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Abstract: In a recent paper (JCTC, 16, 6098 (2020)), we introduced a new approach for accurately
approximating full CI ground states in large electronic active-spaces, called Tensor Product Selected
CI (TPSCI). In TPSCI, a large orbital active space is first partitioned into disjoint sets (clusters)
for which the exact, local many-body eigenstates are obtained. Tensor products of these locally
correlated many-body states are taken as the basis for the full, global Hilbert space. By folding
correlation into the basis states themselves, the low-energy eigenstates become increasingly sparse,
creating a more compact selected CI expansion. While we demonstrated that this approach can
improve accuracy for a variety of systems, there is even greater potential for applications to excited
states, particularly those which have some excitonic character. In this paper, we report on the
accuracy of TPSCI for excited states, including a far more e�cient implementation in the Julia
programming language. In traditional SCI methods that use a Slater determinant basis, accurate
excitation energies are obtained only after a linear extrapolation and at a large computational cost.
We find that TPSCI with perturbative corrections provides accurate excitation energies for several
excited states of various polycyclic aromatic hydrocarbons (PAH) with respect to the extrapolated
result (i.e. near exact result). Further, we use TPSCI to report highly accurate estimates of the
lowest 31 eigenstates for a tetracene tetramer system with an active space of 40 electrons in 40
orbitals, giving direct access to the initial bright states and the resulting 18 biexcitonic states.

I. INTRODUCTION

Electronic excited states play an important role in a
vast number of technologically relevant processes rang-
ing from solar cells, to sensing, to artificial photosyn-
thesis for example. Theoretical simulations are key the
interpretation and prediction of spectra, lending detailed
support to experiments. However, not all excited states
are easily simulated computationally. Traditional the-
oretical methods that depend on single excitations like
TDDFT1–3 often fail to properly describe charge transfer
(CT) states,4–6 and completely miss the presence of dou-
bly excited states7–9. Even sophisticated methods like
EOM-CCSD10,11 can fail for doubly excited states with
errors around 1 eV.12,13 In order to provide qualitatively
correct descriptions of two-electron excitations, multiref-
erence methods, such as CASSCF,14 CASPT2,15,16, or
MRCI,17,18 are required. However, these methods can-
not be used for active spaces larger than about 20 or-
bitals with 20 electrons. It is also very di�cult to select
active orbitals for state averaging when the ground and
excited states di↵er significantly in dipole moment, seen
usually in cases with charge transfer excitations.

Selected configuration interaction (SCI)19 based ap-
proaches have been recently used to calculate accurate
estimates for vertical excitation energies20–22, double
excitations13, and charge transfer23 states. Motivated
by the fact that low energy eigenstates often have most
of their weight on a relatively small subspace of deter-
minants, SCI techniques attempt a bottom-up discovery
of this space of “important” Slater determinants. For

⇤ These two authors contributed equally
† nmayhall@vt.edu

weakly correlated systems, SCI provides an incredibly
e�cient approach for obtaining near-FCI estimates of
energies and excitation energies. However, the compu-
tational cost of SCI approaches are heavily dependent on
the amount of correlation present, as this necessarily in-
creases the dimension of the important subspace of deter-
minants. Although these cited applications have been on
small to medium molecules, the SCI variational spaces for
these systems are already in tens of millions. For larger
systems, the problem will quickly become intractable for
SCI based approaches.

Fortunately, the dimension of the important varia-
tional space is not an intrinsic characteristic of a given
Hamiltonian, but is rather a basis dependent quantity.
For a trivial example, consider the case were one first
rotates the basis into the exact eigenbasis. In this ba-
sis, the relevant variational space has dimension equal to
one. As such, it is possible to decrease the size of the vari-
ational space by “simply” choosing a more appropriate
basis in which to represent the problem. With orbital ro-
tations being the simplest change of basis possible, SCI
calculations are often performed using the natural or-
bitals computed from either a cheaper SCI calculation or
other single reference methods like CCSD or MP2. Even
though this does generally lead to a smaller variational
dimension compared to using canonical HF orbitals, the
improvements are often rather limited to a factor of 2 or
so.24,25 Recently orbital optimization has also been pro-
posed to improve the SCI energies with respect to number
of determinants in a given orbital space.25–27

Along this direction, we recently introduced a new
method called tensor product selected configuration in-
teraction (TPSCI)28 which defines a SCI algorithm not in
a Slater determinant basis, but rather, in a basis of tensor
product states of locally entangled many-body wavefunc-
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tions. This amounts to a change of basis, where many-
body rotations are applied locally to the basis of Slater
determinants, folding in local electron correlation into
the basis functions themselves.

Traditional Selected CI methods are memory limited
due to the size of the variational space needed to reach a
target accuracy. In TPSCI, our goal is to trade o↵ some
run time (TPSCI calculations are significantly slower
than Slater determinant methods) for reduced memory
requirements (TPSCI variational spaces are generally
much smaller than Slater determinant methods).

Other methods such as active space decomposition
(ASD)29,30 and rank-1 matrix product states31 also have
a similar framework, operating in a similar tensor prod-
uct space. In ASD, the rapid growth of the Hilbert
space was controlled with a low-rank matrix product
state (MPS) approximation, instead of a sparsity-based
approximation used in our current work. While a MPS
approximation can be e↵ective for compressing a state,
this does impose an often artificial one-dimensional en-
tanglement structure. In the rank-1 matrix product state
method, the global states are written as a linear combi-
nation of entangled states, similar to TPSCI, but mainly
focus on disjoint molecular units. A broad list of meth-
ods exist which focus on forming the wavefunction of the
full system in this clustered framework, including: Block
Correlated Coupled Cluster (BCCC)32 and the related
Tensor Product State CEPA (TPS-CEPA),33 the ab inito
Frenkel-Davydov model34,35, renormalized exciton model
(REM)36,37, Block Interaction Product State (BIPS)38,
comb-Tensor network states based approach by Li39, gen-
eralized and localized active space methods40–42.

In this work, we extend our recently proposed TPSCI
methodology28 to provide near-FCI approximations to
relatively large manifolds of excited states in large active
spaces.

II. THEORY

The core strategy in TPSCI is to build a localized
representation that increases the sparsity of the target
global eigenstates. Let us start by assuming that our or-
bital active space permits a partitioning into smaller, dis-
joint active spaces (referred to as “clusters” throughout).
While clusters can be defined through di↵erent consider-
ations (locality, orbital entanglement43, symmetry etc.),
the general guideline is that the intra-cluster interactions
should be stronger than inter-cluster interactions.

Within each cluster, we want to define a many-body
transformation44 that accounts for all relevant local cor-
relations. In principle, one can obtain such a transforma-
tion by simply diagonalizing the local Hamiltonian (the
terms that remain after removing operators that act out-
side of the cluster). However, this explicitly neglects the
influence of neighboring clusters on the composition of
our many-body transformations. We instead include the
influence of inter-cluster interactions in a mean-field fash-

ion by adopting the cluster Mean Field (cMF) method
that was introduced by Scuseria and coworkers45,46 and
then explored by Gagliardi and coworkers under the
name vLASSCF.47

This mean-field treatment arises (analogously to
Hartree-Fock theory) by variationally minimizing the en-
ergy of a single tensor product state (TPS) with respect
to both orbital and local many-body rotations (defined
by a set of local configuration interaction coe�cients). As
such, cMF can be understood as a CASSCF problem with
multiple active spaces, similar to generalized active space
or occupation restricted active space methods.40,41,48 We
will express the cMF ground state wavefunction as:

| 0i = |0Ii |0Ji . . . |0N i = |0I0J . . . 0N i (1)

where I, J , . . . label clusters, and |0Ii is the lowest en-
ergy eigenstate of the cMF e↵ective Hamiltonian on clus-
ter I:

Ĥ
eff
I =

2IX

pq

hpq p̂
†
q̂ + 1

2

2IX

pqrs

hpq|rsi p̂†q̂†ŝr̂

+
2IX

pr

X

J 6=I

2JX

qs

hpq||rsi �Jqsp̂†r̂, (2)

where �
J
qs is the 1-particle reduced density matrix

(1RDM) on cluster J . The local cMF e↵ective Hamil-
tonian (arising naturally from tracing out the remaining
clusters) commutes with N̂ , Ŝz, and Ŝ

2, and as such the
cluster states, |↵Ii, automatically preserve particle num-
ber and spin symmetries. Because the Ĥ

eff
I depends

on all other clusters via the 1RDM, this must be solved
self-consistently. The similarities between Ĥ

eff
I and the

traditional Fock operator also extend to our ability to
define a perturbation theory, as introduced in Ref. 45
and discussed later. For small clusters this many-body
transformation can simply be defined through the ex-
act diagonalization (FCI) of Ĥeff

I , although approximate
eigenstates would be needed for larger clusters.
In order to span the full Hilbert space of the global

system, we must separately diagonalize Eq. 2 in all pos-
sible sectors of the cluster’s local Fock space. The global
states can then be represented in the tensor product basis
of cMF eigenstates:

| i =
X

↵

X

�

...

X

!

c↵,�,...,! |↵1i |�2i . . . |!N i (3)

where c↵,�,...,! is the coe�cient tensor, and |↵Ii is an
eigenvector of Eq. 2.
The focus of this paper, is to develop and test an ex-

cited state generalization of our selected CI procedure
(TPSCI)28 which algorithmically builds a sparse approx-
imation to Eq. 3. The remaining theory section will be
organized as follows: (IIA) clustering and how to gener-
ate initial cluster states by diagonalizing local Hamiltoni-
ans, (II B) details about matrix element evaluation, and
finally (II C) the detailed steps of the TPSCI algorithm.
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being acted upon:

Ĥ =
X

I

ĤI +
X

I<J

ĤIJ

+
X

I<J<K

ĤIJK +
X

I<J<K<L

ĤIJKL (5)

where HI has all creation and annihilation operators in
cluster I, HIJ has operators in both clusters I and J and
so on. The full set of terms for each of these n-cluster
interactions are included in the Supporting Information.
At most, we can only have four cluster interactions since
we have at most four fermionic operators.

Each of these terms will involve a contraction of the
two electron integrals with the appropriate � tensors.
Therefore, we can precompute these terms and store
them in a dictionary in memory for later access. For
example, if we have a local state � in cluster I where
operators p̂†, q̂†, and r̂ act on cluster I, its associated �
tensor is the following:

I��
0�

pqr = h�0
I | p̂†q̂†r̂ |�Ii (6)

This is also an example of the largest rank � tensor that
our implementation will store in memory. For large clus-
ters and large M values (number of local cluster states),
these can become the memory bottleneck. It is, in princi-
ple, possible to avoid the storage of these five-index ten-
sors since they can only contribute to two-cluster terms,
however we have not found the need yet.

These gamma tensors will be contracted with the inte-
grals during the computation of each Hamiltonian matrix
element. For example, the following ĤIJ term would pro-
vide the following contribution to the h 0| ĤIJ | i matrix
element:

h 0| ĤIJ | i  �(�1)�
Y

K 6=I,J

�!K ,!0
K

(7)

⇥
X

pqr2I

X

s2J

hpq|rsi I��
0�

pqr
J��

0�
s

where � =
PJ�1

K=I NK and accounts for the sign by sum-
ming over the number of electrons in each cluster be-
tween the two active clusters, and �!K ,!0

K
arises from the

orthonormality between states ! and !
0 on cluster K.

There is an additional negative sign that arises from the
anticommutator relationship when you switch the two
annihilation operators ŝ and r̂ since the operators must
be adjacent to the cluster they are acting upon.

The orthonormality of the cluster states creates spar-
sity in the Hamiltonian, such that we only need to com-
pute contributions between tensor product states that
have identical inactive clusters states. Analogous to the
Slater-Condon rules, only tensor product states that dif-
fer by less than 5 clusters can be coupled by the Hamil-
tonian.

Table of TPSCI parameter definitions

N Number of clusters
R Number of global eigenvectors requested
M Maximum number of cluster states in any given sector

of Fock space for any cluster
�e Range of Fock sectors for each cluster to include. For

example, if cluster I has 10 electrons in the cMF refer-
ence, then compute cluster states for 10��e ! 10+�e

✏CIPSI Threshold for discarding first-order TPS coe�cients.
Coe�cients larger than this value will be included in
the variational space.

✏FOIS Threshold for screening when computing the first-
order interaction space. Values larger than this will
be included when computing the first-order wavefunc-
tion.

TABLE I. Table of definitions of parameters used to define a
TPSCI calculation

C. Algorithm

We start by first listing the overall steps for the TP-
SCI algorithm (which can also be seen in Figure 2), then
follow with a more detailed discussion of each step. We
also include a table of the required user-defined parame-
ters for a TPSCI calculation Table I.

Generate inital 
cluster states and 
construct     tensors 

1.Define a
reference    -space 

5. Batched PT2 
Correction

4.Update Cluster 
Basis with sparse 
HOSVD Decomposition

Converged?
MaxCycles?

No

Yes

HOSVD Loop

E
xp

an
d 

  
 -

sp
ac

e

A
p
p
ly H

am
ilton

ian

2. -space: 
Diagonalization

3. -space: 
Search

TPSCI Loop

FIG. 2. Flow chart of the TPSCI algorithm including the
HOSVD loop.
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Steps of a TPSCI calculation for computing R states:

1. Define a reference P-space with dimension of at
least R. (Sec. II C 1)

2. Diagonalize P-space and collect lowest R eigen-
states. (Sec. II C 2)

3. Search Q-space perturbatively and expand P-
space. If converged, continue, else return to step
2. (Sec. II C 3)

4. Update cluster basis with sparse higher-order sin-
gular value decomposition (HOSVD) decomposi-
tion. If converged, continue, else return to step
2. (Sec. II C 4)

5. Compute a state specific batched PT2 energy cor-
rection. (Sec. II C 5)

1. Define a Reference P Space

For ground state TPSCI calculations, the cMF wave-
function often serves as a su�cient initial P space. How-
ever, for excited states it is often helpful to specify an ini-
tial P space that qualitatively describes the target states.

If the system were to be fully decoupled such that
there were no interactions between clusters, then the
full Hamiltonian would be diagonal in the TPS basis.
Additionally, the low-energy spectrum would be dom-
inated by “excitonic” states, those states where every
cluster is in its ground state except for a single (or pair)
which is excited. However, as the clusters become more
strongly interacting, the low energy spectrum can de-
velop greater weight on higher exciton-rank tensor prod-
ucts. For weakly to moderately interacting clusters, the
excitonic basis provides a qualitatively correct descrip-
tion of the target excited states, and thus is an excellent
initial P space for starting the TPSCI procedure. The
single excitonic basis for a given cluster can be written
as:

| �Li = |0I , 0J , ..�L, ..0N i (8)

where cluster L is in its singly excited state �. For very
weakly interacting systems, one would expect the low-
energy states to be primarily represented as linear combi-
nations of these single excitonic states. For comparative
purposes, we will refer to such a method as TPS-single ex-
citon (TPS-SE). This is equivalent to the so-called Block
correlated CI method described by Li and coworkers.32

Although the TPS-SE results will not generally be ac-
curate since it lacks all interactions with higher excited
configurations (e.g. the charge transfer excitations), the
TPS-SE method provides a very e↵ective way to initialize
the TPSCI calculation with a qualitatively correct initial
P space. Further, for situations where we expect biex-
citons to contribute to the final wavefunctions (see Sec.
III B), the user can also directly add these configurations
to the starting wavefunction.

We provide a comparison of the TPS-SE with TPSCI
for one of the systems we studied (P1) in the Supporting
Information which demonstrates that one does generally
need to go beyond TPS-SE for accurate excited states.

2. P-space: Diagonalization

Once the variational space is defined, we build the
Hamiltonian from Eq. 5 in the P space and diagonalize.
As described above, the required matrix element evalua-
tion is much more expensive than traditional Slater de-
terminant methods due to two main reasons: i) the loss
of sparsity of the Hamiltonian matrix, and ii) the need
to contract the integrals with the precomputed � tensors
mentioned in II B. Because the Hamiltonian matrix stor-
age usually constitutes a memory bottleneck, we have
implemented the option for either a full matrix build or
a matrix-vector product build for use in a Krylov solver.
However, while the matrix-vector algorithm significantly
reduces the memory requirements, it is much slower be-
cause it recomputes the matrix elements for each Lanc-
zos iteration. As such, if allowed by memory, our current
implementation defaults to the full Hamiltonian matrix
build. After we build and diagonalize the Hamiltonian,
we have a set of variational states that are a sum of ten-
sor product states, |Psi =

P
i c

s
i |Pii and a variational

energy, E0.

3. Q-space: Search

To obtain the first-order interacting space (FOIS), we
calculate the action of the Hamiltonian on the set of ten-
sor product states, {Pi}, in the current variational space.

���s
j

↵
=
X

i

|QjihQj | Ĥ |Pii csi

= |Qji bsj (9)

Since the Hamiltonian is not sparse in the TPS basis,
the action of the Hamiltonian on the TPS states can be-
come very costly. Therefore, we have implemented a se-
ries of screening and prescreening techniques based on
a user-defined threshold, ✏FOIS, where we delete compo-
nents |Qji if max

s
|bsj |  ✏FOIS.

We then collect the resulting non-negligible configura-
tions that lie in the Q space.
Consistent with the original Slater determinant CIPSI

methods, we compute the first order correction to our
current variational state(s) to determine which new de-
grees of freedom should be added to our variational space.
In our work, we use a generalization of the Barycen-
tric Moller Plesset19 (MP) perturbation theory using the
cMF e↵ective Hamiltonian (Eq. 2), which is explicitly
described in Appendix A.
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Once the first order coe�cients are computed for each
state, |Psi,

c
s(1)
j =

hQj |Ĥ|Pii cs(0)i

�E
(0)

j

(10)

any Q space configuration with a perturbative coe�cient

greater than ✏CIPSI ( max
s

|cs(1)j | > ✏CIPSI) is added to

the P space.51 If no additional TPS states are added to
the variational space, the TPSCI protocol is considered
converged.

4. Update Cluster Basis with HOSVD Decomposition

Once the TPSCI wavefunction has converged (i.e. no
additional TPS states are required in the variational
space), we can optionally update the cluster basis us-
ing a quantum number-preserving Tucker decomposition
called a higher-order SVD decomposition (HOSVD)

T↵,�,...,� = Ci,j,...,dU↵,iU�,j · · ·U�,d (11)

where ↵,�, . . . , � are each specific to a cluster, and
Ci,j,...,d is the core tensor which is formed by a change
of basis from ↵ to i, � to j etc. Because we are us-
ing the HOSVD to only rotate the cluster basis, and not
truncate the space,28,52 each U is a unitary matrix in the
vector space of its specified cluster. These unitary matri-
ces are local many-body rotations which can be directly
obtained from individual singular value decompositions
(SVD) along the associated axis, e.g.

T↵,�...� = U↵,i⌃iVi,�...� , (12)

or equivalently, by diagonalizing the cluster reduced den-
sity matrix (cluster-RDM) which is obtained by tracing
out the remaining clusters from the converged TPSCI
wavefunction.

⇢↵↵0 = c(↵,�, . . . , �)c(↵0
,�, . . . , �) (13)

where c(↵,�, . . . , �) is the TPS coe�cient vector. We
note that, in practice, we want to preserve certain lo-
cal quantum numbers (particle number and spin projec-
tion). As such, we only block-diagonalize the cluster-
RDM within each quantum number subspace. This en-
sures that the global wavefunction retains proper eigen-
states of both N̂ and Ŝz.

When moving to a multi-state problem, there are var-
ious ways to complete this HOSVD to obtain the tucker
factors (U). One option is to decompose each state into
its own basis. However this state-specific approach would
be extremely complex, making it di�cult to reliably com-
pute energy di↵erences and transition properties between
states. Instead, we compute a single global basis in a
state-averaged way. To create this global basis we simply
average the cluster-RDMs from each TPSCI eigenvector:

⇢↵↵0 = 1

R

X

s

X

�,...,�

c(↵,�, . . . , �)sc(↵0
,�, . . . , �)s (14)

where s is denoting the state. We can then diagonalize
⇢↵↵0 to obtain the tucker factors for cluster ↵:

⇢↵↵0 = U↵,igiU↵0,i. (15)

We view the use of the HOSVD as optional, analogous to
the use of natural orbitals in conventional Slater determi-
nant selected CI calculations. As such, it is obtained iter-
atively, where cheaper calculations provide states which
are decomposed to produce more compact representa-
tions for subsequent calculations with tighter thresholds,
✏CIPSI. We refer to this computational protocol of sys-
tematically tightening the thresholds after one (or more)
HOSVD steps as “HOSVD bootstrapping” in the results
section.

5. Batched PT2 Energy Correction

Even though the SCI algorithm captures most of the
static correlation in the CI expansion, it does not cap-
ture the dynamic correlation e�ciently. The inclusion of
the missing dynamic correlation is usually carried out us-
ing a state-specific PT2 correction. As mentioned in Sec.
II C 3, in the cMF basis, we choose a Barycentric Moller
Plesset19 (MP) type partitioning in this work. Whereas
computing the first-order wavefunction can quickly be-
come a memory bottleneck due to the vast size of the Q
space, the energy computation has no inherent memory
demand.
For computing the PT2 energy correction, we have im-

plemented a parallelized batched algorithm, where we
compute a small segment, or batch, of the first order
wavefunction, then contract it to evaluate the energy,
discarding the state before moving to the next segment.
Our current implementation batches over what we refer
to as FockConfig’s, or unique distributions of particles
across clusters. This approach is analogous to the de-
terminant based approach described in Ref. 53. While
this does o↵er system-dependent speedups, the scaling
is far from optimal. The reason is that by parallelising
over Fock space configurations, we have a rather poor
load balancing due to the fact that some Fock space con-
figurations have many more configurations than others.
Improvements to our batching will be the focus of future
work.

III. RESULTS AND DISCUSSIONS

We investigate the e�ciency of the TPSCI approach for
excited states by mainly focusing on polycyclic aromatic
hydrocarbons (PAH). These systems have been chosen
for three reasons: i) they provide a straightforward ap-
proach to orbital clustering, allowing us to defer the
more complicated clustering patterns to focused future
work, ii) we have already begun to understand the ground
state behavior in our previous paper28, and iii) because
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they are chemically interesting in terms of novel material
in synthesizing chiral nanographenes,54 twisted carbon
nanobelts,55 and carbon-based electronic devices56 etc..
Benchmarking on a wider variety of chemical systems will
be the focus of follow up papers.

The first few systems (Section IIIA) constitute a set of
⇡ conjugated systems which can be grouped into clusters
of 6 orbitals which simply di↵er in their connectivity.
The last example is a tetracene tetramer, which is non-
covalently bound and supports interesting multiexcitonic
states. For all systems we compute accurate estimates
of both the ground state and a large number of excited
states.

FIG. 3. PAH systems used for the excitation energies. Each
gold highlighted region corresponds to a separate cluster.

For the PAH systems, we use geometries optimized
at the B3LYP/cc-pVDZ57 level of theory. The active
space for each PAH system P1-P5, is generated using
the localized 2pz orbitals of an RHF calculation using
the cc-pVDZ basis for all the PAH systems. We use the
6-31G*58 basis for the singlet fission tetracence tetramer
calculations. The active space for the tetracence tetramer
example is generated by using a set of localized natu-
ral orbitals. All semi-stochastic Heat-bath CI (SHCI)
calculations were performed with Arrow59–62. The in-
tegrals for all the calculations were generated using the
PySCF package,63 and the cMF and TPSCI calculations
were performed with our open source Julia64 packages
ClusterMeanField.jl65 and FermiCG.66 The geometries
for all the systems are included in the Supporting Infor-
mation.

We note that the thresholding used in the original

ground state TPSCI work28 pruned by using the prob-
ability and hence was square of the ✏CIPSI in this work.
The current work prunes on the absolute value of the
first order coe�cients to be more consistent with other
selected CI codes.

A. PAH systems

We present four medium sized PAH systems (P1-P4)
and one larger system (P5) (Figure 3). Taking the ⇡
space as the active space, P1-P4 has an active space of
size 24 electrons in 24 orbitals (4 clusters) and P5 has
an active space of 36 electrons in 36 orbitals (6 clusters).
Considering that the low-energy excited states of benzene
consist of one singlet state and three triplet states, in
our calculations on P1-P4, we compute 16 total excited
states, while for P5 we compute 24 excited states (i.e.,
four states per cluster).

1. Smaller PAH systems (P1-P4)

In Figure 4, we present the extrapolation of the ground
and 16 excited states for systems P1-P4 using TPSCI
where the ground state is colored navy blue, triplets are
colored blue, and singlets are colored orange.
As is commonly done in selected CI calculations, we

assume a linear relationship between the PT2 energy cor-
rection and variational energy (i.e. the larger the cuto↵,
the cheaper the selected CI calculation, therefore more
energy correction will be required). The extrapolated re-
sults in Figure 4 were computed by first converging to
the tightest ✏CIPSI possible (4⇥ 10�4 for P1, P3, and P4
and 6⇥10�4 for P2) through the bootstrapping HOSVD
approach. The additional cheaper points for extrapola-
tion were obtained by deleting TPS’s with a coe�cient
smaller than a specified epsilon value, and then recom-
puting the eigenvectors and PT2 corrections in these suc-
cessively smaller variational spaces. We note that the
same cluster basis is used for each point in the extrapo-
lations, i.e., we don’t perform any additional HOSVD for
the extrapolation points. This allows us to track states
and monitor if any root flips across extrapolation points.
The point where the extrapolated lines cross the y-axis
(i.e., where the variational energy is predicted to have a
zero PT2 correction) is our best estimate of the FCI en-
ergies. Therefore, the closer the variational energies are
to the extrapolated result (y-axis), the more reliable the
calculation.
For each of the P1-P4 systems, the ground state vari-

ational estimate converges much faster than the excited
states as seen from Figure 4. The TPSCI results for
the singly connected systems, P1 and P3, converge much
faster than the P2 and P4 systems. This is to be expected
given the fact that each cluster is connected by two bonds
instead of one, leading states in the P2 and P4 systems
to develop significantly more inter-cluster entanglement.
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FIG. 4. Extrapolation of the ground state and 16 excited states for the medium sized PAH systems studied using TPSCI
(with HOSVD bootstrapping) then clipping plotted against the PT2 correction with root tracking. Energies are shifted by the
extrapolated TPSCI energy so the ground state converges to 0 eV. Variational energy fit (solid lines). PT2 energy fit (dashed
lines). (✏CIPSI = n⇥ 10�4 with n=4,6,8 for P1, P3, and P4. ✏CIPSI = n⇥ 10�4 with n=6,8,10 for P2)

Overall, we see that qualitatively, the low energy elec-
tronic structure of the clusters is retained when the sys-
tem is more weakly coupled, than otherwise. For in-
stance, for P1, P3, and P4 there are three triplets for
every singly excited benzene unit (4 singlets, and 12
triplets). This is the same ratio that is found in the
isolated benzene structure. In contrast, for the P2 sys-
tem, we observe 7 singlets and 9 triplets within the lowest
16 states. We interpret this increase in singlet contribu-
tion to arise from the increased interactions between the
clusters, which provides more ability for the electronic
structure to delocalize between clusters.

Although P4 also has clusters which are connected by
two bonds, the non-linear geometry prevents the qualita-
tive reorganization of the electronic structure such that
there are still 4 singlets and 12 triplets. Further, un-
like P2, the singlet-triplet gap is not significantly lowered
compared to P1 or P3.

We note that in the P2 extrapolated graph, we ob-
serve a very steep slope for one of the states around 4.0
eV. This could indicate that this state was not converged
tightly enough for extrapolation. Alternatively, it might
have arisen from the manner in which we apply perturba-
tion theory. As mentioned above, we are currently using a
non-degenerate PT2 formalism, which is can create prob-
lems in cases of near degeneracy. In follow up work, we

plan on implementing a quasi-degenerate formalism67,68

to better understand the current results, and to safeguard
against such issues in the future.

2. Larger PAH (P5)

As a larger example of a ⇡-conjugated system, we also
consider P5, which has an active space of 36 electrons
in 36 orbitals that is partitioned into 6 clusters. Simi-
lar to before, we expect three triplets and one singlet for
every singly excited cluster, giving a total of 25 states.
We present the extrapolations of both TPSCI and semi-
stochastic heat bath CI (SHCI) in Figure 5. The linear
extrapolation has been shown previously in literature to
generate overestimated energies.20 A quadratic fit is rec-
ommended in these cases, but for comparison we use a
linear fit for both methods.
In order to label the eigenstates, we compute the ex-

pectation value of Ŝ2 for each of the TPSCI states. Al-
though the TPSCI results are rather tightly converged,
nearly-degenerate states can mix arbitrarily, leading to
a few instances of non-trivial spin-contamination. How-
ever, the extent of this is generally small enough such that
it doesn’t - prevent us from labeling the states.69 Using
SHCI, we were not able to compute all 25 states because
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the variational space grew too large to fit in memory.
The largest calculation we were able to obtain was for

13 roots. Further, we didn’t have access to
D
Ŝ
2

E
, so we

were not able to label the resulting states, and thus they
are simply left grey in Fig. 5.

P5: TPSCI
R = 25

Ground
Triplets
Singlets

0.00.51.0
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) 

FIG. 5. Extrapolation for the P5 molecule using the TPSCI
and SHCI methods respectively. R denotes the number of
roots: 13 for SHCI, and 25 for TPSCI. (TPSCI ✏CIPSI = n⇥
10�4 with n=4,6,8 and SHCI ✏CIPSI = n⇥10�5 with n=5,7,10)

In addition to the plots in Fig. 5, we also present
these results in Table II. Here, we report the variational
excitation energies (!Var), magnitude of the PT2 correc-
tion to the excitation energies (�!PT2 = !PT2 � !Var),
and extrapolated excitation energies (!1). To better
highlight the accuracy of the perturbatively corrected
results, we also present the extrapolation corrections
(�!1 = !1 � !PT2) to the excitation energies.

For all excited states computed, the TPSCI variational
energy is closer to its extrapolated result than the corre-
sponding variational HCI result. This is a consequence of
folding in local correlations directly into the TPS basis.
Not only do the TPSCI results have smaller PT2 correc-
tions (�!PT2) compared to SHCI, but more importantly,
the extrapolation correction is significantly smaller than
the PT2 correction for each state, �!PT2 > �!1. In
contrast, this isn’t the case for the SHCI results, where
the extrapolation corrections are consistantly larger than
the PT2 corrections. For all excitation energies, the mag-
nitude of �!PT2 for SHCI is around a factor of three
times that of TPSCI.

TABLE II. Excitation energies (eV) and wavefunction dimen-
sion for the most accurate calculation reported for the P5 sys-
tem using TPSCI and SHCI (✏CIPSI = 4 ⇥ 10�4 for TPSCI
and ✏CIPSI = 5⇥10�5 for SHCI). Lineally extrapolated results
obtained from PT2 energy corrections. !Var is the variational
excitation energy, �!PT2 is the PT2 energy correction to the
excitation energy, �!1 is the extrapolation correction, and
!1 is the extrapolated excitation energy.

TPSCI SHCI
Dimension: 112, 788 Dimension: 1, 741, 084

State !Var �!PT2 �!1 !1 !Var �!PT2 �!1 !1
1 3.22 -0.09 -0.02 3.10 3.68 -0.25 -0.39 3.04
2 3.43 -0.09 -0.02 3.32 3.86 -0.24 -0.37 3.25
3 3.43 -0.09 -0.02 3.32 3.93 -0.27 -0.43 3.22
4 3.91 -0.08 -0.02 3.80 4.37 -0.25 -0.38 3.74
5 3.91 -0.08 -0.02 3.80 4.40 -0.27 -0.44 3.69
6 4.28 -0.11 -0.03 4.15 4.82 -0.30 -0.44 4.09
7 4.46 -0.11 -0.04 4.31 4.94 -0.22 -0.34 4.38
8 4.52 -0.04 -0.01 4.46 5.00 -0.26 -0.40 4.34
9 4.52 -0.11 -0.03 4.38 5.03 -0.31 -0.29 4.43
10 4.58 -0.11 -0.03 4.44 5.07 -0.27 -0.40 4.39
11 4.58 -0.11 -0.04 4.44 5.11 -0.30 -0.47 4.34
12 4.59 -0.10 -0.03 4.45 5.15 -0.29 -0.29 4.57
13 4.59 -0.10 -0.03 4.46 – – – –
14 4.74 -0.08 -0.04 4.62 – – – –
15 4.74 -0.08 -0.04 4.62 – – – –
16 4.77 -0.09 -0.01 4.67 – – – –
17 4.78 -0.09 -0.01 4.68 – – – –
18 4.83 -0.10 -0.03 4.70 – – – –
19 4.83 -0.10 -0.03 4.70 – – – –
20 4.87 -0.09 -0.03 4.74 – – – –
21 4.97 -0.09 -0.03 4.85 – – – –
22 5.00 -0.07 -0.02 4.91 – – – –
23 5.00 -0.07 -0.02 4.91 – – – –
24 5.09 -0.07 -0.02 5.01 – – – –

The fact that the TPSCI variational (and perturba-
tive) results are closer to the extrapolated values lends
greater confidence to the extrapolated values. This is ex-
tra important in situations where di↵erent methods yield
extrapolations that di↵er non-trivially, as seen in Fig. 5.
While the overall features are similar between SHCI and
TPSCI, the extrapolated values di↵er by a non-negligible
amount (up to around 100 meV). Because of the fact that
our extrapolation is smaller, we expect that the TPSCI
extrapolations are closer to the exact FCI results than
are the SHCI extrapolations.70
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FIG. 6. Extrapolated results using HOSVD bootstrapping then clip at larger thresholds to obtain extrapolation for tetracence
tetramer singlet-fission example with root tracking. (a) the full spectra with 31 roots shown. (b) the middle section of the
energy spectra with 4 triplet excited states and cluster labels of the tetracence tetramer. (c) the top portion of the spectra
with the remaining 26 roots shown.

B. Singlet Fission: Tetracence tetramer

Singlet fission is a multichromophoric process where a
bright singlet excited state is converted into two lower en-
ergy triplets. The mechanism involves an entangled mul-
tiexciton singlet state, 1(TT).71 While the 1(TT) state
is likely the first multiexciton state to be accessed, due
to spin conservation, it has been recently shown that the
triplet and quintet multiexcitons, 3(TT) and 5(TT), also
play an important role in the separation process.72 Be-
cause of the intrinsic two-electron nature of the multi-
excitonic state, it is di�cult to compute all three spin
states of the multiexciton, the initial singlet excitation,
and the final triplet states on equal footing. However,
because of the underlying product structure of the tar-
get states,73 tensor product state methods o↵er unique
advantages. Since the chromophores are naturally par-
titioned into di↵erent clusters, a diabatic basis can be
naturally formed using the cluster states.30 Here we test
our tensor product based method on tetracence tetramer,
taken from a tetracene crystal that exhibits this singlet
fission process.

To construct an orbital active space that accurately
represents the targeted states, we performed a CIS cal-
culation for the first four singlets and triplets, then
built a state-averaged one particle reduced density ma-
trix (1RDM) and diagonalized to obtain the natural

orbitals.74 Using the eigenvalues of the state-averaged
1RDM, the 40 most correlated orbitals (those with the
most fractional occupations) are taken as our active
space. While a larger active space would have been possi-
ble in principle, this is the largest activate space that was
tractable when treating each chromophore (10 orbitals)
with an exact FCI cluster solver. In future work we will
report on a RASCI-based cluster solver to increase the
size of the clusters (and thus active spaces) treatable.
After defining the (40o,40e) orbital active space, we con-
structed an initial guess through localization, then varia-
tionally optimized the cluster orbitals with cMF, defined
by 4 clusters each with 10 electrons (5↵ + 5�) in 10 or-
bitals.

1. Extrapolation

We use the same technique that was used for the PAH
systems to obtain the extrapolated plots seen in Figure 6.
In subplot (a) of Figure 6, we show 31 states that were
calculated using TPSCI. We label the states based on
the expectation value of the Ŝ

2 operator and dominant
Fock space configurations in each eigenstate. The sin-
glet ground state is denoted in navy blue, triplets are in
blue, singlets (bright states) are in orange, and the biex-
citons are in red. The orientation of tetracence tetramer
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is shown in a herringbone lattice where the chromophores
are stacked then shifted slightly from one another. We
observe faster convergence for the lower excited states
compared to the biexcitons and higher single excitons
which follows the intuition that the higher excited state
manifold is generally more entangled, thus requiring more
TPS configurations to converge. In subplot (b) of Figure
6, we reduce the energy scale to highlight the four low-
est energy triplet states. Because these states are largely
“singly excitonic” in nature, their rate of convergence is
similar to the convergence of the ground state.

In subplot (c), the energy scale is changed to highlight
the higher energy states, including all 18 biexcitons, four
singlets, and four higher excited triplet states (primar-
ily superpositions of T2 single excitons) are shown. As
expected, the biexciton spectrum (shown in red) is rela-
tively dense compared to the higher energy states.

Due to the fact that we have used a fixed orbital active
space of 40 orbitals and neglected external correlation,
our excitation energies are expected to be significantly
overestimated compared to experiment. For example, the
experimental value of the bright state lies at 2.35 eV.75

The significant di↵erence between the experimental value
and our computed results, is entirely due to the size and
composition of our active space, not from errors within
the active space. In the future, we would plan to use
TPSCI as a CASSCF solver, allowing us to use state av-
eraging so that our active space orbitals treat the ground
and excited states on an equal footing. We note that
the orbital optimization during the cMF calculation only
mixes the active 40 orbitals among themselves, but this
could be extended to mix all the orbitals. In addition to
orbital optimization, we will also consider the inclusion of
dynamical correlation via an operator downfolding (e.g.,
DUCC76,77) or by doing a PT2 type correction. Finally,
we can also increase the size of our active space beyond
this 40 orbital example. This will require a more e�-
cient cluster state solver to allow us to exceed the 10
orbitals per cluster used in this calculation. A RASCI
cluster solver enabling larger clusters will be reported in
a subsequent manuscript.

2. Wavefunction Analysis

To analyze the TPSCI wavefunction, we have access to
the expectation value of Ŝ2, number of important config-
urations in each Fock space and the associated weight
of that Fock space in the overall TPS wavefunction. In
Table III, we present a summarized version of the wave-
function analysis. For each state, we list the state label,D
Ŝ
2

E
, the variational excitation energies, the PT2 correc-

tions, and the overall percent charge transfer character.

The state label is defined by the
D
Ŝ
2

E
and the dom-

inate Fock space configurations. While the states were
generally easy to label, the presence of near-degeneracies
between states of di↵erent spin multiplicity creates di�-

TABLE III. Results for all 31 eigenstates of tetracence
tetramer with associated labels based on expectation values of

the Ŝ
2 operator

D
Ŝ

2

E
, variational excitation energies (!Var)

and PT2 energy corrections (!PT2) for excitation energies in
eV, and percentage of charge transfer (% CT) for all 31 eigen-
states in the TPSCI wavefunction.

State Label
D
Ŝ

2

E
!Var !PT2 % CT

1 S0 0.000 0 0 0.09
2 T1 2.000 1.811 0.002 1.36
3 T1 2.000 1.833 0.002 0.17
4 T1 2.000 1.847 0.002 0.40
5 T1 2.000 1.860 0.002 0.36
6 1(TT) 0.001 3.631 0.007 3.81
7 1(TT) 0.091 3.642 0.006 1.95
8 3(TT) 1.919 3.643 0.006 1.53
9 5(TT) 5.945 3.648 0.006 1.36
10 1(TT) 0.234 3.649 0.006 4.23
11 3(TT) 1.811 3.650 0.006 3.02
12 3(TT) 1.838 3.661 0.005 3.01
13 1(TT) 0.163 3.661 0.006 0.98
14 3(TT) 2.000 3.672 0.006 0.65
15 5(TT) 5.999 3.678 0.005 1.21
16 5(TT) 5.998 3.685 0.005 0.79
17 5(TT) 5.995 3.691 0.005 0.52
18 1(TT) 0.302 3.692 0.005 0.52
19 3(TT) 1.718 3.693 0.005 0.50
20 5(TT) 5.986 3.696 0.005 0.39
21 1(TT) 0.050 3.704 0.005 0.96
22 3(TT) 1.961 3.705 0.005 0.89
23 5(TT) 5.989 3.711 0.004 0.42
24 S1 0.000 3.807 0.008 10.80
25 S1 0.000 3.883 0.005 1.92
26 T2 2.000 3.898 0.004 2.03
27 T2 2.000 3.915 0.003 0.36
28 S1 0.001 3.917 0.006 2.55
29 T2 2.000 3.923 0.003 0.98
30 T2 2.000 3.927 0.003 2.32
31 S1 0.000 3.950 0.005 5.03

TABLE IV. Charge transfer wavefunction analysis for first
singlet excited state. These are the Fock space configurations
that contribute with a weight greater than 0.001 and are in
descending order by their contributions.

Fock Space (↵, �) # Configs Weight CT Character
( 5,5 )( 5,5 )( 5,5 )( 5,5 ) 11157 0.87 no CT
( 4,5 )( 5,5 )( 5,5 )( 6,5 ) 1150 0.018 1 ! 4 (↵)
( 5,4 )( 5,5 )( 5,5 )( 5,6 ) 1135 0.018 1 ! 4 (�)
( 5,4 )( 5,6 )( 5,5 )( 5,5 ) 856 0.017 1 ! 2 (�)
( 4,5 )( 6,5 )( 5,5 )( 5,5 ) 897 0.016 1 ! 2 (↵)
( 6,5 )( 4,5 )( 5,5 )( 5,5 ) 843 0.015 2 ! 1 (↵)
( 5,6 )( 5,4 )( 5,5 )( 5,5 ) 876 0.015 2 ! 1 (�)
( 6,5 )( 5,5 )( 5,5 )( 4,5 ) 922 0.004 4 ! 1 (↵)
( 5,6 )( 5,5 )( 5,5 )( 5,4 ) 865 0.004 4 ! 1 (�)
( 5,5 )( 6,5 )( 4,5 )( 5,5 ) 1114 0.004 3 ! 2 (↵)
( 5,5 )( 5,6 )( 5,4 )( 5,5 ) 1099 0.004 3 ! 2 (�)
( 5,5 )( 4,5 )( 6,5 )( 5,5 ) 951 0.003 2 ! 3 (↵)
( 5,5 )( 5,4 )( 5,6 )( 5,5 ) 938 0.003 2 ! 3 (�)
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culties resolving spin states accurately, as our variational
space would need to be converged to within the energy
gap between the states. While we could always “un-mix”
them manually by just diagonalizing the 2x2 Ŝ

2 matrix,
we have not investigated that in this study.

By analyzing the total weight of Fock sectors having
clusters with di↵erent numbers of electrons, we can quan-
tify the amount of charge transfer present in a given state.
Following this approach, we observe a significant amount
of charge transfer present in the first bright state (state
24) with 10.8 percent charge transfer. We analyze this
charge transfer character in the first singlet excited state
more carefully in Table IV, where we list Fock space con-
tributions that are overall greater than 0.001 in the final
TPSCI wavefunction. As shown in this table, the local-
ized representation of the TPSCI method makes analysis
more direct. Not only can we quantify the amount of CT
character, we can further decompose it into individual
CT contributions. For example, in Table IV we can see
that while charge transfer between clusters 1 and 2 are
of a “charge resonance” type form, where the transfers
are equal in both directions, the CT interactions between
clusters 1 and 4 are more asymetrical, with more electron
density moving from 1 to 4 than in the opposite direction.

IV. CONCLUSION

In this work, we generalize our Tensor Product Se-
lected Configuration Interaction algorithm to enable the
computation of excited states. TPSCI has the ability
to provide extremely accurate (near-exact FCI) results
for strongly correlated systems that would otherwise be
intractable for Slater determinant based methods.

We demonstrated the accuracy of TPSCI for excited
states on a series of small polycyclic aromatic hydrocar-
bons (PAH) molecules with active spaces of 24 electrons
in 24 orbitals. The excitation energies are within chem-
ical accuracy (1 kcal/mol or 0.043 eV) once the state
specific PT2 correction is added for the P1, P3, and P4
systems when compared to near-exact results. The P2
system was a very challenging system due to the addi-
tional connectivity that increases inter-cluster interac-
tions. Nonetheless, all but four higher energy excited
states were within chemical accuracy of the extrapolated
results. We see from the extrapolated results for P2,
one of the higher excited states has an extreme slope
suggesting the further development of a quasidegenerate
PT2 formulation. We then extend TPSCI to one larger
PAH system, P5, with an active space of 36 electrons in
36 orbitals and compare to semi-stochastic heat bath CI
(SHCI). Most excitation energies for P5 are within chem-
ical accuracy with the exception of state 16 being 0.002
eV above chemical accuracy. Additionally, we compare
TPSCI to SHCI and are able to calculate an additional
12 states with TPSCI. Furthermore, all variational exci-
tation energies with TPSCI are closer to their respective
extrapolated results compared to how far away SHCI ex-

citation energies are from their extrapolated values. TP-
SCI also has smaller PT2 corrections when compared to
SHCI for all states.

After testing TPSCI on smaller PAH systems and com-
paring to SHCI, we investigated it’s ability to compute
“beyond-dimer model” singlet fission excited states of a
tetracence tetramer cluster. We chose an activate space
of 40 electrons in 40 orbitals with a total of four clus-
ters (one for each tetracence). Our model has all three
spin states of the dark multi-exciton state as well as the
singlet excited states. We calculated the ground state
and 30 excited states (eight Triplets, four Singlets, and
18 Biexcitons). All variational excitation energies are
within chemical accuracy and even closer to the exact
values with the PT2 energy correction (only 0.001 eV
di↵erence).We are able to label our states from both theD
Ŝ
2

E
values and TPS wavefunction analysis.

In addition to accurately solving large active spaces
for several roots, the TPSCI wavefunction further allows
analysis of charge-transfer character and multi-exciton
states. This analysis will be extended to produce quanti-
tiate diabatic bases and subsequent e↵ective Hamiltoni-
ans. The TPS representation also make analysis in terms
of quantum information quantities like von Neumann en-
tropy very natural. These directions, in addition to the
construction of properties and RDMs, will be the focus
of future work.

In order to extend TPSCI to larger active spaces, it
will be necessary to use an approximate solver within the
cluster, like the restricted active space approach, which
will be the the focus of a future manuscript. In addition
to improved cluster solvers, automation of the orbital
clustering is also needed to minimize the amount of user
input needed to setup a calculation. Even though we re-
port excitation energies near the exact limit within the
active space, we have not yet included any influence from
the higher lying virtual orbitals which is necessary for re-
covering dynamic correlation. Including this external dy-
namic correlation will be the focus of future work, either
through downfolding or PT2 treatments. Orbital opti-
mization with the TPSCI method is also a possible fu-
ture direction to provide CASSCF values for large active
spaces. Even without these suggested future directions,
TPSCI has the ability to study ground states, excited
states, charge-transfer states, and multiexciton states for
large strongly correlated systems and hopes to serve as
an accurate method to benchmark against for systems
that are intractable with FCI.
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Appendix A: Definition of Perturbation theory

The perturbation theory used in this work is defined by
using Löwdin’s partitioning theory. We seek a correction
to the zeroth-order wavefunction for state s, which is con-
structed as a linear combination of TPS’s that lie within
the P space. We refer to this reference state as |Psi. To
partition the Hamiltonian for perturbative treatment,

Ĥ = Ĥ
(0) + �Ĥ

(1) (A1)

we wish to choose a partitioning where the zeroth-order
contribution contains the full Hamiltonian in the P space,
but an approximate, diagonal Hamiltonian in the Q
space. This is achieved by the following partitioning:

Ĥ
(0) =

0

@ Ĥ 0

0 F̂
cMF
D + hPs|F̂ cMF |Psi

1

A (A2)

Ĥ
(1) =

0

@ 0 Ĥ

Ĥ Ĥ � F̂
cMF
D � hPs|F̂ cMF |Psi

1

A , (A3)

where,

F̂
cMF =

X

I

Ĥ
eff
I , (A4)

and where the subscript D (F̂ cMF
D ) indicates the diag-

onal of the operator (this is only consequential when
working in the HOSVD basis because the cMF e↵ec-
tive Hamiltonian is no longer diagonal). This is referred
to as a “barycentric” partitioning, because the zeroth-
order Hamiltonian contains the reference state expecta-
tion value of the “Fock-like” cMF Hamiltonian.

With this partitioning, the expression for the first order
coe�cients becomes:

c
s(1)
j =

hQj |Ĥ|Psi
hPs|F̂ cMF |Psi � hQj |F̂ cMF

D |Qji
(A5)

While other partitionings are likely to work better
(Epstein-Nesbitt78,79 or even a quasidegenerate formula-
tion of the above approach67,68), we defer consideration
of di↵erent partitionings to future work.
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S1. COMPARISON WITH TPS-SE

Before investigating the TPSCI approach, we evaluate the accuracy of a cheaper method to obtain excited states,
the TPS-single exciton or TPS-SE approach. For a TPS-SE calculation, we take a linear combination of tensor product
states where one cluster has a triplet exciton as shown below.

| ti = |t, 0, 0, 0i+ |0, t, 0, 0i+ |0, 0, t, 0i+ |0, 0, 0, ti (1)

We analyze the accuracy of this TPS-SE method for the P1 system. We also investigate the e↵ect of a perturbative
correction based on barycentric MP2 on top of the TPS-SE, named TPS-SE(2). We compare the excitation energies
computed using TPS-SE and TPS-SE(2) with the extrapolated TPSCI results for P1 (Table S1). As seen from
Table S1, neither TPS-SE or the TPS-SE(2) method provide accurate results when compared to the near exact
excitation energies (!1). This is not surprising since there are no inter-cluster charge transfer contributions in the
TPS-SE approach. Additionally, there are only perturbatively inter-cluster contributions in TPS-SE(2). Being a
perturbative correction, the TPS-SE(2) can also have issues when there are degenerate states similar to traditional
MRPT approaches. Meanwhile, the TPSCI approach includes higher excited configurations absent from TPS-SE(2)
and does not have these degeneracy issues. TPSCI generates a variational space that captures a majority of the
important configurations. As shown here, it is very important to go beyond TPS-SE.

TABLE S1: Excitation energies (kcal/mol) for the 4 triplet excited states for the P1 system computed using CIS, TPS-SE,
TPS-SE(2), TPSCI, TPSCI with PT2 corrections, and extrapolated TPSCI.

CIS TPS-SE TPS-SE(2) TPSCI TPSCI+PT2 !1
T1 68.05 97.23 91.13 74.82 74.17 74.05
T2 75.15 97.46 93.09 81.03 80.46 80.35
T3 85.44 100.84 93.88 89.89 89.30 89.18
T4 94.96 103.15 100.62 101.01 100.68 100.59

⇤Electronic address: nmayhall@vt.edu
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S2. TPSCI VS TPSCI WITH HOSVD DECOMPOSITION

The decision to use the HOSVD rotated basis then clip the remaining coe�cients in the wavefunction to obtain the
extrapolated results came from the following analysis of TPSCI (from cMF reference) verses TPSCI with the HOSVD
basis. We show results only for the tetracence tetramere but similar result were found for the PAH systems. In Figure
S1, we plot the extrapolated results for tetracence tetramere with TPSCI (no HOSVD) on the left and TPSCI (with
HOSVD) on the right. We can see that TPSCI with HOSVD converges faster than without HOSVD. This is very
obvious in the first singlet excited state in orange around -2754.63 Hartrees in subplot (c) of Figure S1. Additionally,
the variational dimension at the tightest threshold of ✏CIPSI = 4⇥10�4 for TPSCI without HOSVD was 72,728 while
the dimension with the HOSVD was only 35,461.
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FIG. S1: Extrapolated results to compare TPSCI with and without the HOSVD with bootstrapping for tetracence tetramere
singlet-fission example with root tracking. (a) the full spectra with 31 roots shown. (b) the middle section of the energy spectra
with 4 triplet excited states. (c) the top portion of the spectra with the remaining 26 roots shown.
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S3. CONVERGENCE OF CLUSTER BASIS SIZE

The maximum number of roots (M) per cluster per Fock sector determines the size of the cluster eigenbasis that is
accessible by the selected CI algorithm. If this value is set too low such that the full Hilbert space is not represented,
then the extrapolated results can’t be considered near exact or FCI results. To ensure that our parameter of M = 150
was su�cient, we compared the results of various TPSCI extrapolations with M = 200, 300, and 400. We saw no
significant di↵erence in the extrapolated excitation energies by adding more roots greater than M = 200. Additionally,
when we compared M = 150 to M = 200, we also did not see a significant di↵erence in the extrapolated excitation
energies, slope of the extrapolations, or dimension of the TPSCI wavefunction. This can be seen in Figure S2. Thus
concluding that for the P5 system, a parameter of M = 150 is su�cient to represent the full Hilbert space.
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FIG. S2: Comparison of extrapolated excitation energies to compare convergence of cluster basis size using TPSCI. On the left
are the results for M = 200 and on the right M = 150.

S4. HAMILTONIAN TERMS
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TABLE S2: Enumeration of all the distinct terms for a given pair, triple, and quadruple of clusters, respectively. Here, ↵ (↵†)
refers to annihilation (creation) of an ↵ electron, and � (�†) refers to a � annihilation (creation) operator.

Term 2 Body Terms 3 Body Terms 4 Body Terms
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