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Abstract11

A matroid M on a set E of elements has the α-partition property, for some α > 0, if it is possible12

to (randomly) construct a partition matroid P on (a subset of) elements of M such that every13

independent set of P is independent in M and for any weight function w : E → R≥0, the expected14

value of the optimum of the matroid secretary problem on P is at least an α-fraction of the optimum15

on M. We show that the complete binary matroid, Bd on Fd
2 does not satisfy the α-partition property16

for any constant α > 0 (independent of d).17

Furthermore, we refute a recent conjecture of [5] by showing the same matroid is 2d/d-colorable18

but cannot be reduced to an α2d/d-colorable partition matroid for any α that is sublinear in d.19
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1 Introduction32

Since its formulation by Babaioff, Immorlica and Kleinberg in 2007 [3, 2], the matroid secretary33

conjecture has captured the imagination of many researchers [7, 1, 14, 12, 6, 13, 17, 9, 15, 11].34

This beautiful conjecture states the following: Suppose that elements of a known matroid35

M = (E, I) with unknown weights w : E → R≥0 arrive one at a time in a uniformly random36

order. When an element e arrives we learn its weight we and must make an irrevocable37

and immediate decision as to whether to “take it” or not, subject to the requirement that38

the set of elements taken must at all times remain an independent set in the matroid. The39

matroid secretary conjecture states that for any matroid, there is an (online) algorithm that40

guarantees that the expected weight of the set of elements taken is at least a constant fraction41

of the weight of the maximum weight base.42

© Dorna Abdolazimi, Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 41; pp. 41:1–41:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dornaa@cs.washington.edu
mailto:karlin@cs.washington.edu
mailto:nwklein@cs.washington.edu
mailto:shayan@cs.washington.edu
https://doi.org/10.4230/LIPIcs.ITCS.2023.41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


41:2 Matroid Partition Property and the Secretary Problem

More formally, we say the competitive ratio of a matroid secretary algorithm1 A on a

particular matroid M is

inf
w

E [AM(w)]
optM(w)

where AM(w) is the weight of the set of elements selected by the online algorithm A, and43

optM(w) = maxI∈I
∑

i∈I wi. We drop the subscript M when the matroid is clear in the44

context. The expectation in the numerator is over the uniformly random arrival order of the45

elements and any randomization in the algorithm itself. The conjecture states that for any46

matroid, there is an algorithm with competitive ratio O(1).47

The matroid secretary conjecture is known to be true for a number of classes of matroids,48

including partition matroids, uniform matroids, graphic matroids and laminar matroids [3,49

2, 7, 1, 14, 12, 13, 17]. In its general form, it remains open. At this time, the best known50

general matroid secretary algorithm has competitive ratio O(1/ log log r) where r is the rank51

of the matroid [15, 11]. Since our work focuses on binary matroids, it is worth mentioning52

that, to the best of our knowledge, there is no algorithm known for the binary matroids that53

has a better competitive ratio than O(1/ log log r).54

A reasonably natural approach to proving the matroid secretary conjecture is by a55

reduction to a partition matroid.56

▶ Definition 1. A matroid M′ = (E′, I ′) is a reduction of matroid M = (E, I), if E′ ⊆ E57

and I ′ ⊆ I.58

A matroid M is a partition matroid if its elements can be partitioned into disjoint sets59

P1, . . . , Pd such that S ⊆ E is independent iff |S ∩ Pi| ≤ 1 for all 1 ≤ i ≤ d. Specifically,60

consider the following class of algorithms:61

1. Wait until some number of elements have been seen without taking anything. We call62

this set of elements the sample and use S to denote this set.63

2. Based on the elements in S and their weights, (randomly) reduce M to a partition64

matroid P = P1 ∪ P2 ∪ . . . Pd on (a subset of) the non-sample S.65

3. In each part Pi, run a secretary algorithm which chooses at most one element; e.g. choose66

the first element in Pi whose weight is above a threshold τi (which may be based on S).67

Some appealing applications of this approach which are constant competitive are for graphic68

matroids [14], laminar matroids, and transversal matroids [7, 14, 13]. The latter two69

algorithms rely crucially on first observing a random sample of elements and then constructing70

the partition matroid.71

Consider the complete binary matroid, Bd, which is the linear matroid defined on all72

vectors in Fd
2 where a set S ⊆ Fd

2 is independent if the vectors in S are linearly independent73

over the field Fd
2. Our main result is that for complete binary matroids, no algorithm of74

the above type, that is, based on a reduction to a partition matroid, can yield a constant75

competitive ratio for the matroid secretary problem.76

▶ Theorem 2 (Informal). Any matroid secretary algorithm for complete binary matroids Bd77

that is based on a reduction to a partition matroid has competitive ratio O(d−1/4).78

We say a matroid M = (E, I) has the α-partition property if it can be (randomly)

reduced to a partition matroid P such that

E [optP(w)] ≥ 1
α

optM(w).

1 That is, an algorithm which decides as elements arrive whether to take them or not.
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In a survey [8], Dinitz raised as an open problem whether every matroid M satisfies the79

α-partition property for some universal constant α > 0. Dinitz observes that it is unlikely80

that the α-partition property holds for all matroids, but notes that there is no matroid known81

for which it is false. As a consequence of our main theorem, the complete binary matroid82

does not satisfy the α-partition property for α ≤ O(d1/4). In fact, our negative result is83

stronger, since it allows for the partition matroid P to be constructed after seeing a sample84

and the weights of the sample. This shows that although this approach works for laminar85

and transversal matroids, it does not generalize to all matroids.86

As a byproduct of our technique we also refute a conjecture of Bérczi, Schwarcz, and87

Yamaguchi [5]. The covering number of a matroid M = (E, I) is the minimum number of88

independent sets from I needed to cover the ground set E. A matroid is k-coverable if its89

covering number is at most k.90

▶ Conjecture 3 ([5]). Every k-coverable matroid M = (E, I) can be reduced to a 2k-coverable91

partition matroid on the same ground set E.92

Below we prove that Bd \ {0} refutes the above conjecture for d ≥ 17. Note that we need to93

remove 0 from the complete binary matroid, since the covering number is not defined for94

matroids that have loops.95

▶ Theorem 4. For any d ≥ 17 there exists a matroid M of rank d that is k-coverable for some96

k ≥ d, but it cannot be reduced to a 2k-coverable partition matroid with the same number of97

elements. In particular, such an M can only be reduced to Ω(kd) coverable partition matroids98

with the same number of elements.99

1.1 Related Work.100

In recent independent work, Bahrani, Beyhaghi, Singla, and Weinberg [4] also studied barriers101

for simple algorithms for the matroid secretary problem. Most related to our result, they102

consider a restriction of the above class of algorithms in which a partition must be computed103

before seeing any weights. In this model, they show that no partition-based algorithm (which104

does not use the sample) can guarantee that each element of OPT is selected with constant105

probability. Note this does not imply such algorithms are not constant-competitive for the106

matroid secretary problem. In fact, their lower bound is constructed for the graphic matroid,107

for which we know a partition-based constant competitive algorithm exists [3, 14]. We refer108

the interested reader to [4] for further details of their contributions.109

In an independent work, [16] proved that for any constant b, the complete binary matroid110

Bd is not (b, o(
√

d))-decomposable. For b = 1, their result implies that, for any positive integer111

d, there is a k-coverable matroid of rank d that can only be reduced to Ω(k
√

d)-coverable112

partition matroids with the same number of elements, thus refuting Conjecture 3. Subsequent113

to our results and the result of [16], [18] proved that for any b, c ≥ 1, prime number q, and114

p ∈ (0, 1], there is a sufficiently large d such that a random subset of the complete linear115

matroid on Fd
q that contains each element with probability p is not (b, c)-decomposable with116

a high probability. For q = 2 and p = 1, this refutes Conjecture 3. To the best of our117

knowledge, Theorem 2 does not follow from the results of [16] and [18]. Note that a proof of118

this theorem needs to account for the fact that in a reduction of matroid M to a partition119

matroid P, the ground set of P can be any subset of the elements of M.120

ITCS 2023



41:4 Matroid Partition Property and the Secretary Problem

2 Main Technical Theorem121

For an integer k ≥ 1, we write [k] := {1, . . . , k}. The following is our main technical theorem:122

123

▶ Theorem 5 (Main Technical). For any reduction of the complete binary matroid Bd = (Fd
2, I)124

to a partition matroid P = P1 ∪ · · · ∪ Pd, there is a subset T ⊆ [d] such that |T | ≥ d − 8
√

d125

and | ∪i∈T Pi| ≤ 2d

4√
d
.126

Note that, throughout the paper, for any partition matroid specified by P1, . . . , Pd, we allow127

sets Pi to be empty. Therefore the partition matroid can effectively have less than d parts128

and the reduction does not have to be rank-preserving.129

As a consequence of the above theorem, there are O(
√

d) parts in [d] \ T that contain the130

vast majority of the elements of Bd. For appropriately chosen weight vectors, this is bad,131

since only O(
√

d) elements can be taken from ∪i̸∈T Pi.132

We use the following simple fact.133

▶ Fact 6. Let P be a partition matroid that is reduction of Bd with parts P1, . . . , Pd. Then134

if two elements x and y are in different parts (say Pi and Pj), then their sum x + y is in Pi,135

Pj or Fd
2 \ ∪iPi.136

Proof. Let z = x + y and suppose by way of contradiction that x ∈ Pi, y ∈ Pj , yet z ∈ Pk137

for distinct indices i, j, k. Then, {x, y, z} is independent in P . But now by the definition of a138

matroid reduction, {x, z, y} must be independent in Bd. However, this set is not independent139

since we have the dependence z = x + y. ◀140

▶ Lemma 7. Let P be a partition matroid that is reduction of Bd with parts P1, . . . , Pd and141

let R := Fd
2 ∖ P. The number of pairs a ∈ Pi, b ∈ Pj for 1 ≤ i < j ≤ d in which a + b ∈ R is142

at most max1≤i≤d 2|Pi| · |R|.143

Proof. Create a hypergraph H whose vertices are elements in Fd
2. Now, create a hyperedge144

{a, b, a + b} for every a ∈ Pi, b ∈ Pj for 1 ≤ i < j ≤ d in which a + b ∈ R.145

Fix any q ∈ R. First, note that there are no two distinct hyperedges {a, b, q}, {a, b′, q},146

as this would imply a + b = a + b′ and therefore b = b′. Therefore, the sets {a, b} such that147

{a, b, q} is a hyperedge form a matching.148

Now fix a hyperedge {a, b, q} with a ∈ Pi, b ∈ Pj . If there is some other hyperedge {c, d, q}149

such that c, d ̸∈ (Pi ∪ Pj), then a, b, c, d are all in different partitions, which cannot occur as150

a + b = c + d, which is a linear dependence in the partition matroid. Therefore, every edge151

containing q must contain an element of Pi ∪ Pj . Therefore the matching contains at most152

|Pi| + |Pj | ≤ 2 max1≤k≤d |Pk| edges, from which the claim follows. ◀153

▶ Lemma 8. Let P be a reduction of Bd to a partition matroid with parts P1, . . . , Pd with154

total size
∑d

i=1 |Pi| = n = c · 2d for some 0 < c ≤ 1. Then, there exists an 1 ≤ i ≤ d such155

that |Pi| > c
8 n.156

Proof. By way of contradiction, suppose max1≤i≤d |Pi| ≤ cn
8 . Now, construct a (directed)157

graph whose vertices are the elements in P . First, create an edge (a, b) for all a ∈ Pi, b ∈158

Pj , i ̸= j for which a + b ̸∈ R.159

For each such edge (a, b), by Fact 6 either a + b ∈ Pi or a + b ∈ Pj . Direct the edge160

towards a if the former occurs, otherwise direct it towards b. Note that the in-degree of each161

element in a partition Pi is at most |Pi| ≤ cn
8 (since if a + b = a + d = a′ ∈ Pi then b = d).162

Therefore, there are at most cn2

8 such edges.163
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However, by the previous lemma, there are at least (using that maxi |Pi| ≤ cn
8 ):164 (

n

2

)
−

d∑
i=1

(
|Pi|
2

)
− 2cn

8 |R| ≥
(

n

2

)
−

d∑
i=1

(
|Pi|
2

)
− n2

4165

= n2

2 −
d∑

i=1

|Pi|2

2 − n2

4 >
n2

8166

such edges, where in the first inequality we used that |R| ≤ 2d = 1
c n, in the equality we167

used
∑d

i=1 |Pi| = n and in the last inequality we used that
∑d

i=1 |Pi|2 is maximized when168

|Pi| = cn
8 on 8/c parts, and c ≤ 1, this is a contradiction with the above, which gives the169

lemma. ◀170

Now, we finish the proof of Theorem 5.171

Proof of Theorem 5. We start from T = [d] and inductively repeat the following: if | ∪i∈T

Pi| ≥ 2d

4√
d
, remove j = arg maxi∈T |Pi| from T . Using Lemma 8, if | ∪i∈T Pi| ≥ 2d

4√
d
, the size

of the partition that we remove is at least

max
i∈T

|Pi| ≥ 1
8 4

√
d

· 2d

4
√

d
= 2d

8
√

d
.

Therefore, after at most 8
√

d steps, we get | ∪i∈T Pi| ≤ 2d

4√
d
. This finishes the proof. ◀172

3 Main Theorems173

3.1 Matroid α-Partition Property (Proof of Theorem 4)174

For a matroid M, Edmonds defined:175

β(M) := max
∅⊂F ⊆E

|F |
rankM (F ) . (1)176

Note that the maximum in the RHS is attained at flats of M, namely sets F that are the177

same as their closure.178

▶ Theorem 9 (Edmonds [10]). For any matroid M on elements E and with no loops, the179

covering number of M, namely the minimum number of independent sets whose union is E180

is equal to ⌈β(M)⌉.181

Using this, we show that Theorem 4 is a corollary of Lemma 8.182

▶ Theorem 4. For any d ≥ 17 there exists a matroid M of rank d that is k-coverable for some183

k ≥ d, but it cannot be reduced to a 2k-coverable partition matroid with the same number of184

elements. In particular, such an M can only be reduced to Ω(kd) coverable partition matroids185

with the same number of elements.186

Proof. It follows from Theorem 9 that the binary matroid Bd\{0} on Fd
2 satisfies β(Bd\{0}) =187

(2d − 1)/d. This is because the flats of Bd \ {0} correspond to (linear) subspaces. A linear188

subspace of dimension k has exactly 2k − 1 many vectors. So, the maximum of (1) is attained189

at F = Fd
2 \ {0} which has rank d.190

Now, suppose Bd \{0} is reduced to a partition matroid P with parts P1, . . . , Pd such that191

∪d
i=1Pi = Fd

2 \ {0}. Observe that β(P) = max1≤i≤d |Pi|. To refute Conjecture 3 and prove192

Theorem 4, it is enough to show that max1≤i≤d |Pi| > Ω(2d − 1). However, by Lemma 8193

(setting c = 1 − 1/2d to account for deleting the 0 element), this quantity is at least 2d−1
8 ,194

which gives the theorem. ◀195

ITCS 2023



41:6 Matroid Partition Property and the Secretary Problem

3.2 Matroid Secretary α-Partition Property (Proof of Theorem 2)196

▶ Definition 10. Let P(S, w|S) be any function that maps a sample S ⊂ Fd
2 and weights w|S197

of elements in the sample to a partition matroid that is a reduction of Bd, where the elements198

of P(S, w|S) are a subset of S = Fd
2 \ S. Let P be the collection of all such mappings.199

▶ Definition 11 (Randomized Partition Reduction Algorithm). A (randomized) partition200

reduction algorithm A for a matroid M with n elements consists of two parts:201

A (randomly) chooses a sample size 0 ≤ |S| ≤ n before any elements have been seen; we202

denote this choice by sA.203

A (randomly) chooses a mapping PA ∈ P and uses it to build P(S, w|S) after seeing the204

sample S.205

▶ Theorem 12 (Main). For any randomized partition reduction algorithm A for Bd, with206

d ≥ 212 there is a weight function w : Fd
2 → R≥0 such that207

EsAES:|S|=sAEPA [optPA
(w|S)] ≤ 4d− 1

4 optBd
(w).

For readability in the above, we have suppressed the fact that the partition matroid PA (whose208

elements are a subset of S) depends on both S and w|S. Note that S is drawn from the209

uniform distribution over subsets of Fd
2 of size sA.210

Proof. Suppose that the weights of the elements in Bd are selected by setting211

wi = 1i∈X (2)212

where X = {x1, x2, . . . , xd} is a uniformly random sample of d elements from Fd
2, selected213

with replacement. Then the optimal independent set has expected weight Ew optBd
(w) equal214

to215

EX(rank(X)) =
d∑

i=1
1xi /∈span{x1,...,xi−1} =

d∑
i=1

2d − 2i−1

2d − (i − 1) ≥
d∑

i=1

2d−1

2d
= d

2 . (3)216

Now let A be an arbitrary algorithm that chooses the sample size sA and the mapping217

P ∈ P deterministically. We claim that it suffices to show that for the weight vector given in218

Equation (2) when X is chosen uniformly at random, and for S a uniformly random sample219

of elements of any fixed size:220

EwES optP(w|S) ≤ 2d3/4, (4)221

where P = P(S, w|S) is any partition matroid on a subset of S constructed after seeing the222

elements in S and their weights. (Note that optP is a upper bound on the performance of223

A.)224

To see why, observe that in the randomized case, by taking the expected value over the

randomization in A and then interchanging the order of the expectations, we get

EwEAES optPA
(w|S) = EAEwES optPA

(w|S) ≤ 2d3/4.

Therefore, for w chosen at random according to (2) and using (3),

EwEAES optPA
(w|S)

Ew optBd
(w) ≤ 4d−1/4.

Applying the mediant inequality, we conclude that there is a set B of size d such that225

EAES optPA
(B|

S
)

rank(B) is at most 4d−1/4, completing the proof of the theorem.226
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It remains to prove (4). Observing that w (resp. w|S , w|S) is fully determined by X227

(respectively X ∩ S, X ∩ S) and letting X1 := X ∩ S, X2 := X ∩ S we write228

EwES optP(w|S) = ESEX1EX2 optP(X2). (5)229

For any choice of S and X1, the partition matroid P = P(S, X1) on a subset of S consists

of parts P1 ∪ · · · ∪ Pd (some of these parts could be empty). By Theorem 5, there exists a set

T ⊆ [d] of size at least d − 8
√

d such that | ∪i∈T Pi| ≤ 2d

4√
d
. Therefore,

optP(X2) ≤ |X2 ∩ ∪i∈T Pi| + 8
√

d.

So, for a fixed S, we have230

EX1EX2 optP(X2) ≤ EX1EX2

(
|X2 ∩ ∪i∈T Pi| + 8

√
d
)

231

= EX1

(
(d − |X1|) | ∪i∈T Pi|

|S|
+ 8

√
d

)
.232

≤ EX1

(
(d − |X1|)2d/ 4

√
d

|S|
+ 8

√
d

)
.233

= (d − E(|X1|)) 2d

4
√

d|S|
+ 8

√
d,234

235

where in the first equality, we used the fact that for any fixed X1, the set X2 is a uniformly

random subset of size d − |X1| in S, thus in expectation, (d − |X1|) |∪i∈T Pi|
|S|

many elements

in X2 are in ∪i∈T Pi ⊆ S. Finally, we observe that

(d − E(|X1|))
|S|

· 2d

4
√

d
=

d − |S|·d
2d

(1 − |S|
2d )2d

· 2d

d1/4 = d3/4.

Thus, we get

EX1EX2 optP(X2) ≤ d3/4 + 8
√

d ≤ 2d3/4,

where in the last inequality we used our assumption that d ≥ 212. Combining Equation (5)236

with this, Equation (4) follows. ◀237

4 Conclusion238

We note that for our bad example, the trivial algorithm for matroid secretary succeeds: one239

simply needs to take every improving element when it arrives.240

On the positive side, probably the most interesting open problem is to solve the matroid241

secretary problem for the complete binary matroid. On the negative side: can we prove a lower242

bound against the following class of partition-based algorithms? After seeing a sample, parti-243

tion the elements into sets P1, . . . , Pk with corresponding matroids M(P1, I1), . . . , M(Pk, Ik)244

with the property that for any I1 ∈ I1, . . . , Ik ∈ Ik, the set
⋃k

i=1 Ii is independent in the245

binary matroid. Then, run a simple greedy procedure on each M(Pi, Ii). In the special case246

that each Mi is a rank 1 matroid, our result gives a super-constant lower bound.247
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