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PAD: Towards Principled Adversarial Malware
Detection Against Evasion Attacks

Deqiang Li, Shicheng Cui, Yun Li, Jia Xu, Fu Xiao and Shouhuai Xu

Abstract—Machine Learning (ML) techniques can facilitate the automation of malicious software (malware for short) detection, but
suffer from evasion attacks. Many studies counter such attacks in heuristic manners, lacking theoretical guarantees and defense
effectiveness. In this paper, we propose a new adversarial training framework, termed Principled Adversarial Malware Detection (PAD),
which offers convergence guarantees for robust optimization methods. PAD lays on a learnable convex measurement that quantifies
distribution-wise discrete perturbations to protect malware detectors from adversaries, whereby for smooth detectors, adversarial
training can be performed with theoretical treatments. To promote defense effectiveness, we propose a new mixture of attacks to
instantiate PAD to enhance deep neural network-based measurements and malware detectors. Experimental results on two Android
malware datasets demonstrate: (i) the proposed method significantly outperforms the state-of-the-art defenses; (ii) it can harden
ML-based malware detection against 27 evasion attacks with detection accuracies greater than 83.45%, at the price of suffering an
accuracy decrease smaller than 2.16% in the absence of attacks; (iii) it matches or outperforms many anti-malware scanners in
VirusTotal against realistic adversarial malware.

Index Terms—Malware Detection, Evasion Attack, Adversarial Example, Provable Defense, Deep Neural Network.

✦

1 INTRODUCTION

INTERNET is widely used for connecting various modern
devices, which facilitates the communications of our daily

life but can spread cyber attacks at the same time. For
example, Kaspersky [1] reported detecting 33,412,568 mal-
ware samples in the year of 2020, 64,559,357 in 2021, and
109,183,489 in 2022. The scale of this threat motivates the
use of Machine Learning (ML) techniques, including Deep
Learning (DL), to automate malware detection. Promisingly,
empirical evidence demonstrates the advanced performance
of ML-based detection (see, e.g., [2], [3], [4], [5], [6]).

Unfortunately, ML-based malware detectors are vulnera-
ble to adversarial examples. These examples are a type of mal-
ware variants and are often generated by modifying non-
functional instructions in the existing executable programs
(rather than writing them from scratch) [7], [8], [9], [10], [11],
[12]. Adversarial examples can be equipped with poisoning
attacks [13], [14], evasion attacks [12], [15], [16], or both [17]. In
this paper, we focus on evasion attacks, which aim to mis-
lead a malware detection model in the test phase. To combat
evasive attacks, pioneers proposed several approaches, such
as input transformation [18], weight regularization [19], and
classifier randomization [20], most of which, however, have
been broken by sophisticated attacks (e.g., [10], [21], [22],
[23]). Nevertheless, recent studies empirically demonstrate
that adversarial training can harden ML models to certain
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extent [24], [25], which endows a model with robustness by
learning from adversarial examples, akin to “vaccines”.

Figure 1 illustrates the schema of adversarial training.
Owing to the efficiency of mapping representation per-
turbations back to the problem space, researchers conduct
adversarial training in the feature space [10], [15], [24],
[25], [26]. However, “side-effect” features [10] cause inaccu-
racy when conducting the inverse representation-mapping,
leading to the robustness gap that the attained robustness
cannot propagate to the problem space. In the feature space,
adversarial training typically involves inner maximization
(searching perturbations) and outer minimization (optimiz-
ing model parameters). Both are handled with heuristic
methods, lacking theoretical guarantees [24], [25]. This leads
to the limitation of disallowing a rigorous analysis on the
types of attacks that can be thwarted by the resultant model,
especially in the context of discrete domains (e.g., malware
detection). The fundamental concern is the optimization
convergence: the inner maximization shall converge to a
stationary point, and the resultant perturbation approaches
the optimal one; the outer minimization has gradients of
loss w.r.t. parameters proceeding toward zero regarding cer-
tain metrics (e.g., ℓ2 norm) in gradient-based optimization.
Intuitively, as long as convergence requirements are met,
the defense model can mitigate other attacks less effectively
than the one that is used for adversarial training.

Existing methods cope with the limitations mentioned
above with new assumptions [27], [28], [29]. For instance, Qi
et al. propose searching text perturbations with theoretical
guarantees on attackability by assuming the non-negativity
of models [28], which produce attacks counting on sub-
modular optimization [30]. Indeed, the non-negativity of
models leads to binary monotonic classification (without
involving the outer minimization mentioned above), which
circumvents any attack that utilizes either feature addition
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Fig. 1: Schema of feature space adversarial training and
its three limitations related that: (i) the attained robustness
back-propagates to the problem space (upper left); (ii) the
inner maximization searches perturbations optimally (mid-
dle); (iii) the outer minimization optimizes model parame-
ters convergently (right).

or feature removal based perturbations, but not both [27],
[31]. This type of classifiers tend to sacrifice detection accu-
racy notably [10]. In order to relax this overly restrictive as-
sumption, a recent study [29] resorts to the theory of weakly
submodular optimization, which necessitates a concave and
smooth model. However, modern ML architectures (e.g.,
deep neural networks) may not have a built-in concavity.
Moreover, these models are not geared toward malware
detection or adversarial training. From the domain of image
processing, pioneers propose utilizing smooth ML models
[32], [33], [34], because specific distance metrics (e.g., ℓ2
norm) can be incorporated to shape the loss landscape,
leading to local concavity w.r.t. the input and thus easing
the inner maximization. Furthermore, smoothness benefits
the convergence of the outer minimization [32]. Because the
proposed metrics are geared toward continuous input, they
may not be suitable for software samples that are inher-
ently discrete. Worst yet, semantics-preserving adversarial
malware examples are not necessarily generated by small
perturbations [10], [24].
Our Contributions. In this paper, we investigate adversarial
training methods for malware detection by tackling three
limitations of existing methods as follows. (i) We tackle
the robustness gap by relaxing the constraint of “side-effect”
features in training, and demonstrating that the resultant
feature-space model can defend against practical attacks.
(ii) We address the issue of adversarial training without con-
vergence guarantee by learning convex measurements from
data for quantifying distribution-wise perturbations, which
regard examples falling outside of the underlying distribu-
tion as adversaries. In this way, the inner maximizer has
to bypass the malware detector and the newly introduced
adversary detector, leading to a constrained optimization
problem whose Lagrangian relaxation for smooth malware
detectors can be concave. Consequently, the smoothness
benefits the convergence of gradient-based outer minimiza-
tion [32]. (iii) We address the incapability of rigorously resisting
a range of attacks by mixing multiple types of gradient-based
attack methods to approximate the optimal attack, which is
used to implement adversarial training while enjoying the
optimization convergence mentioned in (ii). Our contribu-

tions are summarized as follows:
• Adversarial training with formal treatment. We propose

a new adversarial training framework, dubbed Principled
Adversarial Malware Detection (PAD). PAD extends the
malware detector with a customized adversary detector,
where the customization is the convex distribution-wise
measurement. For smooth models, PAD benefits conver-
gence guarantees for adversarial training, resulting in
provable robustness.

• Robustness improvement. We establish a PAD model by
combining a Deep Neural Network (DNN) based mal-
ware detector and an input convex neural network based
adversary detector. Furthermore, we enhance the model
by leveraging adversarial training to incorporate a new
mixture of attacks, termed Stepwise Mixture of Attacks,
leading to the defense model dubbed PAD-SMA. Theoret-
ical analysis shows the robustness of PAD-SMA, including
attackability of inner maximization and convergence of
outer minimization.

• Experimental validation. We compare PAD-SMA with
seven defenses proposed in the literature via the widely-
used Drebin [35] and Malscan [36] malware datasets while
considering a spectrum of attack methods, ranging from
no attacks, 13 oblivious attacks, to 18 adaptive attacks.
Experimental results show that PAD-SMA significantly
outperforms the other defenses, by slightly sacrificing the
detection accuracy when there are no adversarial attacks.
Specifically, PAD-SMA thwarts a broad range of attacks
effectively, exhibiting an accuracy ≥ 81.18% under 30
attacks on Drebin and an accuracy ≥ 83.45% under
27 attacks on Malscan, except for the Mimicry attack
guided by multiple (e.g., 30 on Drebin or 10 on Malscan)
benign software samples [9], [26]; it outperforms some
anti-malware scanners (e.g., Symantec, Comodo), matches
with some others (e.g., Microsoft), but falls behind Avira
and ESET-NOD32 in terms of defense against adversarial
malware examples (while noting that the attacker knows
our features but not that of the scanners.)

To the best of our knowledge, this is the first principled
adversarial training framework for malware detection. We
have made our code publicly available at https://github.
com/deqangss/pad4amd.
Paper outline. Section 2 reviews some background knowl-
edge. Section 3 describes the framework of principled ad-
versarial malware detection. Section 4 presents a defense
method instantiated from the framework. Section 5 analyzes
the proposed method. Section 6 presents our experiments
and results. Section 7 discusses related prior studies. Section
8 concludes the paper.

2 BACKGROUND KNOWLEDGE

Notations. The main notations are summarized as follows:
• Input space: Let Z be the software space (i.e., problem

space), and z ∈ Z be an example.
• Feature extraction: Let ϕ : Z → X be a hand-crafted

feature extraction function, where X ⊂ Rd is a discrete
space and d is the number of dimensions.

• Malware detector: Let f : Z → Y map z ∈ Z to
label space Y = {0, 1}, where “0” (“1”) means software
example z is benign (malicious).

https://github.com/deqangss/pad4amd
https://github.com/deqangss/pad4amd
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• Adversary detector: Let g : Z → R map z ∈ Z to a real-
valued confidence score such that g(z) > τ means z is
adversarial and non-adversarial otherwise, where τ is a
pre-determined threshold.

• Learning model: We extend malware detector f with a
secondary detector g for identifying adversarial examples.
Suppose f uses an ML model φθ : X → Y with f(·) =
φθ(ϕ(·)) and g uses an ML model ψϑ with g(·) = ψϑ(ϕ(·)),
where θ, ϑ are learnable parameter sets.

• Loss function for model: F(θ,x, y) and G(ϑ,x) are the
loss functions for learning models φθ and ψϑ, respectively.

• Criterion for attack: Let J (x) justify an adversarial ex-
ample, which is based on F or a combination of F and
ψϑ depending on the context.

• Training dataset: Let Dz denote the training dataset
that contains example-label pairs. Furthermore, we have
Dx = {(x, y) : x = ϕ(z), (z, y) ∈ Dz} in the feature
space, which is sampled from a unknown distribution P.

• Adversarial example: Adversarial malware example z′ =
z + δz misleads f and g simultaneously (if g is present),
where δz is a set of manipulations (e.g., string injection).
Correspondingly, let x′ = ϕ(z′) denote the adversarial
example in the feature space with δx = x′ − x.

2.1 ML-based Malware & Adversary Detection

We treat malware detection as binary classification. In ad-
dition, an auxiliary ML model is used to detect adversarial
examples [21], [23], [37].
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Fig. 2: Integrated malware and adversary detectors.

Fig.2 illustrates the workflow of integrated malware and
adversary detectors. Formally, given an example-label pair
(z, y), an malware detector f = φθ ◦ ϕ, and an adversary
detector g = ψϑ ◦ ϕ, the prediction is

predict(z) =


f(z), if g(z) ≤ τ

1, if (g(z) > τ) ∧ (f(z) = 1)

not sure, if (g(z) > τ) ∧ (f(z) = 0).

(1)

Intuitively, g “protects” f against z when g(z) > τ and
f(z) = 1; “not sure” abstains f from classification, calling
for further analysis. Hence, a small portion of normal (i.e.,
unperturbed) examples will be flagged by g. Detectors φθ

and ψϑ are learned from training dataset Dx by minimizing:

min
θ,ϑ

E(z,y)∈Dx
[F(θ,x, y) + G(ϑ,x)] , (2)

where F is the loss for learning φθ (e.g., cross-entropy [38])
and G is for learning ψϑ (which is specified according to the
downstream un-supervised task).

2.2 Evasion Attacks
The evasion attack can be manifested in both the problem
space and the feature space [9], [10]. In the problem space,
an attacker perturbs a malware example z to z′ to evade
both f and g (if g is present). Consequently, we have
x = ϕ(z) and x′ = ϕ(z′) in the feature space. Owing to
the non-differentiable nature of ϕ, previous studies suggest
x′ obeys a “box” constraint u ⪯ x′ ⪯ u (i.e., x′ ∈ [u,u]) cor-
responding to file manipulations, where “⪯” is the element-
wise “no bigger than” relation between vectors [9], [17], [24].
The evasion attack in the feature space can be described as:

x′ = x+δx, (3)
s.t. (φθ(x

′) = 0) ∧ (ψϑ(x
′) ≤ τ) ∧ (x′ ∈ X ) ∧ (x′ ∈ [u,u]).

Since ψϑ may not be present, in what follows we review
former attack methods as they are, introduce the existing
strategies to target both φθ and ψϑ, and bring in the current
inverse-mapping solutions (i.e., mapping feature perturba-
tions to the problem space; see ϕ−1 in Figure 1).

2.2.1 Evasion Attack Methods
Mimicry attack. A mimicry attacker [19], [26], [39] perturbs
a malware example to mimic a benign application as much
as possible. The attacker does not need to know the internal
knowledge of models, but can query them. In such case, the
attacker uses Nben (Nben ≥ 1) benign examples separately
to guide manipulation, resulting in Nben perturbed exam-
ples, of which the one bypassing the victim is used.
Grosse attack. This attack [40] perturbs “sensitive” features
to evade detection, where sensitivity is quantified by the
gradients of the DNN’s softmax output with respect to the
input. A larger gradient value means higher sensitivity. This
attack adds features to an original example.
FGSM attack. This attack is introduced in the context of
image classification [41] and later adapted to malware detec-
tion [18], [24]. It perturbs a feature vector x in the direction
of the ℓ∞ norm of gradients (i.e., sign operation) of the loss
function with respect to the input:

x′ = round
(
Proj[u,u] (x+ ε · sign(∇x F(θ,x, 1)))

)
,

where ε > 0 is the step size, Proj[u,u] projects an input
into [u,u], and round is an element-wise operation which
returns an integer-valued vector.
Bit Gradient Ascent (BGA) and Bit Coordinate Ascent
(BCA) attacks. Both attacks [24] iterate multiple times. In
each iteration, BGA increases the feature value from ‘0’ to ‘1’
(i.e., adding a feature) if the corresponding partial derivative
of the loss function with respect to the input is greater than
or equal to the gradient’s ℓ2 norm divided by

√
d, where d

is the input dimension. By contrast, at each iteration, BCA
flips the value of the feature from ‘0’ to ‘1’ corresponding
to the max gradient of the loss function with respect to the
input. Technically speaking, given a malware instance-label
pair (x, y), the attacker needs to solve

max
x′∈[u,u]

F(θ,x′, 1) s.t., x′ ∈ X .

Projected Gradient Descent (PGD) attack. It is proposed in
the image classification context [42] and adapted to malware
detection by accommodating the discrete input space [25].
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The attack permits both feature addition and removal while
retaining malicious functionalities, giving more freedom to
the attacker. It finds perturbations via an iterative process
with the initial perturbation as a zero vector:

δ(t+1)
x = Proj[u−x,u−x]

(
δ(t)x + α∇δx F(θ,x+ δ(t)x , 1)

)
(4)

where t is the iteration, α > 0 is the step size, Proj[u−x,u−x]

projects perturbations into the predetermined space [u −
x,u− x], and ∇δx denotes the derivative of loss function F
with respect to δ

(t)
x . Since the derivative may be too small

to make the attack progress, researchers normalize ∇δx F in
the direction of ℓ1, ℓ2, or ℓ∞ norm [42], [43]:

ep = argmax
∥e∥p=1

⟨∇δx F(θ,x+ δ(t)x , 1), e⟩,

where ep is the direction of interest, ⟨·, ·⟩ denotes the inner
product, and p = 1, 2,∞. Adjusting p leads to PGD-ℓ1,
PGD-ℓ2, and PGD-ℓ∞ attacks, respectively. After the loop,
an extra operation is conducted to discretize the real-valued
vector. For example, round(a) returns the vector closest to a
in terms of ℓ1 norm distance.
Mixture of Attacks (MA). This attack [9] organizes a mix-
ture of attack methods upon a set of manipulations as large
as possible. Two MA strategies are used: the “max” strategy
selects the adversarial example generated by several attacks
via maximizing a criterion (e.g., classifier’s loss function F );
the iterating “max” strategy puts the resulting example from
the last iteration as the new starting point, where the initial
point is x. The iteration can promote attack effectiveness
because of the non-concave ML model.

2.2.2 Oblivious vs. Adaptive Attacks
The attacks mentioned above do not consider the adversary
detector g, meaning that they degrade to oblivious attacks
when g is present and would be less effective. By contrast,
an adaptive attacker is conscious of the presence of g(·) =
ψϑ(ϕθ(·)), leading to an additional constraint ψϑ(x

′) ≤ τ
for a given feature representation vector x:

max
x′∈[u,u]

F(θ,x′, 1) s.t., (ψϑ(x
′) ≤ τ) ∧ (x′ ∈ X ), (5)

where we substitute φ(x′) = 0 with maximizing F(θ,x′, 1)
owing to the aforementioned issue of non-differentiability.

However, ψϑ may not be affine (e.g., linear transforma-
tion), meaning that the effective projection strategies used
in PGD are not applicable anymore. In order to deal with
ψϑ(x

′) ≤ τ , researchers suggest three approaches: (i) Use
gradient-based methods to cope with

max
x′∈[u,u]

[F(θ,x′, 1)− λψϑ(x
′)], (6)

where λ ≥ 0 is a penalty factor for modulating the impor-
tance between the two items [23]. (ii) Maximize F(θ,x′, 1)
and −ψϑ(x

′) alternatively as it is notoriously difficult to set
λ properly [21]. (iii) Maximize F(θ,x′, 1) and −ψϑ(x

′) in an
orthogonal manner [23], where “orthogonal” means elimi-
nating the mutual interaction between F and ψ from the
geometrical perspective. For example, the attack perturbs x
in the direction orthogonal to the direction of the gradients
of −ψϑ, which is in the direction of the gradients of F , to
make it evade φθ but not react ψϑ. Likewise, the attack alters
the orthogonal direction to evade ψϑ but not react φθ .

2.2.3 The Inverse Feature-Mapping Problem
There is a gap between the feature space and the problem
(i.e., software) space. Since feature extraction ϕ is non-
differentiable, gradient-based methods cannot produce end-
to-end adversarial examples. Moreover, ϕ−1 cannot be de-
rived analytically due to “side-effect” features, which cause
a non-bijective ϕ [10].

To fill the gap, Srndic and Laskov [26] propose directly
mapping the perturbation vector δx to the problem space,
leading to ϕ(ϕ̃−1(x′)) ̸= x′, where ϕ̃−1 is an approxima-
tion of ϕ−1. Nevertheless, experiments demonstrate that
the attacks can evade anti-malware scanners. Li and Li
[9] leverage this strategy to produce adversarial Android
examples. Researchers also attempt to align δz with δx as
much as possible. For example, Pierazzi et al. [10] collect
a set of manipulations from gadgets of benign applications
and implement ones that mostly align with the gradients
of the loss function with respect to the input. Zhao et al.
[11] propose incorporating gradient-based methods with
Reinforcement Learning (RL), of which an RL-based model
assists in obtaining manipulations in the problem space
under the guidance of gradient information. In addition,
black-box attack methods (without knowing the internals of
the detector) directly manipulate malware examples, which
avoids the inverse feature-mapping procedure [15].

In this paper, we use an approximate ϕ̃−1 (implemen-
tation details are deferred to the supplementary material).
This strategy relatively eases the attack implementation and
besides, our preliminary experiments show the “side-effect”
features cannot decline the attack effectiveness notably in
the refined Drebin feature space [35].

2.3 Adversarial Training
Adversarial training augments training dataset with adver-
sarial examples by solving a min-max optimization problem
[24], [40], [42], [44], [45], [46], as shown in Figure 1. The inner
maximization looks for adversarial examples, while the
outer minimization optimizes the model parameters upon
the updated training dataset. Formally, given the training
dataset Dx, we have

min
θ

E(x,y)∈Dx

[
F(θ,x, y) + β max

x′∈[u,u]
F(θ,x′, 1)

]
, (7)

s.t., (x′ = x+ δx) ∧ (x′ ∈ X )

where β ≥ 0 is used to balance between detection accuracy
and robustness, while noting that only malware representa-
tions play a role in the inner maximization.

However, Owing to the NP-hard nature of searching
discrete perturbations [32], the adversarial training meth-
ods incorporate the (approximate) optimal attack without
convergence guaranteed [24], [25], making their robustness
questionable. For example, Al-Dujaili et al. [24] approximate
the inner maximization via four types of attack algorithms,
while showing that a hardened model cannot mitigate the
attacks that are absent in the training phase. Furthermore, a
mixture of attacks is used to instantiate the framework of ad-
versarial training [9]. Though the enhanced model can resist
a range of attacks, it is still vulnerable to a mixture of attacks
with iterative “max” strategy (more iterations are used, see
Section 2.2.1). Thereby, it remains a question of rigorously
uncovering the robustness of adversarial training.
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3 THE PAD FRAMEWORK

PAD aims to reshape adversarial training by rendering the
inner maximization solvable analytically, with the establish-
ment of a concave loss w.r.t. the input. The core idea is a
learnable convex distance metric, with which distribution-
wise perturbations can be measured, leading to a constraint
attack problem, whose Lagrange relaxation is concave (ow-
ing to the maximization) at reasonable circumstances.

3.1 Threat Model and Design Objective
Threat model. Given a malware example z, malware detec-
tor f , and adversary detector g (if g exists), an attacker mod-
ifies z by searching for a set of non-functional instructions
δz upon knowledge of detectors. Guided by Kerckhoff’s
principle that defense should not count on “security by
obscurity” [10], we consider white-box attacks, meaning that
the attacker has full knowledge of f and g. For assessing
robustness of defense models, we use grey-box attacks where
the attacker knows f but not g (i.e., oblivious attack [47]), or
knows features used by f and g.
Design Objective. As aforementioned, PAD is rooted in
adversarial training. We propose incorporating f with an
adversary detector g(·) = ψϑ(ϕ(·)), where ψϑ is the convex
measurement. To this end, given a malware instance-label
pair (x, y) where x = ϕ(z) and y = 1, we mislead both
ϕθ and ψϑ by perturbing x to x′, upon which we optimize
model parameters. Formally, PAD uses objective

min
θ,ϑ

E(x,y)∈Dx

[
F(θ,x, y) + G(ϑ,x)

+ β1 F(θ,x′, 1) + β2 G(ϑ,x′)
]
,

(8a)

where
x′ := max

x′∈[u,u]
[F(θ,x′, 1)− λψϑ(x

′)] ,

s.t. (x+ δx = x′) ∧ (x′ ∈ X ),
(8b)

β1 and β2 weight the robustness against x′, and λ ≥ 0 is a
penalty factor. This formulation has three merits:

(i) Manipulations in the feature space: Eq.(8b) says
that we can search feature perturbations without do-
ing inverse-feature mapping, implying shorter training
time. The remaining issue is whether the attained ro-
bustness can propagate to the problem space or not; we
will answer this affirmatively later (Section 3.2).

(ii) Box-constraint manipulation: Eq.(8b) says the attacker
can search x′ ∈ [u,u] without considering any norm-
type constraints, meaning that the defender should
resist semantics-based attacks rather than small pertur-
bations.

(iii) Continuous perturbation may be enough: It is NP-
hard to search optimal discrete perturbations even for
attacking linear models [32]. Eq.(8b) contains an auxil-
iary detector ψϑ, which can treat continuous perturba-
tions in the range of [u,u] as anomalies while relaxing
the discrete space X constraint in the training phase.

The preceding formulation suggests that we can use the ef-
ficient gradient-based optimization methods to solve Eq.8a
and Eq.8b. In what follows we explain this intuitively and
why a smooth F is necessary (e.g., for setting a proper λ,
which is challenging as discussed in Section 2.2.2).

3.2 Design Rationale

Bridge robustness gap. Recall that adversarial training is
performed in the feature space while adversarial malware
is in the problem space. Moreover, the perturbed instance
x′ used for training may not be mapped back to any
z′ ∈ Z , because “side-effect” features incur interdependent
perturbations (i.e., modifying one feature would require to
changing some of the others so as to preserve the functional-
ity or semantics) [10], [44]. This leaves a “seam” for attackers
when a non-bijective feature extraction ϕ is used. Indeed, the
interdependence of features is reminiscent of the structural
graph representation. This prompts us to propose using a
directed graph to denote the relation: modifiable features
are represented by graph nodes and their interdependencies
are represented by graph edges. As a result, an asymmet-
rical adjacent matrix (i.e., directed graph) can be used to
represent the edge information, which however shrinks the
manipulations in the space of [u,u].

Suppose for a given malware representation x, we can
obtain the optimal adversarial example in the feature space
w.r.t. criterion J . With or without considering the adjacent
matrix constraint, we get the optimum x̃∗,x∗ ∈ [u,u]
with the criterion results satisfying J (x̃∗) = F(θ, x̃∗, 1) −
λψϑ(x̃

∗) ≤ J (x∗). This in turn demonstrates that if an ad-
versarial training model can resist x∗, so can x̃∗ (otherwise,
it contradicts the meaning of optimization).

Therefore, we relax the attack constraint related to “side-
effect” features and conduct adversarial training in the
feature space so that the robustness can propagate to the
problem space, at the potential price of sacrificing the detec-
tion accuracy because more perturbations are considered.
Defense against distribution-wise perturbation. We ex-
plain Eq.(8b) via distributionally robust optimization [32].
We establish a point-wise metricC(·,x) = max{0, ψϑ(·)−τ}
to measure how far a point, say x′, to a population, while
noting that other measures are also suitable as long as they
are convex and continuous. A large portion (e.g., 95%) of
training examples will have ψϑ(x) ≤ τ . Based on C , we
have a Wasserstein distance [48]:

W (P′,P) := inf
Γ

{∫
C(x′,x)dΓ(x′,x) : Γ ∈

∏
(P′,P)

}
where

∏
(P′,P) is the joint distribution of P′ and P with

marginal as P′ and P w.r.t. to the first and second argument,
respectively. That is, the Wasserstein distance gets the in-
fimum from a set of expectations. Because points x,x′ are
in discrete space X , the integral form in the definition is a
linear summation. We aim to build a malware detector f
that can classify x′ correctly with x′ ∼ P′ and W (P′,P) ≤ 0.
Formally, the corresponding inner maximization is

max
P′:W (P′,P)≤0

Ex′∼P′ F(θ,x′, 1). (9)

It is non-trivial to tackle W (P′,P) directly owing to massive
vectors on X × X . Instead, the dual problem is used:

Proposition 1. Given a continuous function F , and continuous
and convex distance C(·,x) = max{0, ψϑ(·)− τ} with x ∼ P,
the dual problem of Eq.(9) is

inf
λ

{
Ex∼P max

x′
(F(θ,x′, 1)− λψϑ(x

′) + λτ) : λ ≥ 0
}
,
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Fig. 3: An example showing how the loss changes under per-
turbations when F is smooth (feasible region in the bottom-
left figure), making F −λψϑ strongly convex (feasible region
in the rightmost figure) at x0 when λ = 3.0.

where x+ δx = x′ ∈ X , x′ ∼ P′ and ψϑ(x
′) ≥ τ .

Its empirical version is Eq.(8b) for fixed λ and τ , except
for the constraint [u,u] handled by clip operation. The
proposition says PAD can defend against distributional per-
turbations. Proof is deferred to the supplementary material.
Concave inner maximization. Given an instance-label pair
(x, y), let Taylor expansion approximate F(θ,x + δx, y) −
λψϑ(x+ δx):

F(θ,x+δx, y)− λψϑ(x+ δx) ∼= F −λψϑ

+⟨∇x(F −λψϑ), δx⟩+
1

2
δ⊤x ∇2

x(F −λψϑ)δx.

where F −λψϑ denotes F(θ,x, y) − λψϑ(x) for short. The
insight is that if (i) the values of the entities in ∇x F are finite
(i.e., smoothness [32]) when x ∈ [u,u], and (ii) ∇xψϑ > 0
(i.e., strongly convex), then we can make F −λψϑ concave
by tweaking λ; this eases the inner maximization.

Figure 3 illustrates the idea behind the design, by using
a smoothed DNN model to fit the noising sin function (top-
left figure). Owing to the smoothness of φθ and F (bottom-
left figure), we transform the loss function to a concave
function by incorporating a convex ψϑ. The concavity is
achieved gradually by raising λ, along with the feasible
region changed, as shown in the right-hand figure. In the
course of adjusting λ, there are three possible scenarios [23]:
(i) λ is large enough, leading to a concave inner maximiza-
tion. (ii) A proper λ may result in a linear model, which
would be rare because of the difference between φθ and
ψϑ. (iii) λ is so small that the inner maximization is still a
non-concave and nonlinear problem, which is true as for-
mer heuristic adversarial training. In summary, we propose
enhancing the robustness of f and g, which can reduce the
smoothness factor of f [49], [50] and thus force the attacker
to increase λ when generating adversarial examples.

Since the interval x+δx ∈ [u,u] relaxes the constraint on
a discrete input, we can address this issue by treating contin-
uous perturbations as anomalies, as stated earlier. Therefore,
instead of heuristically searching for discrete perturbations,
we directly use ψθ to detect continuous perturbations with-
out using the discretization trick.

4 INSTANTIATING THE PAD FRAMEWORK

We instantiate PAD into a model and associated adversarial
training algorithm. Though PAD may be applicable to any

differentiable ML algorithms, we consider Deep Neural
Network (DNN) based malware detection because it has
been intensively investigated [9], [51], [52], [53].

4.1 Adjusting Malware Detector
PAD requires the composition of F and φθ to be smooth.
DNN consists of hierarchical layers, each of which typically
has a linear mapping followed by a non-linear activation
function. Most of these ingredients meet the smoothness
condition, except for some activation functions (e.g., Recti-
fied Linear Unit or ReLU [38]) owing to non-differentiability
at point zero. To handle non-smooth activation functions,
researchers suggest using over-parameterized DNNs, which
yield semi-smooth loss landscapes [54]. Instead of increas-
ing learnable parameters, we replace ReLU with smooth
activation functions (e.g., Exponential Linear Unit or ELU
[55]). The strategy is simple in the sense that the model
architecture is changed slightly and fine-tuning suffices to
recover the detection accuracy. Despite this, our preliminary
experiments show it slightly reduces the detection accuracy.

4.2 Adversary Detector
We propose a DNN-based g that is also learned from the
features extracted by ϕ. Figure 4 shows the architecture
of ψϑ, which is an l-layer Input Convex Neural Network
(ICNN) [56]. ICNN maps an input x recursively via non-
negative transformations, along with adding a normal trans-
formation on x:

xi+1 = σ(ϑixi + ϑi
xx+ bi),

where ϑ = {ϑi,ϑi
x,b

i : i = 1, . . . , l}, ϑi is non-negative, ϑi
x

has no such constraint, x1 = x, ϑ1 is identity matrix, and σ
is a smooth activation function (e.g., ELU or Sigmoid [55]).
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Fig. 4: Architecture of an input convex neural network.

We cast the adversary detection as a one-class classifica-
tion task [57]. In the training phase, we perturb examples in
Dx to obtain a set of new examples {x+ δx : (x, y) ∈ Dx},
where δx is a vector of salt-and-pepper noises, meaning that
at least half of elements in x are randomly selected and their
values are set as their respective maximum. Formally, given
an example x1 ∈ {x : (x, y) ∈ Dx}∪{x+δx : (x, y) ∈ Dx},
the loss function G is

G(ϑ,x1) = pert log(ψϑ(x
1)) + (1− pert) log(1− ψϑ(x

1)),

where pert = 0 indicates x1 is from Dx, and pert = 1
otherwise. In the test phase, we let the input pass through
ψϑ to perform the prediction as shown in Eq.(1).
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4.3 Adversarial Training Algorithm
For the inner maximization (Eq.8b), we propose a mixture of
PGD-ℓ1, PGD-ℓ2 and PGD-ℓ∞ attacks (see Section 2.2.1). The
attacks proceed iteratively via “normalized” gradients

ep = argmax
∥e∥p=1

⟨∇δx(F(θ,x+ δ(t)x , 1)− λψϑ(x+ δ(t)x )), e⟩,

(10)
and perturbation vectors{

δ(t+1)
x,p = Proj[u−x,u−x]

(
δ(t)x,p + αpep

)
: p ∈ {1, 2,∞}

}
,

(11)
where a perturbation vector is chosen by the scoring rule

δ(t+1)
x = argmax

δ
(t+1)
x,p

[
F(θ, round(x+ δ(t+1)

x,p ), 1)

− λψϑ(round(x+ δ(t+1)
x,p ))

] (12)

at the tth iteration. The round operation is used because our
initial experiments show that it leads to better robustness.
Since the goal is to select the best attack in a stepwise
fashion, it is termed Stepwise Mixture of Attacks (SMA).

Note that from an attacker’s perspective, there are three
more steps: (i) We treat the dependencies between features
as graphical edges. Since the summation of gradients can
measure the importance of a group in the graph [58], we
accumulate the gradients of the loss function with respect
to the “side-effect” features and use the resulting gradient
to decide whether to modify these features together. (ii) The
round operation is used to discretize perturbations when the
loop is terminated [25]. (iii) Map the perturbations back into
the problem space.

For the outer minimization (Eq.8a), we leverage a Stochas-
tic Gradient Descent (SGD) optimizer, which proceeds itera-
tively to find the model parameters. Basically, SGD samples
a batch of B (a positive integer) pairs {(xi, yi)}Bi=1 from Dx

and updates the parameters with

θ(j+1) = θ(j) − γ∇θ
1

B

B∑
i=1

F(θ(j),xi + δ(T )
xi
, yi) and

ϑ(j+1) = ϑ(j) − γ∇ϑ
1

B

B∑
i=1

G(ϑ(j),xi + δ(T )
xi

),

where j is the iteration, γ is the learning rate, and δ
(T )
xi is

obtained from Eq.(12) with T loops for perturbing xi. We
optimize the model parameters by Eq.(8a).

Algorithm 1 summarizes a PAD-based adversarial train-
ing by incorporating the stepwise mixture of attacks. Given
a training set, we preprocess software examples and obtain
their feature representations (line 1). At each epoch, we
first perturb the feature representations via salt-and-pepper
noises (line 4) and then generate adversarial examples with
the mixture of attacks (lines 5-10). Using the union of the
original examples and their perturbed variants, we learn
malware detector f and adversary detector g (lines 11-13).

5 THEORETICAL ANALYSIS

We analyze effectiveness of the inner maximization and
optimization convergence of the outer minimization, which
together support robustness of the proposed method. As
mentioned above, we make an assumption that PAD re-
quires smooth learning algorithms (Section 4.1).

Algorithm 1: Adversarial training
Input: Training set Dz , epoch N , batch size B,

factors β1, β2 and λ, iteration T , and step size
αp for norm p ∈ {1, 2,∞}.

1 Get Dx = {(ϕ(z), y) : (z, y) ∈ Dz} for the given Dz ;
2 for j = 1 to N do
3 Sample a mini-batch {xi, yi}Bi=1 from Dx;

4 Apply salt-and-pepper noises to {xi}Bi=1;
5 for t = 0 to T − 1 do
6 for p ∈ {1, 2,∞} do
7 Calculate perturbation δ(t+1)

x,p by Eq.(10)
and Eq.(11) for x ∈ {xi}Bi=1 with yi = 1;

8 end
9 Select δ(t+1)

x by Eq.(12);
10 end

11 Calculate the adversarial training loss via Eq.(8a);

12 Backpropagate the errors for updating θ and ϑ;
13 end

Assumption 1 (Smoothness assumption [32]). The composi-
tion of F and φθ meets the smoothness condition:

∥∇x F(θ,x, y)−∇x F(θ,x′, y)∥2 ≤ Lfxx∥x− x′∥2,
∥∇x F(θ,x, y)−∇x F(θ′,x, y)∥2 ≤ Lfxθ∥θ − θ′∥2,
∥∇θ F(θ,x, y)−∇θ F(θ,x′, y)∥2 ≤ Lfθx∥x− x′∥2,

and ψϑ meets the smoothness condition:

∥∇xψϑ(x)−∇xψϑ(x
′)∥2 ≤ Lgxx∥x− x′∥2,

∥∇xψϑ(x)−∇xψϑ′(x)∥2 ≤ Lgxϑ∥ϑ− ϑ′∥2,

where x′ ∈ [u,u] is changed from x = ϕ(z) for a given example
z and L∗∗∗ > 0 denotes the smoothness factor (∗ is the wildcard).

Recall that the ψϑ meets the strongly-convex condition:

∥∇xψϑ(x)−∇xψϑ(x
′)∥2 ≥ Mg

xx∥x− x′∥2,

where Mg
xx > 0 is the convexity factor.

Proposition 2. Assume the smoothness assumption holds. The
loss of F −λψϑ is (λMg

xx−Lfxx)-strongly concave and (λLgxx+
Lfxx)-smoothness when Lfxx < λMg

xx. That is

−λL
g
xx + Lfxx

2
∥x′ − x∥22 ≤ L ≤ −λM

g
xx − Lfxx
2

∥x′ − x∥22,

where L = F(θ,x′, y)− λψϑ(x
′)−F(θ,x, y) + λψϑ(x)−

⟨∇x(F −λψϑ), δx⟩ = J (x′)− J (x)− ⟨∇xJ (x), δx⟩.

Proof. By quadratic bounds derived from the smoothness,
we have −Lf

xx

2 ∥x′ − x∥22 ≤ F(θ,x′, y) − F(θ,x, y) −
⟨∇x F ,x′ − x⟩ ≤ Lf

xx

2 ∥x′ − x∥22. Since ψϑ is convex, we get
ψϑ(x

′) − ψϑ(x) − ⟨∇xψϑ,x
′ − x⟩ ≥ Mg

xx

2 ∥x′ − x∥22. Since
ψϑ is smooth, we get ψϑ(x

′) − ψϑ(x) − ⟨∇xψϑ,x
′ − x⟩ ≤

Lg
xx

2 ∥x′−x∥22. Combining these two inequalities leads to the
proposition.

Theorem 1 below quantifies the gap between the approx-
imate adversarial example x′ = x + δ

(T )
x and the optimal
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one, denoted by x∗ = x + δ∗x. The proof is lengthy and
deferred to the supplementary material.

Theorem 1. Suppose the smoothness assumption holds. If Lfxx <
λMg

xx, the perturbed example x′ = x + δ
(T )
x from Algorithm 1

satisfies:

J (x∗)− J (x′)

J (x∗)− J (x)
≤ exp(−T

d
· λM

g
xx − Lfxx

λLgxx + Lfxx
),

where d is the input dimension.

We now focus on the convergence of SGD when applied
to the outer minimization. Without loss of generality, the
following theorem is customized to the composition of φθ

and F , which can be extended to the composition of ψϑ and
G. Let H(θ) = E(x,y)∈Dx

F(θ,x∗(θ), y) denote the optimal
adversarial loss on the entire training dataset Dx.

Theorem 2. Suppose the smoothness assumption holds. Let ∆ =
H(θ(0))−minθ H(θ). If we set the learning rate to γ(j) = γ =
min{1/L,

√
∆/(Lζ2N)}, the adversarial training satisfies

1

N

N∑
j=0

E
∥∥∥∇H(θ(j))

∥∥∥ ≤ ζ

√
8
∆L

N
+ 2ĉ, (13)

where N is the number of epochs, L =
Lf
θx(λL

g
xθ+Lf

xθ)

λMg
xx−Lf

xx
+ Lfθθ ,

ĉ = (J (x∗)− J (x))
2Lf

θx

λMg
xx−Lf

xx
exp(−T

d · λMg
xx−Lf

xx

λLg
xx+Lf

xx
), and ζ is

the variance of stochastic gradients.

The proof is also deferred to the supplementary material.
Theorem 2 says that the convergence rate of the adversarial
training is O(1/

√
N). Moreover, the approximation of the

inner maximization has a constant effect on the convergence
because of ĉ. More importantly, attacks achieving a lower at-
tack effectiveness than this approximation possibly enlarge
the effect and can be mitigated by this defense.

6 EXPERIMENTS

We conduct experiments to validate the soundness of the
proposed defense in the absence and presence of evasion
attacks, by answering 4 Research Questions (RQs):
• RQ1: Effectiveness of defenses in the absence of attacks:

How effective is PAD-SMA when there is no attack? This
is important because the defender does not know for
certain whether there is an adversarial attack or not.

• RQ2: Robustness against oblivious attacks: How robust
is PAD-SMA against oblivious attacks where “oblivious”
means the attacker is unaware of adversary detector g?

• RQ3: Robustness against adaptive attacks: How robust
is PAD-SMA against adaptive attacks?

• RQ4: Robustness against practical attacks: How robust
is PAD-SMA against attacks in the problem space?

Datasets. Our experiments utilize two Android malware
datasets: Drebin [35] and Malscan [36], which are widely
used in the literature. The Drebin dataset initially contains
5,560 malicious apps and features extracted from 123,453
benign apps; both were collected before the year 2013.
In order to obtain the customized features, [9] re-collects
benign apps from the Androzoo repository [59] and re-scans
the collections via VirusTotal, resulting in 42,333 benign
examples. This leads to the Drebin dataset used in this paper

containing 5,560 malicious apps and 42,333 benign apps.
Malscan [36] contains 11,583 malicious apps and 11,613
benign apps, spanning from 2011 to 2018. These apps are
labeled using VirusTotal [60]; an app is flagged as malicious
if five or more malware scanners say the app is malicious,
and as benign if no malware scanners flag it as malicious.
We randomly split a dataset into three disjoint sets: 60% for
training, 20% for validation, and 20% for testing.
Feature extraction and manipulation. We use two fam-
ilies of features. (i) Manifest features, including: hard-
ware statements (e.g., camera and GPS module) because
they may incur security concerns; permissions because they
may be abused to breach a user’s privacy; implicit In-
tents because they are related to communications between
app components (e.g., services). These features can be
perturbed by injecting operations but may not be re-
moved without undermining a program’s functionality [9],
[19]. (ii) Classes.dex features, including: “restricted” and
“dangerous” Application Programming Interfaces (APIs),
where a “restricted” API means that its invocation re-
quires declaring the corresponding permissions and “dan-
gerous” APIs include the ones related to Java reflection
usage (e.g., getClass, getMethod, getField), encryp-
tion usage (e.g., javax.crypto, Crypto.Cipher), the ex-
plicit intent indication (e.g., setDataAndType, setFlags,
addFlags), dynamic code loading (e.g., DexClassLoader,
System.loadLibrary), and low-level command execu-
tion (e.g., Runtime.getRuntime.exec). These APIs can
be injected along with dead codes [10]. Note that APIs with
the public modifier can be hidden via Java reflection [9],
which involves reflection-related APIs used by our detector,
referred to as “side-effect” features as mentioned above.
These features may benefit the defender.

We exclude some features. For manifest features (e.g.,
package name, activities, services, provider, and receiver), they
can be injected or renamed [9], [61]. For Classes.dex fea-
tures, existing manipulations include string (e.g., IP address)
injection/encryption [9], [19], public or static API calls hid-
den by Java reflection [9], [61], Function Call Graph (FCG)
addition and rewiring [62], anti-data flow obfuscation [63],
and control flow obfuscation (by using arithmetic branches)
[61]. For other types of features, app signatures can be re-
signed [61]; native libraries can be modified by Executable
and Linkable Format (ELF) section-wise addition, ELF sec-
tion appending, and instruction substitution [64].

We use Androguard, a reverse engineering toolkit [65],
to extract features. We apply a binary feature vector to
denote an app, where “1” means a feature is present and
“0” otherwise. The 10,000 top-frequency features are used.
Defenses that are considered for comparison purposes. We
consider 8 representative defenses:
• DNN [40]: DNN based malware detector with no defen-

sive hardening, which serves as the baseline;
• AT-rFGSMk [24]: DNN-based malware detector hardened

by Adversarial Training with the randomized round op-
eration enabled FGSMk attack (AT-rFGSMk);

• AT-MaxMA [9]: DNN-based malware detector hardened
by Adversarial Training with the “Max” strategy enabled
Mixture of Attacks (AT-MaxMA);

• KDE [47]: Combining DNN model with a secondary de-
tector for quarantining adversarial examples. The detector
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is a Kernel Density Estimator (KDE) built upon activations
from the penultimate layer of DNN on normal examples;

• DLA [37]: The secondary detector aims to capture differ-
ences in DNN activations from the normal and adversarial
examples. The adversarial examples are generated upon
DNN. The activations from all dense layers are utilized,
referred to as Dense Layer Analysis (DLA);

• DNN+ [21], [66]: The secondary detector plugs an extra
class into the DNN model for detecting adversarial exam-
ples generated from DNN (DNN+);

• ICNN: The secondary detector is the Input Convexity
Neural Network (ICNN), which is established upon the
feature space and does not change the DNN (Section 4.2);

• PAD-SMA: Principled Adversarial Detection is realized
by a DNN-based malware detector and an ICNN-based
adversary detector, both of which are hardened by ad-
versarial training incorporating the Stepwise Mixture of
Attacks (PAD-SMA, Algorithm 1).

At a high level, these defenses either harden the malware
detector or introduce an adversary detector. More specifi-
cally, AT-rFGSMk can achieve better robustness than adver-
sarial training methods with the BGA, BCA, or Grosse attack
[24]; AT-MaxMA with three PGD attacks can thwart a broad
range of attacks but not iMaxMA, which is the iterative
version of MaxMA [9]; KDE, DLA, DNN+ and ICNN aim to
identify the adversarial examples by leveraging the under-
lying difference inherent in ML models between a pristine
example and its variant; PAD-SMA hardens the combination
of DNN and ICNN by adversarial training.
Metrics. We report classification results on the test set via
five standard metrics of False Negative Rate (FNR), False
Positive Rate (FPR), F1 score, Accuracy (Acc for short, which
is the percentage of the test examples that are correctly
classified) and balanced Accuracy (bAcc) [67]. Since we
introduce g, a threshold τ is calculated on the validation
set for rejecting examples. Let “@#” denote the percentage
of the examples in the validation set being outliers (e.g., @5
means 5% of the examples are rejected by g).

6.1 RQ1: Effectiveness in the Absence of Attacks

Experimental setup. We learn the aforementioned 8 de-
tectors from the two datasets, respectively. In terms of
malware detector model architecture, the DNN detector
has 2 fully-connected hidden layers (each layer having 200
neurons) with ELU activation. The other 7 models also use
this architecture. The adversary detector of DLA has the
same setting as in [37]: ICNN has 2 convex hidden layers
with 200 neurons each. For adversarial training, feature
representations can be flipped from “0” to “1” if injection
operation is conducted and from “1” to “0” if removal op-
eration is conducted. Moreover, AT-rFGSMk uses the PGD-
ℓ∞ attack, which additionally allows feature removals. It
has 50 iterations with step size 0.02. AT-MaxMA uses three
attacks, including PGD-ℓ∞ iterates 50 times with step size
0.02, PGD-ℓ2 iterates 50 times with step size 0.5, and PGD-ℓ1
attack iterates 50 times, to conduct the training with penalty
factor β = 0.01 because a large β incurs a low detection
accuracy on the test sets. DLA and DNN+ are learned from
the adversarial examples generated by the MaxMA attack
against the DNN model (i.e., adversarial training with an

oblivious attack). PAD-SMA has three PGD attacks with
the same step size as AT-MaxMA’s except for g, which
is learned from continuous perturbations. We set penalty
factors β1 = 0.1 and β2 = 1.0 on the Drebin dataset and
β1 = 0.01 and β2 = 1.0 on the Malscan dataset. In addition,
we conduct a group of preliminary experiments to choose
λ from {10−3, 10−2, . . . , 103} and finally set λ = 1 on both
datasets. All detectors are tuned by the Adam optimizer
with 50 epochs, mini-batch size 128, and learning rate 0.001,
except for 80 epochs on the Malscan Dataset.
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Fig. 5: Sorted eigenvalues of Hessian matrix of F − λψϑ

w.r.t. input when λ = 1.

Experiments on confirming that PAD-SMA yields concave
inner maximization. Figure 5 illustrates sorted eigenvalues
of the Hessian matrix of the loss function F −ψϑ w.r.t.
input. We randomly choose 100 instance-label pairs from
test datasets of Drebin and Malscan, respectively. We let
these instances separately pass through PAD-SMA or DNN
(which has ψϑ = 0) for calculating eigenvalues, and then
average the eigenvalues element-wisely corresponding to
the input dimension. We observe that most eigenvalues are
near 0, PAD-SMA produces large negative eigenvalues, and
DNN has relatively small positive eigenvalues. This shows
that PAD-SMA can yield a concave inner maximization,
confirming the theoretical results. Note that PAD-SMA still
has positive eigenvalues on the Malcan dataset, and that
robustness is achieved.
Results answering RQ1. Table 1 reports the effectiveness
of detectors on the two test sets. We observe that DNN
achieves the highest detection accuracy (99.18% on Drebin
and 97.70% on Malscan) and F1 score (96.45% on Drebin
and 97.73% on Malscan). These accuracies are comparable to
those reported in [35], [36], [40]. We also observe that KDE
and ICNN have the same effectiveness as DNN because
both are built upon DNN while introducing a separate
model to detect adversarial examples. We further observe
that when training with adversarial examples (e.g., AT-
rFGSMk, AT-MaxMA, DLA, DNN+, and PAD-SMA), de-
tectors’ FNR decreases while FPR increases, leading to de-
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TABLE 1: Effectiveness (%) of detectors without adversary
detection capability in the absence of attacks.

Defense Effectivenss (%)

FNR FPR Acc bAcc F1

D
re

bi
n

DNN [40] 3.64 0.45 99.18 97.96 96.45
AT-rFGSMk [24] 2.36 3.43 96.69 97.10 87.18
AT-MaxMA [9] 1.73 3.11 97.05 97.58 88.46
KDE [47] 3.64 0.45 99.18 97.96 96.45
DLA [37] 3.18 0.58 99.12 98.12 96.21
DNN+ [21], [66] 3.36 0.50 99.17 98.07 96.42
ICNN 3.64 0.45 99.18 97.96 96.45
PAD-SMA 2.45 2.36 97.63 97.59 90.43

M
al

sc
an

DNN [40] 1.87 2.73 97.70 97.70 97.73
AT-rFGSMk [24] 0.84 5.49 96.86 96.84 96.96
AT-MaxMA [9] 0.39 8.84 95.43 95.39 95.65
KDE [47] 1.87 2.73 97.70 97.70 97.73
DLA [37] 1.45 3.35 97.61 97.60 97.65
DNN+ [21], [66] 2.81 1.84 97.67 97.68 97.68
ICNN 1.87 2.73 97.70 97.70 97.73
PAD-SMA 0.42 8.58 95.54 95.50 95.75

TABLE 2: Accuracy (%) and F1 score (%) of detectors with
adversary detection capability in the absence of attacks.

Defense @1 (%) @5 (%) @10 (%)

Acc F1 Acc F1 Acc F1

D
re

bi
n

KDE 99.19 96.45 99.15 96.33 99.17 96.43
DLA 99.14 96.27 99.13 96.27 99.14 96.53
DNN+ 99.37 97.20 99.43 97.44 99.54 97.93
ICNN 99.21 96.58 99.21 96.58 99.14 96.58
PAD-SMA 97.79 90.82 97.99 88.61 98.14 79.54

M
al

sc
an

KDE 97.68 97.71 97.61 97.61 97.82 97.80
DLA 97.65 97.67 97.69 97.63 97.80 97.64
DNN+ 97.81 97.81 98.37 98.38 98.58 98.56
ICNN 97.68 97.73 97.64 97.74 97.70 97.83
PAD-SMA 95.66 95.89 95.72 95.83 95.59 95.47

creased F1 scores. This can be attributed to the fact that only
the perturbed malware is used in the adversarial training
and that data imbalance makes things worse.

Table 2 reports the accuracy and F1 score of detectors
with adversary detection capability g. To observe the behav-
ior of g, we abstain f from the prediction when g(x) ≥ τ .
We expect to see that the trend of accuracy or F1 score will
increase when removing as outliers more examples with
high confidence from g on the validation set. However,
this phenomenon is not always observed (e.g., DLA and
ICNN). This might be caused by the fact that DLA and
ICNN distinguish the pristine examples confidently in the
training phase, while the rejected examples on the validation
set are in the distribution and thus have little impact on
the detection accuracy of f . PAD-SMA gets the downtrend
of F1 score but not accuracy, particularly on the Drebin
dataset. Though this is counter-intuitive, we attribute it
to the adversarial training with adaptive attacks, which
implicitly pushes g to predict the pristine malware examples
with higher confidence than the benign ones. Thus, rejecting
more validation examples actually causes more malware
examples to be dropped, causing the remaining malware
samples to be more similar to the benign ones and f to
misclassify remaining malware, leading to lower F1 scores.

In summary, PAD-SMA decreases FNR but increases

FPR, leading to decreased accuracies (≤2.16%) and F1 scores
(≤6.02%), which aligns with the malware detectors learned
from adversarial training. The use of adversary detectors in
PAD-SMA does not make the situation better.

Answer to RQ1: There is no “free lunch” in the sense
that using detectors trained from adversarial examples may
suffer from a slightly lower accuracy when there are no
adversarial attacks.

6.2 RQ2: Robustness against Oblivious Attacks
Experimental setup. We measure the robustness of KDE,
DLA, DNN+, ICNN, and PAD-SMA against oblivious at-
tacks via the Drebin and Malscan datasets; we do not con-
sider the other detectors (i.e., DNN, AT-rFGSMk, and AT-
MaxMA) because they do not have g. We use the detectors
learned in the previous group of experiments (for answering
RQ1). The threshold is computed by dropping 5% validation
examples with top confidence, which is suggested in [21],
[37], [47], while noting that the accuracy of PAD-SMA is
slightly better than that of AT-MaxMT at this setting.

We separately wage 11 oblivious attacks to perturb mal-
ware examples on the test set. For Grosse [40], BCA [24],
FGSM [24], BGA [24], PGD-ℓ1 [25], PGD-ℓ2 [25], and PGD-
ℓ∞ [25], these attacks proceed iteratively till the 100th loop is
reached. Grosse, BCA, FGSM, and BGA are proposed to only
permit the feature addition operation (i.e., flipping some ‘0’s
to ‘1’s). FGSM has a step size 0.02 with random rounding.
Three PGD attacks permit both feature addition and feature
removal: PGD-ℓ2 has a step size 0.5 and PGD-ℓ∞ has a step
size 0.02 (the settings are the same as adversarial training).
For Mimicry [26], we leverage Nben benign examples to
guide the attack (dubbed Mimicry×Nben). We select the one
that can evade f to wage attacks and use a random one
otherwise. MaxMA [9] contains PGD-ℓ1, PGD-ℓ2, and PGD-
ℓ∞ attacks. The iterative MaxMA (dubbed iMaxMA) runs
MaxMA 5 times, with the start point updated. SMA has 100
iterations with step size 0.5 for PGD-ℓ2 and 0.02 for PGD-
ℓ∞. The three MA attacks use the scoring rule of Eq.(12)
without g considered.
Results. Fig.6 depicts the accuracy curves of the detectors
on Drebin (top panel) and Malscan (bottom panel) datasets
under the 7 oblivious attacks, along with the iterations
ranging from 0 to 100. We make three observations. First,
all these attacks cannot evade PAD-SMA (accuracy ≥ 90%),
demonstrating the robustness of the proposed model.

Second, the Grosse, BCA, and PGD-ℓ1 attacks can evade
KDE, DLA, DNN+, and ICNN when 20 iterations are used,
while recalling that these three attacks stop manipulating
malware when the perturbed example can evade malware
detector f . It is known that DNN is sensitive to small
perturbations; KDE relies on the close distance between
activations to reject large manipulations; DLA and DNN+

are learned upon the oblivious MaxMA, which modifies
malware examples to a large extent; ICNN is also learned
from salt-and-pepper noises which randomly change one
half elements of a vector. Therefore, neither malware detec-
tor f nor adversary detector g of KDE, DLA, and ICNN
can impede small perturbations effectively. This explains
why KDE, DLA, and ICNN can mitigate BGA and PGD-ℓ∞
attacks that use large perturbations.
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Fig. 6: Accuracy (Acc) of detectors against oblivious attacks with iteration from 0 to 100.

TABLE 3: Accuracy (%) of detectors under oblivious attacks
(i.e., attacker is unaware of adversary detector g).

Attack name Accuracy (%)

KDE DLA DNN+ ICNN PAD-SMA

D
re

bi
n

No Attack 96.28 96.80 97.02 96.62 97.64
Mimicry×1 56.64 55.82 58.18 54.91 94.18
Mimicry×10 20.91 20.91 23.55 21.00 84.18
Mimicry×30 10.64 10.64 12.82 10.00 81.27
MaxMA 96.46 96.82 29.64 96.64 97.64
iMaxMA 96.46 96.82 29.64 96.64 97.64
SMA 32.09 27.82 31.18 32.36 94.27

M
al

sc
an

No Attack 98.02 98.41 97.86 98.11 99.65
Mimicry×1 49.74 53.65 47.81 49.32 83.68
Mimicry×10 18.13 18.68 21.68 17.06 69.13
Mimicry×30 8.65 6.94 14.23 7.00 65.45
MaxMA 98.13 98.55 84.23 98.16 99.65
iMaxMA 98.13 98.55 84.23 98.16 99.65
SMA 6.00 26.68 19.03 7.32 96.68

Third, a dip exists in the accuracy curve of KDE, DLA,
or ICNN against rFGSM and PGD-ℓ2 when the iteration
increases from 0 to 100. We find that both attacks can
obtain small perturbations: rFGSM uses the random round
(the rounding thresholds are randomly sampled from [0, 1])
[24] at iteration 1, and PGD-ℓ2 produces certain discrete
perturbations at iteration 20 via round (the threshold is 0.5).

Table 3 reports the attack results of Mimicry, MaxMA,
iMaxMA, and SMA, which are not suitable for iterating
with a large number of loops. We make three observations.
First, PAD-SMA can effectively defend against these attacks,
except for Mimicry×30 (with an accuracy of 65.45% on
Malscan). Mimicry attempts to modify malware representa-
tions to resemble benign ones. As reported in Section 6.1,
adversarial training promotes ICNN (g of PAD-SMA) to
implicitly distinguish malicious examples from benign ones.
Both aspects decrease PAD-SMA’s capability in mitigating
the oblivious Mimicry attack effectively. Second, all detec-
tors can resist MaxMA and iMaxMA, except for DNN+.
Both attacks maximize the classification loss of DNN+,
leading DNN+ to misclassify perturbed examples as benign
(rather than the newly introduced label). Third, all detectors

are vulnerable to the SMA attack (with maximum accuracy
of 32.36% on Drebin and 26.68% on Malscan), except for
PAD-SMA. This is because SMA stops perturbing malware
when a successful adversarial example against f is obtained
although the degree of perturbations is small, which cannot
be identified by g of KDE, DLA, DNN+, or ICNN.

Answer to RQ2: PAD-SMA is significantly more robust
than KDE, DLA, DNN+, and ICNN against oblivious at-
tacks. Still, PAD-SMA cannot effectively resist the Mimicry
attacks that are guided by multiple benign samples.

6.3 RQ3: Robustness against Adaptive Attacks
Experimental setup. We measure the robustness of the de-
tectors against adaptive attacks on the Drebin and Malscan
datasets. We use the 8 detectors in the first group of ex-
periments. The threshold τ is set as the one in the second
group of experiments unless explicitly stated otherwise. The
attacker knows f and g (if applicable) to manipulate mal-
ware examples on the test sets. We change the 11 oblivious
attacks to adaptive attacks by using the loss function given
in Eq.(6), which contains both F and ψϑ. When perturbing
an example, a linear search is conducted to look for a λ
from the set of {10−5, . . . , 105}. In addition, the Mimicry
attack can query both f and g and get feedback then. On the
other hand, since DNN, AT-rFGSM, and AT-MaxMA contain
no adversary detector, the oblivious attacks trivially meet
the adaptive requirement. The other 5 attacks are adapted
from orthogonal (Orth for short) PGD [23], including Orth
PGD-ℓ1, PGD-ℓ2, PGD-ℓ∞, MaxMA, and iMaxMA. We use
the scoring rule of Eq.(12) to select the orthogonal manner.
The hyper-parameters of attacks are the same as the second
group of experiments, except for PGD-ℓ1 using 500 itera-
tions, PGD-ℓ2 using 200 iterations with step size 0.05, and
PGD-ℓ∞ using 500 iterations with step size 0.002.
Results. Table 4 summarizes the experimental results. We
make three observations. First, DNN is vulnerable to all
attacks with 0% accuracy. The Mimicry attack achieves the
lowest effectiveness in evading DNN because it modifies
examples without using the internal information of victim
detectors. AT-rFGSM can harden the robustness of DNN to
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TABLE 4: Accuracy (%) of detectors under adaptive attacks, where “Orth” stands for “orthogonal”, “−” means an attack is
not applicable.

Attack name Accuracy (%)

DNN AT-rFGSM AT-MaxMA KDE DLA DNN+ ICNN PAD-SMA

Drebin

Groose 0.000 48.00 87.64 0.000 0.000 0.000 0.636 90.91
BCA 0.000 47.73 87.64 6.182 0.000 4.727 3.000 93.00
BGA 0.000 95.55 96.64 97.00 2.455 0.000 33.36 97.64
rFGSM 0.000 97.46 98.18 97.00 96.82 70.91 96.64 97.64
PGD-ℓ1 0.000 44.46 80.91 0.182 0.000 0.000 0.091 89.72
PGD-ℓ2 3.455 89.73 96.27 87.36 0.000 8.727 0.091 97.18
PGD-ℓ∞ 0.000 96.55 98.09 97.00 96.82 63.73 96.64 97.46
Mimicry×1 54.91 88.91 90.27 56.64 55.82 58.18 54.91 94.18
Mimicry×10 21.00 71.82 74.27 25.73 20.36 19.18 21.00 81.18
Mimicry×30 10.00 66.45 70.64 16.09 10.09 7.909 10.00 74.27
MaxMA 0.000 44.36 80.64 0.182 0.000 0.000 0.091 89.09
iMaxMA 0.000 43.36 69.64 0.000 0.000 0.000 0.000 88.73
SMA 0.000 57.82 84.09 16.36 0.000 8.636 0.000 94.46
Orth PGD-ℓ1 − − − 1.091 0.000 0.000 0.000 97.64
Orth PGD-ℓ2 − − − 17.46 2.455 13.55 3.909 97.64
Orth PGD-ℓ∞ − − − 96.82 31.73 55.18 96.46 97.64
Orth MaxMa − − − 1.091 0.000 0.000 0.000 97.64
Orth iMaxMa − − − 0.182 0.000 0.000 0.000 97.64

Malscan

Groose 0.000 9.129 77.26 0.000 0.000 0.000 0.871 85.26
BCA 0.000 8.968 77.03 1.194 0.000 0.097 8.129 89.32
BGA 0.000 10.97 95.68 98.13 0.194 30.19 37.45 99.45
rFGSM 0.000 99.16 99.55 98.13 98.55 83.42 98.16 99.65
PGD-ℓ1 0.000 6.000 71.68 0.000 0.000 0.000 1.226 84.87
PGD-ℓ2 34.13 63.94 81.55 38.32 2.097 2.806 2.548 95.90
PGD-ℓ∞ 0.000 99.16 99.52 98.13 98.55 41.07 98.10 99.45
Mimicry×1 49.32 75.39 82.48 49.74 53.65 47.81 49.32 83.68
Mimicry×10 17.06 49.13 60.71 17.52 18.23 11.65 17.06 59.94
Mimicry×30 7.000 39.94 52.48 7.645 6.483 2.452 7.000 53.68
MaxMA 0.000 5.742 61.77 0.645 0.000 0.000 0.935 85.26
iMaxMA 0.000 1.645 47.07 0.097 0.000 0.000 0.935 83.45
SMA 0.000 28.77 78.36 0.323 8.258 1.000 0.903 97.48
Orth PGD-ℓ1 − − − 2.000 0.000 0.032 0.000 99.65
Orth PGD-ℓ2 − − − 38.32 2.097 2.806 2.548 99.65
Orth PGD-ℓ∞ − − − 98.13 87.97 34.23 98.16 99.65
Orth MaxMa − − − 1.806 0.000 0.032 0.000 99.65
Orth iMaxMa − − − 0.484 0.000 0.032 0.000 99.65

some extent, but is still sensitive to BCA, PGD-ℓ1, MaxMa,
and iMaxMA attacks (with an accuracy ≤ 47.73% on both
datasets). With an adversary detector, KDE, DLA, DNN+,
and ICNN can resist a few attacks (e.g., rFGSM and PGD-
ℓ∞), but the effectiveness is limited. AT-MaxMA impedes a
range of attacks except for iMaxMA (with a 69.94% accuracy
on Drebin and 47.07% on Malscan) and Mimicry×30 (with a
70.64% accuracy on Drebin and 52.48% on Malscan), which
are consistent with previous results [9].

Second, PAD-SMA significantly outperforms the other
defenses (e.g., AT-MaxMA), by achieving robustness against
16 attacks on the Drebin dataset and 13 attacks on the
Malscan dataset (with accuracy ≥ 85%). For example, PAD-
SMA can mitigate MaxMA and iMaxMA, while AT-MaxMA
can resist MaxMA but not iMaxMA (accuracy dropping
by 11% on Drebin and 14.7% on Malscan). The reason is
that PAD-SMA is optimized with convergence guaranteed,
causing that more iterations do not promote attack effec-
tiveness, which resonates our theoretical results. Moreover,
PAD-SMA gains high detection accuracy (≥ 97.64%) against
orthogonal attacks because the same scoring rule is used and
PAD-SMA renders loss function concave.

Third, Mimicry×30 can evade all defenses (with accu-
racy ≤ 74.27% on Drebin and ≤ 53.68% on Malscan). We
additionally conduct two experiments on Drebin: (i) when

we retrain PAD-SMA with penalty factor β1 increased from
β1 = 0.1 to β1 = 1.0, the detection accuracy increases to
85.27% against Mimicry×30 with the detection accuracy on
the test dataset decreasing notably (F1 score decreasing to
78.06%); (ii) when we train PAD-SMA on Mimicry×30 with
additional 10 epochs, the robustness increases to 83.64%
against Mimicry×30 but the detection accuracy also de-
creases on the test set. These hint that our method, as other
adversarial malware training methods, suffers from a trade-
off between robustness and accuracy.

Answer to RQ3: PAD-SMA outperforms the other de-
fenses, by significantly hardening malware detectors
against a range of adaptive attacks but not Mimicry×30.

6.4 RQ4: Robustness against Practical Attacks

Experimental setup. We implement a system to produce
adversarial malware for all attacks considered. We handle
the inverse feature mapping problem (Section 4.3) as in
[9], by mapping perturbations in the feature space to the
problem space. Our manipulation proceeds as follows: (i)
obtain feature perturbations; (ii) disassemble an app using
Apktool [68]; (iii) perform manipulation and assemble per-
turbed files using Apktool. We add manifest features and do
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not remove them for preserving an app’s functionality. We
permit all APIs that can be added and the APIs with public
modifier but no class inheritance can be hidden by the re-
flection technique (see supplementary materials for details).
In addition, the functionality estimation is conducted by
Android Monkey, which is an efficient fuzz testing tool that
can randomly generate app activities to execute on Android
devices, along with logs. If an app and its modified version
have the same activities, we treat them as having the same
functionality. However, we manually re-analyze the non-
functional ones to cope with the randomness of Monkey.
We wage Mimcry×30, iMaxMA, and SMA attacks because
they achieve a high evasion capability in the feature space.
Results. We respectively modify 1,098, 1,098, and 1,098 apps
by waging the Mimcry×30, iMaxMA, and SMA attacks to
the Drebin test set (leading to 1,100 malicious apps in total),
and 2,790, 2,791, and 2,790 apps to the Malscan test set
(leading to 3,100 malicious apps in total). Most failed cases
are packed apps against ApkTool.

TABLE 5: The number of apps with functionalities preserved
from 100 randomly selected examples.

Dataset Functionality Apps (#)

No attack Mimicry×30 iMaxMA SMA

Drebin Installable 89 89 89 89
Monkey 80 68 66 65

Andro-
zoo

Installable 86 84 86 83
Monkey 76 58 65 64

Table 5 reports the number of modified apps that retain
the malicious functionality. Given 100 randomly chosen
apps, 89 apps on Drebin and 86 apps on Malscan can be
deployed on an Android emulator (running Android API
version 8.0 and ARM library supported). Monkey testing
says that the ratio of functionality preservation is at least
73.03% (65 out of 89) on the Drebin dataset and 69.05%
(58 out of 84) on the Malscan dataset. Through manual
inspection, we find that the injection of null constructor
cannot pass the verification mechanism of the Android
Runtime. Moreover, Java reflection sometimes breaks an
app’s functionality when the app verifies whether an API
name is changed and then chooses to throw an error.

Fig.7 depicts the detection accuracy of detectors against
Mimicry×30, iMaxMA, and SMA attacks. We observe that
PAD-SMA cannot surpass Avira and ESET-NOD32 on both
the Drebin and Malscan datasets. Note that these attacks
know the feature space of PAD-SMA but not anti-malware
scanners. Nevertheless, PAD-SMA achieves comparable ro-
bustness to the three attacks by comparing with Microsoft,
and outperforms McAfee, Symantec, and Comodo. In ad-
dition, Kaspersky is seemingly adaptive to these attacks
because it obtains a slightly better accuracy on the modified
apps than the unperturbed ones (≤15.59%) on the Malscan
dataset.

Answer to RQ4: PAD-SMA is comparable to anti-malware
scanners in the presence of practical attacks. It effectively
mitigate iMaxMA and SMA attacks, but has limited success
against Mimicry×30, akin to the cases of circumventing
feature-space attacks.
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Fig. 7: Effectiveness of PAD-SMA and malware scanners
against practical attacks.

7 RELATED WORK

We divide related prior studies into two classes: Adversarial
Malware Detection (AMD) vs. Adversarial ML (AML).
Defenses against adversarial examples in AMD. We fur-
ther divide the related literature into three categories: (i)
robust feature extraction, (ii) learning model enhancement,
and (iii) adversarial example detection.

In terms of robust feature extraction, Drebin features,
including manifest instructions (e.g., required permissions)
and syntax instructions (e.g., sensitive APIs), are usually
applied to resist adversarial examples [10], [14], [35], [40].
Furthermore, Demontis et al. [19] demonstrate the robust-
ness of Drebin features using several evasion attacks. How-
ever, a following study questions this observation with a
mixture of attacks [9]. Moreover, to cope with obfuscation
attacks, researchers suggest leveraging system API calls
[5], and further enrich the representation by incorporating
multiple modalities such as structural information (e.g.,
call graph), API usage (e.g., method argument types, API
dependencies), and dynamic behaviors (e.g., network activ-
ity, memory dump) [4], [6], [69]. In this paper, we mainly
focus on improving the robustness of the learning model,
although the feature robustness is also important. Therefore,
we refine Drebin features by filtering the ones that can be
easily manipulated.

In terms of learning model enhancement, the defense
mechanisms aim to enhance a malware detector itself to
classify adversarial examples accurately. Several approaches
exist, such as classifier randomization, ensemble learning,
input transformation, and adversarial training, which are
summarized by a recent survey [20]. We focus on adversarial
training, which augments the training dataset with adver-
sarial examples [24], [40], [44], [45]. In order to promote
the robustness, the min-max adversarial training [42] in
machine learning is adapted to the context of malware
detection, aiming to make detectors perceive the optimal
attack in a sense to resist non-optimal ones [24], [25]. In
practice, the attackers are free enough to generate multiple
types of adversarial examples, straightly leading to the
instantiation of adversarial training incorporating a mixture
of attacks [9]. In addition, combining adversarial training
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and ensemble learning further promotes robustness as long
as the base model has a due amount of robustness [9];
a recent study demonstrates that diversified features also
promote the robustness of ensemble model [69]. This paper
aims to establish principled min-max adversarial training
methods with rigorous robustness. Moreover, a new mixture
of attacks is used to instantiate our framework.

In terms of adversarial example detection, the defenses
aim to identify adversarial examples for further analysis.
There are two approaches. The first approach is to study
detectors based on traditional ML models such as ensem-
ble learning based (e.g., [70]). Inspired by the observation
that grey-box attacks cannot thwart all basic building-block
classifiers, Smutz et al. [70] propose identifying evasion
attacks via prediction confidences. However, it is not clear
how to adapt these ideas to deep learning models because
they leverage properties which may not exist in DL models
(e.g., neural networks are poorly, rather than well, calibrated
[71]). The second approach is to leverage the invariant
in malware features or detectors to recognize adversarial
examples. For example, Grosse et al. [66] demonstrate the
difference between examples and their perturbed versions
using statistical tests. Li et al. [72] and Li et al. [73] respec-
tively propose detecting adversarial examples via stacked
denoising autoencoders. However, these defense models
seemingly cannot deal with adaptive attacks [23], [66], [72].
Moreover, some defense models are not validated with
adaptive attacks [73]. When compared with these prior
studies, our solution leverages a convex DNN model to rec-
ognize the evasion attacks, which is not only able to detect
adversarial examples, but also able to promote principled
defenses [32], leading to a formal treatment on robustness.
Although our model has malware and adversary detectors,
it is different from ensemble learning because they use
different losses.
Adversarial training in AML. Adversarial training aug-
ments the training set with adversarial examples [41], [49].
Multiple heuristic strategies have been proposed to generate
adversarial examples, including the one that casts adver-
sarial training as a min-max optimization problem [42]. It
minimizes the loss for learning ML models upon the most
powerful attack (i.e., considering the worst-case scenario).
However, owing to the non-linearity of DNNs, it is NP-
hard to solve the inner maximization exactly [42]. There
are two lines of studies to improve the min-max adversarial
training: one aims to select or produce the optimal adver-
sarial examples (e.g., via advanced criterion or new learning
strategies [34], [46], [74], [75]); the other aims to analyze sta-
tistical properties of resulting models (e.g.,via specific NN
architectures or convexity assumptions [32], [76]). However,
adversarial training is domain-specific, meaning that it is
non-trivial to leverage these advancements for enhancing
ML-based malware detectors.

8 CONCLUSION

We devised a provable defense framework for malware de-
tection against adversarial examples. Instead of hardening
the malware detector solely, we use an indicator to alert
the presence of adversarial examples. We instantiate the
framework via adversarial training with a new mixture of

attacks, along with a theoretical analysis on the resulting
robustness. Experiments with two Android datasets demon-
strate the soundness of the framework against a set of
attacks, including 3 practical ones. Future research needs to
design other principled or verifiable methods. Learning or
devising robust features, especially dynamic analysis based
features, may be key to detecting adversarial examples.
Other open problems include unifying practical adversarial
malware attacks, designing application-agnostic manipula-
tions, and formally verifying functionality-preservation and
model robustness.
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APPENDIX A
THEOREM PROOFS

A.1 Notations
Table 6 summarizes the notations for improving the read-
ability of the proofs.

A.2 Proposition 1
Proposition. Given continuous function F , and continuous and
convex distance C(·,x) = max{0, ψϑ(·) − τ} with x ∼ P, the
dual problem of max

P′:W (P′,P)≤0
Ex′∼P′ F(θ,x′, 1) is

inf
λ

{
Ex∼P max

δx
(F(θ,x+δx, 1)−λψϑ(x+δx)+λτ) : λ ≥ 0

}
,

where x + δx ∈ X , ψϑ(x + δx) ≥ τ and W (P′,P) :=
inf
Γ

{
∫
C(x′,x)dΓ(x′,x) : Γ ∈

∏
(P′,P)}.

Proof. The proof is adapted from the one presented in [32].

max
P′:W (P′,P)≤0

Ex′∼P′ F(θ,x′, 1)

= max
P′:W (P′,P)≤0

inf
λ≥0

{Ex′∼P′ [F(θ,x′, 1)]− λW (P′,P)}

1
= inf

λ≥0
max

P′:W (P′,P)≤0
{Ex′∼P′ [F(θ,x′, 1)]− λW (P′,P)}

= inf
λ≥0

max
Γ:W (P′,P)≤0

{
E(x′,x)∼Γ [F(θ,x′, 1)− λC(x′,x)]

}
≤ inf

λ≥0

{
Ex∼P

[
max
x′

(F(θ,x′, 1)− λC(x′,x))

]}
,

where 1 holds because of Slater’s condition. Recall that x′

is perturbed from x, this constraint leads to

max
W (P′,P)≤0

{
E(x′,x)∼Γ [F(θ,x′, 1)− λC(x′,x)]

}
≥Ex∼P

{
max

P′:W (P′,P)≤0

[
Ex′∼P′|P (F(θ,x′, 1)− λC(x′,x))

]}
≥Ex∼P

[
max
x′∈X

(F(θ,x′(x), 1)− λC(x′(x),x))

]
− ζ,

where ζ ≥ 0 exists as the maximum value of a distribution
can have measurable distance to its expectation. As ζ is
arbitrary, this gives

max
P′:W (P′,P)≤0

Ex′∼P′ F(θ,x′, 1)

= inf
λ≥0

{
Ex∼P

[
max
x′

(F(θ,x′, 1)− λC(x′,x))

]}
= inf

λ≥0

{
Ex∼P

[
max
x′

(F(θ,x′, 1)− λψϑ(x
′) + λτ)

]}
,

which leads to the proposition.

A.3 Theorem 1
Theorem. Suppose the smoothness assumption holds. When
Lfxx < λMg

xx, the perturbed sample x′ = x + δ
(T )
x from

Algorithm 1 satisfies:

J (x∗)− J (x′)

J (x∗)− J (x)
≤ exp(−T

d
· λM

g
xx − Lfxx

λLgxx + Lfxx
),

where d is the dimension and J (x) = F(θ,x, y)− λψϑ(x).

Proof. We first present the following lemma:

TABLE 6: Summary of notations

Notation Meaning
z ∈ Z software sample z ∈ Z in the space Z
y ∈ Y ground truth label y corresponding to z in the

space Y = {0, 1}
x ∈ X representation vector in the discrete space X
ϕ : Z → X feature extraction ϕ maps z to x ∈ X
ϕ−1, ϕ̃−1 exact and approximate inverse feature extrac-

tions, respectively
φθ : X → Y ML classifier φθ maps x into label space Y
f : Z → Y malware detector f(·) = φθ(ϕ(·))
ψϑ : X → R density estimator maps x to a real-value confi-

dence score
g : Z → R adversary detector g(·) = ψϑ(ϕ(·))
n the number of dimensions of data sample x
θ, ϑ learnable parameters of ML models
F ,G loss functions for f and g, respectively
J : X → R criterion function for attackers
Dz training dataset on Z × Y , i.e., Dz ⊆ Z × Y
Dx training dataset on X × Y corresponding to Dz

δz , z′ perturbations and adversarial example in the
problem space, z′ = z + δz

δx,x′,x∗ perturbations and adversarial example x′ = x+
δx ∈ X , and x∗ being optimal one

ep a unit vector with ∥e∥p = 1 for p norm
β1, β2, λ positive values serving as penalty factors
C a point-wise measurement C : X × X → R
P,P′ the underlying distributions of x and x′, respec-

tively
W Wasserstein distance
p = 1, 2,∞ ℓp norm types
B batch size
t, T tth times of T iterations for attacks
j,N jth times of N epochs for training
γ learning rate of optimization for training
Lfxx, L

f
xθ smoothness factors of classification loss w.r.t.

input
Lfθx smoothness factor of classification loss w.r.t. pa-

rameters
Lgxx, L

g
xϑ smoothness factors of density estimation loss

w.r.t. input
Mg

xx convexity factor of ψϑ

Lemma 1. Given an instance-label pair (x, y) with perturbation
∀δ(t1)x , δ

(t2)
x ∈ [u− x,u− x] with 0 ≤ t1 < t2 ≤ T . We have

J (x(t2))− J (x(t1)) ≤ 1/2

λMg
xx − Lfxx

∥∥∥∇xJ (x(t1))
∥∥∥2
2

where x(t1) = x+ δ
(t1)
x and x(t2) = x+ δ

(t2)
x .

Based on Proposition 2, we have

J (x(t2))− J (x(t1))

≤⟨∇xJ (x(t1)),x(t2) − x(t1)⟩ − λMg
xx − Lfxx
2

∥x(t2) − x(t1)∥22

≤ max
a∈[u,u]

(〈
∇xJ (x(t1)), a− x(t1)

〉
− λMg

xx − Lf
xx

2
∥a− x(t1)∥22

)

Let a − x(t1) follow the same direction as ∇xJ . We obtain

the maximum 1/2

λMg
xx−Lf

xx

∥∥∥∇xJ (x(t1))
∥∥∥2
2

at the point a =

x(t1)−1/(Lfxx−λMg
xx)∇xJ (x(t1)). This leads to the lemma.

Further, let p (p = 1, 2,∞) norm correspond to its dual ver-
sion q (q = ∞, 2, 1). Considering two adjacent perturbations
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δ
(t)
x and δ(t+1)

x with 0 ≤ t < T , we can derive:

J (x+ δ(t+1)
x ))− J (x+ δ(t)x )

≥⟨∇xJ (x+ δ(t)x )), αpep⟩ − α2
p

λLgxx + Lfxx
2

=αp∥∇xJ (x+ δ(t)x )∥q − α2
p

λLgxx + Lfxx
2

By plugging in

αp =
∥∇xJ (x+ δ

(t)
x )∥q

λLgxx + Lfxx
,

we have

J (x+ δ(t+1)
x ))− J (x+ δ(t)x )

≥ 1

2λLgxx + 2Lfxx

∥∥∥∇xJ (x+ δ(t)x )
∥∥∥2
q

2
≥ 1

2dλLgxx + 2dLfxx

∥∥∥∇xJ (x+ δ(t)x )
∥∥∥2
2

3
≥ λMg

xx − Lfxx

dλLgxx + dLfxx

(
J (x+ δ∗x)− J (x+ δ(t)x )

)
where 2 holds because of inequalities

√
d∥ ·∥∞ ≥ ∥·∥2 and

∥ · ∥1 ≥ ∥ · ∥2 on vector norms. 3 holds because of Lemma
1, while noting that the value of αp is not always held.
Nevertheless, for any αp, we can derive certain theoretical
results according to ∥∇xJ (x + δ

(t)
x )∥q , but decreasing the

elegance of formulation. Furthermore, we have

J (x+ δ(t+1)
x )− J (x+ δ(t)x )

=
(
J (x+ δ∗x)− J (x+ δ(t)x )

)
−

(
J (x+ δ∗x)− J (x+ δ(t+1)

x )
)

≥ λMg
xx − Lfxx

dλLgxx + dLfxx

(
J (x+ δ∗x)− J (x+ δ(t)x )

)
.

By re-organizing the preceding inequality, we obtain the gap
between the optimal attack and the approximate one:

J (x∗)− J (x′) = J (x+ δ∗x)− J (x+ δ(T )
x )

≤
(
J (x+ δ∗x)− J (x+ δ(T−1)

x )
)(

1− λMg
xx − Lfxx

dλLgxx + dLfxx

)
≤ · · ·

≤
(
J (x+ δ∗x)− J (x+ δ(0)x )

)(
1− λMg

xx − Lfxx

dλLgxx + dLfxx

)T

≤(J (x∗)− J (x)) exp(−T
d
· λM

g
xx − Lfxx

λLgxx + Lfxx
).

This leads to the theorem.

A.4 Theorem 2
Let H(θ) = E(x,y)∈Dx

F(θ,x∗(θ), y) denote the objective on
the entire training datasetDx. Given a batch of training data
samples {(xi, yi)}Bi=1, let h(θ) = 1

B

∑B
i=1 F(θ,x∗

i , yi) de-
note the mean classification loss on a batch of optimal adver-
sarial examples. This implies that x∗ is perturbed from x sat-
isfying ⟨∇xJ (x∗),x′ − x∗⟩ ≤ 0 with x′ near to x∗. Indeed,
the parameter θ is updated by θ(j+1) = θ(j) − γ(j)∇ĥ(θ(j)),
where ĥ(θ(j)) = 1

B

∑B
i=1 F(θ(j),x′

i) on perturbed examples,
and γ(j) is the learning rate at jth iteration.

We additionally make an assumption of bounded gradi-
ents for SGD [33].

Assumption 2 (Boundness assumption [32]). The variance of
stochastic gradients is bounded by a constant ζ2 > 0 where

E(∥∇h(θ)−∇H(θ)∥22) ≤ ζ2.

We first show H is smooth and then prove the SGD
convergence under the approximate attack. Recall that Lfθx
and Lfθθ denote the Lipschitz contant of ∇θ F(θ,x, y) w.r.t x
and θ, respectively.

Lemma 2. Let assumption 1 hold. Then, E(x,y)∈Dx
F(θ,x∗, y)

is L-smooth, where L =
Lf
θx(λL

g
xθ+Lf

xθ)

λMg
xx−Lf

xx
+ Lfθθ.

Proof. Given any two sets of parameters θ1, θ2, we have:∥∥E(x,y)∈Dx
[∇θ F(θ2,x

∗(θ2), y)−∇θ F(θ1,x
∗(θ1), y)]

∥∥
2

≤E(x,y)∈Dx
∥∇θ F(θ2,x

∗(θ2), y)−∇θ F(θ1,x
∗(θ1), y)∥2

≤E(x,y)∈Dx
∥∇θ F(θ2,x

∗(θ2), y)−∇θ F(θ2,x
∗(θ1), y)∥2

+ E(x,y)∈Dx
∥∇θ F(θ2,x

∗(θ1), y)−∇θ F(θ1,x
∗(θ1), y)∥2

≤Lfθx∥x
∗(θ2)− x∗(θ1)∥2 + Lfθθ∥θ1 − θ2∥2. (14)

The first and second inequalities hold because of the triangle
inequality. Suppose J is parameterized by θ2, say Jθ2 , due
to its concavity, we derive

Jθ2(x
∗(θ2))− Jθ2(x

∗(θ1)) ≤
〈
∇xJθ2(x

∗(θ1)),x
∗(θ2)− x∗(θ1)

〉
− λMg

xx − Lf
xx

2
∥x∗(θ2)− x∗(θ1)∥22;

λMg
xx − Lf

xx

2
∥x∗(θ2)− x∗(θ1)∥22 ≤ Jθ2(x

∗(θ2))− Jθ2(x
∗(θ1)).

By combining the two inequalities, we obtain:

(λMg
xx − Lxx)∥x∗(θ2)− x∗(θ1)∥22

≤⟨∇xJθ2(x
∗(θ1)),x

∗(θ2)− x∗(θ1)⟩
4
≤ ⟨∇xJθ2(x

∗(θ1))−∇xJθ1(x
∗(θ1)),x

∗(θ2)− x∗(θ1)⟩
5
≤ ∥∇xJθ2(x

∗(θ1))−∇xJθ1(x
∗(θ1))∥2 ∥x

∗(θ2)− x∗(θ1)∥2
6
≤(Lfxθ + λLgxθ) ∥θ1 − θ2∥2 ∥x

∗(θ2)− x∗(θ1)∥2 (15)

where 4 holds as ⟨∇xJθ1(x
∗(θ1)),x

∗(θ2) − x∗(θ1)⟩ ≤ 0,
5 holds because of the Cauchy-Schwarz inequality, and 6

holds as Jθ2 is (Lfxθ+λL
g
xθ)-smooth. Combining Eq.(14) and

Eq.(15) leads to

∥∇H(θ1)−∇H(θ2)∥2
∥θ1 − θ2∥2

≤
(
Lfθx(λL

g
xθ + Lfxθ)

λMg
xx − Lfxx

+ Lfθθ

)
.

Theorem. Let ∆ = H(θ(0)) −minθ H(θ). Under Assumption
1 and Assumption 2, if we set the learning rate to γ(j) = γ =
minimum(1/L,

√
∆/(Lζ2N), the adversarial training satisfies

1

N

N∑
j=0

E
∥∥∥∇H(θ(j))

∥∥∥ ≤ ζ

√
8
∆L

N
+ 2ĉ, (16)

where N is the epochs (i.e., the total iterations of SGD), and ĉ =

(J (x∗)− J (x))
2Lf

θx

λMg
xx−Lf

xx
exp(Td

Lf
xx−λMg

xx

λLg
xx+Lf

xx
) is a constant.
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Proof. Inspired [32], we derive the following at the jth itera-
tion:

H(θ(j+1))

≤H(θ(j)) + ⟨∇H(θ(j)), θ(j+1) − θ(j)⟩+ L

2
∥θ(j+1) − θ(j)∥22

=H(θ(j)) + γ⟨∇H(θ(j)),∇H(θ(j))−∇ĥ(θ(j))⟩

− γ∥∇H(θ(j))∥22 +
Lγ2

2
∥∇ĥ(θ(j))∥22

=H(θ(j)) + (γ − Lγ2)
〈
∇H(θ(j)),∇H(θ(j))−∇ĥ(θ(j))

〉
+

Lγ2

2
∥∇ĥ(θ(j))−∇H(θ(j))∥22

− (γ − Lγ2

2
)∥∇H(θ(j))∥22

=H(θ(j)) + (γ − Lγ2)
〈
∇H(θ(j)),∇H(θ(j))−∇h(θ(j))

〉
+ Lγ2∥∇h(θ(j))−∇H(θ(j))∥22 −

γ

2
∥∇H(θ(j))∥22

+
γ + Lγ2

2
∥∇h(θ(j))−∇ĥ(θ(j))∥22.

Taking conditional expectations of H(θ(j+1)) − H(θ(j)) on
θ(j) and using E(∇h(θ(j))) = H(θ(j)), we have

E(H(θ(j+1))−H(θ(j))|θ(j)) ≤ −γ
2
E(∥∇H(θ(j))∥22)

+Lγ2ζ2 +
γ + Lγ2

2
∥∇h(θ(j))−∇ĥ(θ(j))∥22. (17)

Furthermore, we derive

∥∇h(θ(j))−∇ĥ(θ(j))∥22

=

∥∥∥∥∥ 1B
B∑
i=1

∇θ F(θ(j),x′
i, yi)−

1

B

B∑
i=1

∇θ F(θ(j),x∗
i , yi)

∥∥∥∥∥
2

2

≤ 1

B

B∑
i=1

∥∥∥∇θ F(θ(j),x′
i, yi)−∇θ F(θ(j),x∗

i , yi)
∥∥∥2
2

≤ 1

B

B∑
i=1

Lfθx∥x
′
i − x∗

i ∥22

≤ 1

B

B∑
i=1

2Lfθx
λMg

xx − Lxx
(J (x∗

i )− J (x′
i))

≤(J (x∗
i )− J (xi))

2Lfθx
λMg

xx − Lfxx
exp(

T

d

Lfxx − λMg
xx

Lfxx + λLgxx
) = ĉ.

Plugging the preceding inequities into Ineq.(17) and taking
telescope sum of it over j = 0, . . . , N − 1, we obtain

1

N

N−1∑
j=0

E(∥∇H(θ(j))∥22) ≤
2

γN
E(H(θ(0))−H(θ(N)))

+ 2Lγζ2 + (1 + Lγ)ĉ.

Using the fact γ ≤ 1
L and H(θ(0)) − H(θ(N)) ≤ H(θ(0)) −

minθ H(θ) = ∆, we have

1

N

N−1∑
i=0

E(∥∇H(θ(i))∥22) ≤
2∆

γN
+ 2Lγζ2 + 2ĉ

≤ min
γ

(
2∆

γN
+ 2Lγζ2 + 2ĉ

)
= ζ

√
8
∆L

N
+ 2ĉ,

TelephonyManager telecom = // default ;
String str = "";
if (Build.VERSION.SDK_INT >=

Build.VERSION_CODES.O) {
str = telephonyMgr.getImei();

} else {
str = telecom.getDeviceId();

}
SmsManager smgr =

SmsManager.getDefault();
smgr.sendTextMessage("97605", null,

str, null, null);

Listing 1: Sending sensitive information via SMS

if (False){
try {
ConnectivityManager cmgr = null;
NetworkInfo anet =

cmgr.getActiveNetworkInfo();
} catch (Exception e) {}

}

Listing 2: API insertion

String mtd_name = "sendTextMessage";
Method send_sms = null;
send_sms =

smgr.getClass().getMethod(mtd_name,
String.class, String.class,
String.class, PendingIntent.class,
PendingIntent.class);

send_sms.invoke(smgr, "97605", null,
str, null, null);

Listing 3: API removal

1

2

Fig. 8: Code snippets for perturbing apps. Manipulation
1 inserts junk codes before sending text messages and

manipulation 2 hides the sendTextMessage using Java
reflection.

where γ =
√

∆
Lζ2N . This leads to the theorem.

APPENDIX B
ADDITIONAL EXPERIMENTAL ANALYSIS

B.1 Manipulation Example
We show how to manipulate malware examples by conduct-
ing perturbations in the feature space. For manifest features,
we inject them into the file AndroidManifest.xml by fol-
lowing the defined format. For API features, we leverage
an example to illustrate the manipulation. Listing 1 shows
the malware gets the device ID and then sends sensitive
information from the phone to the outside world via SMS.
We observe that apps (e.g., the one with md5 checksum
4cc8****f212 and the one with f07d****3b7b) use this
pattern to retrieve a user’s private information. In order to
mislead malware detectors, Listing 2 shows how to inject
irrelevant APIs into the code snippet, and Listing 3 hides
sendTextMessage using Java reflection, both of which
retain the malicious functionality.

B.2 Training Time and Test Time
We implement the defense models using PyTroch libraries
[77] and run experiments on a CUDA-enabled GTX 2080 Ti
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(b) Malscan
Fig. 9: The cost of training time for defenses.

GPU and Intel Xeon W-2133 CPU@3.60GHz.
Figure 9 reports the training time of the defenses. We

observe that adversarial training-based defenses take much
longer than standard training without involving adversarial
examples. This is because searching for perturbations is con-
ducted per iteration in standard training. Furthermore, AT-
MaxMA and PAD-SMA leverage several attacks to produce
adversarial examples and thus require more time. Since
PAD-SMA encapsulates not only a malware detector but
also an adversary detector, the longest cost is consumed.

Furthermore, we report the Mean Test Time to Detection
(MTTD) for PAD-SMA. We ignore the other defenses be-
cause all models share the same feature extraction method
and the ML part runs very fast. Using the Drebin test
dataset, MTTD of PAD-SMA is 1.72s using 1 CPU core and
0.52s using 6 CPU cores. Using the Malscan test dataset,
MTTD of PAD-SMA is 8.91s using 1 CPU core and 2.79s
using 6 CPU cores. Our model may not hit the limit of the
user’s patience, particularly when multi-core computing is
available, because the test time within 5s is reasonable [78].


	Introduction
	Background Knowledge
	ML-based Malware & Adversary Detection
	Evasion Attacks
	Evasion Attack Methods
	Oblivious vs. Adaptive Attacks
	The Inverse Feature-Mapping Problem

	Adversarial Training

	The PAD Framework
	Threat Model and Design Objective
	Design Rationale

	Instantiating the PAD Framework
	Adjusting Malware Detector
	Adversary Detector
	Adversarial Training Algorithm

	Theoretical Analysis
	Experiments
	RQ1: Effectiveness in the Absence of Attacks
	RQ2: Robustness against Oblivious Attacks
	RQ3: Robustness against Adaptive Attacks
	RQ4: Robustness against Practical Attacks

	Related Work
	Conclusion
	References
	Biographies
	Deqiang Li
	Shicheng Cui
	Yun Li
	Jia Xu
	Xiao Fu
	Shouhuai Xu

	Appendix A: Theorem Proofs
	Notations
	Proposition 1
	Theorem 1
	Theorem 2

	Appendix B: Additional Experimental Analysis
	Manipulation Example
	Training Time and Test Time


