arX1v:2210.03836v1 [cs.RO] 7 Oct 2022

Learning the Dynamics of Compliant
Tool-Environment Interaction for Visuo-Tactile
Contact Servoing

Mark Van der Merwe Dmitry Berenson Nima Fazeli
Department of Robotics
University of Michigan
{markvdm, dmitryb, nfz}Qumich.edu
https://www.mmintlab.com/extrinsic-contact-servoing/

Abstract: Many manipulation tasks require the robot to control the contact be-
tween a grasped compliant tool and the environment, e.g. scraping a frying pan
with a spatula. However, modeling tool-environment interaction is difficult, es-
pecially when the tool is compliant, and the robot cannot be expected to have
the full geometry and physical properties (e.g., mass, stiffness, and friction) of
all the tools it must use. We propose a framework that learns to predict the ef-
fects of a robot’s actions on the contact between the tool and the environment
given visuo-tactile perception. Key to our framework is a novel contact feature
representation that consists of a binary contact value, the line of contact, and an
end-effector wrench. We propose a method to learn the dynamics of these contact
features from real world data that does not require predicting the geometry of the
compliant tool. We then propose a controller that uses this dynamics model for
visuo-tactile contact servoing and show that it is effective at performing scraping
tasks with a spatula, even in scenarios where precise contact needs to be made to
avoid obstacles.

Keywords: Contact-Rich Manipulation, Multi-Modal Dynamics Learning

1 Introduction

Figure 1: We present a method for extrinsic contact servoing, i.e., controlling contact between a
compliant tool and the environment. Our method is able to complete the requested contact trajectory,
avoiding contact with surface obstacles, and successfully scrape the target object. Note that to do
this the spatula must be tilted so that only a corner of it is in contact.

Many manipulation tasks require the robot to control the contact between a grasped tool and the
environment. The ability to reason over and control this extrinsic contact is crucial to enabling
helpful robots that can scrape a frying pan with a spatula, eraser or wipe a surface [1], screw a bottle
cap onto a bottle [2], perform peg-in-hole assemblies [3, 4], and perform many other tasks.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://www.mmintlab.com/extrinsic-contact-servoing/

In this work, we seek to address the problem of controlling the extrinsic contact between a grasped
compliant tool (e.g. a spatula) and the environment. In general, the robot cannot expect to have the
full geometry and physical properties (e.g., mass, friction, stiffness) of all the tools it must use or
the geometries of the environments it must manipulate in. Instead, the robot must utilize multimodal
sensory observations, such as pointclouds and tactile feedback, to act on the environment.

In recent years, learning-based methods have become increasingly popular to address the complex-
ities of robotic manipulation, including for contact-rich tasks [5S]. These methods can be loosely
grouped into model-free methods, that directly learn a policy [3, 2, 6], and model-based methods,
that learn system dynamics [7, 8, 9]. By focusing on modeling system dynamics, model-based meth-
ods can plan to reach new goals without retraining, and are often more data-efficient [9]. Therefore,
we propose learning the dynamics of our system to solve the extrinsic contact servoing task.

It is not obvious which representation to use for these dynamics. Fully recovering tool and environ-
ment geometries from visual data [10, 11] and tactile feedback [12] has been widely explored, with
recent extensions to compliant geometries [13]; however, even if the system can be fully identified,
contact models to resolve interactions can have limited fidelity [14]. On the other hand, learned dy-
namics representations can be difficult to interpret and require demonstrations or observations from
the desired state to specify goals [7, 15]. Instead, we propose a novel contact feature representa-
tion for our learning method that focuses on tool-environment interaction and bypasses explicitly
modeling the whole system. We represent the contact configuration as 1) a binary contact mode
(indicating if the system is in contact); 2) a contact geometry (as a line in 3D space); and 3) an
end-effector wrench.

We propose a learning architecture to model the dynamics of the proposed contact representation
from raw sensory observations over candidate action trajectories. We propose structuring the model
as a latent space dynamics model with a decoder that recovers the contact state. We also propose
an action offset term in the dynamics that allows us to accurately propagate robot poses, despite
controller errors (e.g. from robot impedance). To provide labels to our model, we collect self-
supervised data on a 7DoF Franka Emika Panda, using sensor data to automatically label contact
state.

We validate our proposed method by completing various desired contact trajectories on the real robot
system. We first show that our method can track diverse desired contact trajectories in the absence
of obstacles. Next, we demonstrate that we can utilize extrinsic contact servoing to scrape a target
object from the table, while handling occlusions and avoiding contact with obstacles (Fig. 1).

2 Related Work

Existing research has investigated the task of recovering contact locations. Manuelli et al. [16] local-
ize point contacts on a rigid robot with known geometry by employing a particle filtering approach
to update a set of candidate contact locations based on force torque sensing. Kim et al. [4] and Ma
et al. [17] model contact between a grasped rigid object and the environment by assuming stationary
line contacts and modeling the deformation of a GelSlim gripper. The estimated line contact is then
used in a Reinforcement Learning (RL) policy. Neither of these methods extends to compliant tools
and neither models the dynamics of the contact configuration.

Other works explore tactile servoing methods, where contact at the sensor is driven to a desired
configuration. Li et al. [18] use a large tactile pad and define contact configuration features of
objects pressed against the sensor. They manually construct a feedback controller based on these
features and use it to drive contacts to desired configurations. Sutanto et al. [19] use a smaller profile
tactile sensor and learn the dynamics of a learned latent space. They then employ a Model Predictive
Control (MPC) scheme to drive contacts to desired configurations on the sensor. Both of these works
assume contact is happening at the sensing location. We, on the other hand, seek to servo extrinsic
contacts, where we do not get direct sensing at the point of contact.

Other work focuses on maintaining contact between a tool and the environment. Sakaino [20] uses
imitation learning to learn a controller able to maintain contact between a mop and a tabletop. In
contrast, we wish to not only maintain contact but control the extrinsic contact geometry.

3 Problem Formulation

We parameterize our contact feature as a binary contact indicator ¢ € {0,1}, used to indicate
whether the tool is in contact, a contact line ¢! € R?*? representing the contact geometry between
the tool and the environment, and an end effector wrench ¢ € RS. The geometry ¢! is only active
when the tool is in contact ¢® = 1. The contact representation allows extrinsic contact goals to be
expressed as desired contact trajectories G = [g1, g2, . . ., gr|, where each g; € R?*3 is a desired
contact line to reach. We assume that contact should be maintained throughout the task.

We formulate extrinsic contact servoing as a model predictive planning problem, given observations
of the current state of the system og. For a given horizon 7', we select the next T" desired contact
lines [g;y1,---,gi+7] C G to be our current contact goal sequence. The planning problem is:

T

min Z d(c}, gist)
ao: 71 —1 (1)
s.t.c =1,Vt € [1,T]

{Cg:Tv Cé:Tv ch} = g(00, ap:7-1)

Here g is a model describing the contact feature dynamics. The binary constraint ensures that the
tool remains in contact while the cost function d measures the distance between the two contact
lines, as the average Euclidean distance between the line endpoints. Finally, if d(c}, g;11) < € we
increment ¢, thus moving to the next sequence of desired contact lines for the next round of planning.

4 Method
4.1 Contact Feature Dynamics Model

To solve our constrained optimization Eq. 1, we require a model g which can map from raw obser-
vations oy and a proposed action trajectory ag.7—1 to the resulting contact states {c}.1, cb., c¥r}.
We propose modeling the contact feature dynamics as a deep neural network. Our actions are

changes in end effector pose.

We assume access to a pointcloud vy and input wrench hy measured at the robot’s wrist as our
observations, oy = (vg, hg). Note that end effector wrench is both an input to our method and part
of the contact state; predicting future wrench aids the representation learning and provides expected
wrenches for planning.

We perform all learning in the local end effector frame. We transform the pointcloud to the end
effector frame “Fovg and clip to a 0.5m3 bounding box region around the end effector that con-
tains the contact event. We similarly predict our contact lines in the current end effector frame,
EE:icl Wt € [1,T)]. Learning in the end effector frame provides invariance in the visual domain to
translations and rotations of the end effector and removes distractors that do not contribute to the
contact state, such as the rest of the robot arm or the scene background.

Our contact feature dynamics model (Figure 2) has three components: an encoder e which maps
from raw observations to a learned latent space, a decoder d which maps from the latent space to the
contact state, and a dynamics model f which captures dynamics in the latent space. We parameterize
the models by a set of learned weights 6.

We start by embedding the current observations into the latent space with our encoder 2y =
e(vg, hp). We unroll actions in the latent space as the contact state alone has insufficient con-
textual information (e.g. end-effector pose and local geometry information) to predict the next
contact state. Because we predict the tth contact state in the current end effector frame EFy, an
important consideration when designing our dynamics model is being able to accurately recover
this frame. Controller error, e.g., from the impedance of the robot, means the commanded action
is not perfectly executed. To account for this, we predict an additional term from our dynamics
model Aa,1, which is an SE(3) transformation that predicts the offset between the commanded
and realized next end effector pose. Thus, our dynamics model predicts, 2,11, Adi+1 = f(2¢, at).
This allows us to construct the following recursive estimate of our end effector frame V7' By =
WTpp,T(a,)T(Ady), where W T, is the SE(3) transformation describing the pose of the end
effector at time t. We know the initial transform V7' £, from our robot proprioception, T'(a;) pro-

58 & EEy agp Aay Cll; qug EElc]]’
| bt t) JZ z [| [}
00 e 20 ’ f } 3
ho Sl 1L ™ - ,,J — Legend

Encoder oynamics | Decoder]

Figure 2: Our proposed contact feature dynamics model. Our architecture embeds raw observations
into a latent space where dynamics can be unrolled. We then decode the contact state from the latent
space. We also predict an action offset term in order to accurately predict future robot poses.

vides the transformation for the action command, and T'(Aa,1) for the predicted offset term. To
enforce valid SF(3) predictions we predict rotations in the axis-angle representation [21].

Finally, we recover our contact state estimates with our decoder d given the latent state Z;:
eb EEvgl e — d(%;). We can then recover the predicted contact line in the world frame by com-

posing with the estimate of the end effector frame transformation Wig E,- An overview of the model
architectures is shown in Fig. 2 and full architecture details can be found in Appendix A.
4.1.1 Training Loss

We train our model on rollouts of the system, where a single example is a sequence
[V, by, ar, Aay, ek, e, c2]E . We define the loss over the example as:

T
Ly =(>_ BCE(&,c})+a-c)- MSE(é},c}) + - MSE(é},c}"))
t=0
. 2)
+ (O p- MSE(Ady, Aay) + - MSE(2,e(vy, hy)))
t=1

Here BCE is the Binary Cross Entropy classification loss and MSE is the Mean Square Error re-
gression loss. «, 3, p and -y are loss weighting terms. The first four loss terms are prediction losses
over the contact mode, contact geometry, end effector wrench, and action offset transformation. The
final loss term is a latent consistency loss, which encourages latent rollouts to match the latent state
yielded by encoding future observations.

4.2 Extrinsic Contact Servoing Controller

We propose to solve our planning problem using Model Predictive Path Integral (MPPI), which has
been shown to be effective for continuous control tasks where sampling is cheap and parallelizable
(e.g., neural network representations) [22]. We convert our binary constraint to a penalty, penalizing
a trajectory if it yields actions that lead out of contact. Pairing this with the contact line prediction
loss yields the following final cost function:

T /\b o . Ab
Zd(Wéiagith) +o- {|00t vl e <y (3)
t=1

0.W.

The constraint is violated if the likelihood of binary contact is below the classification threshold 1),
in which case we penalize by the distance to the threshold. ¢ weights the penalty against the contact
line loss. With this cost function we apply MPPI to yield the next action and execute it on the robot.

4.3 Extrinsic Contact Dynamics Labeling

Our contact dynamics training loss in Eq. 2 requires ground truth contact state labels (c!, c?, ct)
at time ¢. As accurate simulation of contactful interactions is challenging, we propose a method of
data acquisition directly in the real world. To generate contact line labels, we use a high resolution,
low frequency scanner, a Photoneo PhoXi 3D Scanner, to generate high quality scans of the contact
interaction. Using these scans, we generate contact line labels by filtering points just above the table,

Binary Accuracy (1) Contact Line Error ({) Contact Force Error ({)

= Full Model

0.95 . mmm Vision Only

W No Offset

o = Rigid Body Baseline

Now PR
s 8 &8 & 8
Error (N)
—

ooy

3 &

Binary Accuracy
o
@
&
Contact Line Error (mm)
re
-
o
8

o

S

o
"
S

1 i
1 2 3 : 0 1 2
Rollout Step Rollout Step

o
S
S
o

(a) (b) (©)

Figure 3: Contact Feature Dynamics Performance: our results show the importance of modeling the
action offsets and the compliance of the tool; without both, contact line estimates drift. The Rigid
Body Baseline does not predict contact wrenches, so is not shown in (c).

clipped to the area around the end effector. We then cluster these points to remove noisy points on
the tabletop and generate the contact line ¢! by selecting the two furthest points in the cluster. See
Appendix B for examples of contact labels. We use a force torque sensor to identify the contact
state wrench c!’. We identify binary contact ¢ automatically from whether a line was found in the
pointcloud and/or based on force torque sensing.

S Results
5.1 Experimental Setup

We test our method on a Franka Emika Panda with rigidly-mounted compliant spatulas at the end
effector (Fig. 1). For our observations oy, we use pointclouds vy from an Intel Realsense D435
sensor' and mount an ATI Gamma Force/Torque sensor between the end effector and tool. We use
the last four wrench values received after the previous action completed as the tactile input hy. To
collect our datasets, we use a random action policy with a heuristic to encourage contact between
the tool and the spatula. No other objects are on the tabletop during data collection to allow proper
data supervision, as detailed in Sec. 4.3.

5.2 Baseline

We compare our proposed method to modeling the contact dynamics as a rigid system. We assume
the commanded actions are perfectly executed by the robot to recover the future poses of the end
effector. We assume access to the tool geometry as a pointcloud in the end effector frame. This
pointcloud is then transformed via the future poses of the end effector to recover where the tool
would be, assuming rigid motions. We further assume that we know the table location and identify
any points in the transformed point cloud that penetrate the table surface. If any exists, we set
c® = 1. We then choose the two furthest points in the intersecting set of points as the end points of
the contact line ¢!. The baseline does not predict the wrench ¢, but is enough to solve our planning
problem in Eq. 1. This baseline makes three assumptions our method does not make: 1) it assumes
access to a pointcloud of each tool, 2) it assumes knowledge of the current tool being used, 3) it
assumes explicit knowledge of the environment.

5.3 Modeling Contact Feature Dynamics

We first investigate the ability of our model to capture the contact feature dynamics exhibited in our
dataset. We train three variations on our model. First is the full model, as described in Sec. 4.1,
hereafter called “Full Model.” Second, to understand the importance of modeling the action offset
of the robot, we ablate the offset action prediction, thus we propagate the end effector frame only
with the commanded action. We call this method “No Offset.” Finally, we investigate our model
trained only on visual input data, called “Vision-Only.”

We train on a dataset collected from three spatulas (see “Training Tools” in Fig. 5a), collecting 200
trajectories on each, for a total of 30000 transitions. We split the data 80/10/10 for train, validation,
and test. We train with a rollout horizon of 7" = 3. All methods are trained with the Adam opti-

"We don’t use the high-fidelity Photoneo scan as it is a very low-frequency scanner.

0050 ;

0025 0.00 Controller Swept Area
Goal Swept Area

-0.02 0.000 0.00

-0.021
—0.025 —0.02
-0.050 ~0041
~0.06 -0075 o006
-0.100

-0.08 —0125 0081 -0.08

0150 0575 0600 0625 0650 0675 0.700

058 060 062 064 066 068 0 055 060 065 070 075 058 060 062 0.64 066 0.68 0.70

(a) Straight (b) V-Shape (c) Tilt (d) Tilt Back

Figure 4: Qualitative Scraped Areas: our “Full Model” controller (blue) is able to closely match
desired contact trajectories (red).

mizer [23] until convergence on the validation set. We set « = 100.0, 3 = v = p = 0.1 in our loss
term in Eq. 2 to balance the scale of the terms.

We compare the prediction performance of the models on the test split of the dataset in Fig. 3 (see
Appendix C for torque prediction results, whose results are very similar to force results). Our full
model achieves high accuracy in predicting binary contact (> 95%), 3-5mm contact line error,
and less than 0.5N force error. Comparing “Full Model” to “No Offset” shows the importance of
modeling action offsets, without which contact line error quickly grows. Comparing all learned
models to the Rigid Body Baseline (Sec. 5.2) shows the importance of modeling the compliance of
the tool. The “Vision-Only” model unsurprisingly struggles to recover contact forces. Appendix C
show additional results examining generalization of the model to the dynamics of an unseen spatula.

5.4 Extrinsic Contact Servoing
Next, we investigate how our proposed controller performs following specified contact trajectories.

Obstacle-Free: We start by attempting to servo along four different contact trajectories in the
obstacle-free environment. The desired contact trajectories are shown in Fig. 4, and explore transla-
tion of contact as well as cases where the robot must tilt the tool to achieve a contact smaller than
the width of the tool. We use the same labeling technique introduced in Sec. 4.3 to get ground truth
contact trajectories executed by the controller. We run the experiment once on a training spatula
(Ieft-most in Fig. 5a) and once on an unseen spatula (right-most in Fig. 5a).

We use the controller described in Sec. 4.2, with ¢ = 0.45, ¢ = 0.05 and compare our “Full Model”
learned dynamics (as trained in Sec. 5.3) vs the “Rigid Body Baseline” dynamics. To investigate the
planning performance, we run the controller five times per trajectory and measure the Intersection
over Union (IoU) of the desired and swept contact areas. We construct the goal contact area by
sweeping the space between the specified goal contact lines and the realized controller swept area
by assuming that the space between two consecutive contact states was swept out if the two states
were both in contact.

We show qualitative examples of the “Full Model” controller realized scrapes on the training spatula
compared to the goal scrapes in Fig. 4. We see that the controller is able to closely match the desired
swept areas, including in the difficult tilting problems.

The IoU performance is shown for the training spatula (Fig. 5b) and unseen spatula (Fig. 5¢). Our
proposed method outperforms the baseline on nearly all cases, for both the training and unseen tool
runs. Performance drops for all methods on the tilting problems, as it is more difficult to maintain
dexterous contact on only a part of the tool.

With Obstacles: We next examine our method’s robustness to visual occlusions and reaction forces
arising from contact with a target object to be scraped. This task is common in construction, cooking,
and cleaning. A deformable and slightly adhesive material (Playdough) is pressed onto the surface
and a contact trajectory is specified through the object. In one case, the target object is alone on
the tabletop (Fig. 6), and thus we specify a contact trajectory using the full width of the tool. In
the second scenario, obstacles are on the table near the target object (Fig. 1), thus we must specify a
contact trajectory that avoids them. All experiments are performed on the leftmost spatula in Fig. 5a.
We use our “Full Model”, and train on 22005 sequences collected only with the relevant tool.

Besides running our Full Model in these scenarios, we investigated enhancements of the method
to aid its performance in the presence of visual occlusions and object reaction forces. First, we

Training Spatula Unseen Spatula

[y
o

m Full Model
e Rigid Body Baseline

0.8

o o o
IS o @

Swept Area loU

o
o

0.0
Straight V-Scrape Tilt Tilt Back Straight \-Scrape Tilt Tilt Back
Contact Trajectory Contact Trajectory

(a) (b) (©)

Figure 5: (a) Tools used for experiments. (b),(c) Extrinsic contact servoing IoU performance on a
training spatula (b) and unseen spatula (c). Our proposed method tracks the desired contacts with
higher IoU, compared to a rigid body baseline method, even when running on an unseen tool.

Training Tools Unseen

Figure 6: Example of extrinsic contact servoing execution for the “Straight” target obstacle scrape
experiment. Our method is able to accurately servo along the desired contact trajectory and success-
fully scrape the target.

applied data augmentation to our training dataset, randomly generating ellipsoids in the pointcloud
and using a hidden point removal algorithm [24] to provide corresponding occlusions in the original
point cloud. See Appendix B for examples of augmented inputs. We call this method “Full Model
+ Aug.” Second, we investigate using the difference between the predicted and observed wrenches
Aw = ¢}’ — ¢’ to derive an action offset to compensate for the extra wrench experienced by the
robot. From Aw we derive an action that will counteract this wrench offset a; = i—:". k, are the

pose gains of the impedance controller. The offset action is composed with the original action from
the controller. We call this method “Full Model + Aug + Wrench Offset.”

=
5}

1.00

0.95

o
o

0.90

0.85

o
o

mmm Full Model
I Full Model + Aug
B Full Model + Aug + Wrench Offset Action

0.80

o
IS

0.75

Percent of Mass Removed

0.70

o
N}

0.65

Percent Material Footprint Removed

0.60

o
5}

Straight Tilt + Obstacle Straight Tilt + Obstacle
Scrape Test Scrape Experiment

(a) Percent Mass Removed (b) Percent Footprint Removed
Figure 7: Target Scraping Results: Our Full Model and variations for addressing visual occlusions

and reaction forces arising from contact with the target object perform comparably on both metrics
over 5 trials on each experiment.

We use two metrics. First, we measure the approximate mass of the target object to be scraped before
and after scraping and determine the percentage of mass successfully removed. Second, we compare
the 2D footprint of the material before and after scraping and report the percentage of the footprint
successfully removed. The second is a more challenging metric, since even a slightly wrong scrape
will leave residue. The quantitative results over 5 runs of each method in each experiment setup are
shown in Fig. 7. Examples of scrape executions are shown in Fig. 1 and Fig. 6. See Appendix C for
more examples of scrape results.

We see that in each case, all methods were able to remove over 95% of material mass on average
and about 40-60% of material’s footprint from the tabletop. Surprisingly, we don’t see a consistent
improvement training our model with visual occlusions or adding action offsets. The Full Model’s
robustness to occlusions here could be due to the fact that we use a single tool in these experiments,
and thus it may be sufficient in most cases to capture the location of the table with respect to the end
effector in order to estimate the contact line. Even with visual occlusions near the tool contact, it is
likely our method can still recover the relative pose of the tabletop from the surrounding points. The
lack of clear improvement from the wrench offset action may be due to the fact that it is sufficient
to be able to replan, as we do at every step with our MPPI controller.

6 Limitations and Conclusion

Limitations: A common failure mode for our method is in controlling contact when the tool is tilted,
where it is more likely for the method to yield actions that take the robot out of contact. This could,
in part, be due to data imbalance. In future work, we are interested in utilizing online learning [9] or
curiosity [25] to more effectively cover the space of contacts in our dataset.

There are cases where tool to environment contact is not represented well as a contact line. Extend-
ing our contact feature dynamics to these tasks will require expanding our representation learning
method to consider these more diverse contact specifications and more complex contact modes.

Finally, our method relies upon supervision. For future contact-rich tasks of interest, the need for
labels could become more costly. We hope to investigate how we can remove reliance upon supervi-
sion by exploring few/zero shot generalization [26, 27] and domain randomization techniques [28].

Conclusion: Our approach simplifies contact rich interactions for compliant tool manipulation, by
avoiding the necessity for full system identification while maintaining interpretability and accuracy
by explicitly modeling the contact state of the system and how it evolves. In the future, we wish to
investigate our method’s applicability to other tasks where full state estimation is difficult, but the
contact state is crucial, such as wiping with a cloth. Additionally, we wish to investigate representa-
tions that handle more complex contact geometries.

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship
Program under Grant No. 1841052. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
This work was supported in part by Toyota Research Institute under the University Research program 2.0. This
work was supported in part by ONR grant N00014-21-1-2118 and NSF grants I1S-1750489 and 1IS-2113401.

References

[1] R. Martin-Martin, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. Variable
impedance control in end-effector space: An action space for reinforcement learning in
contact-rich tasks. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 1010-1017. IEEE, 2019.

[2] S.Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334-1373, 2016.

[3] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg.
Making sense of vision and touch: Self-supervised learning of multimodal representations for
contact-rich tasks. In 2019 International Conference on Robotics and Automation (ICRA),
pages 8943-8950. IEEE, 2019.

[4] S.Kim and A. Rodriguez. Active extrinsic contact sensing: Application to general peg-in-hole
insertion. arXiv preprint arXiv:2110.03555, 2021.

[5] O. Kroemer, S. Niekum, and G. D. Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. Journal of machine learning research, 22(30),
2021.

[6] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. The International
Jjournal of robotics research, 37(4-5):421-436, 2018.

[7] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto. Learning predictive representations for
deformable objects using contrastive estimation. In Conference on Robot Learning, pages
564-574. PMLR, 2021.

[8] P. Mitrano, D. McConachie, and D. Berenson. Learning where to trust unreliable models in
an unstructured world for deformable object manipulation. Science Robotics, 6(54):eabd8170,
2021.

[9] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning
latent dynamics for planning from pixels. In K. Chaudhuri and R. Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 2555-2565. PMLR, 09-15 Jun 2019. URL
https://proceedings.mlr.press/v97/hafneri9a.html.

[10] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4460-4470, 2019.

[11] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-r2n2: A unified approach for single
and multi-view 3d object reconstruction. In European conference on computer vision, pages
628-644. Springer, 2016.

[12] D. Watkins-Valls, J. Varley, and P. Allen. Multi-modal geometric learning for grasping and
manipulation. In 2019 International conference on robotics and automation (ICRA), pages
7339-7345. IEEE, 2019.

[13] Y. Wi, P. Florence, A. Zeng, and N. Fazeli. Virdo: Visio-tactile implicit representations of de-
formable objects. IEEE International Conference on Robotics and Automation (ICRA), 2022.

https://proceedings.mlr.press/v97/hafner19a.html

[14] N. Fazeli, S. Zapolsky, E. Drumwright, and A. Rodriguez. Fundamental limitations in perfor-
mance and interpretability of common planar rigid-body contact models. In Robotics Research,
pages 555-571. Springer, 2020.

[15] L. Manuelli, Y. Li, P. Florence, and R. Tedrake. Keypoints into the future: Self-supervised cor-
respondence in model-based reinforcement learning. arXiv preprint arXiv:2009.05085, 2020.

[16] L. Manuelli and R. Tedrake. Localizing external contact using proprioceptive sensors: The
contact particle filter. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5062-5069. IEEE, 2016.

[17] D. Ma, S. Dong, and A. Rodriguez. Extrinsic contact sensing with relative-motion tracking
from distributed tactile measurements. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 11262-11268. IEEE, 2021.

[18] Q. Li, C. Schiirmann, R. Haschke, and H. J. Ritter. A control framework for tactile servoing.
In Robotics: Science and systems. Citeseer, 2013.

[19] G. Sutanto, N. Ratliff, B. Sundaralingam, Y. Chebotar, Z. Su, A. Handa, and D. Fox. Learning
latent space dynamics for tactile servoing. In 2019 International Conference on Robotics and
Automation (ICRA), pages 3622-3628. IEEE, 2019.

[20] S. Sakaino. Bilateral control-based imitation learning for velocity-controlled robot. In 2021
IEEE 30th International Symposium on Industrial Electronics (ISIE), pages 1-6. IEEE, 2021.

[21] A. Byravan and D. Fox. Se3-nets: Learning rigid body motion using deep neural networks.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 173-180,
2017. doi:10.1109/ICRA.2017.7989023.

[22] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.
Information theoretic mpc for model-based reinforcement learning. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 1714-1721, 2017. doi:
10.1109/ICRA.2017.7989202.

[23] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[24] S. Katz, A. Tal, and R. Basri. Direct visibility of point sets. In ACM SIGGRAPH 2007 papers,
pages 24—es. 2007.

[25] S. Rajeswar, C. Ibrahim, N. Surya, F. Golemo, D. Vazquez, A. Courville, and P. O. Pinheiro.
Haptics-based curiosity for sparse-reward tasks. In Conference on Robot Learning, pages 395—
405. PMLR, 2022.

[26] S. Gidaris and N. Komodakis. Dynamic few-shot visual learning without forgetting. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pages 4367—
4375, 2018.

[27] F. Zhao, J. Zhao, S. Yan, and J. Feng. Dynamic conditional networks for few-shot learning. In
Proceedings of the European conference on computer vision (ECCV), pages 19-35, 2018.

[28] P. Mitrano and D. Berenson. Data augmentation for manipulation. Robotics Science and
Systems (RSS), 2022.

[29] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652—660, 2017.

10

http://dx.doi.org/10.1109/ICRA.2017.7989023
http://dx.doi.org/10.1109/ICRA.2017.7989202
http://dx.doi.org/10.1109/ICRA.2017.7989202

Encoder Dynamics Decoder

Figure A.1: Architecture Details for the Components of the Contact Feature Dynamics Model.

Appendix A Network Architecture Details

Here, we describe in detail the network architecture of our contact feature dynamics model intro-
duced in Sec. 4.1. Our network has three main components, an encoder e, dynamics module f, and
decoder d:

1. Encoder: The encoder takes in a pointcloud vy € R”*3 and four most recent wrench
values from the force/torque sensor hg € R**6, The pointcloud is encoded using a Point-
Net encoder [29], designed to specifically handle unstructured pointclouds. We encode the
wrench inputs by flattening to a vector length 24 and passing through a Multi-Layer Per-
ceptron (MLP) of three layers with hidden sizes 64 and 64, with ReLU non-linearities. The
output size of both the visual and wrench encodings are latent vectors of size 64 that are
concatenated to yield the final latent state code z; € R'?8. The “Vision-Only” model does
not have the MLP for tactile, and instead outputs z;, € R!'?® directly from the PointNet
encoder.

2. Dynamics: The dynamics module has three MLP modules. First is a single layer network
to increase the dimensionality of the action a; from 6 to a vector z¢ € R4, This vector
is concatenated with the latent vector z; to yield the combined state action latent vector,
z] € R'2. The second MLP module takes in z{ and passes through three layers, with

hidden sizes 256 and 128 and ReLU non-linearities, yielding the next latent state code

2111 € R128. The third MLP module takes in z{ and passes through three layers, with

hidden sizes 128 and 64 and ReLU non-linearities, yielding the action offset Aa;,; € RS.

The first three terms of Aa;; is the translation and the second three terms are the axis-

angle rotation for the delta action. The “No Offset” model does not contain this last MLP

module, as it does not predict the offset action.

3. Decoder: The decoder module has three MLP modules that predict each component of the
contact feature. Each network takes in the current latent state code z, € R'28. The first
MLP is a classification head, predicting the binary contact state. The network has a single
hidden layer of size 64, with a ReLU non-linearity. The final prediction is passed through
a Sigmoid to recover the likelihood of ci’ = 1, i.e., likelihood the system is in contact. The
second MLP regresses the contact lines. The network has 3 layers, with hidden sizes 128
and 64 and ReLU non-linearities. The output of the network is a vector ¢! € R® which
is reshaped to be ¢! € R?*3, interpreted to be the two endpoints of the contact line in
3D space. The final MLP regresses the end-effector wrench. The network has 3 layers
with hi%den size 128 and 64 and ReL.U non-linearities. The final prediction is a wrench
c € R

The detailed module architectures are shown in Fig. A.1.

Appendix B Data Collection

B.1 Extrinsic Contact Dynamics Labeling Examples
Here we show qualitative examples of labeled contact lines, collected on a real world system as

described in Sec. 4.3. Fig. B.1 visualizes our procedure of using a Photoneo PhoXi 3D Scanner
to recover contact lines from high fidelity pointclouds. Fig. B.2 shows several examples of labels

11

Clip + Cluster Line from furthest points in cluster

Figure B.2: Labeled contact lines from various tool-environment contact scenarios. Our labeling
procedure automatically derives accurate contact lines.

from different tool-environment scenarios. We see our labeling procedure can automatically recover
accurate contact lines.

B.2 Data Augmentation

Here we show examples of augmented examples from our dataset, as described for the “With Obsta-
cles” case in Sec. 5.4. Fig. B.3 shows examples of pointclouds with randomly generated ellipsoids
inserted to provide occlusions during training. Note, that while the ellipsoids here are colored green,
we only input the point positions into the network.

Figure B.3: Examples of input pointclouds augmented with randomly sampled ellipsoids (in green)
to encourage robustness to visual occlusions. Note: color is not input to our model.

12

Contact Torque Error (1)

0.25 B Full Model
—_ Vision Only
E mEm No Offset
£ 0.20
g
S
w
v 0.15
3
g
F o010
U
8
C
§ o005

0.00-

0 1 2 3
Rollout Step

Figure C.1: Model performance in prediction future end effector torques. Similar to the case of
force prediction, we are able to accurately model future torques. Learning without wrench inputs
struggles to accurately predict future torques.

Appendix C Additional Results

C.1 Modeling Contact Feature Dynamics

C.1.1 Torque Prediction Results

In Fig. C.1 we show the performance of all models discussed in Sec. 5.3 on predicting end effector
torque. Similar to force prediction quality, “Full Model” outperformed “Vision-Only” due to having
access to wrench inputs. This makes predicting Oth step wrench equivalent to reconstruction, and
helps the model predict future torques accurately. “Vision-Only” performs better at predicting future
wrench values - we think this could be because the action is highly discriminative with regards to
the resulting wrench.

C.1.2 Performance on Unseen Tool Data

We also test our model performance when running our model on data from a tool unseen during
training (right-most tool in Fig. 5a). The prediction performance is shown in Fig. C.2. Overall, the
results indicate that our proposed method generalizes well to the unseen tool, with high accuracy
on binary contact, roughly lcm error on the contact line, and similar errors on force and torque as
those found for the training tools. Additionally, our method outperformed the rigid body baseline
(Sec. 5.2) on the contact line error and performed comparably on binary accuracy. Note that the
baseline here is given access to the unseen spatula geometry still, and thus has more information
than our method.

C.2 Obstacle Scraping Results

Here we show qualitative results of our target object footprint metric. Fig. C.3 shows the masks
generated before and after several scraping examples that show how we estimate footprint removed.
These also convey the difficulty of this metric; even small errors in the contact line can leave residue
which is picked up by our masking procedure, lowering the score.

We segment the starting object footprint using a binary segmentation method, tuned by hand to
accurately capture the starting footprint. For the finished object footprint, we compare each pixel in
the color space to the rough nominal color of the target object. We then apply a threshold to choose
which points we consider to still contain the object. We manually select a threshold such that a very
small amount of remaining residue is not captured, while thicker remaining areas are penalized.

We balance this metric with the percent mass removed metric. The mass metric is easier to perform
well on, as the residue left on the surface often has far less mass than the overall obstacle object to
be removed. Between the two metrics, we believe our results show early indication that our method
of modeling tool-environment interactions allows us to solve interesting contact servoing tasks, even
in the presence of visual occlusions and novel reaction forces.

13

Binary Accuracy (1) Contact Line Error (1)

1.00
40
0.954
£ 354
£
2 0.901 < 301
e 5
2 £
o i 25
£ 0.851 @
> 5 209
2 g
& 0.801 8159
§ 104
0.75 o
5
0.70 0-
0 1 2 3 1 2
Rollout Step Rollout Step
(@) (b)
2.00 Contact Force Error (1) Contact Torque Error (1)
i = Full Model
1754 Zoa W Vision Only
= £ 0.4
Z 1501 = | NQ F)ffset)
5 5 I Rigid Body Baseline
E 125 E
()
¥ 1.00 £
o <)
L]
g 0.751 =
© =
< =
G050 £
o
0.25
0.00-
0 1 2 3
Rollout Step Rollout Step
© (d)

Figure C.2: Contact Feature Dynamics Performance on Unseen Tool

14

Start Finish

Start Finish

score=0.933

score=0.846

(b)

Start Finish Start Finish

L

score=0.279
() (d)

Figure C.3: Qualitative Results showing pre and post-scrape footprint masks, used to generate Per-
cent Footprint Removed metric. The corresponding score is shown for each run.

15

	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Method
	4.1 Contact Feature Dynamics Model
	4.1.1 Training Loss

	4.2 Extrinsic Contact Servoing Controller
	4.3 Extrinsic Contact Dynamics Labeling

	5 Results
	5.1 Experimental Setup
	5.2 Baseline
	5.3 Modeling Contact Feature Dynamics
	5.4 Extrinsic Contact Servoing

	6 Limitations and Conclusion
	A Network Architecture Details
	B Data Collection
	B.1 Extrinsic Contact Dynamics Labeling Examples
	B.2 Data Augmentation

	C Additional Results
	C.1 Modeling Contact Feature Dynamics
	C.1.1 Torque Prediction Results
	C.1.2 Performance on Unseen Tool Data

	C.2 Obstacle Scraping Results

