffices to recover
SEP2,EEP.

On the other hand, consider now SEP1,EEP. Writing the teleparallel gravity force
equation Eq. (16) in a coordinate basis, we have

ξμ∂μξν + ξμξσ �̄ν
μσ = ξμξσ T̄ ν

μ σ . (16)

Choosing �̄ν
μσ = −T̄ ν

μ σ would amount to choosing a frame (not normal with
respect to the Weitzenböck connection) such that inertial effects cancel the universal
gravitational force (as given by torsion, in teleparallel gravity); this is SEP1,EEP. Now
using that the contortion tensor Ka

bc is the difference between the Levi-Civita and
Weitzenböck connection components, and the result (Aldrovandi et al. 2003, p. 552)

Ka
bc = 1

2

(
T a

bc + T a
bc + T a

cb

)
, (17)

we see that this choice amounts exactly to setting the Levi-Civita connection coef-
ficients �ν

μσ to vanish (for further details on this calculations, see Aldrovandi and
Pereira 2013, p. 65). But we have already seen above that the Levi-Civita normal coor-
dinate systems in which the �ν

μσ vanish are related by Lorentz transformations—so
we know (via geometrization of the recovered teleparallel theory) that the coordinate
systems in teleparallel gravity in which inertial effects are selected so as to cancel
gravitational effects are related by Lorentz transformations; this, then, is SEP2,EEP.

Note that, in this case, the internal Lorentz gauge symmetries of the recovered
teleparallel model (discussed in §3.1) coincide with the transformations which relate

29 For some related discussion of force theories equivalent to general relativity, see (Weatherall and Man-
chak 2014); for critical engagement with that piece (with which we concur), see (Dürr 2021).
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the frames in which the strong equivalence principle (in either its geometrized or
ungeometrized form) holds. This is no surprise, since in both cases these are inherited
from the Killing symmetries of the tangent space. When it comes to the case of the
Newtonian equivalence principle discussed below, the situation in this regard will be
more subtle, for reasons relating to the fact that, in that case, one must work with an
‘extended’ vielbein formalism.

4 Newtonian Equivalence Principles

Our purpose in this section is to show that a complete understanding of Newtonian
equivalence principles can be achieved by treating the situation in this context as
exactly parallel to the relativistic case. In order to do so, we first need to show, fol-
lowing (Read and Teh 2018), the sense in which Trautman recovery just is a case of
teleparallelization; we survey the relevant details in §4.1.We then return to Newtonian
equivalence principles in §4.2.

4.1 Non-Relativistic Recovery

This section has a simple take-home: Newtonian gravity is the teleparallel equivalent
of Newton-Cartan theory; the relationship between these theories is exactly parallel to
that between teleparallel gravity and general relativity.While the torsion in teleparallel
gravity is spacetime torsion, the torsion in Newtonian gravity (associated with∇aϕ, as
appearing in the force Eq. (7)) is ‘internal’, and associated (via the Cartan equations)
with a ‘mass gauge field’ ma , which is a component of an extended vielbein. The
remainder of this section seeks to spell out these results in greater detail; readers
unconcerned with the technicalities may skip to §4.2.30

In order to demonstrate that Newton-Cartan theory stands to Newtonian gravity
exactly as general relativity stands to teleparallel gravity, it is first necessary to write
Newton-Cartan theory in the vielbein formalism.31 In this theory, an extended viel-
bein is a one-form e I

a = (ta, e i
a ,ma); it is ‘extended’ in the sense that it includes

the piece ma , needed to parameterize the freedom to change the Lagrangian of the
point particle under consideration coupled to a Newton-Cartan background;32 in line
with this extension, we introduce the five-dimensional ‘internal’ index I . The associ-
ated (extended) spin connection ω I

a J consists of the ‘rotation connection’ ω i
a j and

the ‘boost connection’ ω i
a := ω i

a 0.
33 It is straightforward to define the standard

objects of Newton-Cartan theory in terms of the objects of the theory in its vielbein

30 On the other hand, readers seeking further technical details are referred to the original source in the
physics literature (Read and Teh 2018).
31 See (Andringa et al. 2011) for a clear introduction to this formalism.
32 For more on the physical motivations for introducing this object, see the appendix.
33 Recall that in order to identify elements of a fibre associated with a point p ∈ M with elements of a fibre
associatedwith a pointq ∈ M infinitesimally separated from p, onemust use a spin connection,ω a

a b , related

to the spacetime connection on the base manifold via the ‘vielbein hypothesis’, ∇ae a
b + ω a

a be
b

b = 0.
(Here, we have used four-dimensional indices, for illustrative purposes.)
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formulation: hab := δabe a
a e b

b , and ta appears directly in the vielbein. In order to
discuss certain frame-dependent quantities, it is convenient to introduce the notion
of a ‘observer vector field’—viz., a vector field na that is timelike and normalized
(tana = 1).

We can use the vielbein and the spin connection to equip Newton-Cartan space-
time with a compatible spacetime connection ∇, by means of the vielbein hypothesis
∇ae a

b + ω a
a be

b
b = 0. Explicitly, ∇ has the Christoffel symbols34

�λ
μσ = n

�λ
μσ + tμF

λ
σ , (18)

where na is an observer vector field,

n
�λ

μσ := nλ∂(μtσ) + 1

2
hλρ(∂μhσρ + ∂σ hμρ − ∂ρhμσ ), (19)

and

(F)ab := (ωi ∧ ei )ab (20)

is the ‘Newton-Coriolis 2-form’.35 (18) shows us that, unlike Lorentzian spacetime,
Newton-Cartan spacetime does not induce a unique compatible torsion-free space-
time connnection. Instead, the space of possible connections can be parametrized by

fixing an observer field na which determines
n
�λ

μσ , and then further specifying F b
a

in order to pick out �λ
μσ . These two pieces of data have an important physical inter-

pretation:
n
�λ

μσ is an ‘inertial connection’ in the sense that na is acceleration-free and

vorticity-free with respect to
n
�λ

μσ , and F b
a = taαb + γ b

a , where αa := nb∇bna is

the ‘acceleration’ and γab := ei[ae
j
b]e

c
i ed j∇cnd is the ‘vorticity’ of na with respect

to�λ
μσ . Finally, it is useful to note that the spacetime boost connectionωa

b := ω i
b e a

i
can be written as (cf. Geracie et al. 2015)

ω b
a = θ b

a + τaα
b + γ b

a , (21)

where θab := ei(ae
j
b)e

c
i ed j∇cnd is the ‘expansion’ of na .

Using the Cartan equations (see e.g. Wallace 2015), we can compute the ‘internal’
curvatures associated with the two components of the Newtonian spin connection,
i.e. the boost connection ωi and rotation connection ωi j . These are, respectively (cf.
Andringa et al. 2011),

Ri (G) = dωi − ωi j ∧ ω j , (22)

Ri j (J ) = dωi j . (23)

34 See (Bekaert and Morand 2016) for a derivation of this result.
35 For convenience here and at some points below, we here make use of differential forms notation.
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Here,G and J refer, respectively, to generators of Galilean boosts and spatial rotations,
to which the rotation and boost connections are associated. In addition to these curva-
tures, we can compute the ‘internal’ torsions associated with each of the components
of the Newtonian extended vielbein, again using Cartan’s equations. These are:

T (H) = d t, (24)

T (P) = dei − ωi j ∧ e j − ωi ∧ t, (25)

T (M) = dm − ωi ∧ ei . (26)

Here, T (H), T (P) and T (M) are, respectively, associatedwith the extended vielbein
components t , ei andm; H , P and M refer, respectively, to the generators of temporal,
spatial and mass translations, to which these vielbein components are associated.
Together, {G, J , H , P, M} are the generators of the ‘Bargmann group’, which is the
central extension of the Galilean group.

Since the spacetime connection ∇ of Newton-Cartan theory is torsion-free, we
set the torsions associated with t and ei to zero. Indeed, by analogy with the torsion-
freeness of general relativity, we require that themass torsion ofNewton-Cartan theory
also vanish. Thus, we have T (H) = T (P) = T (M) = 0. From the condition that
the mass torsion vanish, it follows that we have dm̂ = ω̂a ∧ êa . (Here, we include
hats to indicate that we are dealing with objects in Newton-Cartan theory, in which all
torsions have been set to vanish.) From these conditions, one can determine the spin
connection solely in terms of the extended vielbein, thus determining the Newton-
Cartan spacetime connection ∇.

We now introduce teleparallel Newton-Cartan theory by identifying the data
(eI ,ωI

J ) that yields (i) a flat spacetime connection ∇̄ (the analog of the Weitzen-
böck connection of teleparallel gravity), and (ii) whose Cartan torsion compensates
for the curvature of ∇ (the analogue of the Levi-Civita connection of general rela-
tivity). While one might be tempted to introduce non-trivial spatial torsion, we note
that for a flat connection, the Bianchi identities imply that this must vanish in the
Newtonian case, so it is only the mass torsion which is relevant here.

First, we perform a preliminary ‘inertial gauge-fixing’ that is motivated by (18)
and the ensuing discussion: recall that (eI ,ωI

J ) determines the inertial connection
n
�λ

μσ precisely when it is subject to the constraint F = 0, upon which T (M) = dm
(because the final term in (26) just is the Newton-Coriolis 2-form). Implementing
this constraint and setting m̂ = m then yields the following relationship between the
Newton-Cartan and teleparallel-equivalent equations of motion:

ξa∇aξ
b = 0 ⇐⇒ ξa∇̄aξ

b = (dm)baξ
a . (27)

The above gauge-fixing F = 0 is not invariant under local Galilean boosts. We
can remedy this by transforming a vielbein to the ‘twistless gauge’ by means of
ei �→ ēi = ei − miτ , where mi := eaima , resulting in the new extended viel-

bein ēI =
(
τ , ēi , τϕ

)
, where ϕ is a boost-invariant scalar. The corresponding frame

contains a boost-invariant observer field za := ēa0 = ea0 − habmb. This choice is
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invariant under local boosts acting on the unbarred quantities; however, there are still
residual mass gauge symmetry transformationsm �→ m+d f (where f is an arbitrary
smooth function), under which (za, ϕ) is transformed into another boost-invariant pair
(z′a, ϕ′).

The name ‘twistless gauge’ stems from the observation that the vorticity of za

vanishes with respect to∇, so our frame is twistless with respect to the Newton-Cartan
connection. In the twistless gauge, it follows immediately from (27) that

ξa∇aξ
b = 0 ⇐⇒ ξa∇̄aξ

b = −hba(dϕ)a, (28)

thus recovering the Newtonian gravity force law as the teleparallel equation of motion.

Having gauge-fixed to the inertial connection
z
�λ

μσ , we see from (21) that there is
only one parameter left to gauge-fix inω b

a , viz. the expansion θ b
a . We do so by setting

ω b
a = θ b

a = 0, which along with the Ri j (J ) = 0 condition implies that
z
�λ

μσ is
flat. One can then deduce easily that the Newton-Cartan source equation holds just in

case the flat teleparallel connection
z∇ satisfies the Newtonian Poisson equation. This

absorbs the Trautman recovery theorem into the machinery of Newtonian teleparal-
lelization with appropriate gauge-fixing, up to the standard Trautman gauge symmetry
embodied in (8) and (9). In fact, this symmetry is accounted for by the fact that the
data (ēI ,ωI

J ) satisfying the twistless gauge and ω b
a = 0 is unique only up to mass

gauge transformations that preserve these conditions.
A final word on the generality of these results. The teleparallelization procedure

presupposes that the manifold be parallelizable (i.e., that the tangent bundle be a trivial
bundle).While this is necessary in Newton-Cartan theory if one seeks global solutions,
it is not necessary in general relativity. This means that the procedure is more general
in the Newtonian context than in the relativistic context, insofar as the possibility of
conversion into a force theory arises for all solutions of Newton-Cartan theory, but
only for a proper subset of solutions of general relativity. In turn, one might argue
thereby that the spectre of conventionality of geometry looms larger in the former
than in the latter context. For further related discussion of conventionality in these
contexts, see (Dürr 2021; Knox 2014; Weatherall and Manchak 2014).

4.2 Refined Newtonian Equivalence Principles

In light of the foregoing, Newtonian gravity is the teleparallel equivalent of Newton-
Cartan theory; the relationship between these theories is exactly parallel to that in the
relativistic case, and this subsumes and generalizes Trautman recovery. With this in
hand, an avenue should be opened up to a more rigorous and systematic understanding
of Newtonian equivalence principles, which mirrors the results in the relativistic case
presented in §3.2.

Once again, we seek to articulate precisely SEP1,EEP, SEP2,EEP, SEP1,EEP, and
SEP2,EEP, this time in the Newtonian setting. Beginning with the former, one can
again write the particle equation of motion in a coordinate system as per (15), from
which SEP1,EEP follows on setting the Newton-Cartan connection coefficients to
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vanish. In this case, the coordinate transformations which relate these normal frames
are inherited via the exponential map from the Killing symmetries of flat Newton-
Cartan spacetime—these are the Galilean transformations (Duval 1993); this thus
yields SEP2,EEP.

Now consider SEP1,EEP. Writing the Newtonian gravity force Eq. (7) in a coordi-
nate basis and recalling that ξa is timelike and normalized, we have

ξμ∂μξν + ξμξσ �̄ν
μσ = −ξμξσ tμtσ ∂νϕ. (29)

As in the relativistic case, choosing �̄ν
μσ = −tμtσ ∂νϕ would amount to choosing a

frame (not normalwith respect to theNewtonian gravity equivalent of theWeitzenböck
connection) such that inertial effects cancel the universal gravitational force (now
given by ∇aϕ; in the teleparallel interpretation of Newtonian gravity, as we have
seen, this is associated with mass torsion); given (8), we see that this choice amounts
exactly to setting the Newton-Cartan connection coefficients �ν

μσ to vanish. We have
already seen above, however, that these Newton-Cartan normal coordinate systems are
related by Galilean symmetries—so we know (via geometrization) that the coordinate
systems in which inertial effects are selected to cancel gravitational effects are related
by Galilean transformations; this is SEP2,EEP.

Note that, since Newtonian teleparallelization involves working in the extended
vielbein formalism involving the mass gauge field ma , the Killing symmetries of flat
Newton-Cartan spacetime (the Galilean transformations) do not in this case coincide
with the (Trautman) gauge symmetry of the recovered models, as encapsulated in (8)
and (9). However, after stipulating that the gravitational potential ϕ can change only
by constant shifts, so that ∇aψ = 0 in (8) (typically such shifts are regarded as being
unphysical36), the residual Trautman symmetry precisely corresponds to the familiar
rigid Galilean transformations.

5 Map of Equivalence Principles

We have presented a web of equivalence principles which, in light of the fact that
Newtoniangravity is the teleparallel equivalent ofNewton-Cartan theory, holds equally
well in theNewtonian case as in the relativistic case.Given this,we are now in aposition
to present the complete map of these equivalence principles—see Fig. 1. Of course,
as our discussion of WEP1 in §2.2 should indicate already, we make no claim that
all conceptual issues regarding the versions of the equivalence principle discussed in
this paper are thereby resolved; this notwithstanding, we regard the links presented in
Fig. 1 as a fruitful means of understanding how such principles relate to one another
in both relativistic and Newtonian contexts.

Let us review the links on this map. We have already seen in §2.2 (following
Lehmkuhl 2021) thatWEP2 impliesWEP1; we have also claimed that, with additional
input assumptions akin to Newton’s Corollary VI (hence the note ‘Cor. VI’ in Fig. 1),
WEP1 implies NEP. So far, so simple.

36 Though see (Dewar 2019); (Martens & Read 2021) for some discussion on this point.
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Fig. 1 Map of equivalence
principles. Solid arrows are
logical implication within a
theory; dashed arrows are
inter-theoretic relations (given
by geometrization and recovery)

Next, EEP implies NEP, in the sense that if gravity and inertia are conceptually
unified, then of course they are empirically indistinguishable. This being said, there is
clearly also a sense in which this implication does not hold, for NEP trades in terms
such as ‘gravity’ and ‘inertia’, which arguably do not make sense in a geometrical
context. Moreover, even given the conceptual unification of gravity and inertia as per
EEP, one can still, within the context of a geometrized theory, effect an arbitrary
gravity/inertia split (cf. Lehmkuhl 2014, where Einstein’s thinking of these matters
by analogy with the unification of the electric and magnetic fields in Maxwell’s elec-
tromagnetism is discussed in detail); relative to that split, the notions can become
meaningful—but one would not want to say that, relative to such a split, the notions of
gravity and inertia are necesarily empirically indistinguishable (cf. again the case of
electromagnetism: relative to a frame, one has well-defined E andB fields, but it is not
necessarily the case that those fields are empirically indistinguishable). While all of
these points are important to register, we also maintain that there is a straightforward
sense (articulated above) in which this implication does hold; it is in this sense which
this implication in Fig. 1 is intended.

We turn next to implications regarding strong equivalence principles. Clearly,
SEP1,EEP implies EEP, for the former is a strictly logically stronger statement. The
bidirectional arrows relating the two forms of the geometrized and ungeometrized
strong equivalence principle hold in light of geometrization/recovery (to be under-
stood in the unified framework of teleparallelization);37 clearly, being strictly logically
stronger, both versions of SEP2 imply their counterpart versions of SEP1. (We have
dotted the arrows associated with geometrization/recovery in order to indicate that
they are inter-theoretic, rather than intra-theoretic, relations—in contrast with the other
links on this diagram.) This just leaves one link outstanding: that from SEP1,EEP to
WEP2. This is not a link which we have discussed up to this point, but it is one
which is straightforward to establish—and, indeed, it is one which has already been
considered by Weatherall (2011, p. 432). The essential insight is that, working with
a degeometrized theory (hence SEP1,EEP), multiplying through the recovered force
equation ((7) in the Newtonian case) by inertial mass yields immediately the identity
of gravitational and inertial mass—i.e.,WEP2. Thus, the final link in Fig. 1 is secured.

It is worth pausing a little longer on this result fromWeatherall. He claims to derive
WEP2 in Newtonian gravity, via a two-step process: (i) taking a Newtonian limit of
general relativity, to arrive at Newton-Cartan theory (using a version of Ehlers’ ‘frame

37 The conceptual status of these links is, therefore, different from those relatingWEP1,WEP2 and NEP,
for the former link versions of the equivalence principle in different theories; the latter link versions of the
equivalence principle within one (degeometrized) theory.
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theory’—see Ehlers 1991; Fletcher 2019; Malament 1986), and (ii) degeometrizing
Newton-Cartan theory via Trautman recovery, to arrive at the particle force Eq. (7) of a
recoveredmodel.On obtaining this latter equation, the coincidence of gravitational and
inertial masses is immediate, as already discussed. In our terminology of equivalence
principles, this is a case of (a) beginning with SEP1,EEP in the relativistic case, (b)
moving to the same principle in the Newtonian case by taking the Newtonian limit, (c)
degeometrizing, to arrive at SEP1,EEP in the Newtonian context, and (d) deriving the
NewtonianWEP2 as a consequence of this. These steps involve following a clear path
through Fig. 1; thus, the web of links which we have constructed between equivalence
principles is able to subsume and contextualize Weatherall’s result.

Two further comments on this matter. First: given that degeometrization commutes
with taking the Newtonian limit (at least in certain cases),38 there is another route to
Weatherall’s result: (i) degeometrize general relativity, to obtain teleparallel gravity
(in which, by direct analogy with Weatherall’s reasoning, one may already show that
inertial and gravitational masses coincide, even in a relativistic setting), and (ii) take
the Newtonian limit, to obtain Weatherall’s result in Newtonian gravity.

Our second comment is the following:Weatherall’s derivation ofWEP2 is a case of
an inter-theoretic derivation of an equivalence principle. This is to be contrasted with
an intra-theoretic derivation of an equivalence principle. Two examples of this are the
following. First, Greaves and Wallace (2014, §8), consider a subsystem-environment
decomposition in Newtonian gravity, and are able to derive the following:

The prediction ... is that in Newtonian gravity, a system floating freely in space
behaves identically, with respect to its internal processes, to a system freely
falling in a uniform gravitational field. The empirical symmetry associated to
[this] is Einstein’s elevator, the thought experiment that led Einstein to the equiv-
alence principle. (Greaves and Wallace 2014, p. 77)

That is, Greaves and Wallace are able to derive NEP, within Newtonian mechanics.
A second example of an intra-theoretic derivation of an equivalence principle is the
following: Wallace (2020) shows that, beginning with a Newton-Cartan model, impo-
sition of appropriate boundary conditions on a subsystem leads to emergent Galilean
symmetries of that subsystem. This can be understood to be a derivation of the finite
subsystem analog of SEP2,EEP within a geometrized theory, because upon taking the
far-zone limit in which the subsystem (mass and size) shrinks down to a point within
the environment spacetime, an inertial frame (in which the emergent laws governing
the subsystem simplify maximally) becomes a normal frame, and one obtains our
pointwise construction. (In spite of our focus on pointwise constructions, we concur
with Wallace’s plea that the equivalence and relativity principles be considered not
merely in the pointwise sense (Wallace 2017).We defer to a future article a full analysis
of the relationship between asymptotic, finite, and pointwise constructions.)

38 See (Read and Teh 2018), in which this was shown for the case of ‘null reduction’, where a Newton-
Cartan model is embedded directly into a (higher-dimensional) model of general relativity. It would be
worthwhile (and, we expect, straightforward) to demonstrate that the same commuting diagram can be
constructed when one takes the Newtonian limit using frame theory.
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6 Conclusions

We are now in a position to revisit Lehmkuhl’s claims regarding the role of the
equivalence principle as a ‘bridge principle’, linking general relativity to both special
relativity (as with SEP2,EEP), and to Newtonian mechanics (as with EEP) (Lehmkuhl
2021). Both of these claims are correct, but can be generalized. On the former:
Lehmkuhl has identified the role of SEP2,EEP, insofar as it recovers locally in general
relativity the symmetries of special relativistic spacetime structure (cf. Read et al.
2018). However, generalizing beyond the relativistic context, one can see that the role
of SEP2,EEP is to link a geometrized theory locally to the flat spacetime tangent space
symmetries of that theory; this affords a more general understanding of the role of
this principle. Thus, the role of SEP2,EEP in the context of Newton-Cartan theory is
to recover locally the Galilean spacetime symmetries. On EEP, we have seen above
that this principle expresses a commitment to a geometrized spacetime setting. In
that sense, however, Lehmkuhl’s statement that EEP links general relativity on the
one hand, and Newtonian gravity on the other, is not entirely natural: rather, within
the relativistic framework, EEP is best understood as linking general relativity and
teleparallel gravity; Newtonian gravity, with its own gravity-inertia split, can then be
recovered by taking the Newtonian limit.
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TheMass Gauge Field

The purpose of this appendix is to explain in greater detail the physical meaning of
the mass gauge field ma in the vielbein formulation of Newtonian theories. The com-
mutation relations of the Bargmann algebra (i.e., the commutation relations satisfied
by the generators of the Bargmann group) are:

[
Ji j , Jkl

] = 4δ[i[k Jl] j], (30)
[
Ji j , Pk

] = −2δk[i Pj], (31)
[
Ji j ,Gk

] = −2δk[i G j], (32)

[Gi , H ] = −Pi , (33)
[
Gi , Pj

] = −δi j M . (34)
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When M = 0, these are the commutation relations associated with the Galilean alge-
bra. Why, then, should we consider M 
= 0? The answer to this question can be
motivated by considering the action for a free, non-relativistic particle with mass
M :39

S = 1

2

∫ t2

t1
Mẋi ẋ i dt . (35)

Under a Galilean boost (i.e., a transformation of the form xi �→ xi + vi t for some
constant vector vi—note that this is a subset of the full group of Galilean transforma-
tions, which includes also rotations and translations), one finds that the Lagrangian
changes by a total derivative:

δGL = d

dt

(
Mxivi

)
. (36)

Here, δGL represents the variation of L under the Galilean boost. This variation of L
is related to the Euler-Lagrange equations obtained by variation of the fields, and to
the ‘naïve’ conserved charge Q̃G associated to Galilean boosts, in the usual way:40

δGL = ELEs + d

dt
Q̃G, (37)

On-shell and using our above result, we therefore find

d

dt

(
Q̃G − Mxivi

)
= 0, (38)

so that the ‘true’ conserved charge associated with Galilean boosts is QG = Q̃G −
Mxivi . Since Q̃G = piδGxi = Mẋivi t , we have

QG = Mẋivi t − Mxivi . (39)

Taking now the Poisson bracket of QG with the Noether charge QP corresponding to
infinitesimal translations ai gives

{QG, QP }PB = −Mvi ai . (40)

On the right hand side, we see the mass generator M . Thus, the algebra of conserved
charges is a representation of what we have called the Bargmann algebra. Since the
Poisson brackets of conserved charges should mirror the Lie algebra structure of the
associated symmetries,41 this in turn means that the coupling of a massive free particle

39 The following presentation follows (Andringa et al. 2011, §4.1).
40 Cf. (Gomes 2019, §3.3) for some more general background here.
41 This result is not entirely straightforward, but should be familiar to readers who have studied a first
course on the symplectic formalism of classical mechanics—see e.g. (Butterfield 2007) for a philosophical
introduction.
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to a Galilean background leads naturally to the central extension of the Galilean group.
The mass gauge fieldma is thus introduced when we ‘gauge’ the Bargmann algebra.42
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