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AN ITERATIVE DECOUPLED ALGORITHM WITH

UNCONDITIONAL STABILITY FOR BIOT MODEL

HUIPENG GU, MINGCHAO CAI, AND JINGZHI LI

Abstract. This paper is concerned with numerical algorithms for Biot model.
By introducing an intermediate variable, the classical 2-field Biot model is
written into a 3-field formulation. Based on such a 3-field formulation, we
propose a coupled algorithm, some time-extrapolation based decoupled algo-
rithms, and an iterative decoupled algorithm. Our focus is the analysis of the
iterative decoupled algorithm. It is shown that the convergence of the iterative
decoupled algorithm requires no extra assumptions on physical parameters or
stabilization parameters. Numerical experiments are provided to demonstrate
the accuracy and efficiency of the proposed method.

1. Introduction

Poroelasticity describes the interaction between a pore-structured solid and a
fluid where the solid is saturated. Its theoretical basis was initially established by
Biot [1,2]. Due to its importance, Biot model has been widely used in various fields
[10, 11], ranging from petroleum engineering to biomedical engineering. Since Biot
model is a multiphysics model and the domain is usually irregular, it is not easy
to obtain an analytical solution. Thus, many researchers pay their attentions to
numerical solutions [6, 12–15, 17–19, 22, 24, 27]. In many existing works [3, 19, 23],
solid displacement and fluid pressure are taken as the primary variables in the
Biot model. Correspondingly, these methods are based on the 2-field formulation.
However, it is pointed out that elasticity locking and pressure oscillation are the
major difficulties for the 2-field formulation based model [6,16,23,26]. To overcome
these difficulties, discontinuous Galerkin method [22], stabilizations [23, 24] and
various 3-field or 4-field reformulations are used [7, 16, 21, 27]. Following [16, 21],
an intermediate variable, called “total pressure”, is introduced to develop a 3-field
formulation for Biot model in this paper.

By using such a reformulation, one can view the Biot model as a combination of a
generalized Stokes problem and a reaction-diffusion problem for the fluid pressure.
The advantages of this reformulation are as follows. Firstly, the reformulation
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enables one to apply the classical inf-sup stable Stokes finite element pairs and the
traditional Lagrange elements for the parabolic type reaction-diffusion equation
[7, 10, 16, 21]. Thus, sophisticated discretization is avoided. Secondly, for either a
coupled algorithm or a decoupled algorithm based on such a reformulation, some
existing fast solvers like multigrid methods and domain decomposition methods can
be directly called. Moreover, it has been shown that such a 3-field reformulation
enables one to overcome the above mentioned numerical difficulties [10, 16, 21].

Actually, no matter a 2-field or a 3-field formulation is adopted, numerical meth-
ods for Biot model can be classified into threef types as follows. (1) Coupled (or
monolithic) algorithms, in which all variables are solved together. (2) Decoupled
(or called “partitioned”) time-stepping algorithms, in which the numerical compu-
tations of different variables are realized by employing the numerical solutions of
previous time-steps, see for example [7, 10]. (3) Iterative algorithms, in which the
numerical computations of different variables are realized by applying the solutions
of previous iterations. Some well-known iterative methods [3, 11, 17, 18, 27] include
the drained split, the undrained split, the fixed-strain split, and the fixed-stress
split. In this work, based on the 3-field reformulation [10, 16, 21], we consider all
these three types of methods: a coupled algorithm, some time-extrapolation type
partitioned algorithm, and an iterative decoupled algorithm. The coupled algorithm
is to solve the fully coupled system, that is, the generalized Stokes problem and
the reaction-diffusion problem are put together. In the time-extrapolation based
decoupled algorithms, we separate the original problem into two subproblems and
apply the solutions of the previous time step to decouple the computation. How-
ever, the time-extrapolation based decoupling will cause stability constraints and
accuracy issues. Thus, we propose an iterative decoupled algorithm. Specifically,
we employ the time extrapolation and apply iterations for each submodel to im-
prove the solution accuracy in each time step. Such an idea was originally discussed
in the engineering community [11] and was firstly theoretically studied in [17, 18].
In a subsequent work [3], a 2-field formulation is adopted and the fixed-stress split
is applied for iterations. Our work is inspired by these works. In this paper, we call
our iterative method as a “decoupled algorithm” in the sense that numerical com-
putations for different submodels are decoupled. In other works, some researchers
called their algorithms as “iterative coupling algorithms” in the sense that the
physics of different submodels are coupled together. To ensure the convergence of
the iterative method in [3], they require that the stabilization parameter should be
large enough. Compared with the fixed-stress splitting iterative method proposed
in [3], our iterative decoupled method does not require any stabilization parameter
and is unconditionally convergent to the solution of the coupled algorithm. Fur-
thermore, we do not need extra assumptions on physics parameters, particularly
for the storage coefficient c0. We comment here that theoretical analysis for many
existing iterative methods is valid only when c0 > 0. Numerical experiments are
provided to validate the effectiveness and efficiency of our algorithms.

The rest of this paper is structured as follows. In Section 2, we briefly introduce
the (quasi-static) Biot model and present a 3-field reformulation. In Section 3,
a coupled algorithm, some time extrapolation based algorithms, and an iterative
decoupled algorithm are proposed based on the 3-field formulation. The error
analysis of the coupled algorithm is provided in Appendix A. In Section 4, we
prove that the solution based on the iterative decoupled algorithm converges to
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that of the coupled algorithm. Numerical experiments are presented in Section 5,
and conclusions are drawn in Section 6.

2. Mathematical formulations

2.1. The Biot model and its reformulation. Let Ω ⊂ R
d (d = 2 or 3) be a

bounded polygonal domain with boundary ∂Ω. We use (·, ·) and 〈·, ·〉 to denote
the standard L2(Ω) and L2(∂Ω) inner products, respectively. We will also use
the following notations: the standard Sobolev spaces [8], Wm,p(Ω) = {u | Dαu ∈
Lp(Ω), 0 ≤ α ≤ m, ‖u‖Wm,p < ∞}; Hm(Ω) for Wm,2(Ω), and ‖ · ‖Hm(Ω) for ‖ ·
‖Wm,2(Ω); H

m
0,Γ(Ω) for the subspace of Hm(Ω) with the vanishing trace on Γ ⊂ ∂Ω.

The classical 2-field formulation of Biot model is given as follows

− divσ(u) + α∇p = f ,(2.1)

(c0p+ αdivu)t − divK(∇p− ρfg) = Qs.(2.2)

Here, equation (2.1) is the momentum equation, and equation (2.2) describes the
conservation of mass for fluid flow in porous media. In the above equations, the
primary unknowns are the displacement vector of the solid phase u and the pressure
of the fluid phase p. The coefficient α is the Biot-Willis constant which is close to
1, f is the body force, c0 is the specific storage coefficient, K is the hydraulic
conductivity, ρf is the fluid density, g is the gravitational acceleration, Qs is a
source or sink term,

σ(u) = 2με(u) + λdivuI, ε(u) =
1

2
[∇u+ (∇u)T ],

I is the identity matrix, λ and μ are Lamé constants, which can be expressed in
terms of the Young’s modulus E and the Poisson ratio ν:

λ =
Eν

(1 + ν)(1− 2ν)
, μ =

E

2(1 + ν)
.

Proper boundary and initial conditions should be provided in order to ensure the
existence and uniqueness of the solution. In this paper, we consider a mixed partial
Neumann and partial Dirichlet conditions: assuming ∂Ω = Γd ∪ Γt = Γp ∪ Γf with
|Γd| > 0 and |Γp| > 0 . Here, Γd and Γp denote the Dirichlet boundary for u and
p, respectively; Γt and Γf denote the Neumann boundary for u and p, respectively.
For instance,

u = 0, on Γd,

(σ(u)− αpI)n = h, on Γt,

p = 0, on Γp,

K(∇p− ρfg) · n = g2, on Γf ,

where n is the unit outward normal to the boundary. Without loss of generality, the
above Dirichlet boundary conditions are assumed to be homogeneous. The initial
conditions are given by

u(0) = u0, p(0) = p0.

Following [10,16], we introduce the so-called “total pressure”: ξ = αp−λdivu. The
corresponding initial condition is ξ(0) = ξ0 = αp0 − λdivu0. Then, (2.1)–(2.2) can
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be written as

− 2μdiv(ε(u)) +∇ξ = f ,(2.3)

− divu− 1

λ
ξ +

α

λ
p = 0,(2.4)

(

c0 +
α2

λ

)

pt −
α

λ
ξt − divK(∇p− ρfg) = Qs.(2.5)

After such a reformulation, the above boundary conditions and initial conditions
can still be applied to the model (2.3)–(2.5).

In order to study the variational problem for the 3-field formulation (2.3)–(2.5),
we introduce the following functional spaces: V := {v ∈ H1

0,Γd
(Ω)}, W := L2(Ω),

and M := {ψ ∈ H1
0,Γp

(Ω)}. Their dual spaces are denoted as V ′, W ′ and M ′.

Given that |Γd| > 0, the Korn’s inequality [20] holds on V , that is, there exists a
constant Ck = Ck(Ω,Γd) > 0 such that

‖u‖H1(Ω) ≤ Ck‖ε(u)‖L2(Ω), ∀u ∈ V .(2.6)

Furthermore, the following inf-sup condition [4] holds: there exists a constant β0 >
0 depending only on Ω and Γd such that

sup
u∈V

(divu, q)

‖u‖H1(Ω)
≥ β0‖q‖L2(Ω), ∀q ∈ L2(Ω).(2.7)

Assumption 1. We assume that u0 ∈ H1(Ω), f ∈ L2(Ω), h ∈ L2(Γt), p0 ∈
L2(Ω), Qs ∈ L2(Ω) and g2 ∈ L2(Γf ). We also assume that μ > 0, λ > 0, K > 0,
c0 ≥ 0, T > 0.

For simplicity, we will assume Assumption 1 holds in the rest of our paper. For
ease of presentation, we also assume that g = 0, f , h, Qs, and g2 are independent
of t. Given T > 0, a 3-tuple (u, ξ, p) ∈ V ×W ×M with

u ∈ L∞(0, T ;V ), ξ ∈ L∞(0, T ;W ), p ∈ L∞(0, T ;M),

pt, ξt ∈ L2(0, T ;M ′)

is called a weak solution of problem (2.3)–(2.5) if there holds

2μ(ε(u), ε(v))− (ξ, divv) = (f ,v) + 〈h,v〉Γt
, ∀v ∈ V ,(2.8)

−(divu, φ)− 1

λ
(ξ, φ) +

α

λ
(p, φ) = 0, ∀φ ∈ W,(2.9)

((

c0 +
α2

λ

)

pt −
α

λ
ξt, ψ

)

+K(∇p,∇ψ) = (Qs, ψ) + 〈g2, ψ〉Γf
, ∀ψ ∈ M,(2.10)

for almost every t ∈ [0, T ].

2.2. Energy estimates. Lemma 2.1 describes the energy law for problem (2.8)–
(2.10).

Lemma 2.1. Every weak solution (u, ξ, p) of problem (2.8)–(2.10) satisfies the

following energy law:

E(t) +

∫ t

0

K(∇p,∇p)ds−
∫ t

0

(Qs, p)ds−
∫ t

0

〈g2, p〉Γf
ds = E(0),(2.11)
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for all t ∈ (0, T ], where

E(t) := μ‖ε(u(t))‖2L2(Ω) +
1

2λ
‖αp(t)− ξ(t)‖2L2(Ω) +

c0
2
‖p(t)‖2L2(Ω)

− (f ,u(t))− 〈h,u(t)〉Γt
.

Moreover,

‖ξ(t)‖L2(Ω) ≤ C(2μ‖ε(u(t))‖L2(Ω) + ‖f‖L2(Ω) + ‖h‖L2(Γt)),

where C = Ck/β0 is a constant depending only on Ω and Γd.

Proof. We use the standard techniques to display the results. Setting v = ut in
(2.8), ψ = p in (2.10), differentiating with respect to t in (2.9) and setting φ = ξ,
we have

2μ(ε(u), ε(ut))− (ξ, divut) = (f ,ut) + 〈h,ut〉Γt
,

(divut, ξ) +
1

λ
(ξt, ξ)−

α

λ
(pt, ξ) = 0,

(

c0 +
α2

λ

)

(pt, p)−
α

λ
(ξt, p) +K(∇p,∇p) = (Qs, p) + 〈g2, p〉Γf

.

Adding the above three equations together, we obtain that

2μ(ε(u), ε(ut)) +
1

λ
(ξt, ξ) +

(

c0 +
α2

λ

)

(pt, p)−
α

λ
(ξt, p)−

α

λ
(pt, ξ) +K(∇p,∇p)

= (f ,ut) + 〈h,ut〉Γt
+ (Qs, p) + 〈g2, p〉Γf

.

(2.12)

Since (αpt − ξt, αp − ξ) = α2(pt, p) − α(ξt, p) − α(pt, ξ) + (ξt, ξ), (2.12) can be
rewritten as

2μ(ε(u), ε(ut)) +
1

λ
(αpt − ξt, αp− ξ) + c0(pt, p) +K(∇p,∇p)

= (f ,ut) + 〈h,ut〉Γt
+ (Qs, p) + 〈g2, p〉Γf

.(2.13)

Integrating (2.13) in t over the interval (0, s) for any s ∈ (0, T ], we derive (2.11). The
bound for ξ follows from the inf-sup condition and the Korn’s inequality. Specifi-
cally, from (2.8), we see that the following inequality holds

β0‖ξ‖L2(Ω) ≤ sup
v∈V

|(divv, ξ(t))|
‖v‖H1(Ω)

≤ sup
v∈V

|2μ(ε(u), ε(v))|+ |(f ,v)|+ |〈h,v〉Γt
|

‖v‖H1(Ω)

≤ Ck(2μ‖ε(u)‖L2(Ω) + ‖f‖L2(Ω) + ‖h‖L2(Γt)).(2.14)

The constant β0 is from the inf-sup condition (2.7) and Ck is from the Korn’s
inequality (2.6). This completes the proof. �

The energy law (2.11) implies the following priori estimate immediately.

Theorem 2.2. Let (u, ξ, p) be the solution of problem (2.8)–(2.10), there holds

√

2μ‖ε(u)‖L∞(0,T ;L2(Ω)) +

√

1

λ
‖αp− ξ‖L∞(0,T ;L2(Ω))

+
√
c0‖p‖L∞(0,T ;L2(Ω)) +

√
K‖∇p‖L2(0,T ;L2(Ω)) ≤ C,(2.15)
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where C = C(‖u0‖H1(Ω), ‖p0‖L2(Ω), ‖f‖L2(Ω), ‖h‖L2(Γt), ‖Qs‖L2(Ω), ‖g2‖L2(Γf )) is a
positive constant.

3. Numerical algorithms

We apply the Taylor-Hood elements for the pair (u, ξ), i.e., (P2, P1) Lagrange
finite elements, and P1 Lagrange finite elements for the fluid pressure p. Let Th be
a partition of the domain Ω, and h be the maximum diameter over all elements in
the mesh. Then, the finite element spaces on Th are given as

Vh := {vh ∈ H1
0,Γd

(Ω) ∩C0(Ω̄); vh|E ∈ P2(E), ∀E ∈ Th},
Wh := {φh ∈ L2(Ω) ∩ C0(Ω̄); φh|E ∈ P1(E), ∀E ∈ Th},
Mh := {ψh ∈ H1

0,Γp
(Ω) ∩ C0(Ω̄); ψh|E ∈ P1(E), ∀E ∈ Th}.

We note that Vh ×Wh is a stable Stokes pair, i.e., there exists a constant β∗
0 > 0,

independent of h, such that

sup
uh∈Vh

(divuh, q)

‖uh‖H1(Ω)
≥ β∗

0‖q‖L2(Ω), ∀q ∈ L2(Ω).(3.1)

An equidistant partition 0 = t0 < t1 < · · · < tN = T with a step size Δt
is considered for the time discretization. For simplicity, we define un := u(tn),
ξn := ξ(tn), and pn := p(tn).

3.1. A coupled algorithm and some time-extrapolation based decoupled

algorithms. Suppose that initial values (u0
h, ξ

0
h, p

0
h) ∈ Vh×Wh×Mh are provided,

we apply a backward Euler scheme for the time discretization to (2.10). Let us
consider the following algorithms: for all n ∈ N , given (un−1

h , ξn−1
h , pn−1

h ) ∈ Vh ×
Wh × Mh, find (un

h, ξ
n
h , p

n
h) ∈ Vh × Wh × Mh, such that for all (vh, φh, ψh) ∈

Vh ×Wh ×Mh,

2μ(ε(un
h), ε(vh))− (ξnh , divvh) = (f ,vh) + 〈h,vh〉Γt

,(3.2)

(divun
h, φh) +

1

λ
(ξnh , φh)−

α

λ
(pn−θ

h , φh) = 0,(3.3)
(

c0 +
α2

λ

)

(pnh, ψh)−
α

λ
(ξnh , ψh) +KΔt(∇pnh,∇ψh) = Δt(Qs, ψh)

+ Δt〈g2, ψh〉Γf
+

(

c0 +
α2

λ

)

(pn−1
h , ψh)−

α

λ
(ξn−1

h , ψh).(3.4)

In (3.3), θ = 0 or 1. If θ = 0, the above algorithm is a coupled algorithm, which was
firstly proposed in [21]. If θ = 1, then the above algorithm is a time-extrapolation
based (or semi-implicit) decoupled algorithm, which was firstly proposed in [10]
without theoretical analysis. If θ = 0, equations (3.2)–(3.4) are coupled, therefore
a large system containing all variables must be solved together. Instead of solving
the Biot problem in a fully coupled manner, one can choose θ = 1 to separate the
original problem into two subproblems, because a generalized Stokes equation for
u and ξ is obtained if one moves α

λ
p to the right-hand side of (2.4), and (2.5) is

a reaction-diffusion problem for p if the term containing ξ is moved to the right
hand side. With these observations, one can actually design two time-extrapolation
based decoupled algorithms: one is solving for u and ξ together firstly and then
solving a reaction-diffusion equation for p, the other is solving for p firstly, then
solving for u and ξ. These decoupling strategies will have stability constraints,
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which require that the time step size should be chosen small enough. Roughly
spoken, Δt should be of order O(h2) [7]. This means that time-extrapolation based
decoupled algorithms cannot guarantee the stability or accuracy if the time step
is too large. From now on, for ease of presentation, we will abbreviate the time-
extrapolation based decoupled algorithm as the TE decoupled algorithm and will
only consider the TE decoupled algorithm which solves u and ξ firstly.

3.2. An iterative decoupled algorithm. In order to avoid the stability con-
straints, we propose an iterative decoupled algorithm. In each time step of the
algorithm, we use the previous iterates as the initial guess, then solve a reaction-
diffusion equation for p and a generalized Stokes equation for u and ξ alternately
until a convergence is reached. Let us define a sequence (un,i

h , ξn,ih , pn,ih ) with i ≥ 0

being the iteration index. After initialization, i.e., un,0
h = un−1

h , ξn,0h = ξn−1
h , and

pn,0h = pn−1
h , each iteration is divided into Steps 1 and 2. For a fixed n, the i-th

iteration reads as:

Step 1. Given ξn,i−1
h ∈ Wh, find pn,ih ∈ Mh such that

(

c0 +
α2

λ

)

(pn,ih , ψh) +KΔt(∇pn,ih ,∇ψh)

=

(

c0 +
α2

λ

)

(pn−1
h , ψh) +

α

λ
(ξn,i−1

h − ξn−1
h , ψh) + Δt(Qs, ψh) + Δt〈g2, ψh〉Γf

.

(3.5)

Step 2. Given pn,ih ∈ Mh, find (un,i
h , ξn,ih ) ∈ Vh ×Wh such that

2μ(ε(un,i
h ), ε(vh))− (ξn,ih , divvh) = (f ,vh) + 〈h,vh〉Γt

,(3.6)

(divun,i
h , φh) +

1

λ
(ξn,ih , φh) =

α

λ
(pn,ih , φh).(3.7)

For simplicity, the backward Euler scheme is chosen for the time discretization of
the reaction-diffusion equation (3.5). Other higher order time-stepping schemes can
also be applied here.

4. Convergence analysis of the iterative decoupled algorithm

For the error analysis of the coupled algorithm, we refer the readers to Appendix
A. It is shown that the coupled algorithm is unconditionally stable and convergent,
and the time error is of order O(Δt), the energy-norm errors for u, ξ are of order
O(h2), and the energy-norm error for p is of order O(h). In this section, we show

that the sequences (un,i
h , ξn,ih , pn,ih ) will converge to the solution (un

h, ξ
n
h , p

n
h) of the

coupled algorithm if i → ∞. We firstly introduce Lemma 4.1 [25].

Lemma 4.1. For all uh ∈ Vh, the following inequality holds

‖divuh‖L2(Ω) ≤
√
d‖ε(uh)‖L2(Ω).(4.1)

Now, we are in a position to show the main theorem.

Theorem 4.2. Let (un
h, ξ

n
h , p

n
h) and (un,i

h , ξn,ih , pn,ih ) be the solutions of problem

(3.2)–(3.4) with θ = 0 and problem (3.5)–(3.7), respectively. Let ei
u
= u

n,i
h − un

h,

eiξ = ξn,ih − ξnh , and eip = pn,ih − pnh denote the errors between the iterative solution
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1094 HUIPENG GU, MINGCHAO CAI, AND JINGZHI LI

in the i-th step and the solution of the coupled algorithm. Then, for all i ≥ 1, it
holds that

‖eiξ‖L2(Ω) ≤ C∗‖ei−1
ξ ‖L2(Ω),(4.2)

where C∗ =
α2

λ

c0+
α2

λ

is a positive constant less than or equal to 1. Moreover, there

holds

‖eip‖L2(Ω) ≤
C∗

α
‖ei−1

ξ ‖L2(Ω),(4.3)

‖ε(ei
u
)‖L2(Ω) ≤

√
d

2μ
‖eiξ‖L2(Ω).(4.4)

Proof. Setting θ = 0 in (3.3), subtracting (3.5), (3.6) and (3.7) from (3.4), (3.2)
and (3.3), respectively, we see that

(

c0 +
α2

λ

)

(eip, ψh) +KΔt(∇eip,∇ψh) =
α

λ
(ei−1

ξ , ψh),(4.5)

2μ(ε(ei
u
), ε(vh))− (eiξ, divvh) = 0,(4.6)

(divei
u
, φh) +

1

λ
(eiξ, φh) =

α

λ
(eip, φh)(4.7)

hold for all (vh, φh, ψh) ∈ Vh ×Wh ×Mh. Taking ψh = eip in (4.5), we obtain
(

c0 +
α2

λ

)

(eip, e
i
p) +KΔt‖∇eip‖2L2(Ω) =

α

λ
(ei−1

ξ , eip).

Discarding the second positive term and applying the Cauchy-Schwarz inequality,
we get

(

c0 +
α2

λ

)

(eip, e
i
p) ≤

α

λ
(ei−1

ξ , eip) ≤
α

λ
‖ei−1

ξ ‖L2(Ω)‖eip‖L2(Ω).(4.8)

The above inequality indicates that (c0 + α2

λ
)‖eip‖L2(Ω) ≤ α

λ
‖ei−1

ξ ‖L2(Ω), which

verifies (4.3).
Taking the test functions in (4.6) and (4.7) as vh = ei

u
and φh = eiξ, respectively,

we obtain the following equations

2μ(ε(ei
u
), ε(ei

u
))− (eiξ, dive

i
u
) = 0,(4.9)

(divei
u
, eiξ) +

1

λ
(eiξ, e

i
ξ) =

α

λ
(eip, e

i
ξ).(4.10)

Summing up (4.9) and (4.10), and then applying a Cauchy-Schwarz inequality, we
have

2μ‖ε(ei
u
)‖2L2(Ω) +

1

λ
‖eiξ‖2L2(Ω) =

α

λ
(eip, e

i
ξ) ≤

α

λ
‖eip‖L2(Ω)‖eiξ‖L2(Ω).(4.11)

Dropping the first positive term, and using the conclusion of (4.8), there holds

‖eiξ‖L2(Ω) ≤ α‖eip‖L2(Ω) ≤
α2

λ

c0 +
α2

λ

‖ei−1
ξ ‖L2(Ω).(4.12)

Therefore, (4.2) is proved. Applying Lemma 4.1 to (4.9), we have

2μ‖ε(ei
u
)‖2L2(Ω) = (eiξ, dive

i
u
) ≤ ‖eiξ‖L2(Ω)‖diveiu‖L2(Ω) ≤

√
d‖eiξ‖L2(Ω)‖ε(eiu)‖L2(Ω).

(4.13)
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This yields (4.4). The proof is complete. �

Remark 4.3. If c0 > 0, according to (4.2) and the expression of C, then ‖eiξ‖L2(Ω)

converges to 0 as i goes to infinity. Following from (4.3) and (4.4), we see that
‖eip‖L2(Ω) and ‖ε(ei

u
)‖L2(Ω) also converge to 0 if i goes to infinity.

Remark 4.4. If c0 = 0, we can also prove that the iterative decoupled algorithm
is convergent. Note that the arguments in Theorem 4.2 are valid no matter c0
is 0 or greater than 0. Let us assume c0 = 0 in the following derivation. From
(4.2), we see that {‖eiξ‖L2(Ω)} is still a monotonically non-increasing sequence and

has a lower bound. Therefore, {‖eiξ‖L2(Ω)} is convergent. We are going to use the

method of contradiction to show that the limit of {‖eiξ‖L2(Ω)} is 0. If not, let us
assume

lim
i→∞

‖eiξ‖L2(Ω) = s > 0.

From (4.11) and (4.12), we see that

2μ‖ε(ei
u
)‖2L2(Ω) +

1

λ
‖eiξ‖2L2(Ω) ≤

1

λ
‖ei−1

ξ ‖L2(Ω)‖eiξ‖L2(Ω).

Letting i → ∞, because s > 0, it follows that limi→∞ ‖ε(ei
u
)‖L2(Ω) = 0. Applying

the discrete inf-sup condition, and noting from (4.6), we see that

β∗
0‖eiξ‖L2(Ω) ≤ sup

vh∈Vh

|(eξ, divvh)|
‖vh‖L2(Ω)

= sup
vh∈Vh

|(ε(ei
u
), ε(vh))|

‖vh‖L2(Ω)
� ‖ε(ei

u
)‖L2(Ω).

Thus, we derive that s ≤ 0, which is a contradiction. Therefore, limi→∞ ‖eiξ‖L2(Ω) =

0. It follows that limi→∞ ‖ε(ei
u
)‖L2(Ω) = 0 and limi→∞ ‖eip‖L2(Ω) = 0.

5. Numerical experiments

In this section, we present numerical experiments to compare the accuracy and
efficiency of the algorithms described in Section 3. Particularly, we are interested
in demonstrating the performance of the different algorithms under various settings
of physical parameters. Our tests are based on a 2D benchmark problem with a
known analytical solution [10, 26]. All algorithms are implemented in the open-
source software package FreeFEM++ [9].

Let Ω = [0, 1] × [0, 1] with Γ1 = {(1, y); 0 ≤ y ≤ 1}, Γ2 = {(x, 0); 0 ≤ x ≤ 1},
Γ3 = {(0, y); 0 ≤ y ≤ 1}, and Γ4 = {(x, 1); 0 ≤ x ≤ 1}. The terminal time is
T = 0.01. We consider problem (2.3)–(2.5) with the following force terms and
source term:

f = e−t

×
(

4µπ2 sin (2πy)(2 cos (2πx)−1)+
(

2μπ2

μ+λ
sin (πx)+απcos (πx)

)

sin (πy)−π
2 cos (π(x+y))

4µπ2 sin (2πx)(1−2 cos (2πy))+
(

2μπ2

μ+λ
sin (πy)+απcos (πy)

)

sin (πx)−π
2 cos (π(x+y))

)

,

Qs = e−t

(

(−c0 + 2π2K) sin (πx) sin (πy)− απ

μ+ λ
sin (π(x+ y))

)

.
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The corresponding boundary conditions and initial conditions are given as:

p = e−t sin (πx) sin (πy),

on Γj × (0, T ), j = 1, 3,

u1 = e−t

(

sin (2πy)(cos (2πx)− 1) +
1

μ+ λ
sin (πx) sin (πy)

)

,

on Γj × (0, T ), j = 1, 3,

u2 = e−t

(

sin (2πx)(1− cos (2πy)) +
1

μ+ λ
sin (πx) sin (πy)

)

,

on Γj × (0, T ), j = 1, 3,

h = σn− αpn,

on Γj × (0, T ), j = 2, 4,

∇p · n = e−t(π cos (πx) sin (πy)n1 + π sin (πx) cos (πy)n2),

on Γj × (0, T ), j = 2, 4,

u(x, y, 0) =

(

sin (2πy)(cos (2πx)− 1) + 1
μ+λ

sin (πx) sin (πy)

sin (2πx)(1− cos (2πy)) + 1
μ+λ

sin (πx) sin (πy)

)

,

in Ω,

p(x, y, 0) = sin (πx) sin (πy),

in Ω.

Using the above data, the exact solutions are given as follows:

u(x, y, t) = e−t

(

sin (2πy)(cos (2πx)− 1) + 1
μ+λ

sin (πx) sin (πy)

sin (2πx)(1− cos (2πy)) + 1
μ+λ

sin (πx) sin (πy)

)

,

p(x, y, t) = e−t sin (πx) sin (πy).

In the experiments, we use uniform grids with the initial mesh size being h =
1/16. The mesh refinement is realized by linking the midpoints of each triangle.
The computed L2-norm and H1-norm errors and the convergence rates are reported
at the terminal time T . We use iters to denote the number of iterations used in
the iterative decoupled algorithm. In our tests, we choose relatively large time step
sizes so that we can demonstrate the effectiveness and the efficiency of the itera-
tive decoupled algorithm. For the TE decoupled algorithm, the stability constraint
requires that the time step size should be small enough to ensure the energy norm
convergence orders are optimal. We include both large time step size experiments
and small time step size experiments for more careful comparisons. We would com-
ment here that if the time step size is very small, say Δt = 1.0×10−5, all algorithms
will give energy-norm errors of the optimal orders, although the corresponding nu-
merical results are not reported here.

5.1. Tests for the parameter ν. In this subsection, we test the performance
of the algorithms in Section 3 under different settings of the Poisson ratio. The
hydraulic conductivity K and the specific storage coefficient c0 are fixed to be 1.

Tables 1 and 2 display the results of the coupled algorithm and the TE decoupled
algorithm separately. When the mesh size is refined, it is clear that the convergence
orders of the TE decoupled algorithm deteriorate, which is caused by the fact that
the time step size is too large and the stability constraint is not satisfied. Moreover,
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because the time error accumulates, the TE decoupled algorithm does not give
optimal convergence order if the time step sizes are too large. In comparison,
the numerical results exhibited in Table 3 and Table 4 for the iterative decoupled
algorithm show that they converge very well. Here, the time step sizes are chosen
so that the total operation cost is almost the same as that of the TE decoupled
algorithm. More clearly, in our tests, we set Δt such that T/Δt×iters = 10. We also
include tests for smaller time step sizes, say Δt = 1.0×10−3/k, or Δt = 5.0×10−3/k,
or Δt = 1.0 × 10−2/k with k = 5, to show that all algorithms are convergent. By
comparing the results in Table 3 with those in Table 2, it is obvious that the
iterative decoupled algorithm performs better than the TE decoupled algorithm.
The results of Table 4 illustrate that increasing the number of iterations will improve
the accuracy of the iterative decoupled algorithm.

Table 1. Convergence rate of the coupled algorithm. ν = 0.3 and
Δt = 10−3/k with k = 1 or 5.

k 1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders

1

16 1.063e-03 & 7.114e-02 5.297e-03 & 4.733e-01 6.091e-03 & 1.698e-01
32 2.320e-04 & 1.800e-02 2.20 & 1.98 1.267e-03 & 2.347e-01 2.06 & 1.01 1.530e-03 & 8.476e-02 1.99 & 1.00
64 5.503e-05 & 4.528e-03 2.08 & 1.99 3.097e-04 & 1.168e-01 2.03 & 1.01 3.792e-04 & 4.243e-02 2.01 & 1.00
128 1.296e-05 & 1.135e-03 2.09 & 2.00 7.515e-05 & 5.825e-02 2.04 & 1.00 9.078e-05 & 2.123e-02 2.06 & 1.00

5

16 1.061e-03 & 7.114e-02 5.294e-03 & 4.732e-01 6.085e-03 & 1.698e-01
32 2.320e-04 & 1.800e-02 2.19 & 1.98 1.268e-03 & 2.347e-01 2.06 & 1.01 1.532e-03 & 8.476e-02 1.99 & 1.00
64 5.554e-05 & 4.528e-03 2.06 & 1.99 3.112e-04 & 1.168e-01 2.03 & 1.01 3.830e-04 & 4.243e-02 2.00 & 1.00
128 1.361e-05 & 1.135e-03 2.03 & 2.00 7.679e-05 & 5.825e-02 2.02 & 1.00 9.499e-05 & 2.123e-02 2.01 & 1.00

Table 2. Convergence rate of the TE decoupled algorithm. ν =
0.3 and Δt = 10−3/k with k = 1 or 5.

k 1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders

1

16 1.046e-03 & 7.114e-02 5.263e-03 & 4.734e-01 6.087e-03 & 1.700e-01
32 2.274e-04 & 1.800e-02 2.20 & 1.98 1.253e-03 & 2.347e-01 2.07 & 1.01 1.482e-03 & 8.479e-02 2.04 & 1.00
64 1.369e-04 & 4.568e-03 0.73 & 1.98 5.221e-04 & 1.168e-01 1.26 & 1.01 4.039e-04 & 4.245e-02 1.88 & 1.00
128 1.448e-04 & 1.327e-03 -0.08 & 1.78 4.936e-04 & 5.831e-02 0.08 & 1.00 2.830e-04 & 2.127e-02 0.51 & 1.00

5

16 1.056e-03 & 7.114e-02 5.283e-03 & 4.733e-01 6.083e-03 & 1.698e-01
32 2.231e-04 & 1.800e-02 2.24 & 1.98 1.248e-03 & 2.347e-01 2.08 & 1.01 1.517e-03 & 8.476e-02 2.00 & 1.00
64 5.113e-05 & 4.527e-03 2.13 & 1.99 3.009e-04 & 1.168e-01 2.05 & 1.01 3.689e-04 & 4.243e-02 2.04 & 1.00
128 2.689e-05 & 1.141e-03 0.93 & 1.99 1.087e-04 & 5.825e-02 1.47 & 1.00 9.414e-05 & 2.123e-02 1.97 & 1.00

Table 3. Convergence rate of the iterative decoupled algorithm.
ν = 0.3, Δt = 5× 10−3/k with k = 1 or 5, and iters = 5.

k 1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders

1

16 1.070e-03 & 7.114e-02 5.308e-03 & 4.735e-01 6.120e-03 & 1.701e-01
32 2.355e-04 & 1.800e-02 2.18 & 1.98 1.281e-03 & 2.347e-01 2.05 & 1.01 1.568e-03 & 8.482e-02 1.96 & 1.00
64 5.919e-05 & 4.531e-03 1.99 & 1.99 3.288e-04 & 1.168e-01 1.96 & 1.01 4.284e-04 & 4.245e-02 1.87 & 1.00
128 2.198e-05 & 1.141e-03 1.43 & 1.99 1.093e-04 & 5.825e-02 1.59 & 1.00 1.624e-04 & 2.125e-02 1.40 & 1.00

5

16 1.063e-03 & 7.114e-02 5.298e-03 & 4.733e-01 6.100e-03 & 1.699e-01
32 2.376e-04 & 1.800e-02 2.16 & 1.98 1.290e-03 & 2.347e-01 2.04 & 1.01 1.592e-03 & 8.481e-02 1.94 & 1.00
64 6.457e-05 & 4.533e-03 1.88 & 1.99 3.452e-04 & 1.168e-01 1.90 & 1.01 4.653e-04 & 4.247e-02 1.77 & 1.00
128 2.819e-05 & 1.145e-03 1.20 & 1.99 1.315e-04 & 5.826e-02 1.39 & 1.00 2.041e-04 & 2.126e-02 1.19 & 1.00
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Table 4. Convergence rate of the iterative decoupled algorithm.
ν = 0.3, Δt = 10−2/k with k = 1 or 5, and iters = 10.

k 1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders

1

16 1.079e-03 & 7.115e-02 5.325e-03 & 4.739e-01 6.147e-03 & 1.704e-01
32 2.316e-04 & 1.800e-02 2.22 & 1.98 1.261e-03 & 2.348e-01 2.08 & 1.01 1.509e-03 & 8.482e-02 2.03 & 1.01
64 4.962e-05 & 4.526e-03 2.22 & 1.99 2.950e-04 & 1.168e-01 2.10 & 1.01 3.401e-04 & 4.243e-02 2.15 & 1.00
128 6.294e-06 & 1.133e-03 2.98 & 2.00 6.140e-05 & 5.825e-02 2.26 & 1.00 4.909e-05 & 2.123e-02 2.79 & 1.00

5

16 1.065e-03 & 7.114e-02 5.300e-03 & 4.733e-01 6.097e-03 & 1.699e-01
32 2.319e-04 & 1.800e-02 2.20 & 1.98 1.266e-03 & 2.347e-01 2.07 & 1.01 1.527e-03 & 8.476e-02 2.00 & 1.00
64 5.438e-05 & 4.528e-03 2.09 & 1.99 3.080e-04 & 1.168e-01 2.04 & 1.01 3.748e-04 & 4.243e-02 2.03 & 1.00
128 1.216e-05 & 1.135e-03 2.16 & 2.00 7.325e-05 & 5.825e-02 2.07 & 1.00 8.591e-05 & 2.123e-02 2.13 & 1.00

The Tables 1–4 are for the case that the poroelastic material is compressible. In
Tables 5 to 8, we set the Poisson ratio ν = 0.499 and other physical parameters
are not changed. Since the Poisson ratio ν is close to 0.5, the poroelastic mate-
rial is almost incompressible, and the mixed linear elasticity model is close to the
incompressible Stokes model. Tables 5 and 6 are based on the coupled algorithm
and the TE decoupled algorithm, respectively. Table 7 and Table 8 are based on
the iterative decoupled algorithm with different numbers of iterations. Because the
Poisson ratio is close to 0.5, the numerical errors and the corresponding error or-
ders for all algorithms are better than those for ν = 0.3. From Tables 5 to 8, it is
clear that the energy-norm errors based on all algorithm are of the optimal orders.
The L2- norm errors based on the TE decoupled algorithm are not of the optimal
orders because the time step size is large. By comparing the results in Table 7
and Table 8 with those in Table 5 and Table 6, we again observe that the iterative
decoupled algorithm performs well when the poroelastic material becomes almost
incompressible.

Table 5. Convergence rate of the coupled algorithm. ν = 0.499,
Δt = 10−3.

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 6.043e-04 & 7.075e-02 6.908e-03 & 7.727e-01 3.182e-03 & 1.670e-01
32 7.528e-05 & 1.786e-02 3.00 & 1.99 1.529e-03 & 3.768e-01 2.18 & 1.04 8.048e-04 & 8.441e-02 1.98 & 0.98
64 9.360e-06 & 4.490e-03 3.01 & 1.99 3.659e-04 & 1.870e-01 2.06 & 1.01 2.008e-04 & 4.239e-02 2.00 & 0.99
128 1.169e-06 & 1.126e-03 3.00 & 2.00 8.965e-05 & 9.320e-02 2.03 & 1.00 4.885e-05 & 2.123e-02 2.04 & 1.00

Table 6. Convergence rate of the TE decoupled algorithm. ν =
0.499, Δt = 10−3.

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 6.042e-04 & 7.075e-02 6.908e-03 & 7.727e-01 3.182e-03 & 1.670e-01
32 7.527e-05 & 1.786e-02 3.00 & 1.99 1.529e-03 & 3.768e-01 2.18 & 1.04 8.048e-04 & 8.441e-02 1.98 & 0.98
64 9.374e-06 & 4.490e-03 3.01 & 1.99 3.659e-04 & 1.870e-01 2.06 & 1.01 2.008e-04 & 4.239e-02 2.00 & 0.99
128 1.443e-06 & 1.126e-03 2.70 & 2.00 8.969e-05 & 9.320e-02 2.03 & 1.00 4.884e-05 & 2.123e-02 2.04 & 1.00

Table 7. Convergence rate of the iterative decoupled algorithm.
ν = 0.499, Δt = 5× 10−3, and iters = 5.

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 6.043e-04 & 7.075e-02 6.908e-03 & 7.727e-01 3.170e-03 & 1.670e-01
32 7.528e-05 & 1.786e-02 3.00 & 1.99 1.529e-03 & 3.768e-01 2.18 & 1.04 7.960e-04 & 8.441e-02 1.99 & 0.98
64 9.360e-06 & 4.490e-03 3.01 & 1.99 3.659e-04 & 1.870e-01 2.06 & 1.01 1.930e-04 & 4.239e-02 2.04 & 0.99
128 1.168e-06 & 1.126e-03 3.00 & 2.00 8.965e-05 & 9.320e-02 2.03 & 1.00 4.167e-05 & 2.123e-02 2.21 & 1.00
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Table 8. Convergence rate of the iterative decoupled algorithm.
ν = 0.499, Δt = 10−2, and iters = 10.

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 6.043e-04 & 7.075e-02 6.908e-03 & 7.727e-01 3.156e-03 & 1.670e-01
32 7.528e-05 & 1.786e-02 3.00 & 1.99 1.529e-03 & 3.768e-01 2.18 & 1.04 7.856e-04 & 8.441e-02 2.01 & 0.98
64 9.359e-06 & 4.490e-03 3.01 & 1.99 3.659e-04 & 1.870e-01 2.06 & 1.01 1.840e-04 & 4.239e-02 2.09 & 0.99
128 1.168e-06 & 1.126e-03 3.00 & 2.00 8.965e-05 & 9.320e-02 2.03 & 1.00 3.422e-05 & 2.123e-02 2.43 & 1.00

5.2. Tests for the parameter K. In this subsection, we test the accuracy under
different settings of hydraulic conductivityK. Since we have tested the caseK = 1.0
in the previous tests, we let K = 10−6. For other key parameters, we fix ν = 0.3
and c0 = 1.0.

From Table 9 to Table 12, we report numerical results based on the coupled
algorithm, the TE decoupled algorithm, the iterative decoupled algorithm with
different numbers of iterations, respectively. By comparing the results in Table 9 to
Table 12 with those in Table 1 to Table 4, it is true that the numerical errors become
larger when K is small. However, there is no essential difference in energy-norm
error orders for all algorithms. This means that the accuracy of the algorithms
is not very sensitive to the hydraulic conductivity K. For the iterative decoupled
algorithm, by comparing the results in Table 11 with those in Table 12, we again
observe that increasing the number of iterations will lead to better convergence
orders. Moreover, the iterative decoupled algorithm gives an optimal order of L2−
norm errors for u, while other algorithms cannot give an optimal L2− norm error
for u under the same parameter setting.

Table 9. Convergence rate of the coupled algorithm for K =
10−6, Δt = 10−3

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 1.281e-03 & 7.126e-02 6.016e-03 & 4.880e-01 7.673e-03 & 2.113e-01
32 2.966e-04 & 1.803e-02 2.11 & 1.98 1.449e-03 & 2.382e-01 2.05 & 1.03 1.937e-03 & 9.351e-02 1.99 & 1.18
64 7.207e-05 & 4.535e-03 2.04 & 1.99 3.560e-04 & 1.176e-01 2.03 & 1.02 4.833e-04 & 4.453e-02 2.00 & 1.07
128 1.716e-05 & 1.137e-03 2.07 & 2.00 8.649e-05 & 5.846e-02 2.04 & 1.01 1.167e-04 & 2.173e-02 2.05 & 1.04

Table 10. Convergence rate of the TE decoupled algorithm for
K = 10−6, Δt = 10−3/k with k = 1 or 5

k 1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders

1

16 1.245e-03 & 7.125e-02 5.921e-03 & 4.881e-01 7.591e-03 & 2.114e-01
32 2.885e-04 & 1.802e-02 2.11 & 1.98 1.426e-03 & 2.383e-01 2.05 & 1.03 1.879e-03 & 9.358e-02 2.01 & 1.18
64 1.496e-04 & 4.577e-03 0.95 & 1.98 5.741e-04 & 1.177e-01 1.31 & 1.02 5.158e-04 & 4.469e-02 1.86 & 1.07
128 1.516e-04 & 1.342e-03 -0.02 & 1.77 5.273e-04 & 5.860e-02 0.12 & 1.01 3.325e-04 & 2.232e-02 0.63 & 1.00

5

16 1.273e-03 & 7.126e-02 5.996e-03 & 4.880e-01 7.660e-03 & 2.114e-01
32 2.891e-04 & 1.803e-02 2.14 & 1.98 1.430e-03 & 2.382e-01 2.07 & 1.03 1.926e-03 & 9.353e-02 1.99 & 1.18
64 6.953e-05 & 4.534e-03 2.06 & 1.99 3.494e-04 & 1.176e-01 2.03 & 1.02 4.753e-04 & 4.455e-02 2.02 & 1.07
128 3.064e-05 & 1.143e-03 1.18 & 1.99 1.228e-04 & 5.847e-02 1.51 & 1.01 1.234e-04 & 2.176e-02 1.95 & 1.03

Table 11. Convergence rate of the iterative decoupled algorithm
for K = 10−6, Δt = 5× 10−3, and iters = 5

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 1.277e-03 & 7.126e-02 5.999e-03 & 4.877e-01 7.640e-03 & 2.104e-01
32 3.029e-04 & 1.803e-02 2.08 & 1.98 1.475e-03 & 2.382e-01 2.02 & 1.03 1.994e-03 & 9.368e-02 1.94 & 1.17
64 8.406e-05 & 4.541e-03 1.85 & 1.99 4.037e-04 & 1.177e-01 1.87 & 1.02 5.777e-04 & 4.508e-02 1.79 & 1.06
128 3.594e-05 & 1.151e-03 1.23 & 1.98 1.631e-04 & 5.862e-02 1.31 & 1.01 2.498e-04 & 2.298e-02 1.21 & 0.97
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Table 12. Convergence rate of the iterative decoupled algorithm
for K = 10−6, Δt = 10−2, and iters = 10

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 1.273e-03 & 7.126e-02 5.993e-03 & 4.879e-01 7.617e-03 & 2.111e-01
32 2.873e-04 & 1.802e-02 2.15 & 1.98 1.425e-03 & 2.382e-01 2.07 & 1.03 1.882e-03 & 9.334e-02 2.02 & 1.18
64 6.249e-05 & 4.531e-03 2.20 & 1.99 3.322e-04 & 1.176e-01 2.10 & 1.02 4.294e-04 & 4.438e-02 2.13 & 1.07
128 7.558e-06 & 1.134e-03 3.05 & 2.00 6.677e-05 & 5.845e-02 2.31 & 1.01 6.748e-05 & 2.163e-02 2.67 & 1.04

5.3. Tests for the parameter c0. In this subsection, we want to check the effects
of specific storage coefficient c0 on the accuracy. According to the analysis in
Section 4, when c0 = 0, the convergence rate of the iterative decoupled algorithms
may be affected. To check this, we let c0 = 0 and fix ν = 0.3 and K = 1.

In Tables 13 and 14, we report numerical results based on the coupled algorithm
and the TE decoupled algorithm respectively. As we use a relatively large time
step size, the error orders of u by the TE decoupled algorithm are not optimal.
From Table 13, the energy-norm errors based on the coupled algorithm are still of
the optimal order. For comparisons, we report the numerical results based on the
iterative decoupled algorithm in Table 15 and Table 16. By comparing Table 15
and Table 16 with Table 14, we see clearly that the iterative decoupled algorithm
gives better results than the TE decoupled algorithm. Furthermore, increasing the
number of iterations improves the accuracy. When iter = 10, we see clearly the
energy-norm errors are optimal. By comparing Table 15 with Table 3 (and Table 16
with Table 4), we see that when c0 = 0, the error orders for all variables deteriorate
a little bit for the iterative decoupled algorithm. However, by increasing the number
of iterations, the errors for all variables based on the iterative decoupled algorithm
are also of the optimal orders when c0 = 0. This verifies our analysis (particularly,
Remark 4.4) for the iterative decoupled algorithm.

Table 13. Convergence rate of the coupled algorithm. c0 = 0,
Δt = 10−3.

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 1.518e-03 & 7.149e-02 7.055e-03 & 4.744e-01 1.043e-02 & 1.752e-01
32 3.574e-04 & 1.809e-02 2.09 & 1.98 1.723e-03 & 2.348e-01 2.03 & 1.01 2.614e-03 & 8.545e-02 2.00 & 1.04
64 8.676e-05 & 4.550e-03 2.04 & 1.99 4.231e-04 & 1.168e-01 2.03 & 1.01 6.465e-04 & 4.251e-02 2.02 & 1.01
128 2.041e-05 & 1.140e-03 2.09 & 2.00 1.013e-04 & 5.825e-02 2.06 & 1.00 1.535e-04 & 2.124e-02 2.07 & 1.00

Table 14. Convergence rate of the TE decoupled algorithm. c0 =
0, Δt = 10−3.

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 1.678e-03 & 7.161e-02 7.644e-03 & 4.751e-01 1.121e-02 & 1.772e-01
32 4.419e-04 & 1.814e-02 1.93 & 1.98 1.975e-03 & 2.350e-01 1.95 & 1.02 2.854e-03 & 8.577e-02 1.97 & 1.05
64 2.383e-04 & 4.674e-03 0.89 & 1.96 8.678e-04 & 1.169e-01 1.19 & 1.01 9.503e-04 & 4.266e-02 1.59 & 1.01
128 2.259e-04 & 1.567e-03 0.08 & 1.58 7.711e-04 & 5.839e-02 0.17 & 1.00 7.053e-04 & 2.145e-02 0.43 & 0.99

Table 15. Convergence rate of the iterative decoupled algorithm.
c0 = 0, Δt = 5× 10−3, and iters = 5.

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 1.571e-03 & 7.152e-02 7.201e-03 & 4.748e-01 1.070e-02 & 1.764e-01
32 4.372e-04 & 1.815e-02 1.85 & 1.98 2.035e-03 & 2.350e-01 1.82 & 1.01 3.218e-03 & 8.616e-02 1.73 & 1.03
64 1.971e-04 & 4.673e-03 1.15 & 1.96 8.618e-04 & 1.169e-01 1.24 & 1.01 1.428e-03 & 4.307e-02 1.17 & 1.00
128 1.526e-04 & 1.435e-03 0.37 & 1.70 6.309e-04 & 5.838e-02 0.45 & 1.00 1.042e-03 & 2.191e-02 0.45 & 0.97
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Table 16. Convergence rate of the iterative decoupled algorithm.
c0 = 0, Δt = 10−2, and iters = 10.

1/h L2 & H1 errors of u Orders L2 & H1 errors of ξ Orders L2 & H1 errors of p Orders
16 1.622e-03 & 7.154e-02 7.347e-03 & 4.755e-01 1.096e-02 & 1.777e-01
32 3.771e-04 & 1.810e-02 2.11 & 1.98 1.771e-03 & 2.350e-01 2.05 & 1.02 2.694e-03 & 8.571e-02 2.02 & 1.05
64 8.331e-05 & 4.546e-03 2.18 & 1.99 4.092e-04 & 1.168e-01 2.11 & 1.01 6.120e-04 & 4.252e-02 2.14 & 1.01
128 1.212e-05 & 1.135e-03 2.78 & 2.00 7.674e-05 & 5.825e-02 2.41 & 1.00 9.558e-05 & 2.123e-02 2.68 & 1.00

6. Conclusions

In this paper, we propose and analyze an iterative decoupled algorithm for Biot
model. It is shown that the solution of the iterative decoupled algorithm converges
to that of the coupled algorithm. Error analyses are provided for both the coupled
algorithm and the iterative decoupled algorithm. Our main conclusion is that the
iterative decoupled algorithm is unconditionally stable and convergent. Extensive
numerical experiments under different physical parameter settings are provided to
verify the performance of the iterative method. By comparing the numerical results
obtained by using different algorithms, we conclude that the iterative decoupled
algorithm is accurate and efficient.

Appendix A. Error analysis of the coupled algorithm

The main goal of this appendix is to derive the optimal order error estimate for
the coupled algorithm. In Lemma A.1, we derive a discrete energy law that mimics
the continuous energy law which is proved in Lemma 2.1.

Lemma A.1. Let {(un
h, ξ

n
h , p

n
h)}n≥0 be defined by the coupled algorithm (3.2)–(3.4)

with θ = 0, then the following identity holds:

J l
h + Sl

h = J0
h, for l ≥ 1,(A.1)

where

J l
h := μ‖ε(ul

h)‖2L2(Ω) +
1

2λ
‖αplh − ξlh‖2L2(Ω) +

c0
2
‖plh‖2L2(Ω) − (f ,ul

h)− 〈h,ul
h〉Γt

,

Sl
h := Δt

l
∑

n=1

[

Δt

(

μ‖dtε(un
h)‖2L2(Ω) +

1

2λ
‖dt(αpnh − ξnh )‖2L2(Ω) +

c0
2
‖dtpnh‖2L2(Ω)

)

+K(∇pnh,∇pnh)− (Qs, p
n
h)− 〈g2, pnh〉Γf

]

.

Here, we denote dtη
n := (ηn − ηn−1)/Δt, where η can be a vector or a scalar.

Moreover, there holds

‖ξlh‖L2(Ω) ≤ C(‖ε(ul
h)‖L2(Ω) + ‖f‖L2(Ω) + ‖h‖L2(Γt)),(A.2)

where C is a positive constant.

Proof. Setting vh = dtu
n
h in (3.2), φh = ξnh in (3.3), and ψh = pnh in (3.4), we have

2μ(ε(un
h), dtε(u

n
h))− (ξnh , divdtu

n
h) = dt(f ,u

n
h) + dt〈h,un

h〉Γt
,(A.3)

(divdtu
n
h, ξ

n
h ) +

1

λ
(dtξ

n
h , ξ

n
h )−

α

λ
(dtp

n
h, ξ

n
h ) = 0,(A.4)

(

c0 +
α2

λ

)

(dtp
n
h, p

n
h)−

α

λ
(dtξ

n
h , p

n
h) +K(∇pnh,∇pnh) = (Qs, p

n
h) + 〈g2, pnh〉Γf

.

(A.5)
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Summing up (A.3) , (A.4) and (A.5), and then using the identity

2(ηnh , dtη
n
h ) = dt‖ηnh‖2L2(Ω) +Δt‖dtηnh‖2L2(Ω),(A.6)

we have

dt

(

μ‖ε(un
h)‖2L2(Ω) +

1

2λ
‖αpnh − ξnh‖2L2(Ω) +

c0
2
‖pnh‖2L2(Ω) − (f ,un

h)− 〈h,un
h〉Γt

)

+Δt

(

μ‖dtε(un
h)‖2L2(Ω) +

1

2λ
‖dt(αpnh − ξnh )‖2L2(Ω) +

c0
2
‖dtpnh‖2L2(Ω)

)

+K(∇pnh,∇pnh)

= (Qs, p
n
h) + 〈g2, pnh〉Γf

.

(A.7)

Applying the summation operator Δt
∑l

n=1 to both sides of the above equation, we
obtain (A.1). After using the same techniques used for (2.14), one has (A.2). �

Let us introduce some projection operators ΠV

h : V → Vh, ΠW
h : W → Wh

and ΠM
h : M → Mh, satisfying the following equations: for all (vh, φh, ψh) ∈

Vh ×Wh ×Mh,

2μ(ε(ΠV

h u), ε(vh))− (ΠW
h ξ, divvh) = 2μ(ε(u), ε(vh))− (ξ, divvh),(A.8)

(divΠV

h u, φh) +
1

λ
(ΠW

h ξ, φh) = (divu, φh) +
1

λ
(ξ, φh),(A.9)

K(∇ΠM
h p,∇ψh) = K(∇p,∇ψh).(A.10)

Here, we list the properties of the operators (ΠV

h ,ΠW
h ,ΠM

h ) [5,21]. For all (u, ξ, p) ∈
H3(Ω)×H2(Ω)×H2(Ω), there holds

‖∇(ΠV

h u− u)‖L2(Ω) + ‖ΠW
h ξ − ξ‖L2(Ω) ≤ Ch2(‖u‖H3(Ω) + ‖ξ‖H2(Ω)),(A.11)

‖ΠM
h p− p‖L2(Ω) + h‖∇(ΠM

h p− p)‖L2(Ω) ≤ Ch2‖p‖H2(Ω).(A.12)

For convenience, we introduce the following notations:

en
u
= un − un

h = (un − ΠV

h un) + (ΠV

h un − un
h) := eI,n

u
+ eh,n

u
,

enξ = ξn − ξnh = (ξn −ΠW
h ξn) + (ΠW

h ξn − ξnh ) := eI,nξ + eh,nξ ,

enp = pn − pnh = (pn −ΠM
h pn) + (ΠM

h pn − pnh) := eI,np + eh,np .

Next, we evaluate some error terms for the error estimates.
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Lemma A.2. Let {(un
h, ξ

n
h , p

n
h)}n≥0 be defined by the coupled algorithm (3.2)–(3.4)

with θ = 0, then we have the following identity:

El
h +Δt

l
∑

n=1

K‖∇eh,np ‖L2(Ω) + (Δt)2
l

∑

n=1

(

μ‖dtε(eh,nu
)‖2L2(Ω)

+
1

2λ
‖dt(αeh,np − eh,nξ )‖2L2(Ω) +

c0
2
‖dteh,np ‖2L2(Ω)

)

= E0
h +Δt

l
∑

n=1

[

(div(dtu
n − un

t ), e
h,n
ξ ) +

1

λ
(dtξ

n − ξnt , e
h,n
ξ )− α

λ
(dtp

n − pnt , e
h,n
ξ )

+

(

c0 +
α2

λ

)

(dtΠ
h
Mpn − pnt , e

h,n
p )− α

λ
(dtΠ

h
W ξn − ξnt , e

h,n
p )

]

,

(A.13)

where

El
h :=μ‖ε(eh,l

u
)‖2L2(Ω) +

1

2λ
‖αeh,lp − eh,lξ ‖2L2(Ω) +

c0
2
‖eh,lp ‖2L2(Ω).(A.14)

Proof. First, we use (3.2), (2.8) and (A.8) to get

2μ(ε(eh,n
u

), ε(vh))− (eh,nξ , divvh) = 0.(A.15)

The combination of (3.3) with θ = 0, (2.9), and (A.9) implies that

(divdte
h,n
u

, φh) +
1

λ
(dte

h,n
ξ , φh)−

α

λ
(dte

h,n
p , φh)

= (div(dtu
n − un

t ), φh) +
1

λ
(dtξ

n − ξnt , φh)−
α

λ
(dtΠ

h
Mpn − pnt , φh).(A.16)

Using (3.4), (2.10) and (A.10), we obtain

(

c0 +
α2

λ

)

(dte
h,n
p , ψh)−

α

λ
(dte

h,n
ξ , ψh) +K(∇eh,np ,∇ψh)

=

(

c0 +
α2

λ

)

(dtΠ
h
Mpn − pnt , ψh)−

α

λ
(dtΠ

h
W ξn − ξnt , ψh).(A.17)

Setting vh = dte
h,n
u

in (A.15), φh = eh,nξ in (A.16) and ψh = eh,np in (A.17) and
adding the resulted equations together, we derive

2μ(ε(eh,n
u

), ε(dte
h,n
u

)) +
1

λ
(dte

h,n
ξ , eh,nξ )− α

λ
(dte

h,n
p , eh,nξ )

+

(

c0 +
α2

λ

)

(dte
h,n
p , eh,np )− α

λ
(dte

h,n
ξ , eh,np ) +K(∇eh,np ,∇eh,np )

= (div(dtu
n − un

t ), e
h,n
ξ ) +

1

λ
(dtξ

n − ξnt , e
h,n
ξ )− α

λ
(dtΠ

h
Mpn − pnt , e

h,n
ξ )

+

(

c0 +
α2

λ

)

(dtΠ
h
Mpn − pnt , e

h,n
p )− α

λ
(dtΠ

h
W ξn − ξnt , e

h,n
p ).(A.18)
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Using the identity (A.6), we obtain

dt

(

μ‖ε(eh,n
u

)‖2L2(Ω) +
1

2λ
‖αeh,np − eh,nξ ‖2L2(Ω) +

c0
2
‖eh,np ‖2L2(Ω)

)

+K(∇eh,np ,∇eh,np )

+ Δt

(

μ‖dtε(eh,nu
)‖2L2(Ω) +

1

2λ
‖dt(αeh,np − eh,nξ )‖2L2(Ω) +

c0
2
‖dteh,np ‖2L2(Ω)

)

= (div(dtu
n − un

t ), e
h,n
ξ ) +

1

λ
(dtξ

n − ξnt , e
h,n
ξ )− α

λ
(dtΠ

h
Mpn − pnt , e

h,n
ξ )

+

(

c0 +
α2

λ

)

(dtΠ
h
Mpn − pnt , e

h,n
p )− α

λ
(dtΠ

h
W ξn − ξnt , e

h,n
p ).

(A.19)

Applying the summation operator Δt
∑l

n=1 to both sides, we obtain (A.13). The
proof is complete. �

Theorems A.3 and A.4 give the error estimates of the coupled algorithm. For
simplicity, X � Y is used to denote an inequality X ≤ CY , where C is a positive
constant independent of mesh sizes h.

Theorem A.3. Let {(un
h, ξ

n
h , p

n
h)}n≥0 be defined by the coupled algorithm (3.2)–

(3.4) with θ = 0, then the following error estimate holds:

max
0≤n≤l

[

μ‖ε(eh,n
u

)‖2L2(Ω) +
1

2λ
‖αeh,np − eh,nξ ‖2L2(Ω) +

c0
2
‖eh,np ‖2L2(Ω)

]

+Δt

l
∑

n=1

K‖∇eh,np ‖2L2(Ω) ≤ C1(Δt)2 + C2h
4,(A.20)

where

C1 = C1(‖utt‖2L2(0,tl;H1(Ω)), ‖ξtt‖2L2(0,tl;L2(Ω)), ‖ptt‖2L2(0,tl;L2(Ω))),(A.21)

C2 = C2(‖ut‖2L2(0,tl;H3(Ω)), ‖ξt‖2L2(0,tl;H2(Ω)), ‖pt‖2L2(0,tl;H2(Ω))).(A.22)

Proof. Discarding the positive terms of the left-hand side in (A.13) and setting
u0
h = ΠV

h u0, ξ0h = ΠW
h ξ0, and p0h = ΠM

h p0, we derive the following inequality

El
h +Δt

l
∑

n=1

K(∇eh,np ,∇eh,np )

≤ Δt

l
∑

n=1

[

(div(dtu
n − un

t ), e
h,n
ξ ) +

1

λ
(dtξ

n − ξnt , e
h,n
ξ )− α

λ
(dtΠ

h
Mpn − pnt , e

h,n
ξ )

+ (c0 +
α2

λ
)
(

dtΠ
h
Mpn − pnt , e

h,n
p

)

− α

λ
(dtΠ

h
W ξn − ξnt , e

h,n
p )

]

.

(A.23)
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Using Taylor series expansion and the Cauchy-Schwarz inequality, we can bound
the first term by

(Δt)

l
∑

n=1

(div(dtu
n − un

t ), e
h,n
ξ ) =

l
∑

n=1

(div(un − un−1 − (Δt)un
t ), e

h,n
ξ )

�

l
∑

n=1

‖un − un−1 − (Δt)un
t ‖H1(Ω)‖eh,nξ ‖L2(Ω)

� (Δt)2‖utt‖2L2(0,tl;H1(Ω)) + (Δt)
l

∑

n=1

μ‖eh,nξ ‖2L2(Ω).(A.24)

Similarly, the second term can be bounded by

(Δt)

λ

l
∑

n=1

(dtξ
n − ξnt , e

h,n
ξ ) � (Δt)2‖ξtt‖2L2(0,tl;L2(Ω)) + (Δt)

l
∑

n=1

μ‖eh,nξ ‖2L2(Ω).

(A.25)

By use of estimate (A.12), we see that the third term satisfies

α(Δt)

λ

l
∑

n=1

(dtΠ
h
Mpn − pnt , e

h,n
ξ )

�

l
∑

n=1

(

‖Πh
Mpn −Πh

Mpn−1 − (Δt)pnt ‖L2(Ω)‖eh,nξ ‖L2(Ω)

)

�

l
∑

n=1

(

‖Πh
M (pn−pn−1)−(pn−pn−1)‖L2(Ω)+‖pn−pn−1−(Δt)pnt ‖L2(Ω)

)

‖eh,nξ ‖L2(Ω)

�
(

h4‖pt‖2L2(0,tl;H2(Ω)) + (Δt)2‖ptt‖2L2(0,tl;L2(Ω))

)

+ (Δt)

l
∑

n=1

μ‖eh,nξ ‖2L2(Ω).

(A.26)

Likewise, applying the Poincaré inequality, we can bound the fourth term and the
fifth term by

(

c0 +
α2

λ

)

(Δt)
l

∑

n=1

(dtΠ
h
Mpn − pnt , e

h,n
p )

� (Δt)
l

∑

n=1

K‖∇eh,np ‖2L2(Ω) +
(

h2‖pt‖2L2(0,tl;H2(Ω)) + (Δt)2‖ptt‖2L2(0,tl;L2(Ω))

)

,

(A.27)

α(Δt)

λ

l
∑

n=1

(dtΠ
h
W ξn − ξnt , e

h,n
p ) � (Δt)

l
∑

n=1

K‖∇eh,np ‖2L2(Ω)

+
(

h4‖ut‖2L2(0,tl;H3(Ω)) + h4‖ξt‖2L2(0,tl;H2(Ω)) + (Δt)2‖ξtt‖2L2(0,tl;L2(Ω))

)

.(A.28)
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The above bounds and the discrete Gronwall’s inequality imply that

El
h +Δt

l
∑

n=1

K‖∇eh,np ‖2L2(Ω)

� (Δt)2
(

‖utt‖2L2(0,tl;H1(Ω)) + ‖ξtt‖2L2(0,tl;L2(Ω)) + ‖ptt‖2L2(0,tl;L2(Ω))

)

+ h4
(

‖ut‖2L2(0,tl;H3(Ω)) + ‖ξt‖2L2(0,tl;H2(Ω)) + ‖pt‖2L2(0,tl;H2(Ω))

)

.(A.29)

The proof is complete. �

Theorem A.4. Let {(un
h, ξ

n
h , p

n
h)}n≥0 be defined by the coupled algorithm (3.2)–

(3.4) with θ = 0, then the following error estimate holds:

max
0≤n≤l

[

μ‖ε(en
u
)‖2L2(Ω) +

1

2λ
‖αenp‖2L2(Ω) +

c0
2
‖enp‖2L2(Ω)

]

+Δt
l

∑

n=0

K‖∇enp‖2L2(Ω) ≤ C1(Δt)2 + C2h
4.(A.30)

Moreover, we have the estimate

‖enξ ‖L2(Ω) � ‖ε(en
u
)‖L2(Ω).(A.31)

Proof. By use of the discrete inf-sup condition and a Cauchy-Schwarz inequality,
we obtain

‖αeh,np ‖L2(Ω) ≤ ‖αeh,np − eh,nξ ‖L2(Ω) + ‖eh,nξ ‖L2(Ω)

� (‖αeh,np − eh,nξ ‖L2(Ω) + ‖ε(en
u
)‖L2(Ω)).

Then, the error estimate (A.30) follows from a straightforward application of tri-
angle inequalities to

en
u
= eI,n

u
+ eh,n

u
and enp = eI,np + eh,np ,

the properties (A.11), (A.12), and Theorem A.3. �
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