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Abstract

~

The residual shear strength of liquefied soil 1s a key parameter in evaluating liquefaction flow failures. Results from a series of
dynamic centrifuge experiments where the shear strength of liquefied soil was inferred by measuring the force required to pull a thin
metal plate (coupon) horizontally through the liquefied soil are assessed here using a computational fluid dynamics (CFD) based
model. Viscosity 1s a key parameter for the Newtonian fluid constitutive model used 1n the simulations, and apparent viscosities of
liquefied soil in the range of about 5,800 — 13,300 Pa‘s were obtained when the CFD model was calibrated against coupons pulled
through liquefied soil in dynamic centrifuge tests. These computational values agree reasonably with apparent viscosities of liquefied
so1l reported 1n the literature when the Reynolds numbers (Re) exceeded 1.0. Importantly, the CFD simulations illustrated that in
cases where Reynolds numbers are < 1.0, apparent viscosities of liquefied soil back-calculated using simplistic closed-form solutions
commonly applied in geotechnical literature are several orders of magnitude too large; and therefore, such closed-form solutions
should not be used for these cases.
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1. Physical model N[

2. Computational model

Cross-sectional view of the dynamic centrifuge model where the
motor assembly mounted on top of the container was used to pull
a coupon through liquefied soil to measure soil resistance. The
measured soil resistance was used to infer the residual shear
strength of liquefied soil (from Dewoolkar et al. 2015).
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Computational domain used to model flow past the coupon. The
inlet velocity equaled the coupon velocity in the centrifuge tests.
The upper boundary was defined with a flow velocity equal and
parallel to the inlet velocity to model an infinite domain above.
The coupon wall 1s a no slip wall. The domain size and number of
Y \elements were modified until we observed a consistent flow ﬁeldj
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: : : , experiments with low Reynolds numbers (Re < 1), such as with
the simulations and closed-form solutions reasonably agree;
o : the Dewoolkar et al. (2015) tests. When these tests were
however, they differ by several orders of magnitude when the , , , .
. L : simulated using CFD, the apparent viscosities narrowed to
viscosity increases (Re < 1). These results 1llustrate that closed- . , ,
. .. 5,800-13,300 Pa's. Additional comparisons using CFD-based
form solutions are limited, cannot be used to back-calculate , , ,
. : . . : : simulations are needed to better define this range. Furthermore,
apparent viscosity of liquefied soil from physical experiments. , , ,
L AN non-Newtonian models may better model liquefied soil.
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