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ABSTRACT
The self-supervised graph representation learning has achieved

much success in recent web based research and applications, such

as recommendation system, social networks, and anomaly detec-

tion. However, existing works suffer from two problems. Firstly, in

social networks, the influential neighbors are important, but the

overwhelming routine in graph representation-learning utilizes

the node-wise similarity metric defined on embedding vectors that

cannot exactly capture the subtle local structure and the network

proximity. Secondly, existing works implicitly assume a universal

distribution across datasets, which presumably leads to sub-optimal

models considering the potential distribution shift. To address these

problems, in this paper, we learn structural embeddings in which

the proximity is characterized by 1-Wasserstein distance. We pro-

pose a distributionally robust self-supervised graph neural network

framework to learn the representations. More specifically, in our

method, the embeddings are computed based on subgraphs center-

ing at the node of interest and represent both the node of interest

and its neighbors, which better preserves the local structure of

nodes. To make our model end-to-end trainable, we adopt a deep

implicit layer to compute the Wasserstein distance, which can be

formulated as a differentiable convex optimization problem. Mean-

while, our distributionally robust formulation explicitly constrains

the maximal diversity for matched queries and keys. As such, our

model is insensitive to the data distributions and has better general-

ization abilities. Extensive experiments demonstrate that the graph

encoder learned by our approach can be utilized for various down-

stream analyses, including node classification, graph classification,

and top-k similarity search. The results show our algorithm outper-

forms state-of-the-art baselines, and the ablation study validates

the effectiveness of our design.
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1 INTRODUCTION
Many real-world web based research and applications involve struc-

tural data which can be represented using graphs, such as social

networks [28], natural languages [25], etc. Graph Neural Networks

(GNNs) [10, 13, 16, 16, 17, 22, 50, 52, 53] have shown superior per-

formance in learning graph embeddings from structured web data,

and the effectiveness has been verified by many downstream tasks,

e.g. text processing [35, 49], fraud detection [54], recommendation

systems [56, 62], and social network link prediction [39, 47]. For

example, textGNN [63] extends the twin tower model to employ

the user interactions in natural language understanding [44]; in

anomaly detection, attention-based GNNs allow users to deduce

the root cause of a detected anomaly [11]; in recommendation sys-

tems [31], interest aware message-passing can avoid the influence

of high-order neighbors with no common interest of a user [24].

By far, most works focus on the analysis for one single graph

or a fixed set of graphs. Recently, self-supervised graph represen-

tation learning achieved some success both in research and many

real web applications [64]. The data sparsity problem is common

due to cost of collecting and labelling the data. On the other hand,

many problems require domain knowledge, and traditional unsu-

pervised methods lack clear guidance in model designing. Given

the success of transfer learning in other machine learning areas,

a natural question is the feasibility of generalizable, transferrable,

and robust graph representation learning. Inductive representation

learning [17] is one of the early works that notice the generalization
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of GNNs to “unseen” nodes during the learning. Graph Contrastive

Coding [33], inspired by the success of contrastive learning, takes

one step further to consider the transferability of GNNs. Inspired

by self-supervised GNN, there is also evidence showing that the

robustness of representations can be enhanced by graph augmen-

tations [55]. At a high level, the prevailing self-supervised GNN

pipeline learns the node embeddings via characterizing their lo-

cal patterns (i.e. subgraphs centered at the nodes of interest) and

makes use of the instance discrimination [48] framework to learn

the relationships between these embeddings. There are some suc-

cess attempts to apply self-supervised learning to real problems.

For example, in recommendation systems, the quality of users and

items representations from historical interactions is central to the

success of collaborative filtering. Via incorporating item contents

into the learning scheme, the contrastive-based methods can en-

forces dimension-wise similarity between feature representation

and collaborative embedding, which avoid some noise edges, such

as the irrelevant interaction of users with a large bulk of items.With

the dramatic social media boom, the social recommender system

can find the high-order connectivity information from the social

influential users using self-supervised methods [56]. and capture

the behavior of users even for those having few interactions with

items. In fraud detection in finance and spammer discovery in social

media, the hop-count distribution is different for anonymous nodes

and normal nodes, and predicting shortest path length between a

pair of nodes using self-supervised learning methods can provide

some evidence to anomaly detection [54].

Although the success of aforementioned self-supervisedmethods

in social networks and related applications, several important prob-

lems remain to address. Firstly, the node representation learned in

most existing self-supervised methods is focused on the node-wise

proximity, and the proximity of local structures is less considered.

Secondly, the local consistency of the users are seldom consid-

ered, which is related to distribution shift. Sub-graph sampling

techniques are widely exploited in the training of GNNs as a con-

sequence of the size of modern large-scale graph data. However,

additional distribution shifts would be introduced by different sub-

graph sampling techniques, while prior works implicitly assume

that the data distribution is universal for different sources. The

distributional shift potentially deteriorates the generalization and

transferability. These problems urge network proximity defined on
the embedding of local structures and invoke an explicit considera-

tion on the distributional robustness of the self-supervised GNNs.

To address the aforementioned challenging problems, in this pa-

per, we proposed a novel distributionally robust graph contrastive

learning framework, dubbed learning structural embeddings. In con-

trast to existing works that focus on the node-wise proximity, our

method learns the local-structural level proximity via gathering

an embedding set describing both a node and its neighbors, i.e. a
subgraph surrounding the node of interest. The difference between

two nodes is then characterized via the Wasserstein distance de-

fined on the distribution of nodes of corresponding subgraphs. To

alleviate the distributional shift, we further design a distributionally

robust contrastive learning framework by constraining the maximal

inconsistency for similar subgraphs. The Wasserstein distance to

measure the proximity for self-supervised learning is considerably

challenging in computation because the contrastive loss function

based on the Wasserstein distance becomes a difficult bi-level opti-

mization problem. In this paper, we employ a differentiable implicit

layer to deal with the Wasserstein distance, making our framework

end-to-end trainable. Our contributions are summarized as follows:

• We propose new graph embeddings at a local-structural level via

learning the embedding sets for the subgraphs, which are com-

posed of the nodes of interest and their neighbors. The Wasser-

stein distance is adopted as the network proximity.

• We introduce a distributionally robust contrastive learning frame-

work. To circumvent the difficult minimax problem, the original

problem is relaxed to an asymptotic formulation. We resort to the

differentiable optimization methods to compute the Wasserstein

distance, which makes the full network end-to-end trainable.

• Extensive experiments are conducted on various tasks and repre-

sentative datasets. The results demonstrate that our algorithm

outperforms other state-of-the-art methods in several important

downstream analysis. The ablation study validates the effective-

ness of our approach.

1.1 Notations
Throughout the paper, the bold capital and bold lowercase symbols

are used to represent matrices and vectors, respectively. If all ele-

ments of a matrix 𝑨 are greater than or equal to 0, we denote it by

𝑨 ≥ 0. We use 𝐺 = {𝑉 , 𝐸} to represent a graph. Here 𝑉 is the node

set, and 𝐸 is the edge set. Finally, a 𝑛 × 𝑛-identity matrix is denoted

by I𝑛 , 1𝑛 is a 𝑛-dimension one vector, and 0 denotes a zero matrix.

2 RELATEDWORKS
2.1 Graph Representation Learning
Graph representation learning is featured by mining the topologi-

cal structures of graphs and encoding nodes with low-dimensional

embeddings. Representative works, includingWord2Vec [26], Deep-

Walk [32], and LINE [41], collect local patterns and learn mappings

from graphs to vectors. To capture the highly non-linear property of

attributed graphs, Deep Attribute Embedding Network (DANE) [15]

upgrades the shallow models in the aforementioned model to deep

networks.

There are increasing interest in GNN [22], which is developed

from graph convolution and can simultaneously exploit the struc-

tural knowledge and the enriched side information in attribute

graphs. GCN [22] shows the superiority of the first-order graph

convolution for semi-supervised node classification. GraphSage [17,

52, 53] and Message Passing Neural Network (MPNN) [16] broaden

the application of GNNs to the analysis for large-scale graphs via a

more efficient aggregation mechanism. Graph Attention Network

(GAN) [45] introduces the attention mechanism which is shown

to be effective in general network analysis. recently, the relation

between GNNs and graph isomorphism problem is studied, based

on which Graph Isomorphism Network (GIN) [50] is designed.

In this paper we use GIN as the backbone models in our self-

supervised graph neural networks.

2.2 Graph Contrastive Learning
Recently, contrastive learning has attracted a surge of attention in

a machine learning community. A typical scheme is to select an

anchor, a positive instance, and a negative instance, and maximize
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the margin between the similar pair (anchor v.s. positive) and the

negative pair (anchor v.s. negative). Instance discrimination [48] is

a popular self-supervised framework that achieves state-of-the-art

performance in many computer vision tasks, for example, Sim-

CLR [8] and SimCLRv2 [9].

Graph contrastive learning requires different objectives due to

the unique data structure, such as Jensen-Shannon estimator [38,

46], the noise-contrastive estimation (NCE) [55] and parametric

estimation method using projection head [18]. To generate graph

views, different augmentation methods are proposed. One of the

most commom method is node attribute masking [55] which ap-

plies the feature transformations. For a given graph, edge perturba-

tion [33, 55] can randomly adds or drops edges. Another direction

is sampling-based transformation. For example, ego-nets sampling,

such as in DGI [46], InfoGraph [38] and MVGRL [18], can be viewed

as the unification of the contrast between graph-level and node-

level representations.

In this work, we adopt the InfoNCE loss [30] and instance dis-

crimination [48] methods, which are demonstrated to have good

performance in graph pre-training [33].

2.3 Network Proximity
There are several perspectives concerning the definition for the

proximity between different nodes in networks. A variety of works

are based on the neighborhood similarity computed locally from the

neighborhood of the vertices, for example, Jaccard similarity and

cosine similarity. On the other hand, the structural similarity con-

sider the similarity w.r.t. local patterns. Models of this genre include

structural diversity [43], motif [5, 27], and spectral methods [12]. A

more fine-grained definition [41] considers the first-order proxim-

ity, second-order proximity, and high-order proximity. GraRep [6]

considers the connectivity between different nodes via explicitly

constructing the probability transition matrix. Alternatively, Deep-

Walk [32] explores the connectivity and the local pattern via ran-

dom walk with restart. For attribute graphs, GNN [22] and its

variants [45, 52] are powerful tools to leverage the side information

in computing network proximity. Another related topic to the net-

work proximity is the graph matching problem, where a principally

similar idea to the graph neural network is developed. The repre-

sentative works in this direction include the Weisfeiler-Lehman

Isomorphism Test [36] and the related graphlet methods [37].

2.4 Deep Implicit Layers
Deep neural networks are heavily dependent on the gradient-based

optimization, e.g.Momentum Stochastic Gradient Descent [40] and

Adam [21]. However, constrained optimization is seldom integrated

into deep neural networks due to the difficulty of the automatic

differentiation concerning the boundary.

Recently, neural ordinary differential equations [7] provides a

new interpretation for the residual neural layers, which states that

each residual layer can be viewed as one differential operation.

Inspired by this perspective, it is shown that deep neural networks

can be utilized to solve convex constrained problems, referred to

as differentiable optimization [1]. OptNet [2] is an initial study,

in which a special deep layer is designed to solve quadratic pro-

gramming problems. Of note, in regular tasks, the parameters in

the convex constrained problems of interest usually are computed

using the outputs from preceding layers. An important result of

the deep implicit layer is that the gradient of the parameters can

be computed using the implicit function theorem.

In this paper, we use Wasserstein distance to characterize the

node proximity, which can be formulated as a linear programming

problem. Given the success of deep earth move distance in few-

shot learning [57], we adopt the deep implicit layer to compute

Wasserstein distance, which admits a fully end-to-end graph neural

network.

3 PROPOSED METHOD
At a high level, we sample subgraphs spanned from a node and learn

the embeddings via a graph encoder to capture the local pattern.

Each node is an individual class and the similarity of subgraphs is

characterized by the network proximity defined on the embeddings.

Figure 1 illustrates the pipeline of our approach. We consider a

subgraph triplet

(
𝐺𝑞𝑖 , (𝐺𝑘𝑖 ,𝐺𝑘 𝑗

)
)
, in which𝐺𝑞𝑖 and 𝐺𝑘𝑖 are from

the same node and 𝐺𝑘 𝑗
is from a different one. We encourage a

large margin between the proximity for similar pair (𝐺𝑞𝑖 ,𝐺𝑘𝑖 ) and
that for dissimilar pair (𝐺𝑞𝑖 ,𝐺𝑘 𝑗

).

𝐺𝑘𝑖

𝐺𝑞𝑖

𝐺𝑘𝑗

generate
r-ego 

subgraphs

graph 
encoder

distributionally robust 
Network proximity

Figure 1: Subgraphs generated from the same node (colored
in red) are similar, and from different nodes are dissimilar
(red v.s. blue). To learn a robust encoder, we fix the keys, i.e.
𝐺𝑘𝑖 and 𝐺𝑘 𝑗

, and focus on the most difficult query 𝐺𝑞𝑖 (solid
red line) instead of random queries (dashed red lines).

Compared to prior works, our approach is robust in two senses.

Firstly, we expand the embedding space and exploit Wasserstein

distance as the network proximity. Sampling subgraphs is a stan-

dard step for modern large-scale graph analysis. In this paper, we

propose to use structural embeddings defined on subgraphs crawl-

ing around the nodes of interest, i.e. the comprehensive informa-

tion gathered from the center nodes and their neighbors. We use

the structural embeddings, which are sets of node embeddings, to

explicitly capture the subtle difference between subgraphs. More

specifically, we characterize the non-linear and non-local relation-

ships between these embeddings by Wasserstein distance. Of note,

we propose to utilize an automatic differentiable solver to compute

the Wasserstein distance, which leads to an end-to-end trainable

network. Secondly, we focus on the most ambiguously similar pairs,

which leads to our formulation insensitive to data distributions.

For example, sampling techniques and their parameters may in-

troduce fluctuation concerning the distribution of subgraphs. We

propose an asymptotically distributionally robust contrastive learn-

ing framework, which is reluctant to distribution shift and easy for

computation.
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In the following, we first formalize our self-supervised GNN and

the associated network proximity in §3.1. Then, in §3.2 we propose

our distributionally robust contrastive learning framework and for-

mulate an asymptotic scenario to make the problem tractable. At

last, in §3.3 we introduce an end-to-end trainable neural network

featured by a differentiable implicit layer to compute the Wasser-

stein distance. We summarize the full algorithm and discuss some

details in §3.4.

Notations: we use the bold capital and bold lowercase symbols

to represent matrices and vectors. 𝑨 ≥ 0 denotes all elements of

a matrix 𝑨 are greater than or equal to 0. 𝐺 = {𝑉 , 𝐸} is a graph,
𝑉 is the node set, and 𝐸 is the edge set. A 𝑛 × 𝑛-identity matrix is

denoted by I𝑛 , 1𝑛 is a 𝑛-dimension one vector, and 0 denotes a zero

matrix.

3.1 Self-Supervised Graph Neural Network via
Wasserstein Proximity

We adopt the 𝑟 -ego network [33] to represent the local structure of

node 𝑖 , defined as follow,

Definition. 𝒓-ego network [33] For graph 𝐺 = (𝑉 , 𝐸), the 𝑟 -
neighbors of a node 𝑣 ∈ 𝑉 are defined asN𝑣 = {𝑢 |𝑑 (𝑢, 𝑣) ≤ 𝑟 }, where
𝑑 (𝑢, 𝑣) is the shortest path length between node 𝑢 and 𝑣 . The 𝑟 -ego
network of 𝑣 , denoted by 𝐺𝑣 , is the subgraph induced by N𝑣 .

𝑟 -ego networks can be augmented via graph sampling techniques,

e.g. random walks with restart [42]. We consider two subgraphs

via augmenting the same node 𝑖 , denoted as𝐺𝑞𝑖 and𝐺𝑘𝑖 , and other

subgraphs from different nodes { 𝑗} ⊂ 𝑉 , denoted as {𝐺𝑘 𝑗
}. In

instance discrimination learning, each 𝑟 -ego network is viewed as

a distinct instance. Therefore, 𝐺𝑞𝑖 and all 𝐺𝑘 𝑗
are considered to be

similar, and𝐺𝑞𝑖 and𝐺𝑘𝑖 are considered to be dissimilar. Specifically,

𝐺𝑞𝑖 is referred to as the query, and the elements in the set {𝐺𝑘 𝑗
} ∪

{𝐺𝑘𝑖 } are referred to as the keys.
Our self-supervised GNN are then encouraged to maximize the

margin between similar instances and dissimilar instances. We

define 𝑓𝑞, 𝑓𝑘 : 𝑉 × S → Y, where S is the augmentation func-

tion space and Y is the embedding space. 𝑓𝑞 (·) and 𝑓𝑘 (·) map an

augmentation of a node to the query embeddings and the key em-

beddings respectively, and for simplicity we omit the augmentation

function. Let 𝑑𝑔 : Y × Y → R be a network proximity function,

then 𝑑𝑔
(
𝑓𝑞 (𝑖), 𝑓𝑘 ( 𝑗)

)
represents the proximity between query node

𝑖 and key node 𝑗 . Finally, let ℓ𝑑 (·) be the objective function for

our self-supervised graph neural network, which is defined on the

proximity between a group of nodes and detailed in the following.

Prior works usually defines Y ⊆ R𝑛 , i.e. a 𝑛-dimension vector

space. In this paper, we propose to enlarge the capacity of the

embedding space by defines Y ⊆ R𝑛×𝑚 . The computation of our

method is illustrated in Fig. 2.

In the sampling framework, the node representations are com-

puted on the induced subgraph instead of the full graphs, in which

potential bias is introduced due to the perturbation in the sam-

pled 𝑟 -ego subgraph 𝐺𝑖 . To address this problem, an alternative

method is to expand the node representations to subgraph repre-
sentations which allows some uncertainty. More specifically, we

use an embedding set for 𝑟 -ego subgraph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ), instead
of the fixed vector representation. Let 𝒚𝑖𝑐 be the embedding for

GIN𝐺𝑗1

𝐺𝑖1

GIN𝐺𝑗2

𝐺𝑖2

GIN𝐺𝑗𝐶

𝐺𝑖𝐶

𝐺𝑗

𝐺𝑖 𝒴𝑖

𝒴𝑗

Wasserstein 
Distance

subgraph embeddings

Figure 2: The 𝑟 -ego subgraphs surrounding the nodes of inter-
est are fed into the structural GNN to obtain the embedding
sets. Wasserstein distance is then computed as the network
proximity.

a node 𝑣𝑖𝑐 ∈ 𝐺𝑖 , the embedding set for 𝐺𝑖 can be denoted as

Y𝑖 = {𝒚𝑖𝑐 |𝑐 = 1, 2, . . . ,𝐶} with 𝐶 be the cardinality of 𝑉𝑖 . To learn

an embedding set, we can use a two-stage subgraphs sampling on

top of a general graph neural network backbone: given the node

𝑖 , in the first stage, we sample 𝐺𝑖 to obtain 𝑉𝑖 , and in the second

stage we sample 𝐺𝑖 = {𝐺𝑖𝑐 |𝑐 = 1, 2, . . . ,𝐶}. All 𝐺𝑖𝑐 are fed into the

backbone model and the node embeddings are gathered to form a

subgraph embedding.

The embedding sets are composed of multiple node represen-

tations therefore having better representation abilities and larger

capacity for capturing the subtle difference in sampled subgraphs.

The network proximity defined on the embedding sets can be inter-

preted as a matching problem. We adopt the 1-Wasserstein distance

to evaluate the difference between Y and
˜Y,

W
(
Y, ˜Y

)
= min

𝑥𝑖 𝑗

𝐶∑︁
𝑖, 𝑗=1

𝑥𝑖 𝑗𝑐 (𝒚𝑖 , 𝒚̃ 𝑗 ), 𝑐 (𝒚𝑖 , 𝒚̃ 𝑗 ) = 1 −
𝒚⊺
𝑖
𝒚̃ 𝑗

|𝒚𝑖 | |𝒚̃ 𝑗 |
, (1)

here 𝑥𝑖 𝑗 is a match and we reserve the constraints concerning

𝑥𝑖 𝑗 for the next section. The cost function 𝑐 (𝒚𝑖 , 𝒚̃ 𝑗 ) measures the

dissimilarity between 𝒚𝑖 and 𝒚̃ 𝑗 .

3.2 (Asymptotically) Distributionally Robust
Contrastive Learning

3.2.1 Distributionally Robust Contrastive Learning. : The support
of the embeddings Y𝑖 for node 𝑖 is exactly the feasible set for 𝑟 -

ego subgraphs𝐺𝑖 . Prior works consider an empirical expectation

form for the objective functions. However, as aforementioned, the

distributions of 𝑟 -ego subgraphs are presumably affected by the

specific sampling method. Local structures potentially lead to signif-

icantly different distributions for 𝑟 -ego subgraphs, and an example

is given in Fig. 3. As such, it may introduce bias into the learned

global information. To avoid this bias, robustness is desired for our

self-supervised graph neural networks.

In this paper, we focus on the difficult queries instead of equally

treating all queries. Specifically, for given keys and candidate 𝑟 -ego

subgraphs, we only consider the most difficult query, defined as the
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P=0.2

P=0.5

P=0.3

P=0.3

P=0.3

P=0.4

r-ego subgraphs

sampler 1 sampler 2

distribution

Figure 3: An example shows the distribution of 𝑟-ego sub-
graphs are determined by the sampling methods. The node
of interest is colored in red, and three possible subgraphs are
shaded in different colors (middle column). Under different
sampling techniques (e.g. altering the backward jump prob-
ability in random walks), the distribution of subgraphs are
presumably different (right column).

one that has the worst similarity with the matched key. Formally,

we define,

L = min

𝑓𝑞 ,𝑓𝑘
max

𝐺𝑞𝑖

− 1

𝑁

𝑁∑︁
𝑖=1

log

1

Z exp

(
W𝜋𝑖

(
𝐺𝑞𝑖 ,𝐺𝑘𝑖

) )
, (2)

hereW𝜋𝑖 is Wasserstein distance dependent on a data-related con-

strain 𝜋𝑖 whose details will be discussed in the next section.Z is a

normalization term,

Z = exp

(
W𝜋𝑖

(
𝐺𝑞𝑖 ,𝐺𝑘𝑖

) )
+

𝑚∑︁
𝑗=1

exp

(
W𝜋 𝑗

(
𝐺𝑞𝑖 ,𝐺𝑘 𝑗

))
. (3)

We refer (2) as the distributionally robust contrastive learning, be-
cause a contrastive objective is adopted and the it can be represented

as a distributionally robust optimization (DRO) problem.

The distributionally robust formulation is weakly related to the

support of the embedding set Y𝑖 . Rather, compared to the expecta-

tion form, it directly constrains the most diverse match between the

query and key. This property assures the learned model is robust to
distribution shift caused by either the sampling methods for 𝑟 -ego

subgraphs or the data difference.

3.2.2 Asymptotically Distributionally Robust Contrastive Learning.
: The DRO problem defined by (2) can be solved via the duality

form. In detail, a feasible method is to solve the inner maximal

problem and the outer minimal problem alternatively, for example,

the projected gradient descent in adversarial training. However,

in our case the inner problem is difficult and the reasons are two-

folded. Firstly, the closed-form solution is difficult to derive, due to

the complexity of the subgraph distributions and the computation

of the Wasserstein distance. Secondly, the graph data are structural

and discrete, which means that gradient-based methods cannot be

immediately adopted. To overcome the challenge, we propose an

asymptotic relaxation.

For simplicity, let ℓ𝑤 (𝐺𝑞𝑖 ) = log
1

Z exp

(
W𝜋𝑖

(
𝐺𝑞𝑖 ,𝐺𝑘𝑖

) )
. We

re-write (2) as follow,

max

𝐺𝑞𝑖

ℓ𝑤 (𝐺𝑞𝑖 ) =
∑︁ (
I𝑖 (𝐺𝑞𝑖 )ℓ𝑤 (𝐺𝑞𝑖 )

)
(4)

here I𝑖 (𝐺𝑞𝑖 ) is an indicator function,

I𝑖 (𝐺𝑞𝑖 ) =

1, 𝐺𝑞𝑖 = argmax

𝐺𝑞𝑖

ℓ𝑤 (𝐺𝑞𝑖 )

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

Problem (2) is transformed into an integer optimization problem.

To make the problem tractable, we relax I𝑖 (𝐺𝑞𝑖 ) with ℎ𝑖 (𝐺𝑞𝑖 ),

ℎ𝑖 (𝐺𝑞𝑖 ) =
(
1 + exp

(
1

𝜏

(
ˆW𝑖 −W𝜋𝑖

(
𝐺𝑞𝑖 ,𝐺𝑘𝑖

) )))−1
, (5)

here 𝜏 is a temperature parameter,
ˆW𝑖 is threshold indicating the

maximal Wasserstein distance. The relaxation is referred to as

asymptotically Distributional robustness because when 𝜏 → 0 and

ˆW𝑖 → max𝐺𝑞𝑖
W𝜋𝑖

(
𝐺𝑞𝑖 ,𝐺𝑘𝑖

)
, ℎ𝑖 (𝐺𝑞𝑖 ) converges to the distribu-

tionally robust objective.
ˆW𝑖 can be empirically estimated and

updated during the optimization, and the details are given in §3.4.

3.3 Computing Wasserstein Distance via Deep
Implicit Layer

(2) involves the computation of the 1-Wasserstein distance between

the queries and the keys, which can be formulated as a linear pro-

gramming problem,

W𝜋𝑖 (𝐺1,𝐺2) = min

𝑥𝑖 𝑗

∑︁
𝑖

∑︁
𝑗

𝑐𝑖 𝑗𝑥𝑖 𝑗 , (6)

𝑠 .𝑡 . 𝑥𝑖 𝑗 ≥ 0,
∑︁
𝑖

𝑥𝑖 𝑗 = 𝑠 𝑗 ,
∑︁
𝑗

𝑥𝑖 𝑗 = 𝑑𝑖 , ∀𝑖, 𝑗,

here 𝑐𝑖 𝑗 , 𝑠 𝑗 and 𝑑𝑖 are parameters computed from the embeddings,

which can be viewed as functions defined on some input 𝜽 . In our

case, 𝜽 can be interpreted as the embeddings and other model pa-

rameters. Directly integrating (6) in our deep model will lead to

intractable gradients. To solve this challenged problem, we resort

to a deep implicit layer encoding the Wasserstein distance compu-

tation. A deep implicit layer exploits the (Karush–Kuhn–Tucker)

KKT conditions to solve a convex problem with the parameters

fixed, and computes the gradients w.r.t. 𝜽 using the implicit func-

tion theorem. As such, we can build a deep neural network by

integrating the graph encoder and the Wasserstein layer, which

can solve (6) and can be trained in an end-to-end manner. For self-

containedness, the detailed derivation of the deep implicit layer

encoding the Wasserstein distance is given in the following.

Let 𝑁 =𝑚 × 𝑛, 𝑓 (𝒙, 𝜽 ) = 𝒄⊺𝒙 , 𝒙 ∈ R𝑁 , and the 𝑘-th entry is 𝑥𝑖 𝑗

with 𝑖 = ⌊𝑘/𝑛⌋ and 𝑗 = 𝑘 mod 𝑛. 𝒄 : 𝚯 → R𝑁 is the vectorized

form of the cost function. We first re-write (6) as,

W𝜋𝑖 (𝐺1,𝐺2) = min 𝑓 (𝒙, 𝜽 ), (7)

𝑠 .𝑡 . 𝐺 (𝜽 )𝒙 ≤ 0, ℎ(𝒙, 𝜽 ) = 0,

here 𝐺 (𝜽 ) = 𝑑𝑖𝑎𝑔 (−1), and 𝑑𝑖𝑎𝑔 (·) maps the given vector to a

diagonal matrix. Let 𝒔 ∈ R𝑚 and 𝒅 ∈ R𝑛 be the vectorized 𝑠 𝑗 (𝜽 )
and 𝑑𝑖 (𝜽 ). ℎ(𝒙, 𝜽 ) = 𝑨𝒙 − [𝒔, 𝒅], where [𝒔, 𝒅] is the concatenation
of 𝒔 and 𝒅. 𝑨 ∈ R𝑁×(𝑛+𝑚) arranges the linear constraints, , defined
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as,

𝑨 =


1

. . .

1
𝑑𝑖𝑎𝑔 (1) · · · 𝑑𝑖𝑎𝑔 (1)


. (8)

(7) is a constrained convex problem. Let 𝒗 and𝝀 be the dual variables

for the equalities and inequalities in the constraints, its Lagrangian

is,

𝐿 (𝒙, 𝒗,𝝀, 𝜽 ) = 𝒄⊺𝒙 + 𝝀𝐺 (𝜽 )𝒙 + 𝒗ℎ(𝒙, 𝜽 ) . (9)

It is easy to verify that (7) satisfies the Slater’s condition and the

twice differentiability. As such, the KKT conditions of (9) are the

necessary and sufficient optimality conditions for (7). More specifi-

cally, define𝑔 (𝒙, 𝒗,𝝀, 𝜽 ) = [∇𝒙𝐿(𝒙, 𝒗,𝝀, 𝜽 ), 𝑑𝑖𝑎𝑔(𝝀)𝐺 (𝜽 )𝒙, ℎ(𝒙, 𝜽 )]⊺.
If 𝑔(𝒛̃, 𝜽 ) = 0 for some 𝒛̃ = (𝒙̃, 𝒗̃, ˜𝝀) where 𝒙̃ and 𝒗̃ are both feasible,

then the KKT conditions are satisfied and 𝒙̃ is optimal. We can

compute the partial Jacobian regarding 𝒛 (omitting the last two

columns) and 𝜽 as,

𝐷𝒛𝑔(𝒛̃, 𝜽 ) =


𝐷𝒙∇𝒙𝐿(𝒛̃, 𝜽 )
𝑑𝑖𝑎𝑔( ˜𝝀)𝐷𝒙𝐺 (𝜽 )𝒙̃

𝐷𝒙ℎ(𝒙, 𝜽 )

 , 𝐷𝜽𝑔(𝑧, 𝜃 ) =


𝐷𝜃∇𝒙𝐿(𝒛̃, 𝜽 )
𝑑𝑖𝑎𝑔( ˜𝝀)𝐷𝜃𝐺 (𝜽 )𝒙̃

𝐷𝜃ℎ(𝒙, 𝜽 )

 .
(10)

The following theorem characterizes the differentiability of con-

vex optimization.

Theorem 1. (Differentiability of a Convex Optimization Prob-
lem [4]) Given a convex problem, assume (1) Slater condition holds,
(2) all derivative exists, (3) {𝑖 |𝜆𝑖 = 0 and 𝑓𝑖 (𝑥,𝜃 )} = ∅, and (4)
𝐷𝒙𝑔(𝒙, 𝒗,𝝀, 𝜽 ) is non-singular. If 𝑔(𝒙̃, 𝒗̃, ˜𝝀, 𝜽 ) = 0, the solution map-
ping has a single-valued localization 𝑠 around 𝒙̃, 𝒗̃, ˜𝝀 that is continu-
ously differentiable in a neighborhood Q of 𝜽 with Jacobian satisfying,
𝐷𝜽 𝑠 (𝜽 ) = −𝐷𝒛𝑔(𝒙̃, 𝒗̃, ˜𝝀, 𝜽 )−1𝐷𝜽𝑔(𝒙̃, 𝒗̃, ˜𝝀, 𝜽 ) for every 𝜽 ∈ Q.

Remark. Theorem 1 is an immediate result from the Implicit Func-
tion Theorem [23]. Recall that in our problem, 𝜽 are the embeddings of
subgraphs. Theorem 1 states that the gradient w.r.t. 𝜽 can be computed
according to (10). In other words, backward propagation is feasible.

3.4 Algorithm and Implementation
The first stage of sampling is based on neighbor sampling, and the

second stage is based on random walk with restart. To accelerate

the training, we use the one-hop neighbors in the first stage. We

use Graph Isomorphism Network (GIN) as the backbone model in

our structural GNN. For the Wasserstein distance, let 𝒖 and 𝒗 be

two embedding sets, 𝑠 𝑗 in (6) is defined by,

𝑠 𝑗 =
𝐶𝑠 𝑗∑𝐶
𝑖=1 𝑠 𝑗

, where 𝑠 𝑗 = max

{
𝐶∑︁
𝑘=1

𝒖⊺
𝑗
𝒗𝑘 , 0

}
, (11)

and 𝑑𝑖 is defined similarly. We initialize
ˆW𝑖 and 𝜏 in (5) with 0

and 3 respectively.
ˆW𝑖 is estimated dynamically and 𝜏 is gradually

decreasing during training. The full algorithm is summarized in

Algo. 1.

Our implementation is based on the DGL package
1
and Opt-

Net [2], which is designed for solving quadratic programming (QP)

1
https://docs.dgl.ai/index.html

Algorithm 1: Distributionally Robust Self-Supervised

Graph Neural Network

Input: Graph 𝐺 , key size 𝐶

Output: Model Parameter𝑊

1 Initialize 𝜏 , ˆW𝑖 ;

2 while epoch not end do
3 for 𝑖 ∈ 𝑉 do
4 Sample 𝑟 -ego subgraphs, 𝐺𝑞𝑖 and 𝐺𝑘𝑖 ;

5 Sample 𝑟 -ego subgraphs, 𝐺𝑘 𝑗
, 𝑗 = 1, 2, . . . ,𝐶 ;

6 Update𝑊 w.r.t. (4) and (5), ;

7 ˆW𝑖 ← 0.999 ×max

{
ˆW𝑖 ,W𝜋𝑖

(
𝐺𝑞𝑖 ,𝐺𝑘𝑖

)}
;

8 𝜏 ← 0.999 × 𝜏 ;
9 end

10 end

problems. Specifically, the backward propagation is accomplished

via automatic differentiation through a customized QP solver
2
. To

tailor our problem to fit into OptNet, we only need to substitute

the objective function 𝒄⊺𝒙 with a quadratic form
1

2
(𝒄⊺𝒙)2, and

the above derivation remains untouched. It is easy to verify that

the surrogate quadratic objective has the same optimums as the

original linear programming problem (6).

4 EXPERIMENTAL RESULTS
In this section, we evaluate our approach for downstream graph

analysis, which includes two steps. We first pre-train the model

using several large-scale graph datasets. Then we finetune the pre-

trained model according to the specific tasks. In §4.1 we describe

the pre-training setting of our robust self-supervised graph neural

network. In §4.2 we detail the finetuning and evaluate our approach

on three standard downstream benchmarks via comparing the per-

formance with related baselines. In §4.3 we conduct the ablation

study to demonstrate the effectiveness of our design.

4.1 Training Self-Supervised Graph Neural
Network

We follow the experimental setting in GCC [33] and use six graph

datasets from NetRep [34] and SNAP [3, 52] covering academic

graphs and social networks. In detail, we use Academia and two

DBLP datasets for academic graphs, and Facebook, IMDB, and

LiveJournal datasets for social networks. The statistics of the pre-

training datasets are summarized in Table 1.

For our robust self-supervised method, we adopt a 5-layer 64-

hidden-units GIN as the backbone model. We use one-hop neigh-

borhood sampling with 5 neighbors in the first stage, and a random

walk with restart probability 0.8 in the second stage. The query

encoder is trained using Adam optimizer with learning rate of 0.001,

𝛽1 = 0.5, 𝛽2 = 0.999, and 𝜖 = 10
−8
. We use the momentum contrast

(MoCo) method [19] to update the key encoders. The mini-batch

size is 32, and the dictionary size is 16,384. The momentum is set

to 0.9. The pre-train takes 50,000 steps and the learning rate is de-

cayed by
1

10
in step 10,000 and step 30,000. We include two versions

2
https://github.com/locuslab/qpth

https://docs.dgl.ai/index.html
https://github.com/locuslab/qpth
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of our approach, proposedΔ which omits the distributional robust

consideration, and proposed which is the full approach.

4.2 Downstream Analysis
We consider three standard benchmark tasks for graph learning

algorithms, i.e. node classification, graph classification, and top-k

similarity search. Through the experiments, we use GCC [33] and

its variants as the self-supervised baselines. Supervised baselines

are detailed in the associated experiments to be discussed in the

following.

4.2.1 Node Classification. : In this task, we predict the unknown

node labels in a partially labeled network. We adopt US-Airport and

H-index as the benchmark datasets. US-Airport contains the airline

activity levels among 1190 airports. H-index is an academic dataset

indicating the distribution of the h-index of authors extracted from

OAG [58]. We use the pre-trained query encoder to extract features

and a logistic regression classifier to make the final prediction.

Specifically, we finetune the query encoder and the classifier for 90

epochs using a batch size of 128.

We consider ProNE [60], GraphWave [12], and Struct2Vec [14]

as supervised baselines. The cardinality of subgraphs sets is 5. The

results are presented in Table 2. For node classification, we find the

pre-trained graph neural networks are superior to the supervised

models. For example, our model outperforms the best supervised

baseline, Struc2Vec, by up to 2.7. Compared to self-supervised base-

lines, our algorithm shows improvement with better stability for

different datasets. The distributional robust consideration also im-

proves the model performance significantly.

4.2.2 Graph Classification. : In this task, we predict the labels

for graphs. We consider five datasets [51], including IMDB-Binary

(IMDB-B), IMDB-Multi (IMDB-M), COLLAB, Reddit Binary (RDT-

B), and Reddit-Multi5k (RDT-M). We finetune the pre-trained en-

coder and a classifier parallel to the node classification. The main

difference is that we use the full graphs instead of 𝑟 -ego networks.

We consider DGK [51], Graph2Vec [29], InfoGraph [38], DGCNN [61],

and GIN [50] as supervised baselines. The results are presented in

Table 3. Of note, our approach consistently outperforms the self-

supervised baselines on most datasets. For COLLAB, our approach

is competitive to the best-performing self-supervised baselines.

Meanwhile, our method is also competitive to the supervised base-

lines. For example, our method has the same performance with the

best-performing baseline, GIN, on IMDB-B, and is also very close

on IMDB-M. In COLLAB, our model surpasses the best performing

supervised baseline by a large margin.

4.2.3 Top-k Similarity Search. : Given two graphs, the top-k sim-

ilarity search attempts to find the most similar vertices in one

graph for the vertices in the other graphs. We adopt the co-author

graphs [59] of K-I (KDD v.s. ICDM) S-C (SIGIR v.s. CIKM), and

S-I (SIGMOD v.s. ICDE) and define the ground truth similarity as

the common authors in both conferences. We use top-10 accuracy,

i.e. HITS@10 as the performance measurements. Of note, this is

an unsupervised task, and we use the pre-trained model without

finetuning. The baseline methods include random guess, RolX [20],

Panther++ [59], and GraphWave [12]. The results are presented in

Table 4. Compared to the in-place methods, such as Panther++, the

self-supervised methods show competitive performances. Particu-

larly, the proposed method show improvements compared to the

state-of-the-art self-supervised methods.

4.3 Ablation Studies

NS 4 NS 5 RWR 0.6 RWR 0.7 RWR 0.8

89.0

89.5

90.0

90.5

91.0

Ac
cu

ra
cy

 %

RDT-B

Figure 4: The model performance under different subgraph
distributions. We test five different sampling settings for
the second stage: for neighborhood sampling with different
neighbor size, we consider NS 4 and NS 5; for random walk
with restart with different restart probability, we consider
RWR 0.6, RWR 0.7 and RWR 0.8. The results are based on
10-fold validation accuracy on RDT-B. Our model performs
similar under different settings, which indicates our method
is robust to distribution shift.

4.3.1 Model Robustness. : To evaluate the distributional robust-

ness with the presence of distribution shift,we consider different

sampling settings for building the structural embeddings, and the

results are summarized in Fig. 4. We test five different sampling

settings for the second stage: for neighborhood sampling with dif-

ferent neighbor size, we consider NS 4 and NS 5; for random walk

with restart with different restart probability, we consider RWR 0.6,

RWR 0.7 and RWR 0.8. The results are based on 10-fold validation

accuracy on RDT-B. Different sampling settings will lead to differ-

ent subgraph distributions. The results show that our method is

insensitive to the choice of sampling settings.
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Figure 5: Model performance v.s. sampling size.

4.3.2 Cardinality of Embedding Set. : The first sampling stage in

computing our structural embeddings is neighborhood sampling,

and in the above experiments, we consider 5 neighbors within one-

hop for each node of interest. In this section, we alter the value of𝐶 ,
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Table 1: The statistic for the pre-training datasets. Among these datasets, Academia, DBLP-SNAP, and DBLP-NetRep are
academic datasets, and the rest are social networks.

Dataset Academia DBLP-SNAP DBLP-NetRep IMDB Facebook LiveJournal

# nodes 137,969 317,080 540,486 896,305 3,097,165 4,843,953

# edges 739,384 2,099,732 30,491,458 7,565,894 47,334,788 85,691,368

Table 2: Node Classification Results.

Dataset US-Airport H-index

# nodes 1190 5000

# edges 13,599 44,020

ProNE 62.3 69.1

GraphWave 60.2 70.3

Struc2vec 66.2 −
GCC-E2E 65.3 77.7

GCC-MoCo 65.8 76.1

GCC-rand
∗

63.6 77.2

GCC-E2E
∗

68.4 78.8

GCC-MoCo
∗

66.5 80.9

Proposed
Δ

68.1 80.7

Proposed 68.9 81.2

Table 3: Graph Classification Results.

Dataset IMDB-B IMDB-M COLLAB RDT-B RDT-M

# graphs 1000 1500 5000 2000 5000

# classes 2 3 3 2 5

avg.# nodes 19.8 13.0 74.5 429.6 508.5

DGK 67.1 44.7 73.4 78.0 40.8

Graph2Vec 71.1 50.2 − 76.9 48.2

InfoGraph 73.3 50.1 − 83.1 53.5

GCC-E2E 71.5 49.3 74.8 86.9 53.1

GCC-MoCo 72.4 49.3 79.0 90.1 53.4

DGCNN 70.2 48.0 73.7 − −
GIN 75.6 51.5 80.2 89.4 54.5

GCC-rand
∗

75.5 51.0 78.6. 87.9 52.0

GCC-E2E
∗

71.2 47.6 79.1 86.1 48.6

GCC-MoCo
∗

73.3 50.5 81.1 88.0 53.2

Proposed
Δ

74.9 53.0 80.7 89.9 55.4

Proposed 75.6 53.1 81.2 90.4 55.9

the cardinality of the embedding set, to show its relationship with

the model performance. The results are summarized in Fig. 5. The

results show that with the growth of the neighbor size, the model

performance first increases then stay stable. The cardinality used

in this paper is chosen to balance the computational efficiency and

the performance.

4.3.3 Computational Time. : Our approach outperforms related

baselines in several representative graph-related tasks. A potential

disadvantage is that our approach requires longer computational

time compared to related pretraining graph methods. Table. 5 de-

scribes the pretraining time for the baseline GCC and our approach

using different subgraph size (denoted by superscripts). It can be

Table 4: Top-k Similarity Search (𝑘 = 40). Best-performing
self-supervisedmethods are bold faced. Best performing non-
self-supervised methods are denoted by ∗.

Dataset K-I S-C S-I

|V| 2607 3548 2559

|E| 4774 7076 6668

# ground truth 697 874 898

Random 0.0566 0.0447 0.0521

RolX 0.1288 0.0984 0.1309

Panther++ 0.1558 0.1185∗ 0.1320

GraphWave 0.1693∗ 0.0995 0.1470∗

GCC-E2E 0.1564 0.1247 0.1336

GCC-MoCo 0.1521 0.1178 0.1425

Proposed 0.1588 0.1191 0.1439

Table 5: The comparison of per-step time for the baseline
and our method using different subgraph size (denoted by
superscripts).

Method Time (ms)

GCC MoCo 4.31

Proposed
3

5.87

Proposed
4

5.93

Proposed
5

6.16

observed that our approach takes moderately longer training time

than GCC [33], and the per-step time is positive correlated with

the size of subgraphs.

5 CONCLUSION
In this paper, we propose a robust self-supervised graph neural net-

work. We design structural embeddings to explicitly represent both

the nodes of interest and their neighbors and utilize 1-Wasserstein

distance to characterize network proximity.We formulate an asymp-

totically distributionally robust contrastive learning framework,

which is reluctant to distributional shift. We exploit a differen-

tiable optimization framework to compute the network proximity,

which makes our model end-to-end trainable. The experimental

results demonstrate that our approach outperforms state-of-the-art

baselines in various downstream graph analyses and our design is

effective in improving model robustness.
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