
Communication-Efficient Adam-Type Algorithms
for Distributed Data Mining

Wenhan Xian, Feihu Huang, Heng Huang
Department of Electrical and Computer Engineering, University of Pittsburgh

Pittsburgh, United States
wex37@pitt.edu, huangfeihu2018@gmail.com, heng.huang@pitt.edu

Abstract—Distributed data mining is an emerging research
topic to effectively and efficiently address hard data mining tasks
using big data, which are partitioned and computed on different
worker nodes, instead of one centralized server. Nevertheless, dis-
tributed learning methods often suffer from the communication
bottleneck when the network bandwidth is limited or the size
of model is large. To solve this critical issue, many gradient
compression methods have been proposed recently to reduce
the communication cost for multiple optimization algorithms.
However, the current applications of gradient compression to
adaptive gradient method, which is widely adopted because of
its excellent performance to train DNNs, do not achieve the same
ideal compression rate or convergence rate as Sketched-SGD. To
address this limitation, in this paper, we propose a class of novel
distributed Adam-type algorithms (i.e., SketchedAMSGrad) uti-
lizing sketching, which is a promising compression technique that
reduces the communication cost from O(d) to O(log(d)) where
d is the parameter dimension. In our theoretical analysis, we
prove that our new algorithm achieves a fast convergence rate of
O(1√

nT
+ 1

(k/d)2T
) with the communication cost of O(k log(d))

at each iteration. Compared with single-machine AMSGrad,
our algorithm can achieve the linear speedup with respect to
the number of workers n. The experimental result of training
distributed DNN validates the performance of our algorithms.

Index Terms—distributed data mining, adaptive gradient, gra-
dient compression

I. INTRODUCTION

Nowadays, as more and more data mining and machine
learning applications take advantage of large-scale data, plenty
of learning models are trained in a distributed fashion across
many worker nodes [1]. Specifically, the problem of these tasks
can be formulated as:

f(x) =
1

n

n∑
i=1

Eξi∼DiFi(x; ξi), (1)

where fi(x) = Eξi∼DiFi(x; ξi) is the local objective function
on the i-th node that is generally smooth and possibly noncon-
vex, and n is the number of worker nodes. Here Di denotes
the data distribution on the i-th node, and different {Di}ni=1

are probably non-identical.
Although distributed training has shown significant ad-

vantage, it still suffers from the communication bottleneck,
especially when the network bandwidth is limited or the size
of model is large. To address this critical issue, many methods
have been presented to reduce the cost of communication.
Among these methods, one of the most popular ways is to
compress the transmitted message in each communication

round, such as gradient quantization [2], [3] and gradient spar-
sification [4]–[6], on which are the focused by this paper. Other
methods such as model compression [7] or decentralization [8]
also alleviate the bottleneck issue.

Gradient quantization reduces the communication cost by
lowering the float-point precision of gradients so that less
amount of bits will be transmitted. 1-bit Stochastic Gra-
dient Descent (1-bit SGD) [2] is a classic and primitive
gradient quantization work which uses 1-bit quantization and
dramatically enhances the communication efficiency. Quan-
tized Stochastic Gradient Descent (QSGD) adopts stochastic
randomized rounding to obtain an unbiased estimator after
compression. SignSGD and its variant with momentum named
Signum [9] only transmit the 1-bit gradient sign between
workers and central node, which is convenient to implement.

Gradient sparsification is another widely-used strategy to
decrease the communication cost which sparsifies the gradient
instead of quantizing each element. The most popular way is
to extract the top-k coordinates of local gradients and send
them to the master node to estimate the overall mini-batch
gradient. Some of these methods are also combined with other
techniques such as momentum correction and error-feedback.

Recently, more variants of gradient compression with the-
oretical guarantees have been proposed, such as SGD with
Error-Feedback (EF-SGD) [10], Distributed SGD with Error-
Feedback (dist-EF-SGD) [11] and SGD with Error Reset
(CSER) [12]. In some recent works like [11], [12], the ag-
gregated gradient estimator is also compressed before sending
back to workers. Some works also apply gradient compression
to other optimizer such as Frank-Wolfe algorithm [13].

Besides, to solve problem (1), we also need an efficient
optimizer to search for the optimal solution. Among existing
popular optimization methods, adaptive gradient algorithms
[14], [15] have become ones of the most important optimiza-
tion algorithms to pursue higher efficiency or accuracy in a
wide range of data mining and machine learning problems.
In the family of adaptive gradient algorithms, Adam [16] is
one of the most popular ones that combines momentum and
adaptive learning rate. Though it achieves great success in
practice, several technical issues in the analysis were pointed
out [17] and in some cases the algorithm could diverge.

In [17], two variants of Adam, named as AMSGrad and
Adamnc, were proposed to fix the theoretical issues in the

analysis of Adam. AMSGrad makes quantity Γt+1 = (

√
Vt+1

αt+1
−

√
Vt

αt
) positive to ensure the convergence, while Adamnc adopts

an increasing parameter β2,t = 1− 1
t .

Despite of the success of gradient compression methods, it
is hard to use them in distributed adaptive gradient method.
So far the application of gradient compression to adaptive
gradient algorithm with theoretical guarantee is still limited.
Quantized Adam [18] combines gradient quantization with
Adamnc, which keeps track of local momentum and variance
terms on each worker node and uses quantization when
averaging the parameter. Efficient-Adam [19] is similar to
Quantized Adam where the gradient message sent back is also
compressed. However, both Quantized Adam and Efficient-
Adam are not proven to achieve linear speedup or convergence
on non-iid data. APMSqueeze [20] and 1-bit Adam [21]
are Adam-preconditioned momentum SGD algorithms with
gradient compression. However, the variance term is fixed
during the training process. Even though it is computed by
Adam at the end of warmup step, technically APMSqueeze
and 1-bit Adam are not a true adaptive gradient method.

Therefore, it is difficult to apply gradient compression to
adaptive gradient methods and maintain the excellent perfor-
mance of distributed Adam-type algorithms. The challenge is
that the original adaptive learning rate is adjustable based on
global information such as the aggregated gradient. Although
the compressed message is a good estimation of local gradient
or momentum, the adaptive learning rate calculated by these
inexact messages could be far away from the original one.

To address the challenging high communication cost lim-
itation in distributed adaptive gradient methods, we propose
a class of novel distributed Adam-type algorithms (called as
SketchedAMSGrad), based on the distributed version of AMS-
Grad [17] algorithm and the gradient sparsification technique
named sketching [22], [23].

Our main contributions are summarized as follows:

(1) To efficiently address the communication bottleneck
problem in distributed data mining, we propose a
class of novel communication-efficient algorithms named
SketchedAMSGrad with two averaging strategies: param-
eter averaging and gradient averaging. Our new meth-
ods can reduce the communication cost from O(d) to
O(log(d)).

(2) We provide theoretical analysis based on mild assump-
tions to guarantee the convergence of our algorithms.
Specifically, we prove that our SketchedAMSGrad algo-
rithms have a convergence rate of O(1√

nT
), which shows

a linear speedup. Our theoretical analysis also allows the
data distribution to be non-identical.

(3) To the best of our knowledge, our method is the first one
to utilize the sketching technique to solve the communica-
tion bottleneck in distributed adaptive gradient methods.
The experimental results on training various DNNs verify
the performances of our algorithms, on both identical and
non-identical distributed datasets.

II. RELATED WORKS

In the section, we review the related adaptive gradient
algorithms with their compressed versions and introduce some
preliminary background of sketching. The summary of proper-
ties of related methods is listed in Table I. Top-k is considered
as the compressor in the result of convergence rate.

A. Quantized-Adam and Efficient-Adam
Quantized-Adam [18] is proposed to combine quantization

scheme with distributed Adam algorithm to reduce the com-
munication cost. Specifically, on each worker, it owns a local
momentum term m

(i)
t and a local variance term v

(i)
t . These

two terms are updated by the exponential moving averaging
used in Adam-type algorithms. Gradient quantization is used

to compress the term m
(i)
t /

√
v
(i)
t .

Efficient-Adam [19] is a similar work to Quantized Adam.
The only difference is that Efficient-Adam compresses the
updating term rather than the parameter. Both of these two
algorithms are parameter averaging since if there is no com-
pression, they degenerate to an algorithm where each node is
updated by Adam and then the model parameter is averaged.
It is not mathematically equivalent to the typical distributed
Adam algorithm where gradient averaging is used. Though in
some cases parameter averaging is convenient to implement,
it is likely to cause bad convergence or be detrimental to the
model accuracy especially when the optimizer relies on past
local gradient. Actually, Quantized-Adam and Efficient-Adam
fail to achieve linear speedup on non-iid data.

B. APMSqueeze and 1-bit Adam Algorithms

APMSqueeze [20] and 1-bit Adam [21] are communication-
efficient Adam-preconditioned momentum SGD algorithms.
Since the definitions of these two algorithms are similar and
1-bit Adam is the later work, in this paper we will only discuss
1-bit Adam. In the warmup stage, it calculates a variance term
vTw

. During the training process, vTw
is fixed and serves as

the exponential moving averages term vt in regular Adam-type
algorithms. However, since vTw is a fixed variable, 1-bit Adam
is not technically an adaptive gradient method. In our method,
the variance term vt is dynamic and computed by exponential
moving averaging. Besides, we do not need the warmup stage
with a separate communication-inefficient optimizer.

C. Sketching

Sketching [22] is a novel and promising gradient sparsicifa-
tion technique that compresses a gradient vector g into a sketch
S(g) of size O(log(d)ϵ−1) such that S(g) can approximately
recover every coordinates by ĝ2i = g2i ± ϵ∥g∥22. It is originated
from a data structure used in data streaming named Count
Sketch [24] which is designed to find large coordinates in a
vector g defined by a sequence of updates {(ij , wj)}nj=1.

In [22], sketching serves as a compressor that will ap-
proximately recover the true top-k coordinates of mini-batch
gradient 1

n

∑n
i=1 g

(i)
t where n is the number of workers.

In [25], the authors explicitly treat it as a compressor and
the sketching and unsketching operators are denoted by S
and U . For convenience, we also use these notations in this

TABLE I: Comparison of Related Algorithms with Compression

Name Convergence rate Linear speedup Non-iid Adaptive Reference

Quantized-Adam O(1√
T
) × ×

√
[18]

Efficient-Adam O(1√
T
) × ×

√
[19]

APMSqueeze O(1√
nT

+ 1
(k/d)2/3T2/3)

√ √
× [20]

1-bit Adam O(1√
nT

+ 1
(k/d)2/3T2/3)

√ √
× [21]

SketchedAMSGrad (GA) O(1√
nT

+ 1
(k/d)2T

)
√ √ √

this paper

paper. Sketching method reduces the communication cost to
O(log(d)) while gradient quantization only achieves a constant
level reduction and the communication cost is still O(d).
The current best results for quantization method achieve an
approximate 32× compression rate [11], [26]. Compared with
top-k method, one advantage of sketching is to recover the
true top-k coordinates, where the gradient estimator is v1 ≈
Topk(

1
n

∑n
i=1 g

(i)
t). Although applying the method in [11]

can avoid the O(n) return communication cost mentioned in
[22], the gradient estimator v2 = Topk(

1
n

∑n
i=1 Topk(g

(i)
t))

is still probably far away from the true top-k coordinates.
This issue can be reflected by the second dominating term
in the convergence rate. In [11], the second dominating term
is O(1

(k/d)4/3T 2/3) which is claimed to be the price to pay for
two-way compression and linear speedup. In 1-bit Adam the
step size is dependent on the compression ratio and this term
becomes O(1

(k/d)2/3T 2/3) as we have mentioned. However, in
Sketched-SGD and our algorithms, the corresponding term is
O(1

(k/d)2T), which is smaller when T is large.

III. SKETCHED ADAM-TYPE ALGORITHMS

A. SketchedAMSGrad (Parameter Averaging)

In this subsection, we will propose the SketchedAMSGrad
(PA) algorithm using parameter averaging, the description of
which is shown in Algorithm 1.

In Algorithm 1, we use AMSGrad algorithm to update
each worker node, based on local momentum term m

(i)
t and

exponential moving averages of squared past gradients v
(i)
t .

αt is the stepsize and β1, β2 ∈ (0, 1) are exponential moving
average hyperparameters in Adam-type algorithm. ϵ > 0 is
the initial value of v0 to avoid zero denominators. The mul-
tiplication, division and square operation between vectors are
component-wise. We use sketching to improve communication
efficiency and average the parameters. We also use error-
feedback to further accelerate the convergence.

For convenience, we also use the notations S and U defined
in [25] to represent the sketching operator and unsketching
operator. They can be treated as a compressor that will
approximately recover the true top-k coordinates. In practice,
we use a second round communication which is also required
in SketchedSGD [22]. After unsketching, we get an estimation
of the aggregated mini-batch gradient which is denoted by
U(St). Then we select the largest Pk coordinates to extract
their exact values before sketching from each worker during
the second round communication. Finally, we select the top-
k coordinates among these Pk coordinates as ∆t and send

Algorithm 1 SketchedAMSGrad (parameter averaging)

Input: initial value x1, sketching operator S and unsketch-
ing operator U
Set: m(i)

0 =0, v(i)0 = v̂
(i)
0 =ϵ, e(i)0 =0 on i-th worker node

for t = 1 to T do
On i-th worker node:

Estimate a stochastic gradient g(i)t ;
Compute m

(i)
t = β1m

(i)
t−1 + (1− β1)g

(i)
t ;

v
(i)
t = β2v

(i)
t−1 + (1− β2)[g

(i)
t]2;

v̂
(i)
t = max{v̂(i)t−1, v

(i)
t };

Sketch S
(i)
t = S(m(i)

t /

√
v̂
(i)
t + αt−1

αt
e
(i)
t−1);

Send S
(i)
t to the master node;

Send ∆
(i)
t to the master node after unsketching;

Compute e
(i)
t = m

(i)
t /

√
v̂
(i)
t + αt−1

αt
e
(i)
t−1 −∆

(i)
t ;

Receive ∆t from the master node;
Update xt+1 = xt − αt∆t.

On the master node:
Aggregate St =

1
n

∑n
i=1 S

(i)
t ;

Unsketch ∆t =
1
n

∑n
i=1 ∆

(i)
t = Top-k(U(St));

Send ∆t back to each worker node;
Update xt+1 = xt − αt∆t.

end for

it back to each worker. ∆
(i)
t contains the corresponding k

coordinates in m
(i)
t /

√
v̂
(i)
t + αt−1

αt
e
(i)
t−1 and automatically it

satisfies ∆t =
1
n

∑n
i=1 ∆

(i)
t . Therefore, at each iteration, the

total communication cost is |S|+Pk+k and the compression
rate is 2d/(|S|+ Pk + k) where |S| is the size of sketch.

B. SketchedAMSGrad (Gradient Averaging)

In the subsection, we propose the SketchedAMSGrad (GA)
algorithm using gradient averaging, which is demonstrated in
Algorithm 2.

In Algorithm 2, the meanings of hyperparameters αt, β1

and β2 are the same as those in Algorithm 1. We also keep
track of local momentum term m

(i)
t on each node but the

exponential moving averaging squared gradient vt is defined
on the master node. The index set It represents the coordinates
updated at iteration t, which is obtained by the unsketching
operator. Notation h

(i)
t = (g

(i)
t)It−1 means for ∀j ∈ It−1, h(i)

t

maintains the j-th coordinate of g
(i)
t . Otherwise, if j /∈ It−1,

the j-th coordinate of h
(i)
t is 0. We define It in this way

because we want to accumulate the coordinates of squared
gradient which are just updated and we want to define an

Algorithm 2 SketchedAMSGrad (gradient averaging)

Input: initial value x1, sketching operator S and unsketch-
ing operator U
Set: m

(i)
0 = 0, e(i)0 = 0 on i-th worker node; v0 = v̂0 on

the master node; index set I0 = ∅
for t = 1 to T do

On i-th worker node:
Estimate a stochastic gradient g(i)t ;
Compute m

(i)
t = β1m

(i)
t−1 + (1− β1)g

(i)
t ;

Send h
(i)
t = (g

(i)
t)It−1

to the master node;
Sketch S

(i)
t = S(m(i)

t + αt−1

αt
e
(i)
t−1);

Send S
(i)
t to the master node;

Send ∆
(i)
t to the master node after unsketching;

Compute e
(i)
t = m

(i)
t + αt−1

αt
e
(i)
t−1 −∆

(i)
t ;

Receive ∆t from the master node;
Update xt+1 = xt − αt∆t.

On the master node:
Aggregate ht =

1
n

∑n
i=1 h

(i)
t ;

Compute vt = β2vt−1 + (1− β2)h
2
t ;

v̂t = max{v̂t−1, vt};
Aggregate St =

1
n

∑n
i=1 S

(i)
t ;

Unsketch ∆t=
1
n

∑n
i=1 ∆

(i)
t =Top-k(U(St, v̂t));

Send ∆t back to each worker node;
Update xt+1 = xt − αt∆t.

end for

Algorithm 3 Unsketching Operator in Algorithm 2

Input: r × c sketch S, vector v, bucket hashes {hj}rj=1,
original unsketching operator U0

for i = 1 to d do
for j = 1 to r do
S[j, hj(i)] = S[j, hj(i)]/

√
vi

end for
end for
return U0(S)

auxiliary sequence that makes the convergence analysis more
convenient. Algorithm 2 is a gradient averaging algorithm
because if there is no compressor applied, this algorithm is
degenerated to the common distributed AMSGrad optimizer.
In Algorithm 2 the unsketching operator U requires a vector v̂t
as another input and is used to recover the top-k coordinates
of term ∆̃t, which is defined as follows.

∆̃t =
1

n

n∑
i=1

∆̃
(i)
t , ∆̃

(i)
t = v̂

−1/2
t (m

(i)
t +

αt−1

αt
e
(i)
t−1) (2)

The index set of these k coordinates is denoted as It. The
implementation of U is shown in Algorithm 3, which is
established on the original sketching and unsketching operator.
According to the linear property of sketching S , it is equivalent
to compress ∆̃t by S and then unsketch it by the normal
unsketching operator. ∆

(i)
t contains the coordinates of ∆̃

(i)
t

that belongs to index set It and ∆t =
1
n

∑n
i=1 ∆

(i)
t .

As the top-k coordinates of mt/
√
v̂t and mt are likely

to change a lot, it is hard to estimate the Adam updating
term mt/

√
v̂t by the known vector m

(i)
t on each node.

However, the sketching technique makes it possible within the
communication cost of O(log(d)).

In Algorithm 2, thus, the total communication cost at each
iteration is |S|+Pk+2k and the compression rate is 2d/(|S|+
Pk + 2k) where |S| is the size of sketch.

In fact, our SketchedAMSGrad (GA) algorithm is com-
patible with 1-bit Adam algorithm. We can also regard the
vTw in the 1-bit Adam algorithm as the initial value of v0
in Algorithm 2. The only difference is that in the theoretical
analysis we need to replace the initial value ϵ with the vmin

defined in the 1-bit Adam. Moreover, if we do not send ht or
update vt, our algorithm is reduced to the 1-bit Adam with
sketching compressor.

IV. CONVERGENCE ANALYSIS

In the section, we provide the convergence analysis of our
algorithms. Due to the space limit, we will only provide the
conclusions of Theorem 1 and Theorem 2. We begin with
giving some mild assumptions.

Assumption 1. (Lipschitz Gradient) There is a constant L
such that for ∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

Assumption 2. (Lower Bound) Function f(x) has the lower
bound, i.e., infx∈Rd f(x) = f∗ > −∞

Assumption 3. (Bounded Gradient) There is a constant
G such that for ∀i ∈ {1, · · · , n}, ∀ξi ∼ Di, we have
∥∇Fi(x; ξi)∥∞ ≤ G.

These assumptions are commonly used in related works of
Adam-type algorithms in nonconvex optimization [27]–[29].

A. SketchedAMSGrad (PA)

Theorem 1. Assume that Assumption 1 to Assumption 3
are satisfied and data distribution {Di}ni=1 are identical. In
Algorithm 1, let β1 < 1, β2 < 1, ϵ > 0 and αt = α√

1+T
,

α > 0. Then we have

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ C1√
T

+
C2

T
,

where constants C1 and C2 are independent of T .

B. SketchedAMSGrad (GA)

Theorem 2. Assume that Assumptions 1-3 are satisfied. In
Algorithm 2, let β1 < 1, β2 < 1, ϵ > 0 and αt =

α√
1+T/n

,

α > 0. Then we have

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ C1√
nT

+
C1 + C2

T
,

where constants C1 and C2 are independent of T .

Corollary 1. In Theorem 2, we can see the dominating term
is O(1√

nT
), which achieves a linear speedup compared with

AMSGrad in nonconvex optimization [28].

Fig. 1: The experimental results of training ResNet-50 on CIFAR10 and CIFAR100. Figures (a), (b) and (c) show the
experimental results on CIFAR10. Figures (d), (e) and (f) show the experimental results on CIFAR100. Figures (a) and
(d) show the train loss value. Figures (b) and (e) show the train accuracy. Figures (c) and (f) show the test accuracy.

Remark 1. In Algorithm 2, the data distribution Di’s are
allowed to be non-identical. In both Algorithm 1 and Algo-
rithm 2, β1 and β2 are constants in (0, 1), which is applicable
to the common default settings that β1 = 0.9 and β2 = 0.999.

C. Discussion on the Compression Rate

Now we will discuss the how the compression rate, i.e., the
choice of k influences the convergence rate. In both of Theo-
rem 1 and Theorem 2, constant C1 is independent on k. Hence
the dominating term is not affected by the compression rate.
This result is the same as many other gradient compression
methods. According to the definitions of C2 in Theorem 1
and Theorem 2, the second dominating term is affected by k
with the form O(1

(k/d)2T) for both parameter averaging and
gradient averaging SketchedAMSGrad algorithms.

V. EXPERIMENTS

In this section we will show the experimental results of the
distributed data mining task of image categorization to validate
our methods. All experiments are run on a server with 64-core
Intel Xeon E5-2683 v4 2.10GHz processor and 4 Nvidia P40
GPUs. We simulate the edge-based training environment on
the GPU server where the root process represents the edge
server, each process represents an IoT device and the dataset
represents the captured data. The code is implemented by
PyTorch 1.4.0 and CUDA 10.1.

A. ResNet on CIFAR
Our first task is to train ResNet-50 [30] using CIFAR10

and CIFAR100 datasets [31], which are benchmark datasets
for image classification tasks. Both CIFAR10 and CIFAR100
contain 60,000 32 × 32 pixel images with RGB channels,
50,000 of which is regarded as training set and the other
10,000 of which is used for testing. The images are distributed

evenly over 10 and 100 classes for CIFAR10 and CIFAR100
respectively. The ResNet-50 model has about 25M parameters.
We use cross-entropy loss to train the neural network.

In our experiment, we compare our SketchedAMSGrad
(PA) and SketchedAMSGrad (GA) with Sketched-SGD [22],
Efficient-Adam [19] and 1-bit Adam [21]. For Efficient-Adam
and 1-bit Adam, we consider both quantization and sparsifi-
cation as compressor. For gradient quantization, we adopt the
following scheme used in [11] which is a variant of SignSGD:

C(x) =
∥x∥1
d

sign(x) (3)

The number of workers in this task is set to be 16. The
batch-size on each worker node is 32. Hence the total batch-
size at each iteration is 512. We run 200 epochs in total.
For each algorithm, we grid search the learning rate from
{0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001} and ϵ from {1e −
2, 1e−4, 1e−6} and select the values that get the best training
result. For Adam-type algorithms, β1 and β2 are set to be
the common choices that β1 = 0.9 and β2 = 0.999. For 1-
bit Adam, similar to [21], we run 13 epochs to compute the
Adam-preconditioned vector vTw

. For sketching methods, the
sketch is set to have 100,000 columns and 10 rows. We set
k = 50, 000 and P = 8. For Efficient-Adam and 1-bit Adam
with top-k compressor, we choose k = 750, 000. Therefore,
all algorithms implemented in this task are communication-
efficient and approximately achieve the same compression rate
(about 32× reduction).

Figure 1 shows the experimental results of this image clas-
sification task. According to the result of train loss value, we
can see the three sketching methods converge faster than other
algorithms on both CIFAR10 and CIFAR100 dataset. When
comparing the train accuracy, the sketching methods are still
advantageous over other methods. Our parameter averaging

and gradient averaging SketchedAMSGrad and SketchedSGD
approximately have the same performance. On CIFAR100,
our parameter averaging SketchedAMSGrad is slightly bet-
ter on the train accuracy results. According to the test
accuracy results, our gradient averaging SketchedAMSGrad
and SketchedSGD also outperform other algorithms on both
dataset. On CIFAR100, our gradient averaging SketchedAMS-
Grad achieves the best performance on test accuracy. From this
experiment we can see that although using compression on the
returning message avoids the growing O(n) communication
cost issue of local top-k (mentioned in [22]), it probably
encounters slow convergence since the estimator is too far
away from the true top-k coordinates.

Theoretically, when the sketch size is larger, the probability
of recovering top-k coordinates is higher. The sketch size used
in this experiment is 1,000,000. On CIFAR10, the test accuracy
of our SketchedAMSGrad (GA) is 91.04%. When we increase
the sketch size to 2,000,000 and 3,000,000, the test accuracy
is increased by 0.24% and 0.39% respectively. Thus, we can
see the influence of sketch size. If the sketch size is larger,
our algorithm will probably show better performance.

VI. CONCLUSION

In this paper, we propose a class of communication-efficient
distributed adaptive gradient algorithm named SketchedAMS-
Grad based on two averaging strategies to tackle the high
communication cost issue for distributed training. Specifically,
the communication cost of our algorithm at each iteration is
reduced to O(log(d)) from O(d). Moreover, we proved that
our algorithm achieves a fast convergence rate of Õ(1√

nT
),

which achieves the linear speedup compared with single-
machine AMSGrad. In particular, our analysis of gradient
averaging SketchedAMSGrad works for both identical and
non-identical data distribution. To the best of our knowledge,
our algorithm is the first one to apply sketching technique to
adaptive gradient methods.

ACKNOWLEDGMENT

This work was partially supported by NSF IIS 1838627,
1837956, 1956002, 2211492, CNS 2213701, CCF 2217003,
DBI 2225775.

REFERENCES

[1] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania, and S. Chintala, “Pytorch distributed:
Experiences on accelerating data parallel training,” Proceedings of the
VLDB Endowment, vol. 13, no. 12, 2020.

[2] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” International Speech Communication Association, 2014.

[3] D. Alistarh, D. Grubic, J. Z. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Neural Information Processing Systems, 2017.

[4] A. F. Aji and K. Heafield, “Sparse communication for distributed gra-
dient descent,” Conference on Empirical Methods in Natural Language
Processing, 2017.

[5] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and
C. Renggli, “The convergence of sparsified gradient methods,” Neural
Information Processing Systems, 2018.

[6] S. U. Stich, J. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,”
Neural Information Processing Systems, 2018.

[7] Y. Zhang, S. Gao, and H. Huang, “Exploration and estimation for model
compression,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 487–496, October 2021.

[8] W. Xian, F. Huang, Y. Zhang, and H. Huang, “A faster decentralized
algorithm for nonconvex minimax problems,” in Advances in Neural
Information Processing Systems, vol. 34, pp. 25865–25877, 2021.

[9] J. Bernstein, Y. Wang, K. Azizzadenesheli, and A. Anandkumar,
“Signsgd: Compressed optimization for nonconvex problems,” Interna-
tional Conference on Machine Learning, 2018.

[10] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error
feedback fixes signsgd and other gradient compression schemes,” In-
ternational Conference on Machine Learning, 2019.

[11] S. Zheng, Z. Huang, and J. T. Kwok, “Communication-efficient dis-
tributed blockwise momentum sgd with error-feedback,” Neural Infor-
mation Processing Systems, 2019.

[12] C. Xie, S. Zheng, S. Koyejo, I. Gupta, M. Li, and H. Lin, “Cser:
Communication-efficient sgd with error reset,” in Advances in Neural
Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, eds.), vol. 33, pp. 12593–12603, Curran
Associates, Inc., 2020.

[13] W. Xian, F. Huang, and H. Huang, “Communication-efficient frank-
wolfe algorithm for nonconvex decentralized distributed learning,” Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
pp. 10405–10413, May 2021.

[14] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, 2011.

[15] T. Tieleman and G. Hinton, “Rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for
machine learning, 2011.

[16] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 2014.

[17] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” International Conference on Learning Representations, 2018.

[18] C. Chen, L. Shen, H. Huang, Q. Wu, and W. Liu, “Quantized adam with
error feedback,” arXiv:2004.14180, 2020.

[19] C. Chen, L. Shen, H. Huang, W. Liu, and Z. Luo, “Efficient-adam:
Communication-efficient distributed adam with complexity analysis,”
openreview.net, 2020.

[20] H. Tang, S. Gan, S. Rajbhandari, X. Lian, J. Liu, Y. He, and C. Zhang,
“Apmsqueeze: A communication efficient adam-preconditioned momen-
tum sgd algorithm,” arXiv:2008.11343, 2020.

[21] H. Tang, S. Gan, A. A. Awan, S. Rajbhandari, C. Li, X. Lian,
J. Liu, C. Zhang, and Y. He, “1-bit adam: Communication efficient
large-scale training with adam’s convergence speed,” arXiv preprint
arXiv:2102.02888, 2021.

[22] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora,
“Communication-efficient distributed sgd with sketching,” Neural Infor-
mation Processing Systems, 2019.

[23] T. Li, Z. Liu, V. Sekar, and V. Smith, “Privacy for free:
Communication-efficient learning with differential privacy using
sketches,” arXiv:1911.00972, 2019.

[24] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in
data streams,” International Colloquium on Automata, Languages, and
Programming, 2002.

[25] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “Fetchsgd: Communication-efficient fed-
erated learning with sketching,” International Conference on Machine
Learning, 2020.

[26] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar, “signsgd
with majority vote is communication efficient and fault tolerant,” Inter-
national Conference on Learning Representations, 2019.

[27] D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu, “On the con-
vergence of adaptive gradient methods for nonconvex optimization,”
arXiv:1808.05671, 2018.

[28] X. Chen, S. Liu, R. Sun, and M. Hong, “On the convergence of a class
of adam-type algorithms for nonconvex optimization,” International
Conference on Learning Representations, 2019.

[29] A. Alacaoglu, Y. Malitsky, P. Mertikopoulos, and V. Cevher, “A new
regret analysis for adam-type algorithms,” International Conference on
Machine Learning, 2020.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[31] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Technical Report TR-2009, 2009.

