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ABSTRACT

The self-supervised graph representation learning has achieved
much success in recent web based research and applications, such
as recommendation system, social networks, and anomaly detec-
tion. However, existing works suffer from two problems. Firstly, in
social networks, the influential neighbors are important, but the
overwhelming routine in graph representation-learning utilizes
the node-wise similarity metric defined on embedding vectors that
cannot exactly capture the subtle local structure and the network
proximity. Secondly, existing works implicitly assume a universal
distribution across datasets, which presumably leads to sub-optimal
models considering the potential distribution shift. To address these
problems, in this paper, we learn structural embeddings in which
the proximity is characterized by 1-Wasserstein distance. We pro-
pose a distributionally robust self-supervised graph neural network
framework to learn the representations. More specifically, in our
method, the embeddings are computed based on subgraphs center-
ing at the node of interest and represent both the node of interest
and its neighbors, which better preserves the local structure of
nodes. To make our model end-to-end trainable, we adopt a deep
implicit layer to compute the Wasserstein distance, which can be
formulated as a differentiable convex optimization problem. Mean-
while, our distributionally robust formulation explicitly constrains
the maximal diversity for matched queries and keys. As such, our
model is insensitive to the data distributions and has better general-
ization abilities. Extensive experiments demonstrate that the graph
encoder learned by our approach can be utilized for various down-
stream analyses, including node classification, graph classification,
and top-k similarity search. The results show our algorithm outper-
forms state-of-the-art baselines, and the ablation study validates
the effectiveness of our design.
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1 INTRODUCTION

Many real-world web based research and applications involve struc-
tural data which can be represented using graphs, such as social
networks [28], natural languages [25], etc. Graph Neural Networks
(GNNs) [10, 13, 16, 16, 17, 22, 50, 52, 53] have shown superior per-
formance in learning graph embeddings from structured web data,
and the effectiveness has been verified by many downstream tasks,
e.g. text processing [35, 49], fraud detection [54], recommendation
systems [56, 62], and social network link prediction [39, 47]. For
example, textGNN [63] extends the twin tower model to employ
the user interactions in natural language understanding [44]; in
anomaly detection, attention-based GNNs allow users to deduce
the root cause of a detected anomaly [11]; in recommendation sys-
tems [31], interest aware message-passing can avoid the influence
of high-order neighbors with no common interest of a user [24].
By far, most works focus on the analysis for one single graph
or a fixed set of graphs. Recently, self-supervised graph represen-
tation learning achieved some success both in research and many
real web applications [64]. The data sparsity problem is common
due to cost of collecting and labelling the data. On the other hand,
many problems require domain knowledge, and traditional unsu-
pervised methods lack clear guidance in model designing. Given
the success of transfer learning in other machine learning areas,
a natural question is the feasibility of generalizable, transferrable,
and robust graph representation learning. Inductive representation
learning [17] is one of the early works that notice the generalization
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of GNNs to “unseen” nodes during the learning. Graph Contrastive
Coding [33], inspired by the success of contrastive learning, takes
one step further to consider the transferability of GNNs. Inspired
by self-supervised GNN, there is also evidence showing that the
robustness of representations can be enhanced by graph augmen-
tations [55]. At a high level, the prevailing self-supervised GNN
pipeline learns the node embeddings via characterizing their lo-
cal patterns (i.e. subgraphs centered at the nodes of interest) and
makes use of the instance discrimination [48] framework to learn
the relationships between these embeddings. There are some suc-
cess attempts to apply self-supervised learning to real problems.
For example, in recommendation systems, the quality of users and
items representations from historical interactions is central to the
success of collaborative filtering. Via incorporating item contents
into the learning scheme, the contrastive-based methods can en-
forces dimension-wise similarity between feature representation
and collaborative embedding, which avoid some noise edges, such
as the irrelevant interaction of users with a large bulk of items. With
the dramatic social media boom, the social recommender system
can find the high-order connectivity information from the social
influential users using self-supervised methods [56]. and capture
the behavior of users even for those having few interactions with
items. In fraud detection in finance and spammer discovery in social
media, the hop-count distribution is different for anonymous nodes
and normal nodes, and predicting shortest path length between a
pair of nodes using self-supervised learning methods can provide
some evidence to anomaly detection [54].

Although the success of aforementioned self-supervised methods
in social networks and related applications, several important prob-
lems remain to address. Firstly, the node representation learned in
most existing self-supervised methods is focused on the node-wise
proximity, and the proximity of local structures is less considered.
Secondly, the local consistency of the users are seldom consid-
ered, which is related to distribution shift. Sub-graph sampling
techniques are widely exploited in the training of GNNs as a con-
sequence of the size of modern large-scale graph data. However,
additional distribution shifts would be introduced by different sub-
graph sampling techniques, while prior works implicitly assume
that the data distribution is universal for different sources. The
distributional shift potentially deteriorates the generalization and
transferability. These problems urge network proximity defined on
the embedding of local structures and invoke an explicit considera-
tion on the distributional robustness of the self-supervised GNNs.

To address the aforementioned challenging problems, in this pa-
per, we proposed a novel distributionally robust graph contrastive
learning framework, dubbed learning structural embeddings. In con-
trast to existing works that focus on the node-wise proximity, our
method learns the local-structural level proximity via gathering
an embedding set describing both a node and its neighbors, i.e. a
subgraph surrounding the node of interest. The difference between
two nodes is then characterized via the Wasserstein distance de-
fined on the distribution of nodes of corresponding subgraphs. To
alleviate the distributional shift, we further design a distributionally
robust contrastive learning framework by constraining the maximal
inconsistency for similar subgraphs. The Wasserstein distance to
measure the proximity for self-supervised learning is considerably
challenging in computation because the contrastive loss function
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based on the Wasserstein distance becomes a difficult bi-level opti-

mization problem. In this paper, we employ a differentiable implicit

layer to deal with the Wasserstein distance, making our framework
end-to-end trainable. Our contributions are summarized as follows:

e We propose new graph embeddings at a local-structural level via

learning the embedding sets for the subgraphs, which are com-

posed of the nodes of interest and their neighbors. The Wasser-
stein distance is adopted as the network proximity.

We introduce a distributionally robust contrastive learning frame-

work. To circumvent the difficult minimax problem, the original

problem is relaxed to an asymptotic formulation. We resort to the
differentiable optimization methods to compute the Wasserstein
distance, which makes the full network end-to-end trainable.

o Extensive experiments are conducted on various tasks and repre-
sentative datasets. The results demonstrate that our algorithm
outperforms other state-of-the-art methods in several important
downstream analysis. The ablation study validates the effective-
ness of our approach.

1.1 Notations

Throughout the paper, the bold capital and bold lowercase symbols
are used to represent matrices and vectors, respectively. If all ele-
ments of a matrix A are greater than or equal to 0, we denote it by
A > 0. We use G = {V, E} to represent a graph. Here V is the node
set, and E is the edge set. Finally, a n X n-identity matrix is denoted
by I, 1, is a n-dimension one vector, and 0 denotes a zero matrix.

2 RELATED WORKS
2.1 Graph Representation Learning

Graph representation learning is featured by mining the topologi-
cal structures of graphs and encoding nodes with low-dimensional
embeddings. Representative works, including Word2Vec [26], Deep-
Walk [32], and LINE [41], collect local patterns and learn mappings
from graphs to vectors. To capture the highly non-linear property of
attributed graphs, Deep Attribute Embedding Network (DANE) [15]
upgrades the shallow models in the aforementioned model to deep
networks.

There are increasing interest in GNN [22], which is developed
from graph convolution and can simultaneously exploit the struc-
tural knowledge and the enriched side information in attribute
graphs. GCN [22] shows the superiority of the first-order graph
convolution for semi-supervised node classification. GraphSage [17,
52, 53] and Message Passing Neural Network (MPNN) [16] broaden
the application of GNNs to the analysis for large-scale graphs via a
more efficient aggregation mechanism. Graph Attention Network
(GAN) [45] introduces the attention mechanism which is shown
to be effective in general network analysis. recently, the relation
between GNNs and graph isomorphism problem is studied, based
on which Graph Isomorphism Network (GIN) [50] is designed.

In this paper we use GIN as the backbone models in our self-
supervised graph neural networks.

2.2 Graph Contrastive Learning

Recently, contrastive learning has attracted a surge of attention in
a machine learning community. A typical scheme is to select an
anchor, a positive instance, and a negative instance, and maximize
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the margin between the similar pair (anchor v.s. positive) and the
negative pair (anchor v.s. negative). Instance discrimination [48] is
a popular self-supervised framework that achieves state-of-the-art
performance in many computer vision tasks, for example, Sim-
CLR [8] and SimCLRv2 [9].

Graph contrastive learning requires different objectives due to
the unique data structure, such as Jensen-Shannon estimator [38,
46], the noise-contrastive estimation (NCE) [55] and parametric
estimation method using projection head [18]. To generate graph
views, different augmentation methods are proposed. One of the
most commom method is node attribute masking [55] which ap-
plies the feature transformations. For a given graph, edge perturba-
tion [33, 55] can randomly adds or drops edges. Another direction
is sampling-based transformation. For example, ego-nets sampling,
such as in DGI [46], InfoGraph [38] and MVGRL [18], can be viewed
as the unification of the contrast between graph-level and node-
level representations.

In this work, we adopt the InfoNCE loss [30] and instance dis-
crimination [48] methods, which are demonstrated to have good
performance in graph pre-training [33].

2.3 Network Proximity

There are several perspectives concerning the definition for the
proximity between different nodes in networks. A variety of works
are based on the neighborhood similarity computed locally from the
neighborhood of the vertices, for example, Jaccard similarity and
cosine similarity. On the other hand, the structural similarity con-
sider the similarity w.r.t. local patterns. Models of this genre include
structural diversity [43], motif [5, 27], and spectral methods [12]. A
more fine-grained definition [41] considers the first-order proxim-
ity, second-order proximity, and high-order proximity. GraRep [6]
considers the connectivity between different nodes via explicitly
constructing the probability transition matrix. Alternatively, Deep-
Walk [32] explores the connectivity and the local pattern via ran-
dom walk with restart. For attribute graphs, GNN [22] and its
variants [45, 52] are powerful tools to leverage the side information
in computing network proximity. Another related topic to the net-
work proximity is the graph matching problem, where a principally
similar idea to the graph neural network is developed. The repre-
sentative works in this direction include the Weisfeiler-Lehman
Isomorphism Test [36] and the related graphlet methods [37].

2.4 Deep Implicit Layers

Deep neural networks are heavily dependent on the gradient-based
optimization, e.g. Momentum Stochastic Gradient Descent [40] and
Adam [21]. However, constrained optimization is seldom integrated
into deep neural networks due to the difficulty of the automatic
differentiation concerning the boundary.

Recently, neural ordinary differential equations [7] provides a
new interpretation for the residual neural layers, which states that
each residual layer can be viewed as one differential operation.
Inspired by this perspective, it is shown that deep neural networks
can be utilized to solve convex constrained problems, referred to
as differentiable optimization [1]. OptNet [2] is an initial study,
in which a special deep layer is designed to solve quadratic pro-
gramming problems. Of note, in regular tasks, the parameters in
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the convex constrained problems of interest usually are computed
using the outputs from preceding layers. An important result of
the deep implicit layer is that the gradient of the parameters can
be computed using the implicit function theorem.

In this paper, we use Wasserstein distance to characterize the
node proximity, which can be formulated as a linear programming
problem. Given the success of deep earth move distance in few-
shot learning [57], we adopt the deep implicit layer to compute
Wasserstein distance, which admits a fully end-to-end graph neural
network.

3 PROPOSED METHOD

At a high level, we sample subgraphs spanned from a node and learn
the embeddings via a graph encoder to capture the local pattern.
Each node is an individual class and the similarity of subgraphs is
characterized by the network proximity defined on the embeddings.
Figure 1 illustrates the pipeline of our approach. We consider a

subgraph triplet (qu, (Gg,;» ij)), in which Gy, and Gy, are from
the same node and Gy, is from a different one. We encourage a
large margin between the proximity for similar pair (Gg;, Gg,) and
that for dissimilar pair (Gg;, ij).
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Figure 1: Subgraphs generated from the same node (colored
in red) are similar, and from different nodes are dissimilar
(red v.s. blue). To learn a robust encoder, we fix the keys, i.e.
Gy, and Gk, and focus on the most difficult query Gy, (solid
red line) instead of random queries (dashed red lines).

Compared to prior works, our approach is robust in two senses.
Firstly, we expand the embedding space and exploit Wasserstein
distance as the network proximity. Sampling subgraphs is a stan-
dard step for modern large-scale graph analysis. In this paper, we
propose to use structural embeddings defined on subgraphs crawl-
ing around the nodes of interest, i.e. the comprehensive informa-
tion gathered from the center nodes and their neighbors. We use
the structural embeddings, which are sets of node embeddings, to
explicitly capture the subtle difference between subgraphs. More
specifically, we characterize the non-linear and non-local relation-
ships between these embeddings by Wasserstein distance. Of note,
we propose to utilize an automatic differentiable solver to compute
the Wasserstein distance, which leads to an end-to-end trainable
network. Secondly, we focus on the most ambiguously similar pairs,
which leads to our formulation insensitive to data distributions.
For example, sampling techniques and their parameters may in-
troduce fluctuation concerning the distribution of subgraphs. We
propose an asymptotically distributionally robust contrastive learn-
ing framework, which is reluctant to distribution shift and easy for
computation.



WWW ’22; April 25-29, 2022, Virtual Event, Lyon, France

In the following, we first formalize our self-supervised GNN and
the associated network proximity in §3.1. Then, in §3.2 we propose
our distributionally robust contrastive learning framework and for-
mulate an asymptotic scenario to make the problem tractable. At
last, in §3.3 we introduce an end-to-end trainable neural network
featured by a differentiable implicit layer to compute the Wasser-
stein distance. We summarize the full algorithm and discuss some
details in §3.4.

Notations: we use the bold capital and bold lowercase symbols
to represent matrices and vectors. A > 0 denotes all elements of
a matrix A are greater than or equal to 0. G = {V, E} is a graph,
V is the node set, and E is the edge set. A n X n-identity matrix is
denoted by I, 1, is a n-dimension one vector, and 0 denotes a zero
matrix.

3.1 Self-Supervised Graph Neural Network via
Wasserstein Proximity

We adopt the r-ego network [33] to represent the local structure of
node i, defined as follow,

DEFINITION. r-ego network [33] For graph G = (V,E), the r-
neighbors of a nodev € V are defined as Ny = {u|d(u,v) < r}, where
d(u,v) is the shortest path length between node u and v. The r-ego
network of v, denoted by Gy, is the subgraph induced by Ny,.

r-ego networks can be augmented via graph sampling techniques,
e.g. random walks with restart [42]. We consider two subgraphs
via augmenting the same node i, denoted as G4, and Gy, and other
subgraphs from different nodes {j} C V, denoted as {Gy;}. In
instance discrimination learning, each r-ego network is viewed as
a distinct instance. Therefore, Gy, and all Gy, are considered to be
similar, and Gg; and Gy, are considered to be dissimilar. Specifically,
Gy, is referred to as the guery, and the elements in the set {ij} U
{G, } are referred to as the keys.

Our self-supervised GNN are then encouraged to maximize the
margin between similar instances and dissimilar instances. We
define f, fx : VxS — Y, where S is the augmentation func-
tion space and Y is the embedding space. fz(+) and fi(-) map an
augmentation of a node to the query embeddings and the key em-
beddings respectively, and for simplicity we omit the augmentation
function. Let dj : Y X Y — R be a network proximity function,
then dy (f7 (i), fx.(j)) represents the proximity between query node
i and key node j. Finally, let £;(-) be the objective function for
our self-supervised graph neural network, which is defined on the
proximity between a group of nodes and detailed in the following.

Prior works usually defines Y C R", i.e. a n-dimension vector
space. In this paper, we propose to enlarge the capacity of the
embedding space by defines Y C R™™. The computation of our
method is illustrated in Fig. 2.

In the sampling framework, the node representations are com-
puted on the induced subgraph instead of the full graphs, in which
potential bias is introduced due to the perturbation in the sam-
pled r-ego subgraph G;. To address this problem, an alternative
method is to expand the node representations to subgraph repre-
sentations which allows some uncertainty. More specifically, we
use an embedding set for r-ego subgraph G; = (V;, E;), instead
of the fixed vector representation. Let y;. be the embedding for
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Figure 2: The r-ego subgraphs surrounding the nodes of inter-
est are fed into the structural GNN to obtain the embedding
sets. Wasserstein distance is then computed as the network
proximity.

a node vjc € Gj, the embedding set for G; can be denoted as
Yi ={yiclc = 1,2,...,C} with C be the cardinality of V;. To learn
an embedding set, we can use a two-stage subgraphs sampling on
top of a general graph neural network backbone: given the node
i, in the first stage, we sample G; to obtain Vj, and in the second
stage we sample G; = {Gic|c = 1,2,...,C}. All G, are fed into the
backbone model and the node embeddings are gathered to form a
subgraph embedding.

The embedding sets are composed of multiple node represen-
tations therefore having better representation abilities and larger
capacity for capturing the subtle difference in sampled subgraphs.
The network proximity defined on the embedding sets can be inter-
preted as a matching problem. We adopt the 1-Wasserstein distance
to evaluate the difference between Y and Y,

C T
_21 iy q1o JiY
“W(M,y) —n}rcll}jnu xije(yi, 9;),  c(yi9j) =1 AR (1)
ij=1 yilly;

here x;; is a match and we reserve the constraints concerning
x;j for the next section. The cost function c(y;, ;) measures the
dissimilarity between y; and g;.

3.2 (Asymptotically) Distributionally Robust
Contrastive Learning

3.2.1 Distributionally Robust Contrastive Learning. : The support
of the embeddings Y; for node i is exactly the feasible set for r-
ego subgraphs G;. Prior works consider an empirical expectation
form for the objective functions. However, as aforementioned, the
distributions of r-ego subgraphs are presumably affected by the
specific sampling method. Local structures potentially lead to signif-
icantly different distributions for r-ego subgraphs, and an example
is given in Fig. 3. As such, it may introduce bias into the learned
global information. To avoid this bias, robustness is desired for our
self-supervised graph neural networks.

In this paper, we focus on the difficult queries instead of equally
treating all queries. Specifically, for given keys and candidate r-ego
subgraphs, we only consider the most difficult query, defined as the
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Figure 3: An example shows the distribution of r-ego sub-
graphs are determined by the sampling methods. The node
of interest is colored in red, and three possible subgraphs are
shaded in different colors (middle column). Under different
sampling techniques (e.g. altering the backward jump prob-
ability in random walks), the distribution of subgraphs are
presumably different (right column).

one that has the worst similarity with the matched key. Formally,
we define,

q:ﬁ{ G'Ii N

here Wy, is Wasserstein distance dependent on a data-related con-
strain s; whose details will be discussed in the next section. Z is a
normalization term,

N
1 1
L = min max —— E log — exp (Wy. (Gg.,Gr.)), 2
£ gz p( ”l( qi kl)) ()

m
Z = exp (Wr, (Gg;» Gk,)) + Z exp (‘W,,j (qu, ij)) . (3)
j=1
We refer (2) as the distributionally robust contrastive learning, be-
cause a contrastive objective is adopted and the it can be represented
as a distributionally robust optimization (DRO) problem.

The distributionally robust formulation is weakly related to the
support of the embedding set Y;. Rather, compared to the expecta-
tion form, it directly constrains the most diverse match between the
query and key. This property assures the learned model is robust to
distribution shift caused by either the sampling methods for r-ego
subgraphs or the data difference.

3.2.2  Asymptotically Distributionally Robust Contrastive Learning.
: The DRO problem defined by (2) can be solved via the duality
form. In detail, a feasible method is to solve the inner maximal
problem and the outer minimal problem alternatively, for example,
the projected gradient descent in adversarial training. However,
in our case the inner problem is difficult and the reasons are two-
folded. Firstly, the closed-form solution is difficult to derive, due to
the complexity of the subgraph distributions and the computation
of the Wasserstein distance. Secondly, the graph data are structural
and discrete, which means that gradient-based methods cannot be
immediately adopted. To overcome the challenge, we propose an
asymptotic relaxation.

For simplicity, let £,,(Gg;) = log % exp (Wr; (Gg;» Gy,)). We
re-write (2) as follow,
max £y (Gg,) = ), (1i(Gg,) w(Gg))) @

qi
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here [;(Gg, ) is an indicator function,

1, Gy, = arg max tw(Gg;)

]Ii(qu) = { i

0, otherwise

Problem (2) is transformed into an integer optimization problem.
To make the problem tractable, we relax I;(Gg,) with h;(Gg,),

-1
hi(Gq;) = (1 +exp (% ((Vi/z - Wy, (qu»Gk,-)))) > (5)

here 7 is a temperature parameter, W is threshold indicating the
maximal Wasserstein distance. The relaxation is referred to as
asymptotically Distributional robustness because when 7 — 0 and
W; - maxg, Wr, (Gg;, G,), hi(Gg;) converges to the distribu-
tionally robust objective. ‘W can be empirically estimated and
updated during the optimization, and the details are given in §3.4.

3.3 Computing Wasserstein Distance via Deep
Implicit Layer
(2) involves the computation of the 1-Wasserstein distance between

the queries and the keys, which can be formulated as a linear pro-
gramming problem,

Wy, (G1,G2) = mi iiXii, 6
n,( 1 2) rgcliljrlZ;Cuxlj ()
s.t. xjj 20, inJ':Sj, inj=di, Vi, Jj,
i J

here ¢;j, s; and d; are parameters computed from the embeddings,
which can be viewed as functions defined on some input 6. In our
case, 0 can be interpreted as the embeddings and other model pa-
rameters. Directly integrating (6) in our deep model will lead to
intractable gradients. To solve this challenged problem, we resort
to a deep implicit layer encoding the Wasserstein distance compu-
tation. A deep implicit layer exploits the (Karush-Kuhn-Tucker)
KKT conditions to solve a convex problem with the parameters
fixed, and computes the gradients w.r.t. 6 using the implicit func-
tion theorem. As such, we can build a deep neural network by
integrating the graph encoder and the Wasserstein layer, which
can solve (6) and can be trained in an end-to-end manner. For self-
containedness, the detailed derivation of the deep implicit layer
encoding the Wasserstein distance is given in the following.

Let N=mXn, f(x,0) =cTx,x € RN and the k-th entry is x;;
withi = [k/n] and j = k mod n. ¢ : ® — RN is the vectorized
form of the cost function. We first re-write (6) as,

(Wﬂi (G], Gz) = minf(x’ 0)’ (7)
s.t. G(0)x <0, h(x,0)=0,

here G(0) = diag (-1), and diag (-) maps the given vector to a
diagonal matrix. Let s € R™ and d € R" be the vectorized s;(6)
and d;(0). h(x, 0) = Ax — [s,d], where [s, d] is the concatenation
of sand d. A € RN*(n+m) arranges the linear constraints, , defined
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as,

A= : ®)
1

diag (1) diag (1)

(7) is a constrained convex problem. Let v and A be the dual variables
for the equalities and inequalities in the constraints, its Lagrangian
is,

L(x,0,1,0) =cTx+AG(0)x +vh(x,0). 9)

It is easy to verify that (7) satisfies the Slater’s condition and the
twice differentiability. As such, the KKT conditions of (9) are the
necessary and sufficient optimality conditions for (7). More specifi-

cally, defineg (x,v, A, 0) = [Vngx, v,A,0),diag(A)G(0)x, h(x, 0)]7.

If g(z, 0) = 0 for some z = (X,0, 1) where x and @ are both feasible,
then the KKT conditions are satisfied and x is optimal. We can
compute the partial Jacobian regarding z (omitting the last two
columns) and 0 as,

DyxV«L(% 6) DyVxL(% 6)
D2g(2,0) = |diag(A)DxG(0)%|, Deg(z 0) = |diag(A)DpG(6)x| .
Dyh(x, 6) Dgh(x, 0)
(10)

The following theorem characterizes the differentiability of con-
vex optimization.

THEOREM 1. (Differentiability of a Convex Optimization Prob-
lem [4]) Given a convex problem, assume (1) Slater condition holds,
(2) all derivative exists, (3) {ilA; = 0and f;(x,0)} = 0, and (4)
Dyxg(x,v, A, 0) is non-singular. If g(x, 0, )1 0) = 0, the solution map-
ping has a single-valued localization s around x, 0, A that is continu-
ously differentiable in a neighborhood Q of @ with Jacobian satisfying,
Dgs(0) = —D,g(%,9, A 0)_1Dgg(5c, b, A, 0) forevery 0 € Q.

REMARK. Theorem 1 is an immediate result from the Implicit Func-
tion Theorem [23]. Recall that in our problem, 0 are the embeddings of
subgraphs. Theorem 1 states that the gradient w.r.t. @ can be computed
according to (10). In other words, backward propagation is feasible.

3.4 Algorithm and Implementation

The first stage of sampling is based on neighbor sampling, and the
second stage is based on random walk with restart. To accelerate
the training, we use the one-hop neighbors in the first stage. We
use Graph Isomorphism Network (GIN) as the backbone model in
our structural GNN. For the Wasserstein distance, let u and v be
two embedding sets, s; in (6) is defined by,

_ C

Cs;j

sj = CJ-A’ where§j:max{2u}vk,0}, (11)
2z 5 k=1

and d; is defined similarly. We initialize "Vi/, and 7 in (5) with 0
and 3 respectively. Wi is estimated dynamically and 7 is gradually
decreasing during training. The full algorithm is summarized in
Algo. 1.

Our implementation is based on the DGL package ! and Opt-
Net [2], which is designed for solving quadratic programming (QP)

Uhttps://docs.dgl.ai/index. html
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Algorithm 1: Distributionally Robust Self-Supervised
Graph Neural Network

Input: Graph G, key size C

Output: Model Parameter W
1 Initialize 7, WI’,

2 while epoch not end do

3 forieVdo

4 Sample r-ego subgraphs, G4, and Gy, ;

5 Sample r-ego subgraphs, ij, j=12,...,C;
6 Update W w.r.t. (4) and (5), ;

7 W, — 0.999 X max {Wi,wm (Ggss Gki)} ;
8 T 0.999 X 1;

9 end
10 end

problems. Specifically, the backward propagation is accomplished
via automatic differentiation through a customized QP solver 2. To
tailor our problem to fit into OptNet, we only need to substitute
the objective function ¢Tx with a quadratic form % (¢Tx)?, and
the above derivation remains untouched. It is easy to verify that
the surrogate quadratic objective has the same optimums as the
original linear programming problem (6).

4 EXPERIMENTAL RESULTS

In this section, we evaluate our approach for downstream graph
analysis, which includes two steps. We first pre-train the model
using several large-scale graph datasets. Then we finetune the pre-
trained model according to the specific tasks. In §4.1 we describe
the pre-training setting of our robust self-supervised graph neural
network. In §4.2 we detail the finetuning and evaluate our approach
on three standard downstream benchmarks via comparing the per-
formance with related baselines. In §4.3 we conduct the ablation
study to demonstrate the effectiveness of our design.

4.1 Training Self-Supervised Graph Neural
Network

We follow the experimental setting in GCC [33] and use six graph
datasets from NetRep [34] and SNAP [3, 52] covering academic
graphs and social networks. In detail, we use Academia and two
DBLP datasets for academic graphs, and Facebook, IMDB, and
LiveJournal datasets for social networks. The statistics of the pre-
training datasets are summarized in Table 1.

For our robust self-supervised method, we adopt a 5-layer 64-
hidden-units GIN as the backbone model. We use one-hop neigh-
borhood sampling with 5 neighbors in the first stage, and a random
walk with restart probability 0.8 in the second stage. The query
encoder is trained using Adam optimizer with learning rate of 0.001,
B1 =0.5, B2 = 0.999, and € = 108, We use the momentum contrast
(MoCo) method [19] to update the key encoders. The mini-batch
size is 32, and the dictionary size is 16,384. The momentum is set
to 0.9. The pre-train takes 50,000 steps and the learning rate is de-
cayed by 11—0 in step 10,000 and step 30,000. We include two versions

Zhttps://github.com/locuslab/qpth
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of our approach, proposed® which omits the distributional robust
consideration, and proposed which is the full approach.

4.2 Downstream Analysis

We consider three standard benchmark tasks for graph learning
algorithms, i.e. node classification, graph classification, and top-k
similarity search. Through the experiments, we use GCC [33] and
its variants as the self-supervised baselines. Supervised baselines
are detailed in the associated experiments to be discussed in the
following.

4.2.1 Node Classification. : In this task, we predict the unknown
node labels in a partially labeled network. We adopt US-Airport and
H-index as the benchmark datasets. US-Airport contains the airline
activity levels among 1190 airports. H-index is an academic dataset
indicating the distribution of the h-index of authors extracted from
OAG [58]. We use the pre-trained query encoder to extract features
and a logistic regression classifier to make the final prediction.
Specifically, we finetune the query encoder and the classifier for 90
epochs using a batch size of 128.

We consider ProNE [60], GraphWave [12], and Struct2Vec [14]
as supervised baselines. The cardinality of subgraphs sets is 5. The
results are presented in Table 2. For node classification, we find the
pre-trained graph neural networks are superior to the supervised
models. For example, our model outperforms the best supervised
baseline, Struc2Vec, by up to 2.7. Compared to self-supervised base-
lines, our algorithm shows improvement with better stability for
different datasets. The distributional robust consideration also im-
proves the model performance significantly.

4.2.2 Graph Classification. : In this task, we predict the labels
for graphs. We consider five datasets [51], including IMDB-Binary
(IMDB-B), IMDB-Multi IMDB-M), COLLAB, Reddit Binary (RDT-
B), and Reddit-Multi5k (RDT-M). We finetune the pre-trained en-
coder and a classifier parallel to the node classification. The main
difference is that we use the full graphs instead of r-ego networks.

We consider DGK [51], Graph2Vec [29], InfoGraph [38], DGCNN [61],

and GIN [50] as supervised baselines. The results are presented in
Table 3. Of note, our approach consistently outperforms the self-
supervised baselines on most datasets. For COLLAB, our approach
is competitive to the best-performing self-supervised baselines.
Meanwhile, our method is also competitive to the supervised base-
lines. For example, our method has the same performance with the
best-performing baseline, GIN, on IMDB-B, and is also very close
on IMDB-M. In COLLAB, our model surpasses the best performing
supervised baseline by a large margin.

4.2.3 Top-k Similarity Search. : Given two graphs, the top-k sim-
ilarity search attempts to find the most similar vertices in one
graph for the vertices in the other graphs. We adopt the co-author
graphs [59] of K-I (KDD wv.s. ICDM) S-C (SIGIR v.s. CIKM), and
S-I (SIGMOD v.s. ICDE) and define the ground truth similarity as
the common authors in both conferences. We use top-10 accuracy,
i.e. HITS@10 as the performance measurements. Of note, this is
an unsupervised task, and we use the pre-trained model without
finetuning. The baseline methods include random guess, RolX [20],
Panther++ [59], and GraphWave [12]. The results are presented in
Table 4. Compared to the in-place methods, such as Panther++, the
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self-supervised methods show competitive performances. Particu-
larly, the proposed method show improvements compared to the
state-of-the-art self-supervised methods.

4.3 Ablation Studies
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Figure 4: The model performance under different subgraph
distributions. We test five different sampling settings for
the second stage: for neighborhood sampling with different
neighbor size, we consider NS 4 and NS 5; for random walk
with restart with different restart probability, we consider
RWR 0.6, RWR 0.7 and RWR 0.8. The results are based on
10-fold validation accuracy on RDT-B. Our model performs
similar under different settings, which indicates our method
is robust to distribution shift.

4.3.1 Model Robustness. : To evaluate the distributional robust-
ness with the presence of distribution shift,we consider different
sampling settings for building the structural embeddings, and the
results are summarized in Fig. 4. We test five different sampling
settings for the second stage: for neighborhood sampling with dif-
ferent neighbor size, we consider NS 4 and NS 5; for random walk
with restart with different restart probability, we consider RWR 0.6,
RWR 0.7 and RWR 0.8. The results are based on 10-fold validation
accuracy on RDT-B. Different sampling settings will lead to differ-
ent subgraph distributions. The results show that our method is
insensitive to the choice of sampling settings.
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Figure 5: Model performance v.s. sampling size.

4.3.2 Cardinality of Embedding Set. : The first sampling stage in
computing our structural embeddings is neighborhood sampling,
and in the above experiments, we consider 5 neighbors within one-
hop for each node of interest. In this section, we alter the value of C,
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Table 1: The statistic for the pre-training datasets. Among these datasets, Academia, DBLP-SNAP, and DBLP-NetRep are

academic datasets, and the rest are social networks.

Dataset | Academia DBLP-SNAP DBLP-NetRep = IMDB

Facebook LiveJournal

# nodes
# edges

137,969
739,384

317,080
2,099,732

540,486
30,491,458

896,305 3,097,165 4,843,953
7,565,894 47,334,788 85,691,368

Table 2: Node Classification Results.

Dataset US-Airport H-index
# nodes 1190 5000
# edges 13,599 44,020
ProNE 62.3 69.1
GraphWave 60.2 70.3
Struc2vec 66.2 -
GCC-E2E 65.3 77.7
GCC-MoCo 65.8 76.1
GCC-rand* 63.6 77.2
GCC-E2E* 68.4 78.8
GCC-MoCo* 66.5 80.9
Proposed® 68.1 80.7
Proposed 68.9 81.2

Table 3: Graph Classification Results.

Dataset IMDB-B IMDB-M COLLAB RDT-B RDT-M
# graphs 1000 1500 5000 2000 5000
# classes 2 3 3 2 5
avg.# nodes 19.8 13.0 74.5 429.6  508.5
DGK 67.1 44.7 73.4 78.0 40.8
Graph2Vec 71.1 50.2 - 76.9 48.2
InfoGraph 73.3 50.1 - 83.1 53.5
GCC-E2E 71.5 49.3 74.8 86.9 53.1
GCC-MoCo 72.4 49.3 79.0 90.1 53.4
DGCNN 70.2 48.0 73.7 - -
GIN 75.6 51.5 80.2 89.4 54.5
GCC-rand* 75.5 51.0 78.6. 87.9 52.0
GCC-E2E* 71.2 47.6 79.1 86.1 48.6
GCC-MoCo* 73.3 50.5 81.1 88.0 53.2
ProposedA 74.9 53.0 80.7 89.9 55.4
Proposed 75.6 53.1 81.2 90.4 55.9

the cardinality of the embedding set, to show its relationship with
the model performance. The results are summarized in Fig. 5. The
results show that with the growth of the neighbor size, the model
performance first increases then stay stable. The cardinality used
in this paper is chosen to balance the computational efficiency and
the performance.

4.3.3 Computational Time. : Our approach outperforms related
baselines in several representative graph-related tasks. A potential
disadvantage is that our approach requires longer computational
time compared to related pretraining graph methods. Table. 5 de-
scribes the pretraining time for the baseline GCC and our approach
using different subgraph size (denoted by superscripts). It can be

Table 4: Top-k Similarity Search (k = 40). Best-performing
self-supervised methods are bold faced. Best performing non-
self-supervised methods are denoted by *.

Dataset K-1 S-C S-1

V] 2607 3548 2559

IE| 4774 7076 6668

# ground truth 697 874 898
Random 0.0566 0.0447 0.0521
RolX 0.1288 0.0984 0.1309
Panther++ 0.1558 0.1185* 0.1320
GraphWave 0.1693* 0.0995 0.1470*
GCC-E2E 0.1564 0.1247 0.1336
GCC-MoCo 0.1521 0.1178 0.1425
Proposed 0.1588 0.1191 0.1439

Table 5: The comparison of per-step time for the baseline
and our method using different subgraph size (denoted by
superscripts).

Method Time (ms)
GCC MoCo 431
Proposed? 5.87
Proposed* 5.93
Proposed® 6.16

observed that our approach takes moderately longer training time
than GCC [33], and the per-step time is positive correlated with
the size of subgraphs.

5 CONCLUSION

In this paper, we propose a robust self-supervised graph neural net-
work. We design structural embeddings to explicitly represent both
the nodes of interest and their neighbors and utilize 1-Wasserstein
distance to characterize network proximity. We formulate an asymp-
totically distributionally robust contrastive learning framework,
which is reluctant to distributional shift. We exploit a differen-
tiable optimization framework to compute the network proximity,
which makes our model end-to-end trainable. The experimental
results demonstrate that our approach outperforms state-of-the-art
baselines in various downstream graph analyses and our design is
effective in improving model robustness.
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