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Abstract

The Lovász hinge is a convex surrogate recently proposed for structured binary classification,
in which k binary predictions are made simultaneously and the error is judged by a
submodular set function. Despite its wide usage in image segmentation and related problems,
its consistency has remained open. We resolve this open question, showing that the Lovász
hinge is inconsistent for its desired target unless the set function is modular. Leveraging a
recent embedding framework, we instead derive the target loss for which the Lovász hinge
is consistent. This target, which we call the structured abstain problem, allows one to
abstain on any subset of the k predictions. We derive two link functions, each of which are
consistent for all submodular set functions simultaneously.

1. Introduction

Structured prediction addresses a wide variety of machine learning tasks in which the error of
several related predictions is best measured jointly, according to some underlying structure
of the problem, rather than independently (Gao and Zhou, 2011; Hazan et al., 2010; Osokin
et al., 2017; Tsochantaridis et al., 2005). This structure could be spatial (e.g., images and
video), sequential (e.g., text), combinatorial (e.g., subgraphs), or a combination of the above.
As traditional target losses such as 0-1 loss measure error independently, more complex
target losses are often introduced to capture the joint structure of these problems.

As with most classification-like settings, optimizing a given discrete target loss is typically
intractable. We therefore seek surrogate losses which are both convex, and thus efficient
to optimize, and statistically consistent, meaning they actually solve the desired problem.
Another important factor in structured prediction is that the number of possible labels
and/or target predictions is often exponentially large. For example, in the structured
binary classification problem, one makes k simultaneous binary predictions, yielding 2k

possible labels. In these settings, it is crucial to find a surrogate whose prediction space is
low-dimensional relative to the relevant parameters.

In general, however, we lack surrogates satisfying all three desiderata: convex, consistent,
and low-dimensional (McAllester, 2007; Nowozin, 2014). One promising low-dimensional
surrogate for structured binary classification, the Lovász hinge, achieves convexity via the
well-known Lovász extension for submodular set functions (Yu and Blaschko, 2018). Despite
the fact that this surrogate and its generalizations (Berman et al., 2018) have been widely
used, e.g. in image segmentation and processing (Athar et al., 2020; Chen et al., 2020; Neven
et al., 2019), its consistency has thus far not been established.
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Using the embedding framework of Finocchiaro et al. (2022), we show the inconsistency
of Lovász hinge for structured binary classification (§ 4). Our proof relies on first determining
what the Lovász hinge is actually consistent for: the structured abstain problem, a variation
of structured binary prediction in which one may abstain on a subset of the predictions
(§ 3). For reasons similar to classification with an abstain option (Bartlett and Wegkamp,
2008; Ramaswamy et al., 2018), this problem may be of interest to the structured prediction
community. Finally, while the embedding framework shows that a calibrated link must exist,
in our case actually deriving such a link is nontrivial. In § 5 we derive two complementary
link functions, both of which are calibrated simultaneously for all submodular set functions
parameterizing the problem.

2. Background

2.1. Notation

See Tables 1 and 2 in § A for full tables of notation. Throughout, we consider predictions
over k binary events, yielding n = 2k total outcomes, with each label y ∈ Y = {−1, 1}k.
Predictions are generically denoted r ∈ R; we often take R = Y, or consider predictions
v ∈ V := {−1, 0, 1}k or u ∈ R

k. Loss functions measure these predictions against the
observed label y ∈ Y. In general, we denote a discrete loss ℓ : R × Y → R+ and surrogate
L : Rk × Y → R+. We also occasionally restrict a loss L to a domain S ⊆ R and define
L|S : (u, y) 7→ L(u, y) for all u ∈ S.

Let [k] := {1, . . . , k}. When translating from vector functions to set functions, it is
often useful to use the shorthand {u ≤ c} := {i ∈ [k] | ui ≤ c} for u ∈ R

k, c ∈ R, and
similarly for other set comprehensions. Additionally, for any S ⊆ [k], we let ✶S ∈ {0, 1}k

with (✶S)i = 1 ⇐⇒ i ∈ S be the 0-1 indicator for S. Let Sk denote the set of permutations
of [k]. For any permutation π ∈ Sk, and any i ∈ {0, 1, . . . , k}, define ✶π,i = ✶{π1,...,πi}, where

✶π,0 = 0 ∈ R
k.

For u, u′ ∈ R
k, the Hadamard (element-wise) product u⊙u′ ∈ R

k given by (u⊙u′)i = uiu
′
i

plays a prominent role. We extend ⊙ to sets in the natural way; e.g., for U ⊆ R
k and

u′ ∈ R
k, we define U ⊙ u′ = {u⊙ u′ | u ∈ U}.

We often decompose elements of u ∈ R
k by their sign and absolute value. To this end, we

define sign : Rk → V to be the (element-wise) sign of u, and use the function sign∗ : Rk → Y
to denote an arbitrary function that agrees with sign when |ui| 6= 0 and break ties arbitrarily
at 0. We let |u| ∈ R

k
+ be the element-wise absolute value |u|i = |ui|, and frequently use the

fact that |u| = u⊙ sign∗(u) = u⊙ sign(u). We define u = sign(u) ⊙ min(|u|,✶) to “clip” u
to [−1, 1]k. Finally, we denote ((u)+)i = max(ui, 0).

2.2. Submodular functions and the Lovász extension

A set function f : 2[k] → R is submodular if for all S, T ⊆ [k] we have f(S) + f(T ) ≥
f(S ∪T ) +f(S ∩T ). If this inequality is strict whenever S and T are incomparable, meaning
S 6⊆ T and T 6⊆ S, then we say f is strictly submodular. A function is modular if the
submodular inequality holds with equality for all S, T ⊆ [k]. The function f is increasing if
we have f(S ∪ T ) ≥ f(S) for all disjoint S, T ⊆ [k], and strictly increasing if the inequality
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is strict whenever T 6= ∅. Finally, we say f is normalized if f(∅) = 0. Let Fk be the class
of set functions f : 2[k] → R which are submodular, increasing, and normalized.

The structured binary classification problem is given by the following discrete loss
ℓf : R × Y → R, with R = Y,

ℓf (r, y) = f({r ⊙ y < 0}) = f({i ∈ [k] | ri 6= yi}) . (1)

In words, ℓf measures the joint error of the k predictions by applying f to the set of
mispredictions, i.e., indices corresponding to incorrect predictions. For the majority of the
paper, we will consider f ∈ Fk. In particular, we will make the natural assumption that f is
increasing: making an additional error cannot decrease error. The assumption that f be
normalized is without loss of generality.

A classic object related to submodular functions is the Lovász extension to R
k (Lovász,

1983), which is known to be convex when (and only when) f is submodular (Bach, 2013,
Proposition 3.6). For any permutation π ∈ Sk, define Pπ = {x ∈ R

k
+ | xπ1

≥ · · · ≥ xπk
}, the

set of nonnegative vectors ordered by π. The Lovász extension of a normalized set function
f : 2[k] → R can be formulated in several equivalent ways (Bach, 2013, Definition 3.1).

F (x) = max
π∈Sk

k
∑

i=1

xπi
(f({π1, . . . , πi}) − f({π1, . . . , πi−1})) . (2)

Given any x ∈ R
k
+, the argmax in eq. (2) is the set {π ∈ Sk | x ∈ Pπ}, i.e., the set of all

permutations that order the elements of x. For any π ∈ Sk such that x ∈ Pπ, we may
therefore write

F (x) =
k
∑

i=1

xπi
(f({π1, . . . , πi}) − f({π1, . . . , πi−1})) . (3)

For any f ∈ Fk, let F be the Lovász extension of f . Yu and Blaschko (2018) define the
Lovász hinge as the loss Lf : Rk × Y → R+ given as follows.

Lf (u, y) = F
(

(✶ − u⊙ y)+
)

. (4)

The Lovász hinge is proposed as a surrogate for the structured binary classification problem
in eq. (1), using the link sign∗ to map surrogate predictions u ∈ R

k back to the discrete
report space R = Y. From eq. (2), the Lovász extension is polyhedral (piecewise-linear and
convex) as a maximum of a finite number of affine functions. Hence Lf is a polyhedral loss
function.

Immediately from the definition, the fact that ⊙ is symmetric, and x 7→ x ⊙ y is an
involution for any y ∈ Y, we have the following.

Lemma 1 For all u ∈ R
k and y, y′ ∈ Y, Lf (u, y) = Lf (u⊙ y′, y ⊙ y′).

2.3. Specific submodular functions

To illustrate the above definitions, we provide several examples. For the first, consider the
case where f is modular. Modular set functions can be parameterized by any w ∈ R

k
+,
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so that fw(S) =
∑

i∈S wi. In this case ℓf reduces to weighted Hamming loss, and Lf to
weighted hinge, the consistency of which is known (Gao and Zhou, 2011, Theorem 15).

Lfw(u, y) = max
π∈Sk

k
∑

i=1

((1 − u⊙ y)+)πi
(f({π1, . . . , πi}) − f({π1, . . . , πi−1}))

=
k
∑

i=1

(1 − uiyi)+(wi) . (5)

For another example, consider f0-1 given by f0-1(∅) = 0 and f0-1(S) = 1 for S 6= ∅. Here
the Lovász hinge reduces to

Lf0-1(u, y) = max
π∈Sk

k
∑

i=1

((1 − u⊙ y)+)πi
(f({π1, . . . , πi}) − f({π1, . . . , πi−1}))

= max
i∈[k]

(1 − uiyi)+ . (6)

In fact, Lf0-1 is equivalent to the BEP surrogate by Ramaswamy et al. (2018) for the
problem of multiclass classification with an abstain option. The target loss for this problem
is ℓ1/2 : [n] ∪ {⊥} × [n] → R+ defined by ℓ1/2(r, y) = 0 if r = y, 1/2 if r = ⊥, and 1 otherwise.
Here, the report ⊥ corresponds to “abstaining” if no label is sufficiently likely, specifically if
no y ∈ Y has py ≥ 1/2. The BEP surrogate is given by

L 1

2

(u, ŷ) =

(

max
j∈[k]

B(ŷ)juj + 1

)

+

(7)

where B : [n] → {−1, 1}k is an arbitrary injection. Substituting y = −B(ŷ) in eq. (7), and
moving the (·)+ inside, we recover eq. (6).

Lastly, consider the function fβ(S) = 1 − β|S| where β ∈ (0, 1) is a discount factor, as
proposed by Yu and Blaschko (2018) with the parameter − log β. The Lovász hinge for fβ
has the following form,

Lfβ (u, y) = max
π∈Sk

k
∑

i=1

((1 − u⊙ y)+)πi
(fβ({π1, . . . , πi}) − fβ({π1, . . . , πi−1}))

= (β−1 − 1) max
π∈Sk

k
∑

i=1

((1 − u⊙ y)+)πi
βi . (8)

As motivation for fβ , consider structured problems such as part-of-speech tagging and image
segmentation, where additional errors on a single instance (sentence or image) may not be
as dire as additional instances with errors. The “diminishing marginal return” behavior
of fβ will therefore guide an algorithm to improve predictions on instances for which it is
slightly wrong, and to de-prioritize intances for which it is extremely wrong; in other words,
it encourages the model to cut its losses.
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2.4. Property elicitation and calibration

When considering polyhedral (piecewise-linear and convex) losses, like the Lovász hinge (4),
Finocchiaro et al. (2022) show that indirect property elicitation is equivalent to statistical
consistency. Property elicitation is therefore an important tool to study consistent polyhedral
surrogates for a given discrete loss.

Definition 2 A property Γ : ∆Y → 2R \ {∅} is a function mapping distributions over
labels to reports. A loss L : R × Y → R+ elicits a property Γ if, for all p ∈ ∆Y ,

Γ(p) = arg min
r∈R

EY∼pL(r, Y ) .

Moreover, if EY∼pL(·, Y ) attains its infimum for all p ∈ ∆Y , we say L is minimizable, and
elicits some unique property, denoted prop[L].

Statistical consistency is a prerequisite for deriving excess risk bounds in empirical risk
minimization problems. Roughly, we say a surrogate L and link (mapping surrogate reports
u ∈ R

d to target reports) pair are consistent with respect to a target loss ℓ, if all possible
data distributions, any sequence of hypotheses approaching the L-optimal expected loss will
also approach the ℓ-optimal expected loss when the link is applied to each element of the
sequence. See (Finocchiaro et al., 2021) for a more thorough treatment.

In order to connect property elicitation to statistical consistency, we work through the
notion of calibration, which is equivalent to consistency in our setting (Bartlett et al., 2006;
Ramaswamy and Agarwal, 2016; Zhang, 2004). One desirable characteristic of calibration over
consistency is the ability to abstract features x ∈ X so that we can simply study the expected
loss over labels through the distribution p ∈ ∆Y . We often denote L(u; p) := EY∼pL(u, Y ),
and ℓ(r; p) := EY∼pℓ(r, Y ).

The definitions of consistency and calibration rely crucially on the existence of a link
function ψ : Rd → R mapping surrogate reports to the target prediction space. For example,
the sign link is a prominent link function for standard classification problems. Importantly,
calibration and consistency are defined by a surrogate and link pair. Even if a seemingly
natural link function is not calibrated for a target task alongside the surrogate, there may
be another link that is calibrated for the task.

Definition 3 Let ℓ : R × Y → R with |R| < ∞. A surrogate L : Rd × Y → R+ and link
ψ : Rd → R pair (L,ψ) is calibrated with respect to ℓ if for all p ∈ ∆Y ,

inf
u:ψ(u) 6∈prop[ℓ](p)

L(u; p) > inf
u∈Rd

L(u; p) .

2.5. The embedding framework

We will lean heavily on the embedding framework of Finocchiaro et al. (2019, 2022). Given a
discrete target loss, and a surrogate loss over R

k, an embedding maps target reports into R
k

so that the surrogate behaves the same as the target on the embedded points. The authors
show that every polyhedral surrogate embeds some discrete loss, and show that an embedding
implies consistency. To define embeddings, we first need a notion of representative sets,
which allows one to ignore some target reports that are in some sense redundant.
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Definition 4 We say S ⊆ R is representative with respect to the loss L if we have
arg minu L(u; p) ∩ S 6= ∅ for all p ∈ ∆Y .

Definition 5 (Embedding) The loss L : Rd × Y → R+ embeds a loss ℓ : R × Y → R+ if
there exists a representative set S for ℓ and an injective embedding ϕ : S → R

d such that (i)
for all r ∈ S and y ∈ Y we have L(ϕ(r), y) = ℓ(r, y), and (ii) for all p ∈ ∆Y , r ∈ S we have

r ∈ prop[ℓ](p) ⇐⇒ ϕ(r) ∈ prop[L](p) . (9)

Embeddings are intimately tied to polyhedral losses as they have finite representative
sets. Every discrete loss is embedded by some polyhedral surrogate (Finocchiaro et al., 2022,
Thm. 4). A central tool for the present work, however, is the converse: every polyhedral loss
embeds some discrete target loss, namely, its restriction to a finite representative set.

Theorem 6 ((Finocchiaro et al., 2022, Thm. 3, Prop. 1)) A loss L with a finite rep-
resentative set S embeds L|S . Moreover, every polyhedral L has a finite representative set.

A central contribution of the embedding framework is to simplify proofs of consistency.
In particular, if a surrogate L : Rk × Y → R+ embeds a discrete target ℓ : R × Y → R+,
then there exists a calibrated link function ψ : Rk → R such that (L,ψ) is consistent with
respect to ℓ. The proof is constructive, via the notion of separated link functions, a fact we
will make use of in § 5; specifically, see Theorem 17.

3. Lovász hinge embeds the structured abstain problem

As the Lovász hinge is a polyhedral surrogate, Theorem 6 states that it embeds some discrete
loss, which may or may not be the same as the intended target ℓf . As we saw in § 2.3,
one special case, Lf0-1 , reduces to the BEP surrogate for multiclass classification with an
abstain option, which implies that Lf cannot embed ℓf in general. In particular, whatever
Lf embeds, it must allow the algorithm to abstain in some sense. We formalize this intuition
by showing Lf embeds the discrete loss ℓfabs, a variant of structured binary classification
which allows abstention on any subset of the k labels. See § B for all omitted proofs.

3.1. The filled hypercube is representative

As a first step, we show that the filled hypercube R := [−1, 1]k is representative for Lf , and
use this fact to later find a finite representative set for Lf and apply Theorem 6. In fact,
we show the following stronger statement: surrogate reports outside the filled hypercube
[−1, 1]k are dominated on each outcome.

Lemma 7 For any u ∈ R
k, we have Lf (u, y) ≤ Lf (u, y) for all y ∈ Y.

Using this result, we may now simplify the Lovász hinge. When u ∈ [−1, 1]k, we simply have

Lf |R(u, y) = F (✶ − u⊙ y) , (10)

as ✶ − u⊙ y is nonnegative.
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3.2. Affine decomposition of Lf

We now give an affine decomposition of Lf on [−1, 1]k, which we use throughout. Recall
that for any π ∈ Sk we define Pπ = {x ∈ R

k
+ | xπ1

≥ · · · ≥ xπk
}. Letting Vπ = {✶π,i | i ∈

{0, . . . , k}} ⊂ V, we have Pπ = coneVπ, the conic hull of Vπ, meaning every x ∈ Pπ can be
written as a conic combination of elements of Vπ. For all i ∈ {0, . . . , k}, define the coefficients
αi : Rk+ → R as follows. For any x ∈ R

k
+, define α0(x) = 1 − x[1] ∈ R, αk(x) = x[k] ≥ 0, and

αi(x) = x[i] − x[i+1] ≥ 0 for i ∈ {1, . . . , k − 1}. Then

x =
k
∑

i=1

αi(x)✶π,i =
k
∑

i=0

αi(x)✶π,i , (11)

where we recall that ✶π,0 = 0 ∈ R
k. We have αi(x) ≥ 0 for all i ∈ {1, . . . , k}, so the

first equality gives the conic combination. In the case x[1] ≤ 1, we have αi(x) ≥ 0 for all

i ∈ {0, . . . , k}. Since
∑k
i=0 αi(x) = 1, in that case the latter equality in eq. (11) is a convex

combination. This yields Pπ ∩ [0, 1]k = convVπ.
It is clear from eq. (3) that F is affine on Pπ for each π ∈ Sk. We now identify the

regions within [−1, 1]k where Lf (·, y) is affine simultaneously for all outcomes y ∈ Y, using
these polyhedra and symmetry in y.

Motivated by the above, for any y ∈ Y and π ∈ Sk, define

Vπ,y = Vπ ⊙ y = {✶π,i ⊙ y | i ∈ {0, . . . , k}} ⊂ V , (12)

Pπ,y = conv (Vπ,y) = conv (Vπ) ⊙ y ⊂ [−1, 1]k . (13)

Since Vπ,y is a set of affinely independent vectors, each Pπ,y is a simplex. Observe that for
the case y = ✶, we have Pπ,✶ = Pπ ∩ [0, 1]k. Indeed, the other Pπ,y sets are simply reflections
of Pπ,✶, as we may write Pπ,y = Pπ,✶ ⊙ y. We now show that these regions union to the
filled hypercube [−1, 1]k, and Lf (·, y) is affine on Pπ,y for each y ∈ Y.

Lemma 8 The sets Pπ,y satisfy the following.

(i) ∪y∈Y,π∈Sk
Pπ,y = [−1, 1]k.

(ii) For all f ∈ Fk, y, y
′ ∈ Y, and π ∈ Sk, the function Lf (·, y′) is affine on Pπ,y.

3.3. Embedding the structured abstain problem

Leveraging the affine decomposition given above, we will now show that the finite set
V = {−1, 0, 1}k must be representative for Lf . By Theorem 6, it will then follow that Lf

embeds ℓfabs := Lf |V . As we describe below, we call ℓfabs the structured abstain problem
because the predictions v ∈ V allow one to “abstain” on an index i by setting vi = 0.

Lemma 9 Given a polyhedral loss function L : Rk × Y → R+, let C be a collection of
polyhedral subsets of Rk such that for all y ∈ Y, L(·, y) is affine on each Ci ∈ C, and denote
faces(Ci) as the set of faces of Ci. Let R = ∪C be the union of these polyhedral subsets.
Then for all p ∈ ∆Y , prop[L](p) ∩R = ∪F for some F ⊆ ∪ifaces(Ci).

Proposition 10 The set V = {−1, 0, 1}k is representative for Lf .
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Proof Let C = {Pπ,y|∀ π ∈ Sk, y ∈ Y} and R = ∪C = ∪π∈Sk,y∈YPπ,y = [−1, 1]k by
Lemma 8(i). Since every Pπ,y is affine w.r.t Lf according to Lemma 8(ii), we have by Lemma 9
∀p ∈ ∆Y , prop[L](p) ∩R = ∪F where F ⊆ ∪π,yfaces(Pπ,y). Yet, by the construction of Pπ,y,
every face contains some number of vertices from V . Therefore, ∀ p ∈ ∆Y , prop[L](p)∩V 6= ∅

which by definition means that V is representative for Lf .

Theorem 11 The Lovász hinge Lf embeds ℓfabs : V × Y → R+ given by

ℓfabs(v, y) = f({v ⊙ y < 0}) + f({v ⊙ y ≤ 0}) . (14)

Proof From Proposition 10 and Theorem 6, Lf embeds Lf |V . It therefore remains only to

establish the set-theoretic form of Lf |V as the loss ℓfabs in eq. (14).
Let v ∈ V, y ∈ Y be given. We may write

✶ − v ⊙ y = 0 · ✶{v⊙y>0} + 1 · ✶{v⊙y=0} + 2 · ✶{v⊙y<0} .

Now combining eq. (10) and Bach (2013, Prop 3.1(h)), we may therefore write

Lf (v, y) = F (✶ − v ⊙ y)

= (2 − 1)f({v ⊙ y < 0}) + (1 − 0)f({v ⊙ y < 0} ∪ {v ⊙ y = 0}) + 0f([k])

= f({v ⊙ y < 0}) + f({v ⊙ y ≤ 0}) ,

as was to be shown.

We can interpret ℓfabs as a structured abstain problem, where the algorithm is allowed to
abstain on a given prediction by giving a zero instead of ±1. Specifically, we can say the
algorithm abstains on the set of indices Av = {v = 0}.

To make this interpretation more clear, let r = sign∗(v), which is forced to choose a
label ±1 for each zero prediction. The corresponding set of mispredictions for fixed y ∈ Y
would be My = {r ⊙ y < 0}. We can rewrite eq. (14) in terms of these sets as ℓfabs(v, y) =

f(My \Av) + f(My ∪Av). Contrasting with ℓfabs(r, y) = 2f({r⊙ y < 0}) = f(My) + f(My),
the abstain option allows one to reduce loss in the first term at the expense of a sure loss in
the second term. Intuitively, when there is large uncertainty about the labels of a set of
indices A ⊆ [k], by submodularity the algorithm would prefer to abstain on A than take a
chance on predicting.

When relating to submodularity, we will often find it useful to rewrite the misprediction
set My above in terms of two sets of labels: Sv = {sign∗(v) > 0} and Sy = {y > 0}. Then
My = Sv△Sy, and thus

ℓfabs(v, y) = f(Sv△Sy \Av) + f(Sv△Sy ∪Av) , (15)

where △ is the symmetric difference operator S△T := (S \ T ) ∪ (T \S). To avoid additional
parentheses, throughout we assume △ has operator precedence over \, ∩, and ∪.

For r ∈ Y , we have ℓfabs(r, y) = 2ℓf (r, y), meaning ℓfabs matches (twice) ℓf on Y . Were the
“abstain” reports v ∈ V \Y dominated, then we would indeed have consistency. Following the
above intuition, however, we can show that whenever f is submodular but not modular, there
are situations where abstaining is uniquely optimal (relative to V), leading to inconsistency.
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4. Inconsistency for structured binary classification

Leveraging the embedded loss ℓfabs, we now show that Lf is inconsistent for its intended
target ℓf , except when f is modular. As the modular case is already well understood, under
the name weighted Hamming loss (§ 2.3), this result essentially says that Lf is inconsistent
for all nontrivial cases.

As Lf embeds ℓfabs, to show inconsistency we may focus on reports v ∈ V \ Y , i.e., those
that abstain on at least one index. Intuitively, if such a report is ever optimal, then Lf

with the link sign∗ has a “blind spot” with respect to the indices in Av := {v = 0}. We can
leverage this blind spot to “fool” Lf , by making it link to an incorrect report. In particular,
we will focus on the uniform distribution p̄ on Y, and perturb it slightly to find an optimal
Lf point v ∈ V which maps to a ℓf suboptimal report sign∗(v). In fact, we will show that
one can always find such a point violating consistency, unless f is modular.

Given our focus on the uniform distribution, the following definition will be useful:
for any set function f , let f̄ := 2−k∑

S⊆[k] f(S) ∈ R. The next two lemmas relate f̄ and
f([k]) to expected loss and modularity. The proofs follow from summing the submodularity
inequality over all possible subsets, and observing that at least one of them is strict when f
is non-modular.

Lemma 12 For all v ∈ V, ℓfabs(v; p̄) ≥ f([k]). For all r ∈ Y, ℓfabs(r; p̄) = 2f̄ .

Lemma 13 Let f be submodular and normalized. Then f̄ ≥ f([k])/2, and f̄ = f([k])/2 if
and only if f is modular.

Typical proofs of inconsistency identify a particular pair of distributions p, p′ ∈ ∆(Y) for
which the same surrogate report u is optimal, yet two distinct target reports are uniquely
optimal for each, r for p and r′ for p′. As u cannot link to both r and r′, one concludes
that the surrogate cannot be consistent. We follow this same general approach, but face one
additional hurdle: we wish to show inconsistency of Lf for all non-modular f simultaneously.
In particular, the distributions p, p′ may need to depend on the choice f , so at first glance
it may seem that such an argument would be quite complex. We achieve a relatively
straightforward analysis by defining p, p′ based on only a single parameter of f ; the optimal
surrogate report itself may be entirely governed by f , but will lead to inconsistency regardless.

The proof relies on a similar symmetry observation as Lemma 1, that Lf (u⊙y′, y⊙y′) =
Lf (u, y); in particular, prop[Lf ] has the same symmetry. For p ∈ ∆(Y) and r ∈ Y, define
p⊙ r ∈ ∆(Y) by (p⊙ r)y = py⊙r.

Lemma 14 For all p ∈ ∆(Y) and r ∈ Y, prop[Lf ](p⊙ r) = prop[Lf ](p) ⊙ r.

Theorem 15 Let f be submodular, normalized, and increasing. Then (Lf , sign) is consistent
if and only if f is modular.

Proof When f is modular, we may write f = fw for some w ∈ R
k
+. Here Lfw is weighted

hinge loss (eq. (5)), which is known to be consistent for ℓfw , which is weighted Hamming
loss (Gao and Zhou, 2011, Theorem 15). (Briefly, for all p ∈ ∆Y the loss Lfw(·; p) is linear
on [−1, 1]k, so it is minimized at a vertex r ∈ Y. Hence Y is representative, so Theorem 6
gives that Lfw embeds Lfw |Y = 2ℓfw . Consistency follows from Theorem 17.)

9



Finocchiaro Frongillo Nueve

Now suppose f is submodular but not modular. As f is increasing, we will assume
without loss of generality that f({i}) > 0 for all i ∈ [k], which is equivalent to f(S) > 0 for
all S 6= ∅; otherwise, f(T ) = f(T \ {i}) for all T ⊆ [k], so discard i from [k] and continue.
In particular, we have {∅} = arg minS⊆[k] f(S).

Define ǫ = f̄/(2f̄ − f([k])). We have ǫ > 0 by Lemma 13 and submodularity of f . For
any y ∈ Y, let py = (1 − ǫ)p̄+ ǫδy, where again p̄ is the uniform distribution, and δy is the
point distribution on y.

First, for all r ∈ Y with r 6= y, we have {r ⊙ y < 0} 6= ∅ = {y ⊙ y < 0}. Since
{∅} = arg minS⊆[k] f(S), we have

ℓf (r; py) = (1 − ǫ)2f̄ + ǫ 2f({r ⊙ y < 0})

> (1 − ǫ)2f̄ + ǫ 2f({y ⊙ y < 0})

= ℓf (y; py) ,

giving prop[ℓf ](py) = {y}. On the other hand, from Lemma 12 and the fact that ℓfabs agrees
with ℓf , we have for all r ∈ Y,

ℓfabs(r; p
y) ≥ ℓfabs(y; py) = (1 − ǫ)2f̄ > f([k]) = ℓfabs(0; py) .

We conclude there exists some optimal report v ∈ prop[ℓfabs](p
y) \ Y. By Theorem 11,

v ∈ prop[Lf ](py) as well.
As v /∈ Y, in particular, {v = 0} 6= ∅. Now define y′ ∈ Y to disagree with y on {v = 0};

formally, y′
i = vi if vi 6= 0 and y′

i = −yi if vi = 0. Although y′ 6= y (as {v = 0} 6= ∅), we have
by construction that v⊙ (y⊙ y′) = v. Furthermore, py ⊙ (y⊙ y′) = py

′

. By Theorem 11 and
Lemma 14 then, v ∈ prop[Lf ](py

′

). By the above, however, we also have {y′} = prop[ℓf ](py
′

).
As sign∗(v) cannot be both y and y′, at least one of py and py

′

exhibits the inconsistency of
Lf for ℓf . Specifically, calibration is violated (Definition 3) as v achieves the optimal Lf -loss
for both py and py

′

, but for at least one, links to a report not in prop[ℓf ].

5. Constructing a calibrated link for ℓ
f
abs

As Lf embeds ℓfabs from Theorem 11, Theorem 17 below further implies Lf is consistent

with respect to ℓfabs for some link function. Yet, the design of such a link function is not
immediately clear. Indeed, natural choices turn out to be inconsistent in general, such as the
threshold link ψc for c > 0 used by the BEP surrogate (§ 2.3), which given by (ψc(u))i = 0
whenever |ui| < c and (ψc(u))i = sign(ui) otherwise (Figure 1). We instead follow the
construction of an ǫ-separated link from Finocchiaro et al. (2022), resulting in two consistent
link functions. Interestingly, while these links do not depend on f , they are calibrated with
respect to ℓfabs for all f ∈ Fk simultaneously. See § B for omitted proofs.

5.1. Approach via separated link functions

For any polyhedral loss L which embeds a target discrete loss ℓ, Finocchiaro et al. (2022)
give a construction of a link function ψ such that (L,ψ) is calibrated with respect to ℓ. Their
construction is based on ǫ-separation, as follows.

10
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Definition 16 ((Finocchiaro et al., 2022, Construction 1)) Let a polyhedral loss L :
R
d×Y → R+ that embeds some discrete loss ℓ : R×Y → R+ be given, along with ǫ > 0, and

a norm ‖ · ‖. The ǫ-thickened link envelope Ψ : Rd ⇒ R is constructed as follows. Define
U = {prop[L](p) : p ∈ ∆Y} and, for each U ∈ U , let RU = {r ∈ R : ϕ(r) ∈ U}, the reports
whose embedding points are in U . Initialize by setting Ψ(u) = R for all u ∈ R

d. Then for
each U ∈ U , and all points u such that infu∗∈U ‖u∗ − u‖ < ǫ, update Ψ(u) = Ψ(u) ∩RU .

We say a link envelope Ψ is nonempty pointwise if Ψ(u) 6= ∅ for all u ∈ R
d. Similarly, a

link function ψ is pointwise contained in Ψ if ψ(u) ∈ Ψ(u) for all u ∈ R
d.

Theorem 17 ((Finocchiaro et al., 2022, Theorems 5, 6)) Let L : R
k × Y → R+

embed a discrete target ℓ : R × Y → R+, and let Ψ be defined as in Definition 16. Then
Ψ is nonempty pointwise for all sufficiently small ǫ. Furthermore, for any link function ψ
pointwise contained in Ψ, the pair (L,ψ) is consistent with respect to ℓ.

Essentially, this construction “thickens” each potentially optimal set and ensures surrogate
report that is close to these regions must be linked to a representative report contained in
that set. One can consider Ψ the resulting “link envelope”, from which a calibrated link
may be arbitrarily chosen pointwise.

To apply this construction to the Lovász hinge Lf , let Ψf be the envelope Ψ from
Definition 16 applied to Lf . We immediately encounter a complication: as the link envelope
Ψf depends on the choice of f , it is entirely possible that no single link function is contained
in the envelopes Ψf for all f ∈ Fk, i.e., is simultaneously calibrated for Lf for all such f .
If no simultaneous link existed, the construction and analysis would have to be tailored
carefully to each f ∈ Fk. Interestingly, we show that such a simultaneous link does exist.

To find a link which is calibrated for all f , we identify certain structure which is common
to Lovász hinges Lf . We encode this structure in a common link envelope Ψ̂, and then show
in Proposition 19 that, for all f ∈ Fk and u ∈ R

k, we have Ψ̂(u) ⊆ Ψf (u). We then show
that Ψ̂ is nonempty for sufficiently small ǫ, meaning it contains a link option pointwise. This
link is therefore contained in all the link envelopes Ψf for all f , and hence is calibrated with
respect to ℓfabs for all f ∈ Fk simultaneously.

5.2. The common link envelope Ψ̂

We now present our link envelope Ψ̂, used to construct calibrated links (Figure 1, left).

Definition 18 Let V face := ∪π∈Sk,y∈Y2Vπ,y be the subsets of V whose convex hulls are faces

of some Pπ,y polytope. Define Ψ̂ : Rk → 2V by Ψ̂(u) = ∩{V ∈ V face | d∞(convV, u) < ǫ}.

Now we show that Ψ̂ ⊆ Ψf pointwise. The proof uses the fact that both Ψ̂(u) and Ψf (u)
are constructed by the intersections of sets, and shows that the sets generating Ψ̂(u) are
subsets of those generating Ψf (u) for all f ∈ Fk. In particular, every possible optimal set in
the range of prop[Lf ] is a union of faces generated by convex hulls of elements of V face.

Proposition 19 For all f ∈ Fk and u ∈ R
k, we have Ψ̂(u) ⊆ Ψf (u).
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Theorem 23 Let ǫ ∈ (0, 1/2k], and fix any f ∈ Fk. Then (Lf , ψ∗
ǫ ) and (Lf , ψ⋄

ǫ ) are

well-defined and calibrated with respect to ℓfabs.

Proof Lemma 21 shows that the indices i∗ and i⋄ in Definition 22 always exist when
ǫ ∈ (0, 1

2k ], which shows that ψ∗
ǫ and ψ∗

⋄ are well-defined. By construction, we have

ψ∗
ǫ (u) ∈ Ψ̂(u) and ψ⋄

ǫ (u) ∈ Ψ̂(u) for all u ∈ R
k. As Proposition 19 states that Ψ̂ ⊆ Ψf

pointwise, we then have ψ∗
ǫ , ψ

⋄
ǫ ∈ Ψf pointwise. Finally, Theorem 17 states that any link

function contained in Ψf pointwise is calibrated.

The two proposed link functions, ψ∗
ǫ and ψ⋄

ǫ , differ by how often one abstains vs the
other. The first, ψ∗

ǫ , has a smaller abstain region which decreases in volume as ǫ decreases.
Meanwhile, ψ⋄

ǫ has a larger abstain region which increases in volume as ǫ decreases. Based
on one’s preferred risk, either ψ∗

ǫ if risk seeking otherwise ψ⋄
ǫ if risk adverse could be used.

The difference between how often ψ∗
ǫ and ψ⋄

ǫ abstain is demonstrated for k = 2 in Figure 1.

6. Discussion and conclusion

Despite the popularity of the Lovász hinge, we show in this work that it is inconsistent for
structured binary prediction, its desired target. Instead, we show that it is consistent for
the structured abstain problem, a variation of structured binary prediction in which one may
abstain on a subset of predictions.

Our results crucially leverage the embedding framework of Finocchiaro et al. (2022). In
particular, we rely heavily on the embedding framework to find a calibrated link function, as it
allows us to prove calibration simultaneously for all submodular set functions parameterizing
the problem.

Beyond investigating the utility of abstain options in practice, in analogy to the classifica-
tion literature (Bartlett and Wegkamp, 2008; Ramaswamy et al., 2018), we see two important

theoretical directions. First, for certain submodular functions f ∈ Fk, the problem ℓfabs may
contain redundant reports; indeed, we know this must be the case for f0-1, since every report
v ∈ V \ Y is dominated by 0. We would like to characterize the redundant reports for a
given function f and modify the link function to avoid linking to them.

Second, our work sheds light on broader questions about when consistent convex surro-
gates L : Rd × Y → R+ can be designed with low prediction dimension d. Recent works have
developed tools to bound the prediction dimension required (Finocchiaro et al., 2021, 2020;
Ramaswamy and Agarwal, 2016), yet general bounds, especially constructive upper bounds,
remain elusive. In particular, structured prediction problems such as binary structured
prediction often have exponentially large label sets Y, and one seeks a consistent convex
surrogate with prediction dimension logarithmic in |Y|. Yet the BEP surrogate (7) has been
perhaps the only such surrogate in the literature, with d = ⌈log |Y|⌉. Our analysis adds an
entire family of surrogates to this list, for any submodular function (d = k and |Y| = 2k); we
hope these additional positive examples could shed further light on the conditions required
for a target loss to have a consistent low-dimensional convex surrogate.

Acknowledgements. We thank Anish Thilagar and Bo Waggoner for comments and
suggestions, and Eric Balkanski for insights about submodular functions. We gratefully
acknowledge support from the National Science Foundation under Grant No. IIS-2045347.
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Notation Explanation

k Number of binary events
[k] := {1, . . . , k} Index set
y ∈ Y = {−1, 1}k Label space
v ∈ V = {−1, 0, 1}k (Abstain) prediction space
r ∈ R General prediction space
R = [−1, 1]k The filled ±1 hypercube
u ∈ R

k Surrogate prediction space
{u ≤ c} = {i ∈ [k] | ui ≤ c} Set of indices of u less than c
(u⊙ u′)i = uiu

′
i Hadamard (element-wise) product

U ⊙ u′ = {u⊙ u′ | u ∈ U} Hadamard product on a set U ⊆ R
k

sign : Rk → V Sign function including 0
sign∗ : Rk → Y Sign function breaking ties arbitrarily at 0
|u| ∈ R

k
+ s.t. |u|i = |ui| Observe |u| = u⊙ sign∗(u) = u⊙ sign(u)

u = sign(u) ⊙ min(|u|,✶) “Clipping” of u to R
✶S ∈ {0, 1}k s.t. (✶S)i = 1 ⇐⇒ i ∈ S 0 − 1 Indicator on set S ⊆ [k]
π ∈ Sk Permutations of [k]
f ∈ Fk Set of normalized, increasing, and submodular

set functions f : 2k → R+.
ℓf (r, y) = f({r ⊙ y < 0}) Structured binary classification eq. (1)
F (x) Lovaśz extension for x ∈ R

k
+ in eq. (2)

Lf (u, y) = F ((✶ − u⊙ y)+) Lovász hinge eq. (4)

ℓfabs(v, y) = f({v ⊙ y < 0}) + f({v ⊙ y ≤ 0}) Structured abstain problem eq. (14)

Table 1: Table of general notation

Notation Explanation

✶π,i = ✶{π1,...,πi} with ✶π,0 = 0 Indicator of first i elements of π

Vπ = {✶π,i | i ∈ {0, . . . , k}} Elements of V ordered by π
Vπ,y = Vπ ⊙ y Signed elements of V ordered by π.
Pπ = {x ∈ R

k
+ | xπ1

≥ . . . ≥ xπk
} elements of Rk+ ordered by π

Pπ,y = convVπ ⊙ y Elements of Pπ signed by y
V face = ∪π∈Sk,y∈Y2Vπ,y Subsets of V whose convex hulls are

faces of some Pπ,y polytope.

Ψ̂(u) = ∩{V ∈ V face | d∞(convV, u) < ǫ} Proposed general link envelope.
Uf = prop[Lf ](∆Y) Range of property elicited by Lovász hinge
Ψf (u) = ∩{U ∈ Uf | d∞(U, u) < ǫ} ∩ V Link envelope for given f ∈ Fk.

Table 2: Table of notation used for proofs

Appendix A. Notation tables

See Tables 1 and 2.
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Appendix B. Omitted Proofs

B.1. Omitted Proofs from § 3

Lemma 7 For any u ∈ R
k, we have Lf (u, y) ≤ Lf (u, y) for all y ∈ Y.

Proof Fix y ∈ Y. Let w = ✶ − u ⊙ y and w = ✶ − u ⊙ y, so that Lf (u, y) = F (w+)
and Lf (u, y) = F (w+). We will first show that w+ = min(w+, 2), where the minimum is
element-wise.

For i ∈ [k] such that |ui| ≤ 1, we have ui = ui. Thus (w+)i = (1 −uiyi)+ = (1 −uiyi)+ =
(w+)i. Furthermore, we have 0 ≤ (w+)i = (w+)i ≤ 2. Now suppose |ui| > 1. If yiui > 0,
i.e., sign(ui) = yi, then 1 − yiui = 1 − |ui| < 0, so (w+)i = 0. For u, we similarly have
(w+)i = (1 − |ui|)+ = 0. In the other case, yiui < 0, so (w+)i = 1 + |ui| > 2 and
(w+)i = 1 + |ui| = 2. Therefore, we have w+ = min(w+, 2).

Now, let π ∈ Sk be a permutation that orders the elements of w+. Observe that π orders
the elements of w+ as well, since the vectors are identical except for values above 2, which
are all mapped to 2. By eq. (3), we thus have

F (w+) − F (w+) =
k
∑

i=1

(w+)πi
(f({π1, . . . , πi}) − f({π1, . . . , πi−1}))

−
k
∑

i=1

(w+)πi
(f({π1, . . . , πi}) − f({π1, . . . , πi−1}))

=
k
∑

i=1

(w+ − w+)πi
(f({π1, . . . , πi}) − f({π1, . . . , πi−1}))

≥ 0 ,

where we have used the fact that f is increasing and w+ ≤ w+ element-wise. As y was
arbitrary, this holds for all y ∈ Y.

Lemma 8 The sets Pπ,y satisfy the following.

(i) ∪y∈Y,π∈Sk
Pπ,y = [−1, 1]k.

(ii) For all f ∈ Fk, y, y
′ ∈ Y, and π ∈ Sk, the function Lf (·, y′) is affine on Pπ,y.

Proof For (i), take any u ∈ [−1, 1]k. Letting y = sign∗(u), we have u⊙y = |u| ∈ R
k
+. Taking

π to be any permutation ordering the elements of u⊙y, we have u⊙y ∈ Pπ∩R
k
+. Notice, since

u⊙y ∈ Pπ∩R
k
+ and u ∈ [−1, 1]k, we additionally have u⊙y = |u| ∈ Pπ∩ [0, 1]k. Since ✶π,i for

i ∈ {0, . . . , k} form Vπ and Pπ is the convex hull of points in Vπ, showing there is an α such
that u =

∑

i αi✶π,i suffices to conclude u ∈ Pπ,y. We can write u⊙y as the convex combination
u⊙ y =

∑k
i=0 αi(u⊙ y)✶π,i, as in eq. (11). Thus u = u⊙ y ⊙ y =

∑k
i=0 αi(u⊙ y)✶π,i ⊙ y, so

u ∈ Pπ,y. Therefore, every u ∈ [−1, 1]k is in some Pπ,y, we have ∪y∈Y,π∈Sk
Pπ,y ⊇ [−1, 1]k.

Moreover, every Pπ,y ⊆ [−1, 1]k by construction, and equality follows.
For (ii), first observe for all π ∈ Sk, the function F is affine on Pπ, immediately from

eq. (3). To show Lf (·, y′) = F ((✶ − u ⊙ y′)+) is affine on Pπ,y for all y, y′ ∈ Y, π ∈ Sk, it
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therefore suffices to show there exists some π′ such that {✶ − u⊙ y′ | u ∈ Pπ,y} ⊆ Pπ′ . As
Lf (u, y′) = F (✶ − u⊙ y′) when u ∈ [−1, 1]k, the result will follow.

We construct π′, unraveling the permutation π into two permutations, depending on the
sign of y ⊙ y′. Recall from the discussion following eq. (2) that π orders the elements of
u⊙ y = |u| in decreasing order. Observe that u⊙ y′ = u⊙ (y⊙ y) ⊙ y′ = (u⊙ y) ⊙ (y⊙ y′) =
|u| ⊙ (y⊙ y′). Thus, π orders the elements of u⊙ y′ in decreasing order among indices i with
yiy

′
i > 0, and increasing order on the others. Therefore π orders the elements of ✶−u⊙ y′ in

increasing order among indices i with yiy
′
i > 0, and decreasing order on the others. Taking

π′ to be the order given by sorting the elements in {y ⊙ y′ < 0} according to π, followed by
the remaining elements according to the reverse of π, we have shown ✶ − u⊙ y′ ∈ Pπ′ .

We now introduce a lemma used in the proof of Lemma 9.

Lemma 24 Let L : Rk → R+ be a polyhedral function that is affine on the polyhedron C.
For any x ∈ relint(C) and any z ∈ C, we have ∂L(x) ⊆ ∂L(z).

Proof Fix x ∈ relint(C). Since L is affine on C, then there exists some w′ ∈ R
k, b ∈ R such

that L(z) = 〈w′, z〉+b for all z ∈ C. Thus, we have L(z)−L(x) = (〈w′, z〉+b)−(〈w′, x〉+b) =
〈w′, z − x〉 for all z ∈ C.

We claim that for all w ∈ ∂L(x), and all z ∈ C, we have 〈w, z − x〉 = 〈w′, z − x〉. To
prove this claim, observe that

〈w′, z − x〉 = L(z) − L(x) ≥ 〈w, z − x〉 for all z ∈ C , (19)

by the subgradient inequality and affineness of L on C. Assume for a contradiction that
〈w′, z − x〉 > 〈w, z − x〉 for some z ∈ C. Since x ∈ relint(C), there is an ǫ < 0 such that
z′ := x+ ǫ(z − x) ∈ C. Therefore, we have

〈w′, z′ − x〉 = 〈w′, ǫ(z − x)〉 = ǫ〈w′, z − x〉 < ǫ〈w, z − x〉 = 〈w, ǫ(z − x)〉 = 〈w, z′ − x〉 ,

where we use the fact that ǫ < 0 to flip the inequality. We have now contradicted eq. (19)
for the point z′.

Since we now have L(z) − L(x) = 〈w′, z − x〉 = 〈w, z − x〉 for all z ∈ C, consider
w ∈ ∂L(x). Then we have, for all v ∈ R

k,

L(v) − L(z) = (L(v) − L(x)) + (L(x) − L(z))

≥ 〈w, v − x〉 + 〈w, x− z〉

= 〈w, v − z〉 ,

where the inequality follows from the subgradient inequality and the claim. Thus w ∈ ∂L(z),
which completes the proof.

A corollary of Lemma 24 is that subdifferentials are constant on relint(C) for any face C
such that L is affine as the subset inclusion holds in both directions.

Lemma 9 Given a polyhedral loss function L : R
k × Y → R+, let C be a collection of

polyhedral subsets of Rk such that for all y ∈ Y, L(·, y) is affine on each Ci ∈ C, and denote
faces(Ci) as the set of faces of Ci. Let R = ∪C be the union of these polyhedral subsets.
Then for all p ∈ ∆Y , prop[L](p) ∩R = ∪F for some F ⊆ ∪ifaces(Ci).
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Proof Fix p ∈ ∆Y . For any u ∈ R ∩ prop[L](p), there is some C′ ⊆ C such that u ∈ Cj for
all Cj ∈ C′. For now, let us simply consider any Cj ∈ C′. Observe that u ∈ relint(Fj) for
exactly one face Fj of Cj .

By convexity of L, we have u ∈ prop[L](p) ⇐⇒ 0 ∈ ∂L(u; p). Moreover, as u ∈
relint(Fj), we have ∂L(u; p) ⊆ ∂L(z; p) for all z ∈ Fj by Lemma 24. Thus, 0 ∈ ∂L(u; p)
implies 0 ∈ ∂L(z; p) for all z ∈ Fj . Moreover, 0 ∈ ∂L(z; p) for all z ∈ Fj if and only if
z ∈ prop[L](p) for all z ∈ Fj , and thus we have Fj ⊆ prop[L](p).

As the value u and the index j were arbitrary, this holds for all such faces in G(u) :=
∪{Fj ⊆ Cj ∈ C′ | u ∈ relint(Fj)}. Now, take F = {G(u) | u ∈ R ∩ prop[L](p)}; hence
prop[L](p) ∩R = ∪F . Moreover, F ⊆ ∪ifaces(Ci).

B.2. Omitted Proofs for § 4

Lemma 12 For all v ∈ V, ℓfabs(v; p̄) ≥ f([k]). For all r ∈ Y, ℓfabs(r; p̄) = 2f̄ .

Proof Let Av = {v = 0} and Bv = [k] \Av. Recall that p̄ is the uniform distribution on 2k

outcomes. Then we have

ℓfabs(v; p̄) = 2−k
∑

S⊆[k]

f(Sv△S \Av) + f(Sv△S ∪Av)

= 2−|Bv |
∑

T⊆Bv

f(T ) + f(T ∪Av)

=
1

2
2−|Bv |

∑

T⊆Bv

f(T ) + f(Bv \ T ) + f(T ∪Av) + f((Bv \ T ) ∪Av)

≥
1

2
(f(Bv) + f(∅) + f([k]) + f(Av))

≥
1

2
(f([k]) + f([k])) = f([k]) ,

where we use submodularity in both inequalities. The second statement follows from the
second equality above after setting Av = ∅, as then Bv = [k] and thus T ranges over all of
2[k].

Lemma 13 Let f be submodular and normalized. Then f̄ ≥ f([k])/2, and f̄ = f([k])/2 if
and only if f is modular.

Proof The inequality follows from Lemma 12 with r ∈ Y. Next, note that if f is modular
we trivially have f̄ = f([k])/2. If f is submodular but not modular, we must have some
S ⊆ [k] and i ∈ S such that f(S) − f(S \ {i}) < f({i}). By submodularity, we conclude that
f([k])−f([k]\{i}) < f({i}) as well; rearranging, f({i})+f([k]\{i}) > f([k]) = f([k])+f(∅).
Again examining the proof of Lemma 12, we see that the first inequality must be strict, as
we have one such T ⊆ [k], namely T = {i}, for which the inequality in submodularity is
strict.
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Lemma 14 For all p ∈ ∆(Y) and r ∈ Y, prop[Lf ](p⊙ r) = prop[Lf ](p) ⊙ r.

Proof We define p⊙ r ∈ ∆(Y) by (p⊙ r)y = py⊙r.

prop[Lf ](p⊙ r) = arg min
u∈Rk

∑

y∈Y

(p⊙ r)yL
f (u, y)

= arg min
u∈Rk

∑

y∈Y

py⊙rL
f (u, y) Definition of p⊙ r

= arg min
u∈Rk

∑

y∈Y

py⊙rL
f (u⊙ r, y ⊙ r) Lemma 1

= arg min
u∈Rk

∑

y′∈Y

py′Lf (u⊙ r, y′) Substituting y = y′ ⊙ r

=



arg min
u′∈Rk

∑

y′∈Y

py′Lf (u′, y′)



⊙ r

= prop[Lf ](p) ⊙ r

B.3. Omitted proofs from § 5

Since u ∈ R, “clipping” u′ to u′ can only reduce element-wise distance, and therefore d∞(u, ·)
is still small, which allows us to restrict our attention to R.

Lemma 25 Let f ∈ Fk. For all U ∈ prop[Lf ](∆Y), u ∈ R
k, and 0 < ǫ < 2, if d∞(U, u) < ǫ

then d∞(U ∩ [−1, 1]k, u) < ǫ.

Proof Since U is closed, we have some closest point u′ ∈ U to u, meaning d∞(u′, u) =
d∞(U, u) < ǫ. As u′ ∈ U by a corollary of Lemma 7, it suffices to show d∞(u, u′) < ǫ.

For each i ∈ [k], we consider three cases. It suffices to show distance does not increase
on each element by the choice of the d∞(·, ·) distance.

The cases are as follows: (i) ui = ui and u′ = u′
i, (ii) ui 6= ui and u′

i 6= u′
i, and (iii)

ui = ui and u′
i 6= u′

i (WLOG). Case (i) is trivial as |ui − u′
i| = |ui − u′

i| < ǫ. In case (ii),
we must have sign(u)i = sign(u′)i as d∞(u, u′) < ǫ =⇒ |ui − u′

i| < ǫ. If both ui and u′
i

are outside [−1, 1]k, this inequality is only true (for ǫ < 2) if the sign matches. Therefore
|ui−u

′
i| = |sign(u)i−sign(u′)i| = 0 < ǫ. In case (iii), we have ǫ > |ui−u

′
i| > |ui−1| = |ui−u

′
i|.

As absolute difference in each element does not increase, the d∞(·, ·) distance does not increase.

We now proceed to statements about the link envelope construction Ψ̂.

Proposition 19 For all f ∈ Fk and u ∈ R
k, we have Ψ̂(u) ⊆ Ψf (u).

Proof Let us define

A(u) := {V ∈ V face | d∞(convV, u) < ǫ} ,

B(u) := {U ∩ V | U ∈ Uf , d∞(U, u) < ǫ} ,
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so that Ψ̂(u) = ∩A(u) and Ψf (u) = ∩B(u). We wish to show ∩A(u) ⊆ ∩B(u). It thus
suffices to show the following claim: for all B ∈ B(u) we have some A ∈ A(u) with A ⊆ B.
Since then v ∈ ∩A(u) implies v ∈ A for all A ∈ A(u), which by the claim implies v ∈ B for
all B ∈ B(u) and thus v ∈ ∩B(u).

Let B ∈ B(u), so we may write B = U ∩ V for U ∈ Uf with d∞(U, u) < ǫ. By Lemma 25
we have d∞(U ∩R, ū) = d∞(U, u) < ǫ. From Lemma 8, the set R = [−1, 1]k = ∪π∈Sk,y∈YPπ,y
is the union of polyhedral subsets of Rk, and L(·, y) is affine on each Pπ,y. By Lemma 9,
we then have U ∩ R = ∪F for some F ⊆ ∪π,yfaces(Pπ,y). As each such face can be
written as convV for some V ∈ V face, we have some V ′ ⊆ V face such that U ∩ R = ∪F =
∪V ∈V ′convV . Now minV ∈V ′ d∞(convV, u) = d∞(U ∩ R, u) < ǫ, so we have some V ∈ V ′

such that d∞(convV, u) < ǫ. Thus V ∈ A(u) by definition. As convV ⊆ U ∩ R, we have
V = (convV ) ∩ V ⊆ (U ∩R) ∩ V = U ∩ V = B, which proves the claim.

Lemma 26 Fix u ∈ [−1, 1]k, and consider π, y such that u ∈ Pπ,y. Then V u
π,y := {✶π,i⊙y |

i ∈ {0, . . . , k}, αi(|u|) 6= 0} is the smallest (in cardinality) set of vertices such that V u
π,y ⊆ Vπ,y

and u ∈ conv(V u
π,y).

Proof First, observe that V u
π,y ⊆ Vπ,y by construction, as the first set is constructed the

same as the second, with one additional constraint. Moreover, we have u =
∑k
i=1 αi(|u|)ui =

∑

i:αi(|u|) 6=0 αi(|u|)ui ∈ convV u
π,y.

Now recall Pπ,y is a simplex (see “Linear interpolation on simplices” Bach (2013, pg. 167))
thus, by properties of simplex, each u ∈ Pπ,y has a unique convex combination expressed
by the vertices of Vπ,y which are affinely independent (Brondsted, 2012, pg. 14, Thm 2.3).
Therefore, every vertex i with a non-zero weighting αi(|u|) 6= 0 is necessary in order to
express u as a convex combination due to the affine independence of the vertices. Thus,
V u
π,y := {✶π,i ⊙ y | i ∈ {0, . . . , k}, αi(|u|) 6= 0}, and as |V u

π,y| < ∞, has to be the smallest (in
cardinality) set of vertices such such that V u

π,y ⊆ Vπ,y and u ∈ conv(V u
π,y).

Moreover, Ψ̂ is symmetric around signed permutations.

Lemma 27 For all u ∈ R
k, y ∈ Y, and π ∈ Sk, we have Ψ̂(π(u⊙ y)) = π(Ψ̂(u) ⊙ y), where

we define (πx)i = xπi
and we extend this operation to sets.

Proof The proof that the permutation part (Ψ̂(πu) = πΨ̂(u)) is straightforward from the
definition. For sign changes, observe u⊙ y = sign(u ⊙ y)ṁin(|u ⊙ y|, 1) = sign(u) ⊙ y ⊙
min(|u|, 1) = u⊙y. The operation u 7→ u⊙y is an isometry for the infinity norm as a special
case of signed permutations, here the identity permutation (Chang and Li, 1992, Theorem 2.3).
For all closed U ⊆ R

k, we therefore have d∞(u⊙ y, U ⊙ y) = d∞(u⊙ y, U ⊙ y) = d∞(u, U).
Therefore,

Ψ̂(u⊙ y) = ∩{V ∈ V face | d∞(convV, u⊙ y) < ǫ}

= ∩{V ∈ V face | d∞(convV ⊙ y, u) < ǫ} u⊙ y = u⊙ y, and u⊙ y ⊙ y = u

with d∞ preserved under ⊙.

= ∩{V ∈ V face | d∞(convV, u) < ǫ} ⊙ y

= Ψ̂(u) ⊙ y .
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Proposition 20 Let u ∈ R
k, and let π ∈ Sk order the elements of |u| (descending). For

the purposes of the following, define |uπ0
| = 1 + ǫ and |uπk+1

| = −ǫ. Then we have

Ψ̂(u) = {✶π,i ⊙ sign∗(u) | i ∈ {0, 1, . . . , k}, |uπi
| ≥ |uπi+1

| + 2ǫ} (16)

Proof We will show the statement for u ∈ R
k
+ with u1 ≥ · · · ≥ uk, i.e., where u ∈ Pπ∗

where π∗ is the identity permutation. Lemma 27 then gives the result, as we now argue.
For any u ∈ R

k, let π ∈ Sk order the elements of |u|, and let y = sign∗(u). Then
π(u⊙ y) = π|u| ∈ Pπ∗ . Once we show eq. (16) is true on the unsigned, ordered case, eq. (16)
gives Ψ̂(π|u|) = {✶π∗,i | i ∈ {0, 1, . . . , k}, |uπi

| ≥ |uπi+1
| + 2ǫ}. Thus Ψ̂(u) = Ψ̂(π(u⊙ y)) =

π(Ψ̂(u) ⊙ y) = {π(✶π∗,i ⊙ y) | i ∈ {0, 1, . . . , k}, |uπi
| ≥ |uπi+1

| + 2ǫ} = {✶π,i ⊙ sign∗(u) | i ∈
{0, 1, . . . , k}, |uπi

| ≥ |uπi+1
| + 2ǫ}.

To begin, we show that for any i ∈ {0, 1, . . . , k} where u
i
< ui+1 +2ǫ, ✶π∗,i /∈ Ψ̂(u) by the

contrapositive. First, suppose that there exists an i ∈ {0, 1, . . . , k} such that ui < ui+1 + 2ǫ.
Since u is ordered, we know that 0 ≤ ui − ui+1 < 2ǫ.

Let z = ui+ui+1

2 and define û such that ûi = z and ûi+1 = z while every other index of
û is equal to u. Observe ui − z < ǫ and z − ui+1 < ǫ, and thus d∞(u, û) < ǫ as d∞(·, ·) is
measured component-wise. By Lemma 26 and construction of α in the first paragraph of
§ 3.2, we have αi(û) = ûi− ûi+1 = 0, we have û ∈ conv (Vi), where Vi := V u

π∗,y \{✶π∗,i}. Since

û ∈ conv (Vi) and d∞(û, u) < ǫ, we have Vi ⊇ Ψ̂(u), and therefore, for any i ∈ {0, 1, . . . , k}
such that ui < ui+1 + 2ǫ, ✶π∗,i /∈ Ψ̂(u).

Now, for the converse, fix any u ∈ Pπ∗ with i ∈ {0, 1, . . . , k} such that ui ≥ ui+1 +2ǫ. For
any u′ ∈ R

k such that d∞(u, u′) < ǫ, we claim that αi(u
′) 6= 0, and therefore ✶π∗,i ∈ Ψ̂(u).

Assume there exists a u′ ∈ R
k such that d∞(u, u′) < ǫ for some i ∈ {0, 1, . . . , k}. Given

that d∞(u, u′) < ǫ, u′
j ∈ (uj − ǫ, uj + ǫ) ∀j ∈ {0, . . . , k}: namely, for j = i and i + 1.

However, since ui − ui+1 ≥ 2ǫ, (ui − ǫ, ui + ǫ) ∩ (ui+1 − ǫ, ui+1 + ǫ) = ∅. Therefore, αi(u
′) =

u′
i − u′

i+1 > 0. By Lemma 26, we then have ✶π∗,i ∈ V u
π∗,y, which is the smallest set V such

that d∞(convV, u) < ǫ, and is therefore in the intersection of all such sets; this intersection
yields Ψ̂(u). Thus, we have Ψ̂(u) = {✶π,i ⊙ sign∗(u) | i ∈ {0, 1, . . . , k}, ui ≥ ui+1 + 2ǫ}.

Lemma 21 Ψ̂ is nonempty pointwise if and only if ǫ ∈ (0, 1
2k ].

Proof By Lemma 27, it suffices to show the statement for u ∈ R
k
+. We will show the

contrapositive in both directions: there exists u ∈ R
k
+ such that Ψ̂(u) = ∅ if and only if

ǫ > 1
2k .

For any u ∈ R
k
+, define uk+1 = −ǫ and u0 = 1 + ǫ as in Proposition 20. From the

characterization in Proposition 20 (eq. (16)), we have Ψ̂(u) = ∅ if and only if

ui − ui+1 < 2ǫ for all i ∈ {0, 1, . . . , k} . (20)

We may also write

1 + ǫ = u0 = uk+1 +
k
∑

i=0

(ui − ui+1) =
k
∑

i=0

(ui − ui+1) − ǫ . (21)

22




	Introduction
	Background
	Notation
	Submodular functions and the Lovász extension
	Specific submodular functions
	Property elicitation and calibration
	The embedding framework

	Lovász hinge embeds the structured abstain problem
	The filled hypercube is representative
	Affine decomposition of Lf
	Embedding the structured abstain problem

	Inconsistency for structured binary classification
	Constructing a calibrated link for absf
	Approach via separated link functions
	The common link envelope 
	Two calibrated link functions from 

	Discussion and conclusion
	Notation tables
	Omitted Proofs
	Omitted Proofs from § 3
	Omitted Proofs for § 4
	Omitted proofs from § 5


