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Abstract

Is it possible to build a general and automatic
natural language generation (NLG) evaluation
metric? Existing learned metrics either per-
form unsatisfactorily or are restricted to tasks
where large human rating data is already avail-
able. We introduce SESCORE, a model-based
metric that is highly correlated with human
judgements without requiring human annota-
tion, by utilizing a novel, iterative error synthe-
sis and severity scoring pipeline. This pipeline
applies a series of plausible errors to raw text
and assigns severity labels by simulating hu-
man judgements with entailment. We evaluate
SESCORE against existing metrics by compar-
ing how their scores correlate with human rat-
ings. SESCORE outperforms all prior unsuper-
vised metrics on multiple diverse NLG tasks in-
cluding machine translation, image captioning,
and WebNLG text generation. For WMT 20/21
En-De and Zh-En, SESCORE improve the aver-
age Kendall correlation with human judgement
from 0.154 to 0.195. SESCORE even achieves
comparable performance to the best supervised
metric COMET, despite receiving no human-
annotated training data. 1

1 Introduction

Text generation tasks such as translation and im-
age captioning have seen considerable progress
in the past few years (Chen et al., 2015; Birch,
2021). However, precisely and automatically
evaluating generated text quality remains a chal-
lenge. Long-dominant n-gram-based evaluation
techniques, such as BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004), are sensitive to surface-
level lexical and syntactic variations, and have been
repeatedly reported to not well correlate to human
judgements (Zhang* et al., 2020; Xu et al., 2021).

Multiple learned metrics have been proposed to
better approximate human judgements. These met-

1Code and data are available at https://github.
com/xu1998hz/SEScore

rics can be categorized into unsupervised and su-

pervised methods based on whether human ratings
are used. The former includes PRISM (Thomp-
son and Post, 2020), BERTScore (Zhang* et al.,
2020), BARTScore (Yuan et al., 2021), etc. The
latter includes BLEURT (Sellam et al., 2020),
COMET (Rei et al., 2020) etc.

Unsupervised learned metrics are particularly
useful as task-specific human annotations of gener-
ated text can be expensive or impractical to gather
at scale. While these metrics are applicable to a va-
riety of NLG tasks (Zhang* et al., 2020; Yuan et al.,
2021), they tend to target a narrow set of aspects
such as semantic coverage or faithfulness, and have
limited applicability to other aspects, such as flu-
ency and style, that matter to humans (Freitag et al.,
2021a; Saxon et al., 2021). While supervised met-
rics can address different attributes by modeling
the conditional distribution of real human opinions,
training data for quality assessment is often task-
and domain-specific with limited generalizability.

We introduce SESCORE, a general technique
to produce nuanced reference-based metrics for
automatic text generation evaluation without us-
ing human-annotated reference-candidate text pairs.
Our method is motivated by the observation that
a diverse set of distinct error types can co-occur
in candidate texts, and that human evaluators do
not view all errors as equally problematic (Freitag
et al., 2021a). To this end, we develop a stratified

error synthesis procedure to construct (reference,
candidate, score) triples from raw text. The can-
didates contain non-overlapping, plausible simula-
tions of NLG model errors, iteratively applied to
the input text. At each iteration, a severity scoring

module isolates individual simulated errors, and as-
sesses the human-perceived degradation in quality
incurred. Our contributions are as follows:

• SESCORE, an approach to train automatic text
evaluation metrics without human ratings;

• A procedure to synthesize different types of
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errors in text at varying severity levels;
• Experiments showing that SESCORE is effec-

tive in a diverse set of NLG tasks including
WMT 20/21, WebNLG, and image captioning,
and outperforms all previous unsupervised
learned metrics. It is even comparable to the
best learned metric on WMT 20/21.

2 Related Work

Traditional n-gram matching based (Papineni et al.,
2002; Banerjee and Lavie, 2005) and edit distance
based approaches (Levenshtein, 1965; Snover et al.,
2006) have proven to be limited in recognizing se-
mantic similarity beyond the lexical level. Learned
metrics (Zhang* et al., 2020; Sellam et al., 2020;
Yuan et al., 2021) have been proposed to align bet-
ter with human judgements. We categorize these
metrics as either unsupervised or supervised with
respect to learning from human-annotated scores.

Unsupervised Metrics attempt to extract fea-
tures from large pretrained models. Embedding-
based metrics (e.g. BERTScore (Zhang* et al.,
2020) and Moverscore (Zhao et al., 2019)) create
soft-alignments between reference and hypothe-
sis in the embedding space. However, they are
refined in the semantic coverage. Text generation-
based metrics (Yuan et al., 2021), use conditional
probability of the generated sentence to evaluate
faithfulness of the candidates. However, Freitag
et al. (2021a) points out text generation evaluation
can produce errors beyond semantic coverage or
faithfulness (e.g. style and fluency errors), which
results poor correlations to the human evaluations.

Supervised Metrics attempt to learn through lim-
ited human-labelled severity annotations. Rei et al.
(2020) trained COMET on a small set of domain-
specific human ratings; this model has limited ex-
tensibility to teh general domain. BLEURT (Sellam
et al., 2020) first pretrains on millions of synthetic
data and then uses WMT testing data in fine-tuning
the model. Unlike our fine-grained stratified error
synthesis, the labels on the synthetic data are de-
rived from prior metrics or other tasks, limiting the
quality and precision of pretraining process.

3 The SESCORE Approach

Given a reference text xxx and a candidate yyy, a metric
is expected to output a score s. Training such a met-
ric model requires triples of reference-candidate-
score’s. However, there are no large-scale human
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Figure 1: Overview of the Quality Prediction Model.

annotated triple data available in many tasks. We
consider a general setup where large raw text cor-
pus is available.

SESCORE is trained from a pretrained language
model (e.g. BERT) on synthetic triples generated
from raw text. It synthesizes candidate sentences yyy0

to mimic plausible errors by transforming raw input
sentences xxx multiple times. At each step, it inserts,
deletes, or substitutes a random span of text. These
errors are non-overlapping. It assesses the severity
of the errors introduced in the transformation. This
allows us to pretrain quality prediction models on
corpora containing only raw text samples {x}, en-
abling the use of learned quality prediction models
in any text generation domain.

The process of generating yyy0 from xxx, stratified

error synthesis, is so called for its incremental
and multi-category nature; a stochastic perturbation
function Ges which randomly samples from a set of
potential errors is recursively applied on xxx (eq. (1))
M times to produce a sequence of perturbed sen-
tences ZZZ = {zi}Mi=1 that interpolate between the
raw text xxx and the final synthetic sentence yyy0 = zM
(§ 3.2).

zi =

(
xxx, if i = 0

Ges(zi�1), 0< i  M
(1)

The stratum sentence sequence Z is then used
to in the subsequent severity scoring step which
uses a pairwise severity scoring function Ses on
consecutive pairs and cumulatively yield training
labels s0 =

PM
i=1 Ses(zi�1, zi) (§ 3.3). A concrete

example is illustrated in fig. 2. Finally, we train
SESCORE’s quality prediction model, f✓ ( fig. 1)
using synthetic {hxxx,yyy0, s0i} triples (§ 3.4).

3.1 Background: Quality Measured by Errors

Our method is inspired by the multidimensional
quality metrics (MQM) (Mariana, 2014; Freitag
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Figure 2: SESCORE: stratified error synthesis and severity scoring Pipeline. # indicates the start index of
each error in the previous sentence. Both MLM and Seq-to-seq models can be used to produce inserted or
replaced tokens. Each zi corresponds to a perturbed sentence. The final synthesized sentence y0 has the score
s0 =

P4
i=1 Ses(zi�1, zi) = �12.

Category MQM Description Synthesis Procedure in SESCORE

Accuracy Addition Text includes information not present reference. insertion using MLM or seq2seq generation
Omission Text is missing content from the reference Delete a random span of tokens
Mistranslation Text does not accurately represent the reference Replace a random span using maksed or seq2seq generation

Fluency Punctuation Incorrect punctuation (for locale or style) Insertion & replacement using masked filling, and deletion
Spelling Incorrect spelling or capitalization Insertion, replacement, deletion, and Swap
Grammar Problems with grammar Insertion, replacement, deletion, and Swap

Table 1: Error Categories in MQM and our synthesis procedure. SESCORE generalize the imitate model output
errors beyond machine translation.

et al., 2021a). MQM is a human evaluation scheme
for machine translation. It determines the quality
of a translation text by manually labeling errors
and their severity levels. Errors are categorized
into multiple types such as accuracy and fluency.
Each error type is associated with a severity level –
a penalty of 5 for major error and 1 for minor error.

In table 1, we use two major error categories in
MQM framework: accuracy and fluency, to clas-
sify and decide our perturbations in Ges. There
are two main motivations to simulate those errors
from the table: 1) they are two major error cate-
gories in machine translations; 2) those errors are
general and can be extensible to new domains. We
use six techniques to simulate errors from the ta-
ble 1: mask insertion/replacement with maksed lan-
guage model (MLM)/seq-to-seq (seq-to-seq) lan-
guage model, and N-gram word drop/swap.

3.2 Stratified Error Synthesis

Tuan et al. (2021) suggest that multiple errors could
co-occur in one segment, so we construct each
sentence with up to Mmax perturbations (= 5 in
experiments). At each iteration, we randomly draw
one perturbation Ges from the set of edit operations,
E = {eins, edel, erepl, eswap} (insertion, deletion,
replacement, and swap, respectively).

Our technique is stratified so as to enable ac-
curate evaluation of the severity at each step, and
prevent subsequent errors from overwriting prior
ones. To achieve this, we propose a novel stratified
error synthesis algorithm. For an input sentence
xxx, with L tokens, we initialize an array q of length
L, with qj = L� j, 81  j  L. Values indicate
the number of tokens after the current token can be
modified with the perturbation function, Ges. Each
Ges will randomly select a start index j from 1 to L
to modify the text. We define an error synthesis ta-
ble to keep track of the number of candidate tokens
can be modified after index j. Ges will only be
accepted if qj is greater than the span length of the
perturbation. The implementation details of strati-
fied error synthesis algorithm regarding to each edit
operation is illustrated in Appendix A algorithm 1.
All perturbations are recursively applied to the raw
text xxx, shown in eq. (1).

Synthesize Addition Error by Insertion (eins)
Given a start index, we add an additional phrase
to the raw text in two ways: a) using a MLM (e.g.
BERT and RoBERTa), and b) using a seq-to-seq
language model (e.g. mBART). For the first ap-
proach, we insert a <mask> token at the given
position of a sentence. Then, we use an MLM to
fill the token based on its context. We use top-k
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sampling (k = 4), to randomly select the filling to-
ken. Our primary aim is to introduce semantically
close sentences with all three fluency errors. With
the insertion of <mask>, we can further synthe-
size Addition errors. For the second approach, we
use a pre-trained seq-to-seq model (e.g. mBART)
to generate a phrase given the context text, with
variable length.

Synthesize Omission Error by Deletion (edel)
We delete a random span of tokens from a raw text
sentence. The span is drawn uniformly within the
token indices. The length of the span is drawn from
a Poisson distribution (�d = 1.5). Our primary aim
is to mimic Omission error. However, depending
on the specific words that it drops, this technique
can further create Mistranslation and all Fluency

errors.

Synthesize Phrasal Error by Replacement (erepl)
Sometimes specific terms in a reference sentence
are systematically misphrased in generated sam-
ples. This is difficult to simulate. Instead, we use
either an MLM or a seq-to-seq model to replace
a segment of tokens in the original text. For the
first approach, the replaced span is always a single
token, which is first replaced with a <mask> token.
We then use an MLM to fill the blank similar to the
insertion operation. For the second approach, we
use a denoising seq-to-seq model (e.g. mBART) to
generate tokens for the mask tags. We randomly
choose the starting index of the span and draw the
span length from a Poisson distribution (�d = 1.5).
We use a denoising seq-to-seq model like mBART
to synthesize fluent sentences with Addition and
Mistranslation errors.

Synthesize Grammar and Other Errors by

Swapping (eswap) We swap two random words
within the span length �s in the sentence (�s = 4).
Our primary aim is to generate grammatically in-
correct sentences with mismanagement of word
orders, such as subject verb disagreement. It fur-
ther introduces Spelling and Punctuation errors.

3.3 Assessing Severity Score

Following Freitag et al. (2021a), we consider an
error severe if it alters the core meaning of the
sentence. Prior study has suggested that sentence
entailment is strongly correlated to semantic simi-
larities (Khobragade et al., 2019). To capture the
change of semantic meaning, we define a bidirec-
tional entailment relation such that, text a entails

b and b entails a is equivalent to a is semantically
equivalent to b. Therefore, for a given perturbation
function Ges on the sentence zi�1, we measure a
bidirectional entailment likelihood of zi�1 and zi.
If after applying transformation on zi�1, zi remains
bidirectional entailed to zi�1, we can assume that
Ges does not severely alter the semantic meaning of
zi�1 and therefore it is a minor error. We define the
entailment likelihood, ⇢(a, b), as the probability of
predicting a entails b. The math formulation is il-
lustrated in eq. (2). Setting the threshold � to be 0.9
reaches the highest inter-rater agreement of severity
measures using our validation dataset. Following
Freitag et al. (2021a), we assign �5 to severe er-
ror and �1 to minor errors. Therefore, our range
of score is [�25, 0]. We evaluate severity at each
perturbation of the sentence and cumulatively yield
training label s0 for the final synthesized sentence
yyy0, s0 =

PN
i=1 Ses(zi�1, zi).

Ses(zi�1, zi) =(
�1, if ⇢(zi�1, zi) � � and ⇢(zi, zi�1) � �

�5, otherwise
(2)

3.4 Quality Prediction Model

In fig. 1, we fed both raw textxxx (reference) and syn-
thetic error sentence yyy0 into a pre-trained language
model (e.g. BERT or RoBERTa). The resulting
word embeddings are average pooled to derive two
sentence embeddings. Then we use the approach
proposed by RUSE (Shimanaka et al., 2018) to ex-
tract the two features: 1) Element-wise synthesized
and reference sentence product. 2) Element-wise
synthesized and reference sentence difference. Fol-
lowing the COMET (Rei et al., 2020) implemen-
tation, the above features are concatenated into a
single vector and fed into a feed-forward neural
network regressor, f✓.

However, the key distinction between our model
and COMET is that we don’t use model source
input during training or inference. Therefore our
SESCORE can generalize to other text generation
tasks, without considering specific source data. The
detailed architecture choice can be found in § 4.1.

4 Experiments

We conduct experiments on three tasks: machine
translation, data-to-text and image captioning, to
verify the utility and generalizability of SESCORE.
Specifically, we compare SESCORE on WMT 2020
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and 2021 test sets in English-to-German (En-De)
and Chinese-to-English (Zh-En) with MQM la-
bels (Mariana, 2014; Freitag et al., 2021a), which
consists of expert-labeled scores. For data-to-text,
we test SESCORE on the WebNLG 2017 challenge
(Gardent et al., 2017a). For image captioning, we
test SESCORE on the COCO image captioning
challenge 2015 (Chen et al., 2015). We use Freitag
et al. (2021a) annotated TED dataset as our devel-
opment set to select the hyper-parameters in Error
Synthesis Models and SEScore Metric Model. We
comprehensively analyze each component of our
pipeline and their contributions to the final results.

4.1 Pre-training setup

Synthetic Error Data We use the WMT19 (Bar-
rault et al., 2019) training News Complimentary
dataset (Tiedemann, 2012) as the raw pretraining
data. It contains News articles across 16 different
languages. We randomly sampled 40K sentences
for English and 10K for German, then generated
error synthetic sentences from them. To adopt to
the text domain of WebNLG and Image captioning,
we generate 30k and 40k error synthetic sentences
from the text portion of the WebNLG (Gardent
et al., 2017b) and image captioning’s training data
(Chen et al., 2015). We use those data to train
two separate checkpoints for WebNLG and image
captioning evaluations. We discuss the effects of
cross-domain evaluation in Appendix D.1.

Error Synthesis Models We use four pretrained
language models in the error synthesis process.
First, we use an mBART model (Liu et al., 2020)
to generate a span of tokens for the <mask> posi-
tions for both insertion and replacement operations.
Second, we use an XLM-RoBERTa model (Con-
neau et al., 2020) to predict a token for <mask>
using MLM’s objective for both single token inser-
tion and single token replacement. Finally, we use
RoBERTa models fine-tuned on MNLI and XNLI
as our entailment classification model for English
and German respectively. These two models are
used to determine the bidirectional relations of a
synthetic sentence and a raw text to measure the
severity of the synthetic text. We set the synthesis
hyperparameters �e = 5, �d = 1.5, �r = 1.5, and
�s = 4. We generate all synthesized dataset on one
RTX A6000 GPUs. It costs 0.5 hours to generate
10K sentences.

SESCORE Metric Model. To ensure the fair
comparison and fully demonstrate the power of

our pretraining data, SESCORE uses the compara-
ble model size compared to the COMET (Rei et al.,
2020). Specifically, we use XLM-RoBERTa Large
as the backbone for our German metric model and
RoBERTa Large for English metric model. We use
Adam optimizer (Kingma and Ba, 2017) and set
batch size, learning rate and dropout rate of 8, 3e-5
and 0.15 respectively. We use mean squared error
to train the metric model. We select the best check-
point based on the highest Kendall correlation on
the TED validation. We include detailed training
process and hyperparamters in the Appendix B.1.

4.2 Baseline Methods

For machine translation evaluation, we include
three WMT baseline methods and five best per-
formed learned metrics. They are (1) Ngram- and
distance-based metrics (BLEU (Papineni et al.,
2002), ChrF (Popović, 2015) and TER (Snover
et al., 2006)); (2) learned metrics requiring human
rating data (COMET (Rei et al., 2020), BLEURT
(Sellam et al., 2020)); (3) learned metrics with-
out human rating data (PRISM (Thompson and
Post, 2020), BARTScore (Yuan et al., 2021) and
BERTScore (Zhang* et al., 2020)). For WebNLG
evaluation, we include the three baselines in prior
work (Gardent et al., 2017b): METEOR (Baner-
jee and Lavie, 2005), TER, BLEU, and two
learned metrics MoverScore (Zhao et al., 2019)
and BERTScore. For image captioning, we in-
clude five baseline models in the COCO image
captioning challenge 2015 (Chen et al., 2015):
BLEU, METEOR, ROGUE-L (Lin, 2004), CIDEr
(Vedantam et al., 2015) and CHrf. We further in-
clude BARTScore and BERTScore and one top-
performing task-specific learned metric, LEIC (Cui
et al., 2018). For all the learned metrics with vari-
ants, we choose their checkpoints based on their
paper recommendations. We discuss the details of
the baseline model setups in the Appendix C.1.

4.3 Evaluation Procedure

Machine Translation Task As WMT20’s stan-
dard practice (Mathur et al., 2020), we compute
the correlations of each evaluation metric to the
segment- and system- level human scores, on
WMT20 and WMT21, with MQM-based labels
(Freitag et al., 2021a). For the segment-level cor-
relation, we adopt the Kendall ⌧ correlation from
WMT20 to evaluate the relative rankings between
segments of the different systems. For the correla-
tion of system-level scores, we average SESCORE
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Model Name
WMT20 (En!De) WMT21 (En!De) WMT20 (Zh!En) WMT21 (Zh!En)

Kendall Pearson Kendall Pearson Kendall Pearson Kendall Pearson
W

ith
H

L. BLEURT 0.229* 0.476 0.052* 0.383 0.218* 0.531 0.078 0.423
COMET(DA) 0.283 0.633 0.103 0.650 0.256 0.628 0.114 0.452

W
/o

H
um

an
La

be
ls

TER -0.221* 0.627* -0.171* -0.356 -0.238* -0.516* -0.177* -0.338
BLEU 0.112* 0.322* 0.010* 0.358 0.120* 0.562* 0.030* 0.330*
ChrF 0.163* 0.333* 0.030* 0.326 0.151* 0.534* 0.042* 0.296*

BARTScore - - - - 0.176* 0.580 0.063* 0.335*
BERTScore 0.166* 0.260* 0.063* 0.322 0.228* 0.549* 0.092* 0.362*

PRISM 0.208* 0.219* 0.068* 0.198 0.240* 0.505* 0.101* 0.352
SESCORE 0.273 0.706 0.139 0.629 0.261 0.684 0.108 0.501

Table 2: Segment-level Kendall (⌧ ) and System-level Pearson correlation (|⇢|) on En-De and Zh-En for WMT2020
and WMT 2021 Testing sets with Expert-based MQM labels. * indicates that SESCORE significantly outperforms
baselines with p values < 0.05.

for all reference-candidate pairs of each machine
translation system and estimate the absolute Pear-
son correlation |⇢| to the system-level human judge-
ment scores.

Data-to-Text Task Following the WebNLG chal-
lenge (Gardent et al., 2017b), we use Kendall cor-
relation to evaluate the segment-level correlation.
Each generated output is annotated by three as-
pects: semantics, grammar and fluency. Since our
SESCORE is the overall score of accuracy and flu-
ency, we average three aspects of human ratings
into one overall score and evaluate segment-level
Kendall correlation of the SESCORE to the overall
human judgement score.

Image Captioning Task Following Zhang* et al.
(2020), we compute SESCORE for all reference-
candidate pairs of each image captioning system
and average all the scores for each system to gen-
erate the system-level scores. We compute the
system-level Pearson correlation with M3 system-
level human judgement score in COCO image cap-
tioning challenge (Chen et al., 2015). M3 human
judgement measures the average correctness of the
captions on a scale 1-5. The detailed task, data in-
formation and evaluation procedures are included
in the Appendix C.2.

4.4 Results on Machine Translation

In table 2, we show our evaluation results on En-De
and Zh-En in both WMT20 and WMT21.

English to German We first contrast SESCORE
with three WMT baselines (BLEU, TER and Chrf).
SESCORE outperforms them significantly in both
system-level Pearson and segment-level Kendall
correlations. SESCORE shows its superior perfor-

mance over two recent unsupervised learned met-
rics (Bertscore and PRISM) leading by an average
8% and 7% segment-level Kendall correlation in
two years’ testing sets. Compared to the supervised
models, SESCORE has around 4.4% improvement
in the Kendall correlations at WMT20 and 8.8%
at WMT21 against BLEURT. Most importantly,
SESCORE outperforms the SOTA supervised met-
ric, COMET, by 3.6% in Kendall for WMT21 and
7.3% in system-level Pearson correlation.

Chinese to English Similar to En-De, SESCORE
outperforms three WMT baseline models (BLEU,
TER and Chrf) by the great margin in both system-
level and segment-level correlations of two years’
testing sets. Compared to three strong unsuper-
vised learned metrics, BERTScore, BARTScore
and PRISM, SESCORE can outperform them by
4.6% on average in Kendall correlation in WMT20
and average 2.3% in WMT21. Compared to the su-
pervised models, we have 4.3% improvement in the
Kendall correlations at WMT20 and 3% at WMT21
against BLEURT. This is significant as BLEURT
is previously trained as an English-oriented metric
with millions of synthetic data and 5 year’s human
rating data (WMT15-19). Moreover, SESCORE
outperfoms the SOTA supervised COMET model
for both segment-level and system-level correla-
tion in WMT20. The remaining gaps of Kendall
correlations to the COMET is within 1%.

Takeaways: Machine translation results in En-
De and Zh-En demonstrate SESCORE’s superior
performance to unsupervised metrics and competi-
tive performance against supervised SOTA metrics.
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4.5 Results on WebNLG Challenge

table 3 shows our segment-level Kendall correla-
tion results for WebNLG Challenge. SESCORE
can outperform three baseline models (Meteor,
TER and BLEU) significantly. When compar-
ing to the learned metrics, SESCORE outperforms
BARTScore and MoverScore significantly by lead-
ing 8.2% and 3% improvements on Kendall corre-
lations. Moreover, it improves the top-performing
unsupervised metric, BERTScore, by 0.3%.

4.6 Results on Image Captioning Challenge

table 4 demonstrates our system-level Pearson cor-
relation results for the COCO image captioning
challenge. SESCORE outperforms all task-agnostic
and task-specific baseline metrics. The correct-
ness metric in image captioning creates a chal-
lenge evaluation scenario, such that evaluating only
on semantic coverage does not cover all model
mistakes. Metrics including METEOR, BLEU,
even BERTScore with pretrained word embeddings
only yield weak or moderate correlations to the hu-
man judgements. SESCORE further outperforms
significantly to BERTScore with idf weights and
BARTScore which covers faithfulness. Most im-
portantly, SESCORE outperforms two task-specific
metcis, LEIC (Cui et al., 2018) and CIDER (Vedan-
tam et al., 2015). by 6.1% and 1.8% Pearson cor-
relations. This is a significant result, as LEIC is
a trained metric that takes image as additional in-
puts, optimized on the COCO data distributions
and CIDER is a consensus based evaluation purely
used for image descriptions.

Takeaways: Results in § 4.5 and § 4.6 verify our
prior assumptions that despite our synthesized error
types are originated for Machine Translation tasks,
they are useful and applicable to multiple domains
and tasks. As benefited from the reference-only
evaluation setup, our pretrained evaluation metric
can correlate well to the human judgements in var-
ious text generation settings, e.g with or without
requiring source data to be text.

5 Quantitative Analysis

To validate the proposed SESCORE training tech-
nique, we analyze the effects of data quantity, the
stratified components, and synthetic error types.
We include the cross-domain evaluation in the Ap-
pendix D.1. We include a detailed qualitative anal-
ysis of SESCORE regarding to its robustness and
limitations in Appendix E.

WebNLG

Model Name Kendall

METEOR -0.388*
TER -0.345*

BLEU 0.289*
BARTScore 0.317*
MoverScore 0.369*
BERTScore 0.396

SESCORE 0.399

Table 3: Segment-level
Kendall Correlation (⌧ ) on
WebNLG 2017. * indi-
cates that SESCORE signif-
icantly outperforms base-
lines with p value < 0.05.

COCO Image Captioning

Model Name Pearson

METEOR 0.349*
CHrF 0.442

BERTScore 0.459*
ROGUE-L 0.589*

BLEU 0.605
BERTScore(Idf) 0.644

BARTScore 0.688
LEIC+ 0.720

CIDER+ 0.763

SESCORE 0.781

Table 4: System-level
Pearson Correlation (|⇢|) on
COCO Image captioning’s
M3 Metric. Metrics with +
are directly cited from Cui
et al. (2018). * indicates
that SESCORE significantly
outperforms baseline models
with p value < 0.05

5.1 Data Quantity Effects

We use 10k, 20k, 40k and 120k synthetic error sam-
ples to train SESCORE models and evaluate their
Kendall correlations on WMT20. We observe that
the Kendall correlation reaches an optimal level at
40k synthetic sentences in Zh-En and 10k synthetic
sentences in En-De. This demonstrates the poten-
tial gap between synthetic and real error distribu-
tions. It also indicates that the optimal performance
can be achieved through error perturbations with
small amount of raw text (see Appendix fig. 4).

5.2 Effects of the Stratified Components

To study the effects of each component, we in-
clude the SESCORE w/o synthesized error 2 and
SESCORE with without severity measures 3. In
table 5, we demonstrate that SESCORE without
severity measures can still achieve the strong per-
formance improvements over the base language
model, leading average 11% and 5% in segment-
level Kendall correlation at En-De and Zh-En, re-
spectively. This result demonstrates that our in-
cremental injection of synthetic errors can achieve
high human correlations on the segment-level rank-
ings, providing the first layer of our stratified
process. However, without severity measures,

2We mean-pooled the word embeddings from pretrained
models (Conneau et al., 2020; Liu et al., 2019) to generate
each sentence embedding and compute the cosine similarities
of the sentence embeddings for evaluation.

3we remove the severity scoring component in SESCORE
by assigning all errors to be minor, with score -1. The final
score will be within 0 to -5. We use this new score labeling to
pretrain a SESCORE without severity measures.
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WMT20 (En!De) WMT21 (En!De) WMT20 (Zh!En) WMT21 (Zh!En)

Stratified Components Kendall Pearson Kendall Pearson Kendall Pearson Kendall Pearson

SESCORE w/o synthesized error 0.129 0.204 0.004 0.457 0.180 0.569 0.044 0.364
SESCORE w/o severity measures 0.249 0.549 0.103 0.608* 0.234 -0.058 0.097 0.278

SESCORE 0.273 0.706* 0.139 0.629* 0.261 0.684* 0.108 0.501

Table 5: Abalation study on the stratified error synthesis on En-De and Zh-En for WMT2020 and WMT 2021
Testing sets with Expert-based MQM labels. * indicates the Pearson correlation has p values < 0.05.

Figure 3: Effects of the error types: demonstrating the results achieved when Replace, Insert, Swap, or Delete is
separately applied. Dashed line (All ges) represents the aggregate performance when all four synthesis functions are
used together. The dotted line (0 ges) represents the baseline performance of SESCORE when none of the error
synthesis functions are applied.

SESCORE can hardly determine system level rank-
ing, indicating by weak system-level correlations
in Zh-En. By adding the severity measures into our
stratified pipeline, we observe a large system-level
correlation improvements in both En-De and Zh-
En. The segment-level Kendall correlation can be
further improved by average 3% in En-De and 2%
in Zh-En. This study demonstrates the effective-
ness and importance of our stratified components
in both segment-level and system-level correlations
to human judgements.

5.3 Effects of the Error Types

To understand each error type’s contribution to the
final pretraining outcomes, we use each error syn-
thesis function to generate separate synthesized
data and use each data to train a SESCORE. We
benchmark SESCORE’s performance with each er-
ror synthesis function in both years’ language di-
rections. fig. 3 demonstrates that individual error
synthesis function contributes to the pretrained met-
ric differently in different language directions.

In fig. 3, from both En-De and Zh-En, we ob-
serve that all four error synthesis functions are ef-
fective as they bring up the base Kendall perfor-
mance of at least 5% from En-De and at least 7%
from Zh-En in both year’s testing sets. We observe
that the Replace and Delete tasks are the two promi-
nent error synthesis functions in both En-De and

Zh-En. On the contrary, the insert operation has the
relatively minor effects in both En-De and Zh-En.
Our best assumption is that large pretrained lan-
guage model tends to produce semantically close
content when giving the full context of the sentence.
Therefore, most of insert produced errors are rela-
tively minor and are not able to simulate Addition
error types under diverse severity levels. Lastly, we
observe that the swap operation has different ef-
fects in different language directions. From Zh-En,
the SESCORE trained solely on Swap errors can
achieve equal to or less than 1% Kendall correla-
tions compared to the SESCORE with four different
operations. However, in En-De, the swap function
only has moderate effects.

Takeaways: We demonstrate that all error syn-
thetic functions can improve Kendall correlations
to the human judgements. However, the effect of
each error synthetic functions is related to the ac-
tual error distributions in each task. Aggregating
all four error synthetic functions should be consid-
ered to achieve a general error distributions which
is robust to different domains or tasks.

6 Conclusion

To conclude, we introduced SEScore, a reference-
based metric for text generation evaluations. With-
out human labels, SEScore can outperform all un-
supervised evaluation metrics and achieve com-
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petitive performance to the SOTA supervised ap-
proaches. We demonstrate that our stratified error
synthesis approach makes model aware of individ-
ual errors with different severity levels, achieving
high correlation to the human judgements.
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8 Ethics and Limitations

Our qualitative analysis in Appendix E highlights
three main limitations in the SESCORE framework.
First, we observe that it is difficult for SESCORE
to detect punctuation errors. As they are not rep-
resented in the entailment data distributions. Sec-
ond, SESCORE disagrees with human judgements
when human annotations contain uncertainties (e.g.,
high inter-rater disagreement on the severity of
an error). Perhaps in these cases human opinions
are too inherently subjective to model well in the
first place. Regardless, SESCORE is not likely to
produce rankings exactly matching human anno-
tators when human rating difference is less than
1. Lastly, SESCORE disagrees more heavily with
human annotators on the quality of long generated
text passages. We assumed that this is due to our
limited sentence embedding space while individ-
ual errors will be mitigated by the long sentence
contexts. Most importantly, we observed that those
three limitations are also commonly occurred in the
three top-performing baseline metrics (BERTScore
(Zhang* et al., 2020), PRISM (Thompson and Post,
2020) and COMET (Rei et al., 2020)), motivating
more future works to investigate on those issues.
We demonstrate SESCORE’s superior performance
over other baselines. However, SESCORE can not
be used to replace human judgements. We will sup-
port two frameworks of SEScore: SEScore with
and without severity measures. SEScore with sever-
ity measures can support up to 100 languages that
XLM-Roberta pretrained on. SEScore with severity
measures currently supports 15 languages: English,
French, Spanish, German, Greek, Bulgarian, Rus-
sian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili and Urdu. All code and synthesized

data samples will be publicly released following
deanonymization.

References

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-

ceedings of the ACL Workshop on Intrinsic and Ex-

trinsic Evaluation Measures for Machine Transla-

tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.
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A Algorithm Details

Algorithm 1: Stratified Error Synthesis
Input: Seed sentence set S = {x1, x2, ..., xn}, �e,

�d, �r , �s, editing model set M .
Output: Synthetic reference and error text D.

1 D = ;;
2 for i = 1..n do

3 l = len(xi), ynew = xi, si = 0;
4 k ⇠ Poisson(�e);
5 for j = 1..k do

6 yold = ynew;
7 edit ⇠ Random({Ins,Del,Rep, Swap});
8 switch edit do

9 case Ins do

10 sampling h ⇠ Uniform(0, l) s.t.
h does not overlap the previous
edited spans;

11 Randomly select a model from M
to generate a phrase f to insert at
position h of ynew;

12 case Del do

13 repeat

14 draw h ⇠ Uniform(0, l);
15 draw ll ⇠ Poisson(�d);
16 until the span from h to b+ ll � 1

does not overlap the previous

edited spans;
17 Remove a span of length ll at

position h from ynew;

18 case Rep do

19 repeat

20 draw h ⇠ Uniform(0, l);
21 draw ll ⇠ Poisson(�r);
22 until the span from h to b+ ll � 1

does not overlap the previous

edited spans;
23 Randomly select a model from the

model base M to generate a
phrase f ;

24 Replace the segment of ynew from
h to h+ ll � 1 with f ;

25 case Swap do

26 repeat

27 draw h ⇠ Uniform(0, l);
28 draw ll ⇠ Uniform(1..�s);
29 until the span from b to b+ ll � 1

does not overlap the previous

edited spans;
30 Swap the tokens in ynew at

positions h and h+ ll;

31 si+ = Ses(yold, ynew);

32 D  D [ {(xi, ynew, si)};

B Implementation Details of the

Pretraining Pipeline

This section provides the implementation details
for both error synthesis models and SEScore metric
model.
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B.1 SEScore Metric Model

The feed-forward hidden dimensions are 2048 and
1024. We use tanh as our activation function.
The training process takes 1, 3, 2 and 1 epoches for
machine translation Zh-En, machine translation En-
De, WebNLG and image captioning, respectively.

C Experiments-Supplementary Material

C.1 Details about the Baseline Models

For all model variants, we choose each model based
on two criteria: their paper recommendations and
comparable model size to SEScore.

For BERTScore (Zhang* et al., 2020), we follow
its model recommendation by using roberta-large
for English texts and bert-base-multilingual-cased
for German texts. For all BERTScore in the paper,
we report their F1 scores. For BLEURT (Sellam
et al., 2020), we use BLEURT-Large (Max token
128, 24 layers and 1024 hidden units, comparable
size to SEScore) for English texts and BLEURT-
20-D12 for German texts. For COMET (Rei et al.,
2020), we choose their best checkpoint wmt20-
comet-da (exactly the same model size to SEScore)
to evaluate its performance. We use bart-large-cnn
to evaluate BARTScore (Yuan et al., 2021)’s perfor-
mance. We NLTK (Bird et al., 2009) library to im-
plement BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), CHrF (Popović, 2015)
and ROUGE-L (Lin, 2004). We report LEIC (Cui
et al., 2018) and CIDEr (Vedantam et al., 2015)’s
performance through prior study (Cui et al., 2018).

C.2 Details about the Evaluation Procedures

and Test Data Information

Machine Translation Task We use WMT20
and WMT21 (Freitag et al., 2021b) ’s testing
sets (Newtest2020 and Newtest2021), with mqm-
based expert labels, as our main evaluation corpus.
WMT20 (Chinese! English) contains 2000 seg-
ments across 155 documents and WMT (English!
German) contains 1418 segments across 130 docu-
ments, respectively. WMT21 (Chinese! English)
contains 1948 segments and WMT21 (English!
German) contains 1002 segments, respectively.
There are two types of human judgement scores:
Segment-level and System-level scores. Segment-
level human judgement score assigns a single score
to each reference-candidate pair. System-level hu-
man judgement score assigns a single score to each
system based on all {reference, system output}
pairs. We follow the WMT20’s standard practice

to evaluate metric performance using both system-
level and segment-level correlation.

For system-level evaluation, we average
SEScore for all reference-candidate pairs of each
machine translation system and estimate the ab-
solute Pearson correlation |⇢| to the System-level
human judgement scores. Freitag et al. (2021b)
annotated top 10, 10, 17 and 15 top performing
systems of En-De and Zh-En in Newtest2020 and
En-De and Zh-En in Newtest2021, respectively.

For segment-level evaluation, we adopt the
Kendall ⌧ correlation from WMT20 (Mathur et al.,
2020) to evaluate the relative rankings between
segments of the different systems (See Eqn 3). Fol-
lowing the prior study’s suggestion (Freitag et al.,
2021a), we use the absolute threshold between
two segment scores to determine the relative rank-
ings of both En-De and Zh-En. To prepare all
the relative ranking pairs for Kendall correlation,
we removed all the pairs which have the exactly
same annotations and cleaned erroneous texts. In
the end, we have 76,087 pairs from Zh-En and
54405 pairs from En-De in Newtest2020 and 38758
pairs from En-De and 52498 pairs from Zh-En in
Newtest2021.

The Kendall’s Tau-like formulation is defined
as following:

⌧ =
Concordant�Discordant

Concordant+Discordant
(3)

where Concordant indicates the number of the
correct predictions in the pairwise ranking and Dis-
cordant indicates the number of the misrankings.

Data-to-Text Task The WebNLG dataset (Gar-
dent et al., 2017b) consists a set of data extracted
from DBpedia and requires systems to map entities
(e.g., buildings, cities, artiests) to text. We use 9
submissions for WebNLG challenge. Each system
generates 223 outputs. In total, we have 4,677 out-
put sentences. Following the WebNLG challenge
(Gardent et al., 2017b), we use Kendall ⌧ corre-
lation to evaluate the relative rankings between
segments of the different systems. From combi-
nations of rankings and data cleaning, we obtain
7725 relative ranking pairs. Each generated output
is evaluated by three aspects: semantics, grammar
and fluency. Since our SEScore is the overall score
of accuracy and fluency, we average three aspects
of human ratings into one overall score and evaluate
segment-level Kendall correlation of the SEScore
to the overall human judgement score. The Kendall
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Task WebNLG (⌧ ) COCO (⇢)

Cross-domain Performance 0.396 -0.0428
In-domain Pretraining 0.399 0.781

Table 6: Abalation study on the cross-domain evaluation
at WebNLG and COCO image captioning Challenge.

⌧ ’s formulation is shown in Eqn 3.

Image Captioning Task COCO 2015 Caption-
ing Challenge (Chen et al., 2015) consists of the hu-
man judgements from the 11 submission entries 4.
Following the prior study (Cui et al., 2018; Zhang*
et al., 2020), we perform our experiments on the
COCO validation set, as we do not have access
to COCO test set where human judgements were
performed. Using the findings of the prior works
(Cui et al., 2018; Zhang* et al., 2020), we argue
that the human judgements on the validation set are
sufficiently close to the ones on the testing set.

D Quantitative Analysis

D.1 Effects of the Cross Domain Evaluation

As domain shifts have been repeatedly reported by
the previous studies (Sellam et al., 2020; Yuan et al.,
2021), we conduct experiments to study SEScore
before and after domain adaptation in WebNLG
and image captioning. In Table 6, due to the close
data distribution and error types in WebNLG and
machine translation, we find that SEScore pre-
trained on machine translation error synthetic data
can achieve strong cross-domain performance in
WebNLG and competitive to in-domain pretrained
variant. However, when larger domain difference
presents between machine translation and image
captioning, domain adaptation plays a major role by
leading metric from no correlation of cross-domain
performance to high correlation to human judge-
ments. This finding suggests that our domain adap-
tation strategy is effective in adapting synthetic
error sentences into different domains cross sev-
eral NLG tasks. This technique can provide major
benefits in training a powerful learned metrics in
narrowed domain, e.g low resource language of
machine translation.

Figure 4: Relationship between data quantity and per-
formance (⌧ ) for Zh-En and En-De translation.

D.2 Effects of the Data Quantity

E Qualitative Analysis

We study the outputs of three best performing base-
line models (BERTScore, PRISM, COMET) and
SEScore on WMT20 Chinese-to-English. Ideally,
the rankings produced by the automatic evaluation
metrics should be similar to the rankings assigned
by the human score.

E.1 Robustness Analysis

Table 7 shows examples where SEScore disagree
largely to the baseline models (BERTScore and
PRISM) about the pairwise rankings. We ob-
serve that SEScore is effective on distinguish-
ing pairs, which are differed on only one mi-
nor error, demonstrated at case No.1 in Table 7,
BERTScore is extremely vulnerable in such cases,
since BERTScore’s approach relies largely on the
overall semantic coverages of the word embed-
dings. Minor mistake, like inappropriate use of
"subscribers" is hard to reflect to in its overall
score. We observe the similar shortcomings in
PRISM and COMET. We investigate the robust-
ness of the word order for all automatic evalu-
ation metrics (Case No.2). Similar to the previ-
ous findings (Sai et al., 2021), BERTScore suffers
greatly when word order is shuffled and fails to cap-
ture the shifts in semantic meanings. All PRISM,
COMET and SEScore are able to give the correct
rankings. Case No.3 and No.4 demonstrate the met-
rics’ capabilities in distinguishing the severe and
minor errors. For example, in "Worse" sentence of
case No.3, although "Chinese citizens are becom-
ing more and more convenient to apply for visas

4There are 15 submission entries in the COCO 2015 Cap-
tioning Challenge (Chen et al., 2015). However, 3 entries did
not submit their validation outputs and 2 systems have the
identical validation outputs. Therefore, we use the submis-
sions from the 11 entries
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" shares a lot word coverage to the reference, it
completely alters the sentence meaning. Accord-
ing to the MQM-based human evaluation criteria
(Freitag et al., 2021a), this is a severe error and
should be labeled as -5. However, due to their
evaluation criteria, both PRISM and BERTScore
are incapable in distinguishing such differences.
In this analysis, we demonstrate qualitatively that
SEScore’s superior performance over unsupervised
top-performing metrics (BERTScore and PRISM)
and comparative performance to the SOTA super-
vised metric COMET. Moreover, SEScore demon-
strates its better score alignments to the human
judgements against other metrics. Its scores are
directly interpretable under MQM expert-based hu-
man evaluation framework (Freitag et al., 2021a).

E.2 Limitations

Table 8 shows examples where SEScore disagrees
with human judgements about the pairwise rank-
ings. We observe that SEScore find it difficult to
detect punctuation errors. For example, SEScore
fails to correctly rank No.1 where "Worse" exam-
ple’s punctuation has higher severity error. Second,
SEScore disagrees with human judgements when
human labels contains uncertainties (Human anno-
tators do not have the agreements on the severity
measures), indicating by No.2 and No.3. With
the close severity differences (<1 human rating
difference), SEScore is not likely to produce rank-
ings exactly matching human annotators. Lastly,
for the long text generation with more than 100
words (No.4), we observe that SEScore fails to
produce correct rankings or align to the human
judgements. We assumed that this is due to our
limited sentence embedding space while individual
errors will be mitigated by its long sentence con-
texts. Moreover, we observed that those three limi-
tations are also commonly occurred in the three top-
performing baseline metrics (BERTScore, PRISM
and COMET), motivating more future works to
investigate on those issues.
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