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ABSTRACT

While there has been substantial recent work studying generalization of neural
networks, the ability of deep networks in automating the process of feature extrac-
tion still evades a thorough mathematical understanding. As a step toward this
goal, we analyze learning and generalization of a three-layer neural network with
ReLU activations in a regime that goes beyond the linear approximation of the
network and is hence not captured by the common Neural Tangent Kernel. We
show that despite nonconvexity of the empirical loss, a variant of SGD converges
in polynomially many iterations to a good solution that generalizes. In particular,
our generalization bounds are adaptive: they automatically optimize over a family
of kernels that includes the Neural Tangent Kernel to provide the tightest bound.

1 INTRODUCTION

The ability of overparameterized neural networks trained by (stochastic) gradient descent to gener-
alize well on test data (Krizhevsky et al., 2012; Silver et al., 2016; Hinton et al., 2012), even if they
perfectly fit the the training data, has intrigued theoretical researchers and led to many approaches
for generalization bounds (Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2018; Dzi-
ugaite & Roy, 2017; Wei et al., 2019; Golowich et al., 2018; Arora et al., 2018b; Zhou et al., 2018;
Konstantinos et al., 2017). This generalization ability is tied to the optimization procedure, i.e., the
trajectory of the training algorithm in a non-convex loss landscape, and the structure of the data.

Hence, several recent works study the training of neural networks. For instance, Safran & Shamir
(2018) address the role of overparametrization in avoiding bad local minima, and Zhang et al. (2016)
empirically show that overparametrized networks trained by SGD can even perfectly fit to random
labels. Within the popular framework of the Neural Tangent Kernel (NTK) (Jacot et al., 2018), which
uses a linear approximation of the network at initialization, several works analyze the optimization
trajectory and show global convergence of (S)GD to a global optimum of the empirical loss (Allen-
Zhu et al., 2019; Li & Liang, 2018; Zou et al., 2018; Du et al., 2018). Extending the viewpoint
to generalization, Arora et al. (2019a;b) exploit the kernel-like behaviour of two-layer networks
close to their initialization to prove generalization for the final network, showing that two-layer
neural networks generalize as well as Kernel Ridgeless Regression (KRLR) with the NTK. Cao
& Gu (2019) show a tighter bound with a Neural Tangent Random Feature Model. The kernel
approach, however, has two main limitations: First, while KRLR can generalize well in specific
high dimensional regimes (Liang et al., 2020), there is theoretical and empirical evidence that it
can be inconsistent with noise (Rakhlin & Zhai, 2019). Is there an approach for analyzing neural
networks that shows they perform at least as well as KRLR, but is also robust to noise?

Second, importantly, neural networks are known to outperform traditional statistical methods in
many regimes as they are able to automate the process of feature extraction from data, as opposed
to kernel methods that work with a fixed feature representation. This poses the question of other,
adaptive, regimes beyond the linear network approximation. In this realm, Wu et al. (2018) show
generalization bounds that, instead of the NTK norm, scale with respect to another functional norm.
This norm corresponds to the minimum RKHS norm of the function among a family of kernels,
i.e., their method in a sense picks the best kernel in this family. However, this result ignores the
computational aspect of the problem. Are there particular nonlinear regimes beyond NTK for
which a gradient-type polynomial-time algorithm, in a way, adaptively chooses a suitable kernel?
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Going beyond the NTK view, a line of work convexifies the optimization problem via an approxi-
mation of SGD dynamics with a continuous time gradient flow in the space of probability measures
on the hidden units of the network, equipped with the Wasserstein metric (Mei et al., 2018; Chizat
& Bach, 2018; Mei et al., 2019; Wei et al., 2018; Sirignano & Spiliopoulos, 2020; Javanmard et al.,
2019; Lu et al., 2020). Taking another perspective, Allen-Zhu et al. (2018) consider a three-layer
network model that is not captured by the NTK approximation, and learn an underlying concept
class by exploiting saddle-point escape theory for nonconvex SGD (Ge et al., 2015a). However,
evaluating the complexity measure of Allen-Zhu et al. (2018) is rather involved, and only aligns
well with functions that are described by a particular network. Whether one can recover the NTK
bound (e.g. the NTK norm) from these results is not clear. For the NTK setting, in contrast, Arora
et al. (2019a) develop a purely data dependent generalization bound. Going beyond two layers, is
it possible to prove a data-dependent complexity measure beyond the NTK regime that recovers the
NTK result (Arora et al., 2019a) as a special case?

In this work, we address the above questions:

* We consider a regime for 3-layer neural networks that is not captured by the NTK approximation
and show that, despite nonconvexity, a variant of projected SGD finds a good solution, as measured
by the regularized empirical loss, importantly, after polynomially many iterations.

* We introduce a new function norm ||.||¢ as the minimum RKHS norm with respect to a family
of kernels /C, which is upper bounded by the NTK norm up to constants. We show that for an
arbitrary function f, the generalization gap of the trained network scales by || f||¢. This makes our
generalization bound adaptive, in the sense that it scales with the best kernel in K. As a byproduct,
our bounds are comparable with kernel regression bounds simultaneously with all kernels in /.
We hope that our techniques motivate researchers to prove such adaptive generalization bounds
for deeper networks, which can potentially result in stronger depth separation.

* We show generalization bounds with a new data-dependent complexity measure that generalizes
the NTK-based complexity in (Arora et al., 2019a). Up to logarithmic factors, our bounds are
upper bounded by those NTK-based bounds and hence improve over them (if one substitutes their
Lipschitz loss with a smooth one) — see Appendix A.1 for a simple explicit example. Importantly,
our bound can also handle noisy distributions as opposed to (Arora et al., 2019a).

Further Related work. While the idea of a learning algorithm that combines multiple kernels has
been employed for a while in the community (Sonnenburg et al., 2006; Rakotomamonyjy et al., 2007;
Duan et al., 2012), our understanding of the connections between deep learning and multiple kernel
learning is yet in its infancy. Recently, Dou & Liang (2020) define a time-varying kernel based on the
network weights and show that the limit of the gradient flow converges to a suitable dynamic kernel,
in the sense that the residual of the link function onto its RKHS could be in a smaller ranked space
compared to the orthogonal complement of the RKHS. Ghorbani et al. (2019) analyze the difference
between training a two layer ReLU network and its NTK or random feature simplifications, for a
mixture of Gaussians input distribution and quadratic target functions. Ignoring the computational
hardness imposed by nonconvexity, Bach (2017) prove a dimension dependent generalization bound
beyond NTK. In another line of work, Chizat & Bach (2020) study gradient flow on losses with
exponential tail and its relation to the max margin solution. Wei et al. (2019) show an interesting
separation between the learning power of two layer ReLU networks and their NTK approximation,
by showing a sample complexity gap for an artificially constructed distribution.

With a different approach, Allen-Zhu & Li (2020) analyze multi-layer networks with quadratic ac-
tivations, and prove generalization bounds polynomial in the dimension and precision by assuming
an underlying teacher network, which shows a remarkable algorithmic depth separation. The prob-
lem of depth separation for neural networks and more generally their expressive power has been
investigated by several researchers before (Raghu et al., 2017; Daniely, 2017; Barron, 1994; Funa-
hashi, 1989; Safran & Shamir, 2016; Safran et al., 2019). The assumption of an underlying teacher
network that one seeks to recover is common, too (Li & Yuan, 2017; Zhong et al., 2017; Brutzkus
& Globerson, 2017). Other works focus mainly on the algorithm and use other techniques, such as
tensor factorization, to find a global optimum (Tian, 2016; Bakshi et al., 2019; Janzamin et al., 2015;
Zhong et al., 2017). Finally, many authors study the loss landscape under various assumptions (Free-
man & Bruna, 2016; Nguyen & Hein, 2017; Soudry & Carmon, 2016; Soltanolkotabi et al., 2018;
Ge et al., 2017), some of them consider the simplified case of deep linear networks (Arora et al.,
2018a; Saxe et al., 2013; Bartlett et al., 2018; Kawaguchi, 2016).
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2 SETUP AND APPROXIMATION BY KERNELS

We analyze a 3-layer ReLu neural network from inputs 2 € R? to outputs y € R of the form
W =_1 T (0) NS 1 (0) /
(@) = F=a”o (VO + V)W o (WO + W)a)), ()

where a € R™2 is a vector of random signs, V(?) € R™2*ms and W e R™*? gre ran-
dom weight initializations with i.i.d Gaussian entries Vj((,)g) ~ N(0,K3), Wj((]? ~ N(0,x%), and
W e R™3*™ ig a random sign matrix, which is roughly a random projection and change of coor-
dinates into a lower dimensional space. We refer to W* Tlna((W(O) + W")z) as the first layer and
1
Tl%aTU((V(O) +V7)(.)) as the second layer. The algorithm trains weight matrices V' and W', and
W*, a are fixed. We assume that the outputs are a.s. bounded by a constant, |y;| < B, and ||z;|| = 1.
Asloss (., .), we use the squared loss. We denote the training (empirical) loss of a function f on our
data {x; }_1, {y:}"_, and the expected loss with respect to the data distribution (population loss) by

Ra(f) =437 U(f(@)p), and  R(f) = EL(f(2),y),

respectively. Sometimes, we refer to the vector of labels (y;)"_; by y. Finally, Hx is the space of
functions with bounded RKHS-norm of kernel K, and the notation O hides log factors.

2.1 KERNEL APPROXIMATIONS, DECOMPOSITION AND ADAPTIVITY

Kernel approximations of neural networks play an important role in our analysis. First, a common
approximation is the NTK. The Neural Tangent kernel for a 2-layer ReLu network is

H*®(21,29) = (21, 22) - FQ(<$1,J}2>/(||$1||||.’172||>), for Fy(z) = 1 + arcsin(z)/(27). (2)

To introduce adaptivity, a key part of our analysis is to approximate the second layer in the 3-layer
network by a product kernel K°° ® G that decomposes into a “fixed” part K °° and an “adaptive”
part G. To define these kernels, for every i € [n], let $(*) (x;) be the output of the first layer of the
network at initialization, ¢(*)(z;) = ﬁWSU(W(O)a:i), and ¢(%) (x;) + ¢'(x;) be that output for

weights TW(©) + W', The adaptive kernel G captures the dot product between the learned weights:
Glai, 7)) = (¢ (22), ¢/ (2;))- 3)

This form of G motivates the complexity measure we define in the next section, if one thinks of
the entries of ¢’ as bounded NTK-norm functions of the input. Next, we consider the second layer,
where the part K°° arises from roughly stable activations. To formalize this stability, let Sgn(V x)
be the diagonal matrix whose diagonal contains the coordinate-wise signs of the vector V. If we
assume that Sgn((V©® + V') (6O (z;) + ¢'(2;))) =~ Sgn(V ¢ (z,)) - we prove a rigorous
statement in Appendix A.12 — then

fwr v (i) = =a” (VO + V(6O i) + &' (2:)) “
~ (VO 1V, SLaTSen (V000 @) ) (6 (1) + qb/(xi))T>. 5)

Focusing on the adaptive part ¢’ (x) of the first layer, we write
T
(VO 1V, SaTsen (VOO (@) ¢/ (w) ") = (VO + V!, T (@) ©)

and can then view the second layer as a function in the RKHS of the product kernel
(T (2:), Y(x;)) =+ K*®(xi,2;)G(x;,2;). This defines the new kernel K°°, which we simplify
into the kernel K °° that is independent of initialization (K °° is defined in Equation (8)). To do so,
we first observe that > concentrates around

(6020, 00(z,)) )

B0 M0 (w11 {60 )} = B (e M
? J
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Moreover, the Gaussian initialization and assumption |z;|| = 1 imply that (¢(*)(z;), $(¥)(z;))
concentrates around ms F3({(z;, z;)), for F3 : [—1,1] — [0, 3] defined as

F3(z) = 3=V/1 — 22 + o + 5=z arcsin(z), @)

so K*(zi,2;) = Fo(2F3((xs,7;))) = K> (%, ;). (8)

For general z1, x2 not necessarily unit norm, we define K°°(z1,z2) = K (z1/||x1]], z2/||z2|])-

It is easy to check that the coefficients in the Taylor series of F5 and F3 are nonnegative. Combining
this with Schur’s Product Theorem implies K> is PSD (Appendix A.4). We also denote the data
kernel matrix on (z;)_, by K°° and H°. Like Arora et al. (2019a), we assume the data distribution
is (Ao, 6, n)-non-degenerate with respect to H*> and K, i.e., with probability at least 1 — ¢, the
smallest eigenvalues of H°° and K *° are at least Ay > 0.

3 DATA DEPENDENT COMPLEXITY MEASURE AND GENERALIZATION

The emergence of G ©® K°° above gives rise to an adaptive kernel-like complexity measure that
will determine generalization bounds. Intuitively, this complexity measure reflects the two layers.
Here, we view G as the Gram matrix of some “ideal” first-layer feature functions g;. We measure
the complexity of the prediction function via the RKHS of A := G ® K*°, and allow a flexible
choice of the features g,. The g may be viewed as feature representation of ¢’ in Equation (3):
G(zs, ;) = gr(x:)gr(x;). To regularize this choice, we penalize the complexity of the features
gi via the NTK norm. Alternatively, the features g, are flexible but have bounded NTK norm.

For a labeling f* € R" of the n data points and fixed G, this leads to the complexity
* * —1 px* 00— * —1 px* ma oo
.Gy = AT (HETLG) = AT Y lgklles A=GO K, )

where ms3 is the number of intermediate features. The choice of mj3 is discussed in Appendix A.13.
Our data-dependent complexity measure implicitly selects the G (or equivalently the feature vectors
gr.) that leads to the tightest bound, trading off data fit and function complexity:

S =@ i) = min {20R, (1) + @ min(/*, G}, (10)

where we use a log factor @ = O(log(n)? + log(1/Xo)).

To make the relation to adaptive kernel spaces even more explicit, assume that the g; are bounded
as >, |9k ||} < 1. Then we define a family K of corresponding kernels of the form

Kigy(z1,22) = KOO(Il,zz)(de{g} g9(z1)g(x2)), (11)

Le., K= {Kg|{g} finite, 3 ., llgl|%;o < 1}. With this notation, the complexity measure is
3((x:). (v)) = min, {Qan(f*) + @ min f*TK—lf*}. (12)

Hence, this measure may be understood as searching for the most efficient and effective feature
representation within a family of RKHSs.

We may also relate this complexity measure to the NTK-based complexity measure y? H>® 1y
(Arora et al., 2019a). For any labeling f*, let f * € H g be the function with minimum NTK norm
that maps 2;’s to f7’s, so || f*|| g~ = f*TH>®"1f* If we set {g} = {f*/||f*||}, then one can
show (Appendix A.5)

FUK e ST T AP = AP = 4T ET T, a3)

which implies

S < min {20R,(7) + (4e) s TH g,

One can further set f* = y above and obtain

S < (4w1)yTH°°71y. (14)
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3.1 GENERALIZATION

With the complexity & in hand, we can now state our generalization result. It assumes optimization
by a Projected Stochastic Gradient Descent (PSGD), described in detail in Section 4.

Theorem 1 Suppose we run Projected Stochastic Gradient Descent (PSGD) on the regularized em-
pirical risk with parameters as in Section 4, and |y;| < B a.s.. Then, with high probability (e.g.
0.99) over the randomness of data, initialization and noise of the gradient steps, PSGD converges in
poly(B V 1/B,1/\g,n) iterations to a solution (Wpsgp, Vescp) with population risk bounded as

S((@i)izqs (Wi)ieq) 4 B%w 15)
n n ’

R(f WPS(}I)7VPSGI)) <

As a side remark, the factor 2 in front of R, (f*) in the definition of < in (12) is not special and
a similar generalization bound can be obtained for any v > 1. Substituting the upper bound on
the complexity in Equation (14), one recovers an NTK-based generalization bound that scales with
yTH>"1y /n up to log factors, which is roughly the square of the generalization bound presented
in (Arora et al., 2019a). The reason for the faster squared rate here is that we are considering smooth
losses, while they work with a bounded Lipschitz loss. Indeed, it is not hard to apply a more rigorous
uniform convergence analysis from (Srebro et al., 2010) to also obtain a faster squared rate for the
approach used in (Arora et al., 2019a).

Since Equation (14) is an upper bound on our complexity, our result generalizes and tightens the
NTK bound (Arora et al., 2019a). To illustrate the flexibility of our complexity measure, we show
in Appendix A.1 a simple explicit example of functions represented as polynomial series where our
bound improves upon the NTK bound. Notably, we only substitute low-rank matrices G in our
complexity measure for this construction. We leave further investigation of our complexity measure
for arbitrary G’s to future work.

3.2 UNDERLYING CONCEPT CLASS

Instead of data dependent generalization bounds, one may study the generalization gap with respect
to some concept class. The complexity measure & implicitly uses the following adaptive norm on
the space of functions from R?, the infimum of the RKHS norms for the family of kernels :

7l = e int e, (16)

It is not hard to check that ||.|| is in fact a norm, and that the inf is achieved by a particular set {g}.
Similar to the derivation of the upper bound on the complexity measure in Equation (14), by setting
{9} ={f*/IIf*|| =}, we obtain the following NTK upper bound:

1Flle < 4l1F e (17)

This leads to a function-dependent generalization bound which bounds the risk of the learned net-
work against an arbitrary function f with || f||; < oc.

Theorem 2 For any measurable function f : RY — R, in the same setting as Theorem 1, the
population risk of the trained network can be bounded as

2+B2
R(fWPSGLhVPSGD) < 2R(f) + O(w%) (18)
As in the data-dependent case, the factor 2 on R(f) can be reduced to any constant y > 1.

3.3 INTERACTION OF LAYERS BEYOND THE LINEAR APPROXIMATION

Here, we give a high level intuition on how the adaptivity is achieved in our regime compared to
NTK. In the NTK approach, for every input z, the neural net fy v (x) is approximated by its linear

approximation at (W (©), V(%)) (the initialized network), fw,v(z) = (Vw,v fi© v o (z), (W —
WO v — v()), The NTK approximation works as long as (W, V) are close enough to their
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initialization that the linear approximation remains accurate and the interaction of weights be-
tween layers is negligible. Specifically, the features ¢'(x;) behave almost linearly with respect

to W — WO as |[W — WO is taken to be small and the sign pattern Sgn((W©® + W')z;)
is proven not to change much compared to Sgn(W(())a:i). Additionally, the NTK-type analysis
needs the following two conditions to be satisfied: (1) the sign pattern of ¢(*)(z;) + ¢'(x;) with
respect to V() + V' remains almost the same as the sign pattern of (Z)(O)(x) with respect to V(9
and (2) the weight changes W’ and V' should not interact, which means the “interaction” term,

ﬁaTs en (V(O)¢(0) (xz)) V'@’ (x;) = 0, should be negligible. Therefore, the non-negligible terms
2

for the NTK are: (1) —~a”Sgn (V(0)¢(0) (:1:1)) V(© ¢/ (x;), which is almost linear in T’ (recall

Vmy
that ¢'(z;) depends on W’), and (Q)ﬁaTSgn (V(O)¢(0)(J;i))v/¢(o)(xi) which is linear in V.
2

This approach has two important implications: (1) it convexifies the optimization (for convex loss),
as the approximation is now linear in W; and (2) it simplifies proving generalization, as it works
with the class of functions in the RKHS space of some fixed kernel. However, this simplification
leaves no room for the ability of the neural network to learn intermediate feature representations.

In our regime, in contrast, we enforce the condition Vj,4 : V' L ) (2;) (%), which implies the sec-
ond (2) above is zero, while the interaction term is not negligible any more and the network behaves
similar to a quadratic function with respect to (W’, V') (for fixed x;). Condition (*) is critical both
in proving the convergence of the algorithm as well as bounding the Rademacher complexity of the
class of networks with bounded weights. Rather than working with a fixed kernel, the interaction
term enables us to use the first layer for representing the input in a suitable feature space, which can
be interpreted as picking a suitable kernel, then use the second layer to describe the output based on
those features. This is also indirectly encoded in our complexity measure. In addition to enforcing
the orthogonality condition (*) (in the SGD variant), conditions for entering our regime are that the
overparameterization mj, ms, ms and k1, ko are within a specific range with respect to each other.
We listed these relations in Appendix A.3.

To illustrate the benefit of going to this more involved regime, denote the class of neural networks
with bounded Frobenius norms ||[W’|| < ~1,||V’|| < 72 by G, 4, (and a bit more structure which
we elaborate upon in the proofs); it turns out that G, -, roughly includes H x (O(y1y2)) for every
kernel K € IC, in the sense that each f € Hx(O(y172)) is well-approximated within G, -, to
arbitrarily small error on fixed input (the error goes down with the size of the network). On the other
hand, we show that the Rademacher Complexity (RC) of G, -, behaves similar to the RC of the
NTK class H e (O(7172))! As our algorithm guarantees finding a network with sufficiently small
empirical risk within G, ,, this phenomenon underlies our adaptive generalization bounds.

Compared to previous work that provides an adaptive kernel analysis still for a two layer model (Dou
& Liang, 2020) (although their analysis is for the gradient flow and non-algorithmic), our model
requires an additional layer so it can, in a sense, “simulate” the process of feature extraction in one
layer to be used in the next layer.

3.4 COMPARISON WITH KERNEL FITTING

We compare our generalization bounds with some kernel fitting rates. Given a kernel K with
K(z,xz) < 1forevery z : ||z|| < 1, suppose we want to fit a function from H  (B’), i.e. having K-
RKHS norm bounded by B’. In the realizable setting, when there is an underlying f** € H (B’)
with zero risk, Empirical Risk Minimization (ERM) enjoys a fast rate using the smoothness of the

loss (Srebro et al., 2010). The Rademacher Complexity bound R(H x (B')) < O(%) then implies

R(f*M) < O(B"/n) (19)

for the squared loss, which is minimax optimal up to log factors. To compare to the neural network,
we substitute f** into Theorem 2. To relate the B in our bound to B’, assume for simplicity of
exposition that || f||c = || f||x~ for some K* € K (otherwise we can use a convergent sequence).
Observing that K,y (2, z) < 1 for every kernel Ky, € K, we obtain that |f**(z)| < || f**| k- =
[I£**||c (Appendix A.6). Combining this fact with the realizability assumption, we can then upper



Published as a conference paper at ICLR 2022

bound the parameter B in Theorem 2 by || f**||¢, and obtain

A k|| 2
R(fWPSGDyvi’SGD) = O(Hf ||C /n) (20)
If we further take K to be in K, then Equation (20) combined with || f**||¢ < || f**||x < B’ implies:

R(fWPSGD,VPSGD) = 0(3/2/n)’

that is, for every kernel K € I, our deep learning approach almost achieves the conventional kernel
bound in Equation (19).

Repeating the uniform risk bound stated in Theorem 1 in (Srebro et al., 2010) for H i (B’) where
B’ is set to all powers of two, followed by a union bound, one can easily obtain a fast rate of

T g1 2
R(fKRLR) < O(# n %) 1)

for the solution of KRLR in the general case (not realizable) for the squared loss. On the other hand,
for a B-bounded Lipschitz loss, we instead get a slow rate for KRLR:

R(fKRLR) §O( /nyzly+\J/BE)7

where B is an a.s. bound on |y| as before. This bound is similar to Arora et al. (2019a). Note that our
data dependent generalization bound in Theorem 1 already achieves the fast rate for KRLR in (21)
for any K € K. Finally, in the non-realizable case, we still have the following fast rate for ERM
regarding the hypothesis class H i (B’) (Srebro et al., 2010):

R(fERMY < O(R(f**) + BZ£E%),

where now f** := argmingc,,, ( B,)R( f), while Theorem 2 also implies (again for every K € K):

R(fWPSGD,VPSC.D) < O(R(f**) + W) - O(R(f**) + W)

n

4 ALGORITHM: PROJECTED STOCHASTIC GRADIENT DESCENT

In this section, we describe our algorithm PSGD, presented as pseudocode in Figure 1, which is
roughly Stochastic Gradient Descent modified to project out a low-dimensional random subspace
from the second-layer weights. PSGD approximately runs SGD on a smoothed version of the fol-
lowing loss function (1, 12 are defined in Appendix A.2)

Ly(W', V') = Ru(fwrv) + 1 [W |2 + | V']

Compared to standard SGD, our algorithm makes two modifications: (1) it uses randomized smooth-
ing to alleviate the non-smoothness of the ReLUs, (2) it ensures that the weights in the second layer
are orthogonal to the data features ¢(®) () computed by the first layer at initialization. This helps to
control layer interactions as pointed out in Section 3.3. For smoothing, we add Gaussian smoothing
matrices W* and V? to the weights with i.i.d. entries drawn from N (0, 32 /m;) and N(0, 35 /mz)

respectively, for B2 = Op((k1y/my) ™ (k2y/M2)~2/3), B1 = Op(m3kay/mz(k1/m1) ™). To sim-
plify the exposition, O,(.) is hiding the dependencies on the basic parameters B,n,1/)o and log
factors. Our convergence proof uses the loss with respect to this smoothed network.

For the projection, let 1 C R™2*™3 be the subspace of weights of the second layer whose rows
are orthogonal to the first-layer data representations ¢() (;)’s Vi € [n] at initialization:

Vet V)€ [ma), Vi€ [n]: Vo (z;) =0. (22)

In summary, at point (W', V"), the algorithm samples a random (x;, y;) from the data, as well as
smoothing matrices W#+1, V-1 W#:2 V72 It then computes an unbiased estimate for the gradient

(@W, @V), adds additional normalized Gaussian noise matrices =1, =5 and moves in this direction
with step size n = 1/poly(n, BV 1/B,1/Xg):

(W, V') = (W V) + (Vi + E1/ (VIR ), Prodes (Vv +5o/[2a0)).  23)
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Parameters. Our results apply to the overparameterized regime, when the size of the network,
i.e. parameters my,ms, mg are polynomially large in n, BV 1/B,1/\,. This guarantees that the
network has suitable function representation capacity, and PSGD is able to find a good local direction
at every iteration. The regularization coefficients 1,12 can be set with respect to any candidate
(f*,G) for our complexity measure (9). In Appendix A.2, we introduce a simple doubling trick
that handles the case when we do not have access to an optimal candidate solution. With such
an f*, as we describe in Remark 1, define v := max{R,,(f*)/2, B?/n}, and set 1y = v/4, 1 =
v/(4¢(f*,G)), where f* is the projection of f* along the span of eigenvectors of A with eigenvalue
as large as 2(1/n?). We list the suitable regime for overparameterization in Appendix A.3.

Algorithm 1 PSGD(Projected Stochastic Gradient Descent)

Input: network architecture mq,mo, mg, initialization parameters ki, K2, smoothing parameters
B1, B2, training set (z;,y;)"_,, label parameter B, (f*, G) from the complexity measure

1: Gaussian initialization Wj((,? — N(0, k1), Vj(?f) +— N(0, k2)
2: Define parameters 11,19, v, 1, subspace &, and objective L; as described in Section 4
3: while L, (W', V') > R, (f*) + 2v do
) : . 1 2 2 12 B3
4: Gaussian matrices W7, W77 < N(0, 1), V25, VI < N(0, 2)
5: Sample data (x;, y;) uniformly at random
6: Compute gradient estimates
.. Vi = fwrawer vigver (), Y)Vw fwrgwe2 vipves (25) + 290 W,

Vy = é(fW/+WP’1,V/+VP’1 (24),y:) Vv fwrgwez vigves(2:) + 2002V’
8 Moveas (W, V') & (W, V") + (Vi +Z1/(Viny [Z1), Broda: (Vv +Ea/|E))
9: Return (W', V")

5 HiIGH LEVEL IDEA OF THE PSGD ANALYSIS

The reason for considering a Frobenius norm regularizer in PSGD is that we want the weights to
remain close to their initialization so the final network is in the class G, -, for suitably chosen
71, 7v2; while still reducing the nonconvex empirical loss R, (fiw~ v/). We prove convergence for
PSGD by building on ideas from Allen-Zhu et al. (2018), with a framework based on the classic
result that SGD can escape saddle points for nonconvex functions. Compared to them, we take a
different approach driven by our purely data-dependent complexity measure. We augment this by a
careful Rademacher complexity analysis of the class G, , in Appendix A.11.

Construction of a good Network To study the loss landscape, similar to (Allen-Zhu et al., 2018),
we show the existence of a good local update at reasonable points (W', V'), using the ideal pair
(W™, V*) that we carefully construct from our complexity measure. Here, we sketch our proof for
constructing (W*,V*). Let (W', V') be the current weights of the algorithm. Fix a sample ¢ € [n].
In Appendix A.12, we use G to construct W* for the first layer weights with decomposition W* =

w3 Wy and O(1) bounded norm, such that ¢* () = \%ﬂlWSSgn((W(O) + W’)xz) W*x,.
This decomposition ensures for every k, k' € [mg], negating W" only negates ¢*(z;)r when k' = k
and has no effect on ¢*(z;);- for ¥’ # k. This way, we can easily generate any arbitrary sign flip of
the entries of ¢*(z;). We use this property to generate a suitable random descent direction.

Next, we construct a suitable weight matrix V* for the second layer which maps the features ¢* (z;)
into f (recall the definition of the complexity measure). The key here is that we consider a regime
where the norm of ¢(©)(z;) is typically larger than that of ¢'(x;) and ¢*(x;), so it is very likely
that the sign pattern in the second layer is determined by ¢(®) (;) in most rows. In such a scenario,
the condition V} L $©) (;) becomes vital as the interaction of V' with ¢(%) (x;) is problematic for
both generalization and optimization. From the standpoint of generalization, without excluding this
interaction, one can exploit the large size of ¢(*)(x;) and build a network within the class Gt e
corresponding to a complex function that overfits the data. Indeed, we utilize the large magnitude of
#©) and its orthogonality to the rows of V'’ in the RC bound. On the other hand, since the weights
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of the first layer does not affect (%) (x;), the interaction of ¥V’ and ¢(®)(2;) is problematic for the
algorithm’s convergence, particularly in proving the existence of a local descent direction. This is
the rationale behind our orthogonality constraint (22).

Finally, the ¢* (x;)’s, the above control on the signs, and the fact that (¢(*)(z;,), ¢(*)(z;,)) concen-
trates around msE.,n (0,5, 1)[0(w” @, )o(w” x;,)] which recovers the structure of the kernel K>
(Section 2), give rise to the kernel G® K °° in the second layer. Using this structure, we construct V'*
that maps ¢* (x;)s to f;s, which has additional good properties, including O(f** (G ® K°°)~1 f*)-

bounded norm, and rows that are orthogonal to ¢(®) (x;)’s. For more details, see Appendix A.12.

Nonexistence of Bad Saddle Points Next, we want to exploit (WW*, V*) to prove the existence
of a good direction along which the objective decreases locally. Moving along (W*,V*) is the
first idea, which fails as the cross terms created between W', V* and V', W* cannot be bounded
effectively. Instead, we randomly perturb W* and V* in a coupled way and prove a reduction
in expectation. We elaborate more on this suitable random direction. Multiplying random signs
Y, onto W', we define the sum Wy, = Z;cn; YW . We also multiply the same signs to the
columns of V* and project it back onto & to obtain V5. Then, we move in the random direction
(vnWs —nW/2,/nVss — nV/2); this update creates additional cross terms in the objective that
we must bound to prove a local reduction argument. A key point here is that we prove with high
probability the norm of the weights is always bounded. This norm restriction enables us to substitute
terms that we do not have control over by their worst-case supremum. We refer to Appendix A.13
for similar techniques.

Convergence of PSGD Finally, we use the fact that SGD escapes good saddle points (Ge et al.,
2015b). For proving the existence of a good random direction to escape saddle points above, we use
that the norm of weights is uniformly bounded along all iterations; this bound, in fact, is looser than
the bound that we show for the final weights of the network. Yet, this additional restriction cannot be
addressed by the classical nonconvex theory of SGD. Consequently, we refine and adapt the proof
of (Ge et al., 2015b) to incorporate this additional constraint. At a high level, Ge et al. (2015b) work
with a supermartingale based on the loss value. To guarantee the additional norm restriction, it is
initially tempting to apply Azuma-Hoeffding concentration to bound the upward deviations of this
process. However, this fails as the process has a two-fold behavior, depending on how large the
gradient is. At the core of our refinement proof here, we instead directly bound the MGF of the
martingale using Doobs maximal inequality. We refer to Section A.16 for more details.
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A APPENDIX

This appendix contains the different main sections of the proof. Lower-level lemmas may be found
in Appendix B.

CONTENTS

A.1 Stronger Generalization bounds for polynomials . . . . . . ... ... ... .... 15
A2 TheDoubling Trick . . . . . . . . .. . e 16
A3 Amount of Overparameterization . . . . . . . . . . . ... ... ... ... ... 17
A4 PSDproperty of K™ . . . . . . L 18
A.5 Complexity upperbound . . . . . . . ... L 18
A.6 Complexity measure and the (-norm . . . . . . . .. ... ... ... 18
A.7 Core GeneralizationResult . . . . . . ... ... ... ... ... 20
A.8 Structure of the proof, setting mg, and further definitions . . . . . . ... ... .. 22
A9 Proofof Theorem?2 . . . . . . . . . . . . .. e 24
A10 Optimization . . . . . . . . . ... 25
A.11 Rademacher Complexity . . . . . . . . .. ... ... 28
A.12 Constructing W*, V* . . 0 o oL 34

A.12.1 First Layer, Constructionof W* . . . . . . ... ... ... ... . ..., 34

A.12.2 Second Layer, Constructionof V* . . . . .. ... ... .. ... ... .. 39

A.12.3 Constructionof V* . . . . . ... 45
A.13 Existence of agood direction . . . . . . . . ... ... 48
A.14 Existence of a good direction Helper Lemmas . . . . .. ... ... ... ..... 53
A.15 Bounding the worst-case Senario . . . . . . . .. ... oL oL 65
A16 Convergence . . . . . . o v v it e e e e 73
A.17 Process from a higher view: definition of the (X) sequence . . . . .. . ... ... 77
A.18 Boundingthe MGFof X;’s . . . . . . . . . . .. .. 79
A.19 Proofof Theorem 7 . . . . . . . . . . . . ... 80
A.20 Gaussian Smoothing . . . . . . . . . ... 81

A.20.1 Setting Sy and Bo . . . ... 86
A21 BasicTools . . . . ... . e 87

A.21.1 Defining therareevents E; . . . . . .. ... ... ... .......... 91

A.21.2 Bounding the value of f/ . . . . . . . .. ... ... ... 93

A.21.3 Bounding the difference between Original and Smoothed Functions . . . . 94

14



Published as a conference paper at ICLR 2022

A.1 STRONGER GENERALIZATION BOUNDS FOR POLYNOMIALS

In this section, we prove an explicit generalization bound for functions represented as a polynomial
sum. Note that the bounds in Arora et al. (2019a) for polynomials assume the monomials with degree
larger than one to have even powers, while here we do not impose this restriction. In addition,
different from Arora et al. (2019a), our bounds remain meaningful in the noisy case (recall our
Theorem 2).

More specifically, we bound the ¢ norm of such functions. Consider the target function s with the
following power series formula:

y=s(z)=> ap(w)z), (24)
p=1
where a,, € R and w), € R?. We can write

d
s(@) = g1(x) + Y wxgs (@), (25)
k=1

where z;, denotes the kth entry of vector x here and
g1(z) = > ap(w, )",
pEA1:={p=1 or p even}
and for all k € [d]:
g5 (x) = Z wpkap(ng)pil-
pEA2:={p>2, p odd}
Then, using the Taylor series of (1 + aresin(a) y — o2 ypak for |z| < 1, the RKHS H(H) of

2m
the NTK can be identified by square-summable sequences of reals (a, );?:1 with dot product

((ap)pr=1s (b )pimy) = Z YA(p') @p' bpr
p'=1

where A\(p') : Z>¢ — Z>( such that it maps zero to zero, the first d positive integers are mapped to
one, the next d? ones are mapped to 2, etc. Moreover, the RKHS mapping ¥ : R — H(H>°) from
the Euclidean space is:

\IJ(.’E) = ||.Z‘|| (.’I,‘/l, ...,.Z‘él, (x;cll‘;cz)khsz[d]v ey (x;ﬁl‘;w .. 'x;cp)kl,m,kpdd], .. .),

where 2’ = z/||z|| and in the notation above we are presenting a sequence of sequences, by which
we mean the inner sequences simply unfold. Using this identification, one can see using the linear
representations of g, g§ in H:

2
lgrl3e = >~ Apallw, 13, (26)
pEA,
2(p—1
g5 130 = > pwpial|w, 3¢ Y. 27)
pEAs

Summing above and noting the linear representation of g:

d oo

2 2 2

HQIH%{“J + Z ||g§||%100 = Z 717@;2)”“}17”21) + Z 7pa129||wp||2p = Z%ai\\wpﬂzp = ”9”%100
k=1 pEA; pEAy p=1

(28)
Now for {g} = {g;}¢1] = {91} U {g5}¢_,, we consider the kernel K ;. Expanding the tai-

lor series of F»(2F3)(x) = Z;O:o tpa?, we find the identification (hl;/)ke[d+1],p/:o,...,oo with dot

product
d+1

o0
D ey D g,
p’=0 k=1
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with RKHS map
Uo(@) = (6h(@), 02 (2), 491 @), -, @Gl (@), g (),

33:19:”1(37)7 (9521$;czgfc(CU))kl,kze[d],ke[dH]7 S (332:137;@2 . ~$§cp9;c($)>k1 o kp€ld],ke[d+1]5 - - )
Now, we compute the norm of function s with respect to K}, combining the above representation
and dot product with Equation (25) and the fact that we work with unit norm z, so ' = x:
Isll,,, = o+ (d+ ). (29)
Plugging the above and Equation (28) into the definition of ||.||¢ in (16), we conclude

d

. 2
Isl1E < lIslZ,,, (loallr + D llg5lF<) < (no + (d+ D) D papllwyllz”  (30)
k=1 p=1

Note that if the odd exponents (except possibly one) in the definition of s in (24) are zero, then
we could consider only the function g; and kernel K, , which would have implied a bound of

2
Ko Z;ozl 'ypa12,||wp||2p.
A.2 THE DOUBLING TRICK

For the SGD optimization, we set the regularization coefficients in the loss L as
Y1 =v/d, b =v/(4(f",G)), (31)

with v == max{R,,(f*)/2, B?/n}. This assumes we know the f* and G that minimize the adapta-
tion within the complexity measure (12). To achieve generalization bound in Theorem 1, here, we
explain how to use a simple doubling trick to get over the fact that we might not know these optimal
solutions f* and G. The proof here is based on the generalization result in Theorem 3.

Theorem 1 Without explicitly knowing the exact value of the complexity measure, i.e., the optimal
solution of Equation (12), one can still achieve the generalization bound in Theorem 1.

Proof of Theorem 1

Our core generalization result is in Theorem 3. The proof of Theorem 1 is simply adding a
doubling trick on top of the argument of Theorem 3. We also prove Theorem 2 as a consequence
of Theorem 1 in Appendix 2. In the rest of the proofs, for simplicity, we refer to (Wpsap, Vbsap)
by (W', V’). Let f**,G* be the optimal solution to (10). With a simple rescaling of G*, we can

assume (H co—l G*) = 1. (Note that the complexity does not change by such rescaling). Now one
can exploit the condition ||y;||cc < B, and consider the setting f* = 0 to get the following trivial

upper bound on the complexity measure:
S((2); (i) < 2nB%.
Therefore,

2nR, (f*) + f* A f*(dw) < 2nB?. (32)

Using Equation (32) and the optimality of ( f**, G*):

Rn(f77)
¢=¢(f G

2
)

<B
< 2nB?. (33)

Combining the first equation above with the definition of v in Equation (41), we get
B?/n <v < B2 (34)

To initialize 11 and 2, we use Equations (31) for any f* and G, and as a result we get a general-
ization bound as in Equation (45). However, to achieve the best possible rate characterized by our
complexity measure in Theorem 1 without explicitly computing the answer of (12), we use a simple
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doubling trick; for every pair (¢’,7’) such that ¢’ is a power of 2 between B? and 2n B2, and v/’ is a
power of two between B?/n and B?, we initialize 11, 15 as in Equation (31) and run the algorithm,
then return the network which minimizes the empirical loss after the required polynomial number of
steps. This is to make sure that the value of the loss will go at some point below the P SGDstopping
threshold on the loss, since the stopping threshold depends on R, (f**) which we are not aware
of. Another way to resolve this issue, to have an early stop when the value of the loss pass the
threshold is to again run a doubling trick on the value of R, (f**) for every fixed value of v and
¢, and run PSGD with stop threshold R,, (f**) + 2v (here, R, (f**) is set using the doubling trick
variable). This approach works because our final upper bound on the risk ignores the constants (note
that the doubling trick introduce additional constants). Moreover, since v > B2 /m by definition, we
don’t need to run R,,(f**) over values smaller than (B2 /n), since it does not change the order
of R, (f**) + 2v. Particularly, combining this with the upper bound on R,,(f**), we only need to
run the doubling trick for R,,(f**) in the interval (2(B?/n), O(B?)). Now let v/ be the power of 2
within v(G*, f**)/2 < v < v(G*, f**). If we are in the case

f**TAflf** < BQ, (35)

then for ¢’ equal to the smallest power of two larger than B2, when we run PSGD with pair (v, ('),

by Theorem 3:
2B2 32 Cx i n (s n B2
R(fw:v') < 2R (f*) + "w + < S((wa)izys ()isy) Ll (36)
n n n
Because we return the minimum upper bound on the risk (the tighter lower bound of Equa-
tion (44)) among all such powers of two, we certainly achieve the above rate in (36). Otherwise,
it f*TA-1f* > B2 let ¢’ be the power of two within f*TA~1f* < ¢/ < 2f*TA~1f*  then
again it is easy to check that conditions of Theorem 3 are satisfied, hence we get the following
generalization bound:

! 2 Kk * 2

R(fW’,V’) < 2R, (f*) + CHW(C%LB) < 2R, () + ' 2¢(f ai )+ B 37
()™ \m 2

S \S((xt)z:;j (yz)zzl) + C/ an, (38)

which proves the bound of Theorem 1.

A.3 AMOUNT OF OVERPARAMETERIZATION

In this section, to provide high-level insight, we indicate the right order of magnitude that our over-
parameterization should be in, with respect to one another. Note that the exact coefficients in these
inequalities would depend on the basic parameters B, 1/\g, n, which we have avoided here for sake
of simplicity. We refer the reader to our main proof (mostly Appendix parts A.12, A.13) for more
details.

Kikomg << 1,
Koy Mgy >> 1,
K1vmg >> foy/ms,
myp >> m§7

3/2
Kiymi >>mg' -,
Ko << 1/y/ms
Vmgke << 1/v/mg
\/%2 >> mg/2l€1/€2
mg(ngmg) << K1mq
mi,mz,m3,1/k1,1/ke = poly(n, BV 1/B,1/Xo).

In addition, we set the smoothing parameters as

B2 =0, ((/ﬁ\/ﬁg)fl(\/Rz@)i%),
B1 =06, <m3\/7713/(/€1\/7n1)),
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where ©,, only shows polynomial dependencies on the overparameterization.

A.4 PSD PROPERTY OF K°°

The Schur product theorem states that for PSD matrices A and B, A ® B is also PSD. Now given
an analytic function F' whose tailor series coefficients are all nonnegative, Suppose we apply F' on
some PSD matrix A entrywise, denoted by F'(A), under the condition that the entries of A are in
the radius of convergence of F', then using Schur product theorem, it is straightforward that F'(A) is
also PSD.

Using the above property, one can then check that the tailor series of the defined functions F5 and F3
are nonnegative, hence, the application of the function F5(2F3(x)) on the gram matrix of (z;)?"_ is

a PSD matrix, ( note that ‘(wl, xﬁ’ < 1 is in the convergence radius of F»(2F3(x)).) thus K is
indeed a kernel.

A.5 COMPLEXITY UPPER BOUND

First we mention a simple fact that hadamard product respects matrix orderings. Given PSD matrices
A, B,C such that A < B, the fact that A® C < B® C'is an easy consequence of the Schur Product
Theorem; indeed, B — A is PSD by definition, so (B — A)©C =B ® C — A® C is also PSD.

Next, it is easy to check that the tailor series of arcsin(z) has all nonnegative coefficients. Therefore,
for a PSD matrix X, as we discussed in Appendix A.4, applying arcsin entrywise on X, namely
arcsin X, is also PSD. Setting X equal to the entrywise application of 2F3 to the gram matrix of

)) is also PSD. Noting
1<i,j<n

the definition of K* in Equation (8), we conclude that for the data kernel matrix K we have

datapoints (z;) ,, we realize the matrix arcsin ( 2F}5 (((azl, x]>)

1
K> > 117
- 4 b
where 1 is the all ones n-dimensional vector.

Combining the two mentioned facts, we can lower bound the matrix K = K ® G for any matrix
G as

1 1
K:KO"@GEEMTQG:ZG.

Substituting the rank one matrix f* f *T" for the n-dimensional vector f* in Equation (13):

K2 =K>=0 NN = TR (39)

{(F/1F1y

|

The inequality used in (13) then follows from Equation (39).

A.6 COMPLEXITY MEASURE AND THE (-NORM

This is a brief section regarding some basic properties of ¥ and |.||¢.

First, note that the two versions of the complexity measure in Equations (10) and (11) are equivalent,
as for any finite set of functions {g}, we can define the gram matrix with respect to the feature
vectors of these functions on data, and for an arbitrary nonzero PSD G we can consider a Cholesky
factorization for G as G = XT X, then define the functions {gx} as the minimum-NTK norm
functions which map the input to the features corresponding to X. This observation further implies
we can suppose the factor matrix X is in R™*”, and there is a set of at most n functions {gx }7_,
which corresponds to this G.

Next, we show that for an arbitrary function f, its sup norm over the unit ball is bounded by its
norm:

s 1) < Il “0)
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Note that for a kernel K which satisfies K (z,z) < 1, using Cauchy Schwarz we simply obtain

f@) < flle v E(zx) <|[|fllx,

where recall that ||.|| x is the norm corresponding to the RKHS space of K. Hence, to show (40), it
suffice to show that for all kernels K € K and unit norm z we have K (z,z) < 1. To see this fact,
note that the norm of each x € R? in the NTK-space is H>(x, z) = % Therefore, for each function
g with bounded-NTK norm, again using Cauchy Schwarz:

1
l9(@)] < Sllgll =

As aresult, for a family of functions {g} with ) } llgll% < 1, we have on every unit norm x:

9€{g =
> g <t
g€{g}

On the other hand, it is easy to check that for every unit norm z, we have K*°(x,z) < =, so for

every such {g}, we have by definition

1
2

K{g} (l‘) S 1,
which completes the proof of Equation (40).
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A.7 CORE GENERALIZATION RESULT

In this section, we prove our core generalization result for the trained network, Theorem 3, which
underlies our generalization bounds in Theorems 1 and 2. Recall that in the rest of the proofs, we
refer to the solution (Wpsap, Vesap) returned by PSGD simply by (W', V”).

Theorem 3 Suppose we have a good candidate pair (f*,G) regarding our complexity measure
in (10) that satisfies (H* ™ G) < 1, f*T A=V f* < ( (recall A= G © H*®), and that f* has zero
projection onto the directions of eigenvectors of A whose eigenvalues are smaller than O(1/n?) (the
last condition can be relaxed, see the next remark). Then, for

v =max{R,(f*)/4, B*/n}, 41)

ifwe are given v/2 < V' < v, and we set

v
v = (42)
o = 4V< (43)

then for the solution (W', V') returned by PSGD we have the following generalization bound.:
R(fw v) < ZRn(fW’,V’) + CIHWLBQ) (44)
<R+ =) (45)

for constants ¢, """ and log factor @ = log(n)® + log(1/\o).

Remark 1 Given a pair (f*,G) satisfying (H*~",G) < 1, f*T A1 f* < ¢, one can project out
the directions that are along the eigenvectors of A with eigenvalues smaller than Q(1/n?) to obtain
f*, then use the pair (f*,G) in Theorem 3. This way, the third condition mentioned in Theorem 3
also becomes true. As we show in Lemma 42, by switching f* to f* the quantity f** A= f* does
not increase, and the quantity R, (f*) is multiplied by a constant ¢ > 1 arbitrarily close to one, then
adds up with O(B?/n). This means that the bounds in Theorem 3 for the pair (f*,G) translates
into similar bounds for (f*, G) albeit with a bit worse contants. It is straightforward to see that with
small enough choice of c and careful AM-GM inequality that we apply inthe proof of Theorem 3, one
can end up with the same constants regarding the pair (f*, G) as declared in Theorem 3. For a more
careful discussion on this, we refer the reader to the proof of Lemma 10.

Proof of Theorem 3

Almost all of our proofs in the rest are in the aim of proving Theorem 3. Crucially, to prove
this Theorem, we need to establish two big results:

1. We need to show that the final network has small training loss, and is within the class
G, v, for some suitable <y, v2. This is handled by Theorem 4 in Appendix A.10. We

define the class G, -, roughly as the class of networks with norm bounds ||V — W) || <
71, ||V = VO] < ~, where the rows of V' — V(%) are orthogonal to the subspace ®, plus an
additional structure defined in Appendix A.11. This task, on its own, has three main steps
in our proof:

(a) we construct a “good” underlying network, Appendix A.12

(b) we find a “good” random direction and study the landscape of the objective, Ap-
pendix A.13

(c) we prove the convergence, Appendix A.16

2. The Rademacher Complexity of the class G, -, needs to be suitably bounded. This is
handled by Theorem 5 in Appendix A.11.

With access to these results, here we show how Theorem 3 follows by a simple application of the
generalization bound in (Srebro et al., 2010). Specifically, for fixed constants z1, z3 and every integer
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i > 0, we use Theorem 1 of (Srebro et al., 2010) for the class G, ~,, Vi = 2ix B /z3 with confidence
probability 1 — 27?63, which, with a union bound, implies that with probability at least 1 — &3, for
every i and fyr v/ € G, 4t

blog(1/(2%43))

R(fw+v') < Ru(fwrvr) + K( Rn(fwa,v')(\/log(n)l‘sR(gnm) + n

)
(40)

+10g(n) R(Gz1 )" + blog(l/nﬂ) (47)

where £(fyw v/ (), y) is a.s. bounded by b for function within the class G, -, and K is a universal
constant. In the following, we aim to further bound the Rademacher complexity R and parameter b.

Applying the AM-GM inequality with respect to ratio z4 > 0 for the second term:
blog(l/(Q*iéz)))2

R(fw'v) < (14 z)Rp(fwvrvr) + K2/24(10g(n)1’572(gz1m) + -

., blog(1/(27'6y))

+ 10%(”)3R<g21m) n

Flog(1/(2-78)

< (1 20)Ra(fiwr ) + K2/24 (10g(0) P R(Ger ) + -

blog(1/(2~"0s))

+10g(n)* R(Gz1 )" + -

< (L4 2za)Ru(fwrvr) + (2K /20 + 1) 1og(n)*R(Gz, 1,)* + (2K /24 + 1)blog(1/nﬂ.
(48)

Now let v* be the smallest number of the form 2°B /23 (for some i) which is not smaller than 25+/C.
This definition implies

v* < max{222\/C, B/z3}. (49)
Now Theorem 5 in Appendix A.11 bounds the Rademacher complexity:
227"
R<g21;’Y*) S \/ﬁ . (50)

On the other hand, from Theorem 4 by setting 21, 20 = V40, we get fy/ v/ € G, 4=.

Moreover, from Lemma 34, for fy v/ € G,, 4+, we have for every |z|| < I:

| fwr v (@) < 22077, (5D
so the loss ¢(fy v/ (x),y) can be bounded by (B + 2z17*)? using the 1 smoothness property.
Therefore, for the class G,, - we can set b = (B + 2z17*)%. Combining this with Equation (50)
and plugging into Equation (48):

2, %2 *\2 —i
R(fwrvr) < (1+ 2a)Rn(fivr ve) + (K2 /24 + 1) 1og(n)342% +(2K% /2 + 1) (B +22177)" log(1/(27" d5))

n
Furthermore, by definition of v*, we have 28 < 22925 NG /B:
4Z2 *2
R(fwrvr) < (14 24) Rufwwr ) + (2K2 /24 + 1)423 (log(n)? + 2log(220231/C/B)) — 11—
(52)
2B2log(2 B
Now applying the upper bound on v*:
422(22 +2B/z3)?
Rfwrar) < (14 20 Balfur) + (22 21 + 1422 (0g(n)? + 2log(22320/C/B)) L2V + 2B/50)
(54)
2B2%1og(2 B
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If{>hB 2_in the third term above we substitute B by /C. Finally, similar to the bound we stated in
Equation (14), note that we have the following trivial bound for (:

¢ <y"H* 'y <4nB?/), (56)

i.e. there is no point in considering larger (’s, which implies log(222231/C/B) = O(log(n) +
log(1/Xp)). Plugging this above and picking z4 = 1/3 show the proof of Equation (44). Further-
more, applying Equation (68) in Theorem 4 to the R,,(fw- y/) term in Equation (44) further gives
the second Equation (45).

Remark 2 In the same setting of Theorem 3, if we have v/2 < V' but not generally upper bounded
by v, then PSGD leads to the following generalization bound:

R(fw:v') < Ro(f* )+V + M (C-i—TBQ)’

using a similar argument as we did for Theorem 3.

A.8 STRUCTURE OF THE PROOF, SETTING mg3, AND FURTHER DEFINITIONS

Throughout the proof, (W', V') represents the pair of matrices of the current iteration of PSGD,
(W*,V*) are the “ideal” matrices that we construct in Appendix A.12, (WW?,V?) and refers to the
gaussian smoothing matrices. Importantly, note that our squared loss £(f,y) is zero at f = y. We
have tried to make the lower level proofs into sub-lemmas and create a manageable hierarchy as
much as we could, to make the document more clear and readable.

Similar to the conditions in Theorem 3, through out most of the proofs we assume that we are given
a pair (f*, G) with a slightly more general setting of Theorem 3:

FrA <G, for A=G O K™,
<Ga Hoo> S C1~

Particularly, (7, (2 appear in Appendix A.13. Because we are allowed to rescale GG, we do not really
gain much by assuming this more general setting, though we pick to work with the general setting
as the abstraction makes the proof more straightforward to understand.

We refer to the parameters B, 1/, n as the “basic parameters”, m1, ma, ms, 1/k1, ko as the “over-
parameterization”, and (1, 32 as the “smoothing parameters.” By the phrase “having enough overpa-
rameterization” we mean it suffices to pick the overparameterization my,ms, mg, 1/x1,1/k2 only
polynomially large in the basic parameters.

Throughout the proof, we denote the change in the output of the first layer at W () + W’ + W»
compared to the initialization value by ¢(?) (z;), i.e.

0 (i) = =W o (W + W'+ W)zs) = 6O (@),

my
while recall that ¢'(x;) has a similar definition except without the smoothing matrix W*. Although
our model is a three layer network, throughout the proof, we refer to the parts W* f#ma((W(o) +
1

W')x) and fa o((V(O) + V(. )) as the “first layer” and “second layer,” respectively.

Also, we sometimes refer to the binary sign pattern of vector x multiplied to matrix W by Dy,
(Dw, = Sgn(Wx)), i.e. the jth diagonal entry of Dy, is one if WTac > 0, and is zero otherwise.
To refer to the jth row of W as a vector, we sometimes drop the comma in W;, and write it as W;.

For brevity, we denote the Frobenius norm ||W||r of matrix by ||[W||, and the Euclidean norm of
a vector x by ||z|. For matrices W7, W5 we denote their natural dot product by (W7, W) =
tr(W{'Ws). We refer to the smallest eigenvalue of a matrix by Apin(.). We write R(.) for the
Rademacher complexity of a function class. We refer to the smoothed version of the network by
fiv: v+ (), defined by

Fivr v (@) =Bwe ve fwrswe vigve ().
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In the proof, we mainly work with the loss over the smoothed network f”, defined as
LW, V') = Ra(fiyrvr) + 1 WII* + o[V (57)
Our algorithm, PSGD can be regarded roughly as an SGD over L.

Similar to what we discussed in section 3, let the functions {g; },-*, be some feature representation
whose gram matrix is equal to G and (H*°,G) = >}, gk ||F~- In such setting, it is not hard
to check that we can assume each gj, is the minimum norm NTK function which maps (z;)}_; to
(gx(2:))_;’s. Indeed, if this is not the case for some gy, we can project the RKHS representation of
gr. onto the span of the representations of (z;)?_;, which can only decrease the complexity measure.
Hence we can represent g, € H - as a linear combination of basic functions H>°(z;,.) on data
points:

Vk € [ms)], ZV,“ (zi, ). (58)

Here, the sum of squared-H °° norms of Vy is bounded as

D WVillire = llgkllzr~ = (H*,G) < 1. (59)
k

k

For each i € [n], we refer to the feature representation vector (g (x;));-*, on x; as Z;. Note that we
have the relationship
(Hoovk)k 1 (60)

where H?* is the ith row of H*°. In the analys1s we work with a bound ¢ on the quantity max, ||V;C I
which should be bounded polynomially by other basic parameters; in particular, it is defined in
Lemma 10 and is used to bound a cross term in Lemma 14. However, maxy, ||Vi|| might not be
effectively bounded for an arbitrary feature representation. Fortunately, we can remedy this by a
simple trick; for every natural number s, one can substitute every gj by s copies of g /+/s, without
changing the gram matrix G. Therefore, for any J, one can increase the multiset of functions (gy)
to a bigger set (i), by adding at most O((;/0) functions, making sure of the following for the new
functions:

Vi : VEH®V), = ||gk]| 3« < 6. (61)

(This is because Y, ||Gx||%/ < 1). Furthermore, observe that for each gram matrix G, we have an
n-dimensional feature representation (g )7_, for G according to the Cholesky factorization. Com-
bining these facts, we conclude, to guarantee Equation (61), in the worst case, we need mg3 to be as
large as n + O((1/9).

Finally, observing the following inequality
Vel < Vil /A0 < 13kl /2o- (62)

in order to guarantee maxy, ||Vi| < & we need to take ms as large as n + O((1/(€2\g)), which is
indeed bounded polynomially by the basic parameters because of the same condition for 1/¢. This
computation also brings into sight an important point:

“Although each gram matrix G is representable by n features, in order for the algorithm to be able
to find a suitable network, m3 might need to be larger than n.”

Moreover, for every 1 < k,¢ < n, we define the matrices Z; ke R™Md a5
Zi = 1/«ﬁ(W,”]1{W 0Ty, }xl) n (63)
=1

where in the above notation, j is enumerating the columns of the matrix. We also define the following
matrices which we use in our construction later:

Wi W =3 (64)
and W7 as
ms
W= wht,
h—=1
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Finally, to avoid unnecessary complication, we often argue high probability bounds without an
explicit representation of their dependency on the chance of failure (which is a negligible logarithmic
factor). We also ignore all constants and log factors, and mainly work with the notation < which
ignores constants; we write a S b & ¢ as a short form for b — O(c¢) < a < b+ O(c). As there
are several hierarchies of new parameters that are defined based on lower-level ones, we rename
the new parameters and continue viewing them as black-box. This makes the proofs more readable,
since we also do not care about the exact dependency of the underlying parameters most of the time,
rather we are interested in their orders of magnitude, for example that a given parameter goes to zero
polynomially fast with respect to the overparameterization, etc. Due to the large number of symbols
that we have to work with, we might use a symbol more than once, of course when it is clear from
the context which one we are refering to.

A.9 PROOF OF THEOREM 2
In this section, we prove Theorem 2, stated below.

Theorem 2 For any function f : R* — R, in the same setting as Theorem 1, the population risk of
the trained network (W', V') can be bounded as

HfH§+<Bz)

R(fw:v/) < 2R(f) + O(aw .

(65)

Proof of Theorem 2

Theorem 2 is a simple consequence of Theorem 1; for the given function f, we apply Theo-
rem 2 with the smaller coefficient v = % for R, (f*), regarding the complexity upper bound, by

setting f* = (f(x;))i:

*T g-—1 px 2
K B
R, (f") + (o) min / / y 29
KeKk n n

*T 1-—1 px 2
o)+ (o) i TS B

R(fw:vr) <

Ll ol

On the other hand, because f*7 K ! f* is the minimum-RKHS norm of a function with respect to
kernel K which maps x;’s to f*, and f is one such function, we have f*TK~1f* < ||f|x. This
inequality implies
. T 7-—1 px
K <
min f I <flles
S0 we obtain
4 £+ B°
R(fwrvr) < 5 Ra(f) + (0m) ==

Therefore, it remains to bound R, (f) by R(f).

(66)

As we showed in Appendix A.6, for every input  we have f(z) < ||f||¢, so for every data (z,y),
by the fact that |y| < B a.s. and a smoothness of the loss, we have ((f(z),y) < a(||f|c + B)>.
Moreover, note that the random variable £( f(x),y) has mean R(f). It is easy to check that in this
setting, the variance of ¢(f(x),y) is at most R(f)a(||f|lc + B)?*. Therefore, an application of the
Bernstein inequality, we have with high probability over the dataset

n n

Plugging this back to Equation (66) completes the proof. As a result, the learned network can
compete with any function that has reasonably small || f||.:

2_|_BQ

Rgﬁmw)grgn{zRg)+cxaw -
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A.10 OPTIMIZATION
In this section, we glue together

* the existence of a good random direction that we prove in Appendix A.13

* the convergence analysis of PSGD that we do based on the work Ge et al. (2015b) in Ap-
pendix A.16.

Theorem 4 In the same setting of Theorem 3, assume the network (W', V') returned by PSGD, has
sufficient polynomially large “overparameterization”. Then, for the solution (W' V") returned by
PSGD we have

LW V') < Ru(f") +v, (67)

which further implies
Ru(fwrvr) < Ru(f") + 2v, (68)
IW* < 40, [[V"||* < 40¢. (69)

Moreover, for every i € [n],j € [m1],j ¢ P for P defined in 1, we have that sign((Wj(O) + Wi ;)

. T
and sign(W;™ ;) are the same.
Proof of Theorem 4

Let T € Rm2(ms=n)xm2ms be 5 matrix whose rows are an orthonormal basis for the space
of matrices whose rows are orthogonal to span({¢(?) (x;)}7_,), i.e. ®*, as defined in (22). Then,
we consider a linear change of coordinates for the subspace ®, regarding the second layer weights,
as v’ = Tvec(V') where vec(.) splits out the vectorized version of a matrix. For consistent notation,
we also denote w’ = W', so we now have a new coordinate system (w’,v') € Rm2(ms=n)xmid for
pairs of weights (W', V') such that V' € ®. We also define the loss function

LYw = (w',v")) = LW, V"),
with respect to the change of coordinate.

Now it is easy to see that running PSGD on L in the normal coordinates is equivalent to running
stochastic gradient descent on L with respect to (w’,v’). Moreover, because multiplying to matrix
T is an orthonormal change of coordinates for ®* and because V' is already in ¢ at each step of
PSGD, then |[v'|| = ||V’]], so the conditions ||W'|| < C4,||[V’|| < Cs are equivalent to ||w'|| <
C1, |[v'|| € Cs. Furthermore, by our construction, the random matrix V55 is in the subspace ®, so
the norm bounds |[WW*|| < (3, ||V*|| < (2 are equivalent to ||w*|| < (1, ||[v*|| < (2 for w* = W
and v* = YTvec(V*).

Now we apply the result of Theorem 6 on L' with parameter v set as v/ (recall the definition of v/
from Theorem 3), (3 := ¢ and (; := 1, and A = R, (f*), as defined in Theorem 3. More specifi-
cally, based on our arguments above regarding the natural isometry in the change of coordinate, any
pair (w’,v') in the domain ||w’|| < Cy, ||v'|| < Co, LM (w',v") > R, (f*) + v/ translates into a
pair (W', V') in the domain |W’|| < Cy,||V'|| < Co, LW', V') > R,(f*) + v/, for which by
Theorem 6 there exists (W3, V) such that

ExL(W' —n/2W' + /qWs, V' —n/2V' + \/mVs) < LW, V') — /' /4. (70)
Translating back to the change of coordinates:

Ex LM (w' —n/2w + /nws,v' —n/20" + /uy) < Lw',v') —nv' /4. (71)

Now we apply Lemma 44 to translate this into an argument about the landscape of L. As a result,
applying the bounds in Equations (106) and (126), we obtain that for (w’,v") such that

LM (w',v") > R (f*) + ',

25



Published as a conference paper at ICLR 2022

we should either have
v/4
A/ [w|? + [lv']?
B v/4
A4/ IWIR VTP
14

16,/C2 + C3’

4
Amin VQLH / / < _ V/
(V2w ) <~ e P T T
14
= Yy (IWEE + [VaIP)
1%
_16(C1+C2)
- 1%

S 16(1+¢)

VLY (', ") >

or

Next, we want to apply Theorem 7 by setting

o 14
C16(1+¢)’

Ny = R, (f*) + v/,

and Lipschitz parameters p1,p2,p3s = poly(B,Ci,Ca,my,ma,ms) set as described in Ap-
pendix B.1, Theorem 9. Also, note that as prescribed by Theorem 7, we set

v

N+ 4]
C = ,
!
N+ 4]
Cy = , 72
2 ”~ (72)

where | = O(1) depends on our desired chance of success for the algorithm, specified in Theorem 7.
Finally, note that Theorem 7 needs to work with a bounded noise on the gradient whose covariance
matrix is bounded between two multipliers of identity. The point of injecting extra noise to SGD
in PSGD is in fact because of this covariance condition that we need in Theorem 7. On the other
hand, note that in general, because of the gaussian smoothing that we use, the noise vector is not
supported on a bounded domain, which makes it a bit harder to apply Hoeffding type concentration.
To remedy this, we introduce a coupling between our unbounded noise vector for L(W', V') and
another noise random variable whose support is bounded, which with high probability is equal to
the real noise, along all iterations. In Corollary, we further translate this coupling for the objective
L™ after change of cooridnates, and write down the exact dependencies of the parameters @, o and
09, which are all polynomial in the basic parameters and the overparameterization.

Hence, the conditions of Theorem 7 are satisfied, so we conclude that after at most

pOZy(P17P27P37QaN7ChC2a1/%10g(01/02)) = pozy<B7m17m27m37013027<13<2) -
poly(n, BV 1/B,1/70) number of iterations, PSGD reach a point w; in some iteration ¢ with
Ln(wt) S N[.

Translating back this w; = (w},v}) by multiplying the v} part to Y7, we get a pair (W/, V) with
objective value bounded as

LW/, V) <R, (f*)+ V. (73)

But note that we obviously have the condition ||W'|| < C4, ||[V’|| < C; through the whole iterations,
for the choice of C, Cy in Equation (72). Therefore, using Lemma 34, for every i € [n]:

| fiv: v (@) = O(Ch, Ca), (74)
| fw v (z:)] = O(Ch, Cy) (75)
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From Equations (75), as also stated in Theorem 9, we know that for all i € [n], £(.,y;) is
O(C1C3) + B?-Lipschitz at points fy v/ (z;) and f{,V,’V,(xi), so we can bound the difference

(S v (@), yi) — L(fwr v (i), 9i)| by (O(C1C2) + B?)| fiys v (), i) — fwr v (2i)], which
in turn can become arbitrarily small having enough overparameterization using Lemma 35, in partic-
ular, we force it to be smaller than O(v//(B? + C1C3)) (recall v/ > v/2 > B?/(2n)). As aresult,
we get [€(fiy: v (i), yi) — (fw v/ (zi),y:)| = O(v) for every i € [n], which in turn implies
|IL(W', V') — Ly (W', V')| < v by picking small constants, where recall that the objective L is the
same as L but without the smoothing. Now applying this bound to Equation (73), we get

LW, V) < R,(f*)+ 2.

Therefore, as PSGD check the values of L4 in the loop, it terminates at such pair (W;, V). From this
point onward, we refer to the returned (W}, V//) as just (W', V).

Opening the definition of Ly (W', V"), we clearly get
Ro(fwrv) < Li(W' V') < R (f*) + 20" < R, (f*) 4 2v. (76)

Furthermore, noting the setting of 11, 15 in Theorem 3 and the fact that v/ > v/2 > R, (f*)/8, we
get

AC(R (f7) +2v)

l//

< 40, (77)

V') < < 40¢, (78)

which completes the proof. The fact that for every i € [n],j € [mi],j ¢ P we have that

T
sign((Wj(O) + W/)Tz;) and sign(Wj(O) x;) are the same follows from Lemma 1.
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A.11 RADEMACHER COMPLEXITY

In this section we show the proof for our Rademacher Complexity bound, which is used in Theo-
rem 3.

Theorem 5 Let G, -, be the class of neural nets with weights (W, V') in our three layer setting,
such that ||W — WO < vy, |V — VO < vy, where for every j € [ma],i € [n]: Vil
) (), and for every i € [n],j € [mi],j ¢ P for P C [my] defined in Lemma 1, it satisfies
slgn((W( )+ Wihx;) = sign(W ;). Then, for large enough overparameterization, we have the
followmg bound on the Rademacher complexity:

272

NGh

R(g’n/}'z) S

Proof of Theorem 5

Here, we do not have the smoothing matrices W* V? anymore. In this section, unlike the
optimization section that we used {z}?_; to denote the output of the first layer by incorporating
also the smoothing matrices, here we deﬁne it without them:

1
T, = Woa (WO + Whz,).
Vimy

Now define the matrices

Z;= 1/\/7772(%1{‘/]»()0)%; Z O}x;) j 21’

7t =1y (0 (1Y, 2 0} - 1Vl 2 0pjay)

j=1
To bound the Z + part, note that substituting C by ~; in lemma 6 and assuming conditions

my = Q(mé),

3/2
201/ n3m§)1/4 <
\/El ml)\o - ’

(we can use this result because we do not have the smoothing matrix W? here), we get with high
probability over the initialization for every ¢ € [n]:

16" (o)l = l|2} — 6@ (@) | S 7. (79)
Therefore, we can write

|trace(V Z,1)| = Za]]l{mgn (Vx)) # sign(VjEO)x;)}VLx;\
Zm@vm#@<mmw1
1 ( 0) 0) 0
<ﬁiﬁw>ku =~V (1v5, = Vyai] + v,V
ZMWWﬂmxmmmmfwwu

1 2 : (0) (0) 2/3 1/3 . ’ 0)y,.r
< — V. |/ ‘/ <7 m ' V. — V. 4
— /77712 ]1{| 7, | |( )l’ | (m2) 11’1(’)/1, ||x1||)}(2|( Js 7, )xz|)

J

waM],W%P”%)WmmMM@%—WMD
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Now using the fact that V; — Vj(o) is orthogonal to ¢(®) (x;)’s:

2/3/ 1y
27, (,,T K
pis < 22 Ll g0, ) <937 (o) e}
J

+m21{nvj,—vj€0>unx;—¢ (o)l 225" O IV, = Vil = 0O ()l
J

Next, using the upper bound on ||z — ¢(©) (x;)|]:

25/ (£2) 3y
LHSSTZ(H{\V(O) 7l <5 Pl
J

Zn{nvj, Villlz

K
2 VNI, v

2/3
72 (nzg)l/dvl Z ]1{|V(0)(E/| < 2/3( 2 )1/3” ||}

71 0) 9 4/3 Ko )2 0) 2
+ Vs, = V; > /3 V3, -V
mﬁj: {1, = v }\/§:|| )l
2/3( ka \1/3
'72( ) ™ 0 2/3 : Vi ma.i/53 1
(V=) < COMat}) + T x () .

= — i
A/ M2 5 mo mo Vs

ﬁ

Then, applying the first argument of Lemma 29, we have with high probability over the randomness
of V(0):

2/3 1/3 2
VGRS ma ke 15 23 Y2 ma 1
LHS < =2 (2(=2)M3200%) ¢ 20 o ()3
Vma Ko (mz) %) V12 (@ 73/3
4/3 4/3
< Yo M n Yo N
T (Raymo)/3 T (Kay/my)t/3
4/3
< N

~ (Hzfz)l/f"
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Therefore, we can write:

1
R(Grr e, =

n
E sup & fvw (T
St

:7E sup Zela o(1/y/maVWeo(1/\/miWz;))

n

n

2/\

n

IN

n

1
= —E. sup sup trace((V — v

n

lIEIE sup sup trace(V(Z &Z))) +

VWES

1
~E. sup eia’o(1/ymaV!
n VWGSZ 1/ )

—E sup sup Z extrace(V (Z, + Z7))

Wesves;
74/371
—E sup e;trace(V Z; 2 -
ersz v ) (52 'm. )1/3

4/3
- '72/ Y1

i=1 ' (’12\/>2)1/3
zel

wesves

WesveS

1
+ —E, sup trace(V

n

’Y1
€Z)))
wes Z Kizxﬁ )1/3

(80)

For the first term, for every j € [my), define H; to be the set of i’s in [n] where the jth column of

Z! is non-zero, i.e.

Hj={ien): v"z, >0}

Here, we use the crucial assumption that (V — V(9));

(/)(0)( ;) = 0, so we can drop the ¢ (x;)

term when « is multiplied to V' — V' (0), Using this trick and applying Cauchy Schwarz, we bound

the first term as:

n

l]E6 sup trace((V — V(O))(Z €Z))

n  wyves

1
< ZE |V = VO sup
n wes

Further using Jensen’s inequality:

i=1

Z 1Y cid® ()2

jl i€H;

1
ZE. sup trace((V — V©O)( Zﬁl

n w,ves

n

=1

Wwovey [ 18
<4+ |E.— su €0 (z;)|)2.
< e 2l 3 o]

i€H;

81)

Using Equation (110) of Lemma 6 (note that we do not have the smoothing matrix W* here, so we
are allowed to use this result), we obtain

KW —w©, zF)

where Zik’s are defined in Equation (317).

Plugging this back in (81):
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Ee sup | > ad (@)l

i€H;
03/2 n3m3 2
<E. su (W =W ZEy |+ 3)1/4
v (%j M+ A=)
3,33
SEosup || 3 (W —w®, 2y 2+ Ly
wes ' o K1 M1Ao
= E. sup Z(trace W—W(O))(Z e'Zk)))Q—&-C—f(M)l/Q. (82)
Wes icH, o K1 MiAg

Now for every fixed dataset, with high probability over the randomness of W*, for every ki # ks:

(S azb > azin| < Y |k 2k

’L-GHj 'L-GHj il,iQGHj

1 —
S ‘ZW,ghjw,:z,j@h,xiz>n{wj,0>zh > 0} 1{W Pz, > 0}

my . < —
i1,i2€H;  j=1

But note that because (x;,,z;,) < 1, the variables W,fth]jz,j(xil,xi2>]l{Wj(’0)xi1 >

0}]1{V[/j(70):ri,2 > 0} are subgaussian with parameter one with respect to the randomness of WW*.
Hence, with high probability over the randomness of ¥, we get

DA WSS

i€H; i€H; Ly iseH; VT

(83)

Therefore, with high probability over the randomness of W () and W’ and the dataset, we get
Equation (83). In order to get rid of the high probability argument on the dataset, we use the stronger
Equation (318) in Lemma 46 which uniformly bounds (Z, (x), Zx, (z")) by log(m1)d/m; for any
x, 2, which in turn gives

‘<Z einfla Z GiZfz> < Z ‘<szll’sz22> <

~ b
vm
i€H, i€H, i1,i0€H; 1

n%dlog(m;)

with high probability, independent of the choice of dataset. This bounds is slightly worse comapred
to (83), but still efficient for our purpose.

Furthermore, a similar bound to Equation (83) can be obtained in a more adversarial situation when
we also take maximum against the choice of the dataset.

Note that the entries of Zie H, eiZik for 1 < k < mg can differ only in a sign. Therefore, their
norms are all equal. Now suppose that C; is the random variable of the norm of these variables:

=) «zfl.

i€H,

Then, by substituting rj, = % Yicm, €Zf in Lemma 40, we get

< 2 n?dlog(m
Y (smace((W = WO S az)” < €+ mio" LBy - WO @4
k=1 i€H; \/ﬁl J
o, n*m3dlog(mi) 0) 12
- (¢ TRy o ss)
1
Now recall from Equation (79), we have
16" (z:)]| < 7. (86)

31



Published as a conference paper at ICLR 2022

Hence, we can apply Corollary 5.1 with ¢(?)(z;) and C; substituted by ¢'(x;) and ~; respectively,
to argue with high probability over the initialization, there exists a set P; such that for every i € [n]

- T
and j ¢ P;, sign of V]Tx; is the same as Vj(o) ¢(O)(=’Ci>, and moreover,

~ C? |13
PlS ((m:;f%))

mao.

Now let
Hy={ien]: V;"¢" () 2 0}.

Note that for j ¢ P = |J, P;, we have H; = H;. Now note that the norm of each ZieHj € ZF is at
most one. for eachindex 1 < ¢ < m;d, as the random variables Zieﬁj €:(ZF), are Zieﬁj (ZF)? <

Zie[n] (Zf)f subgaussian, we have with probability at least 1 — % over the randomness of ¢;’s, for
every 1 </ <mpdandevery 1 < j < mag:

’ Z (2 ’ < Z (ZF)2 log(midman),

i€H; i€[n]

which implies for every j € [mo]:

1Y aZFIP <Y D (ZF)7 log(mad) < nlog(midman).

icH; £ i€[n]
Name this event 3, so

P(B) <

Sl

Note that although H; might depend on the randomness of ¢;’s, H ; does not, and if j ¢ P, we
obtain
Ci =11 Y eizF|| < /nlog(mydman).
’ieﬁj

Moreover, note that we also have the following worse case bound:

Ci=1 azfll< ) 2] <n

i€H; i€H,;

Applying the last two inequalities into Equations (297) and (85):

E. —Z sup I Z ¢’ ()]

i€ H;
Cc3 n? m3 1
< 24 E. su trace((W — W© & ZF))
TR (ml)\o ; Wep ;( zgﬁ[: ¢ )
C3 ndm3 n?m3dlog(m;)
< LMz E]lB L SC O8I gy — (@)
= K (ml)\O) { }JEZP \/ﬁl )” ||F
n2m dlog(m,
+ BB} Y (0 + TRy o
Ji¢P !
= n2m2dlog(m1)
+ BB} (CE W WO
j=1 1
< g(n3m§)1/2 + ||W W(O)||2 [|P|< + n m3dlog(m1)> —|—2(TL—|— n deIOg(ml)>:|
T K1 ml)\o mao \/ml \/ﬁl
c3 nPmi C? |13 C? |1/3n*midlog(my) _n*midlog(m;)
< Y /2 1 2[ 8 1 1 3 9 3 onl
T K1 <m1)\0) A [n ((mgn%)) " ((m3’<¢%)) vy * vmy i n}
(87)
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Next, we analyze the term 1E.supy g trace(V( (37 | €2/)). Noting that [|¢ (z;)|| <
k1v/m with high probability and using Equation (86):

1> azille <D 1Zille <Y llzil < Yo (e' @)l + 116 @)ll) S n(vmgky + 7). (88)
i=1 i=1 i=1 i

Hence

n

1
~E, sup trace(V(® (Z V)

—E sup Zeztrace v zh

n wes i—1 no wes;;
L™, 10 g (0
= E sup el( a; V2l {V; ’>0)
n WESZ \/EQ z_: 7 { }
= E sup € VOz) < sup ala(VOgl).
n WGSZ 2 wes ( 0
But using Lemma 30:
LHS S kav/mg|i].
Applying a similar bound as we did in Equation (88) on |||
23l < 16 @)l + 16 ()| S r1v/ms + .
Substituting above, we get
1
—E. sup trace(V Z €:72))) < kovms(K1vV/ms +71). (89)

n  wes

Finally, Substituting Equations (87) into (81), then combining it with (89) into (80), we obtain a
bound on Rademacher complexity which holds w.h.p over both the randomness of the initialization
and the dataset:

3 3,13
Gi mPms .,

R(Goy)la 4] (7 0
4 e n3 0122 )1/3 o 0122 >1/3n3m§dlog(m1) +2n2m§dlog(m1) +on
n (m3k1) (mski) vmy vy
oD
74/371
2
+ Kavmy(kivms + 1) + Tray/im, )15

Having enough overparameterization, we have for every dataset (x, y) (i.e. worst-case Rademacher
complexity):

R(gwﬁz”mﬂ/ > 271’72/\F (92)

Note that for the bound (92) to hold, the overparameterization should be picked poly large in v, 72,
as well as in other basic parameters. However, noting Equations (49) and (56) in the proof of
Theorem 3, we set y1 = 1,73 > Q(B,n,1/70) in Theorem 3, so v17y2 is at most poly in the basic
parameters. Therefore, again the overparameterization can be picked polynomially large in the basic
only parameters (i.e. independent of v, v, or ().
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A.12 CONSTRUCTING W* V*

This section consists of two subsections; First, we prove a structural result for the first layer weights
(W', V") that the algorithm visits, then construct a weight matrix W* for the first layer with some
good properties. Second, we do the same thing for the second layer (however, the structure of the
first and second layers are completely different). Through out this section, we assume we have the
norm bounds |W'|| < Cq, ||V'|| < Ca.

Notably, we rely on a number of basic Lemmas more related to the representation power of the

network, which we defer their proof into a later Appendix B.2 and refer to them here as needed.

A.12.1 FIRST LAYER, CONSTRUCTION OF W*

Lemma 1 Suppose my > 16n?m3 /3. Let P, = {j € [m4]| |W( )xl| < co/y/my} and P = UP;.
During SGD iterations, suppose we have |W'||p < Cy. Then, for a value c, satisfying
Cry/mmsz Vo < ¢a < kidoy/mi/(2n?),
with high probability Vi
|P| S cav/my /K1,

and for j ¢ P, during the whole algorithm we have

Wyl < Y s cofaim) < eaf 2y,

ca/Vmy < W ).

So the signs of neurons outside P never changes. In particular, we can set co as small as co =
Cy/nms/ \F)\o. In the rest of the proof (i.e. other sections), we set co to this value.

Proof of Lemma 1

Define the matrix

Zi = \F (Wi o 1{Vi : O)sz > ca/Vmy})ie
my

Let P; be the set of indices j such that ]l{Wj(O)Tm > cp/+/my} is zero. First of all, note that by
Bernstein inequality:

|Pz| < 62\/m1/m + O(\/ ng/ml//ﬁl + 1) ,S Cgml/ﬁl.

Now suppose that until the current iteration of the algorithm the assumption has been true, i.e. the
signs of the neurons outside of P have never changed. As a result, due to the specific update of the
SGD for both of the terms Ez¢(fy+ (), y) and ||W’||%, if we define W’|p to be the restriction
of W' to indices that are not in P (i.e. the columns in P are equal to zero), then we can write

m3 n

-3 iz (93)

k=11i=1

An issue here is that we also have some injected noise by PSGD into W’ which violates Equation (93).
To handle the injected noise as well, we define the subspace ®' of R *¢ matrices to be the set of
vectors with arbitrary rows for j € [m;] with j € P, while restricted to the other rows j ¢ P in

should be in the span of (Z%); x. Then, we decompose W' into subspaces @ and &' respectively
as W = W'Y + WP where W’(l) € & W' e L. Here, we want to prove ||W’(1)|| <
¢2/(4+/my). We handle the ||W’ || part in Appendix 45. So instead of W’|p in Equation (93) we
consider W’") |p:

W), ZZak,Zk. (94)

k=111=1
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We handle the other part W’ @ in Appendix 45. Now exactly similar to the drivation in Lemma 38,
we can state with high probability

1
o> w2 = (w2

ms3 n
> W P12 > 31N akiZi)? - O(mms/Vimy) S x|, (95)
k=1 =1

k

Note that we are exploiting the fact that the norm ||TV’|| remains bounded by C;. Now using a
Hoeffding bound for matrix H o’ defined below, we write:

H“;lh = Ey.nr(o,re) 1{Vi : lwT x| > CQ/ﬂl}mzxiQ(l{wail >0} {w"z;, > 0})

= ]Ew:./\[(oJRd)(]].{wail > 0}1{w” z;, > 0}y x4,

+OEL{Fi: |w'zi| < cof/v/my}(U{w" z;, > 0} 1{w" s, > 0}))z] 23,

= H;Y,;, £ O(nea/(Vmy k)|, ||| 1)

= H°, +O(nca/(vVmyk1)). (96)

11,12
Now opening Equation (95) and using the property co < k1 Aov/m,/(2n?), we get
LHS =Y Y aniani(Zit, 22) = Olnms/v/my Y |lax])

ki1, k

=Y > i (H, 4, £ 0(1/vmy)) — O(nmg/vmy ) [lal|)
ki1, k

> ek iy, £ ak|F0(nes/Vimik) — O(nms //my Y [|a|?)
k d1,i2 k

> ap H™ay = O(nea/Vimyr) Y llawlf — O(nms/v/my Y Jle|?)
k k

k

> af H®ap — O(can®/v/myka) > llak3 — O(nms/vimy > flox]|)
k k

k

= (Ao — O(nms/V/im,) — Ofean® /vy r1) Y o
k
> 20/2Y llal
k

For the last line to hold, we need enough overparameterization. This implies

> llel® £ CF /.
k

Now again, exactly similar to the derivation in Lemma 38, for j ¢ P we have
W9 < yams/mt 3 a2 S Vimsacy/v/mido,
k

which completes most of the proof. For the rest, we are left to show that for the other part W’ (2),

we have ||W’§2) | < ec2/(44/m;), which we do in Appendix 45.

Lemma 2 Under condition mgn/\/m, < Xo/4, there exist matrices {W}}["2, € R™*? 51 for
everyk # k' € [mg] and i € [n]:

<VV§721y>:= 0,

N4/ M.
o< SV T8 -
Wi =W S Vel
< ny/my

Wi, Z8) — (Wi, zh)| <
Wi Z4) = W 201 S 502

Nz
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Furthermore, for ki # ko:

3

=
E
33

(Wi Wi,)| < (1+ Wil [[Vis || o ©7

Proof of Lemma 2

Let
W= ka,izlg.

we want to compute the norm of the projection P(W,:' ) of W,j onto the subspace spanned by all
Zi, for k' # kand i € [n]:

-1 )
IPOVIR = (W ZiNE et (2005 Z22)) (Wi Zi) il

(98)

(k1,i1), (k2 i2) €[ms]—{k} x[n]

where the first and third terms are vectors and the middle term is a matrix. Now note that for each
k', ki, ko # k, by Hoeffding inequality:

(2. z) = H™ + (£1/ )iy e (99)

i1,i2€[n]

<W]:_,Zk/ = ka'LZk7Zk’

S

S\F Vel

vn
< Vi ree. 100
*\/W” Kl e (100)

Therefore,

+ i \\T m3
(WS Zi ) )k iiemy | < 1y f m”VkHHW' (101)

Now Equation (99) implies for small enough m;
in ({20, 21)) )= h/2 (102)
i1,i2€[n]
as long as A\g > 2n/m;. Moreover, define A to be the block version of

A = ((Z” Z}j?}) o

(k1,i1), (kayiz) €[ma]—{k} x[n]’

i.e. for k; = ko they are the same but for k; # ko A is zero. Then
Amin(A) = Xo/2,
because the eigenvalues of each block is at least Ao /2 using Equation (102). But note that

|47 = All2 < |4 = Al < man/ /.

So as long as mgn/\/my; < Ao/4, we have A,in(A) > Ag/4. Combining this fact with Equa-
tion (101) and plugging it into Equation (98), we obtain

nm3

PP < — HVk”H‘X’
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Now define W) = W," — P(W,;"). Then

« p < ny/Mg v .
||”k - ”k || - || (”k )|| ~ oL || kHH
W — Wi, Z0)| < ||P(W VA <n‘ 3 oo .
|< k k> k)l—” ( k)”” kHNAO ﬁmIHVkHH

Furthermore, note that W,;‘z is orthogonal to W,I for k1 # ko, so
(Wi, Wil = (W — POVE), W5 )|
= [(P(W5), Wi — P(W,}))|
< [[PWDIIWE = POV
< [[PWOIAWE T+ P (103)

But note that
W =1 ViaZill <> WealllZEl <7 Vil < ValVile. < N Vil oo

Therefore, we can bound Equation (103) as:

* * n mg mg
< — 1 oo oo
W, W] 5 R84 20 Vi i [V

Lemma 3 There exists a matrix W,j 2 such that for every j € P, W,j 2 j =0, and
|trace(W,F2ZF) — 2, 1| < C1v/man®/(Nokiv/ma)|| Vel g
Proof of Lemma 3

Define W,j 2 to be equal to le for j ¢ P and equal to zero vector otherwise. Then, by
Lemma 38: (note that | P;| < Cy\/mmz/mi1/(V Aok1))
|trace(W, ZF) — trace(W,2ZF)| < 1/v/m, Z W4
jEP

1P|
my
< Vnmgz/(miv/ o) | P|||Vi mee
< Cyman?/((Mokiv/my) ||[Vill e -

<

Wl

Combining this with Lemma 37, the desired result follows.

Lemma 4 Under condition man//m, < Ao/4, there exist matrix W ’s exactly satisfying the same

conditions in Lemma 2 but with respect to le % instead of W,*, and moreover, for j € P we have
Wy =0.

Proof of Lemma 4

We can repeat the exact same procedure of Lemma 2 for W,:' 2. Using the bound in Equa-
tion (96), we have
(Zinzi) = H 4 O iaep

=H> + (inCQ/\/mllil)il,ige[n] + O(il/vml)il,ize[n]
= H™ + (£nc2/v/mik1)i, iseln)s

i1,i2€[n]
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so as long as

’I’L262/\/TT’LlI<61 = n201«/nm3/(/£1 \ ml)\()) S )\0/2,

with similar argument as in Lemma 2, we get

Nuin ({231, Z32)) ) > Ao/2.

i1,i2€[n]

Moreover,

Thus, using the same argument as before the proof is complete.

Lemma 5 Suppose

mq Z n7m3//\0.
During SGD, suppose we are currently at (V', W') with W' < Cy. For any matrix Wy, we denote
the signs of the first layer imposed by W1 by Dy, »,. Then with high probability, there exists
W* = Zke[’m.g] Wy such that W7}'’s is orthogonal to all other Z,i, s for k' # k, and for every

i € [n], we have:

*
WSDW(O)-‘,-W',QC,'W T; — I'ZHOO ~

nm nC'
oL T Vil = RVl

1
Vi, Ny

Moreover, we have

W51 s /3 [ Dl + 5 s D LIPS

Farticularly, for any diagonal sign matrix ¥ € R™3*™3 we have

NGV
N Vs

which, by having enough overparameterization, implies

[Wellr < 22\%”% V2C1, (106)

W13 < ( (1+Y23) + (14 0(n/(Aov/my) "m3 vaanw. (105)

where

ms
Wy =Y S, Wy (107)
k=1
Moreover, we have

1

WWSDW(O)-FW',MWE‘mi =X
1

1 )
WWéDW(O) +W' 2, W*.'L'l (108)
1
Proof of Lemma 5

From Lemma 3, we have

|i'i,k — trace(W,ng,i)| < Clm3n2/(/\()l£1\/m1) HVkHHOC
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Combining this with the result of Lemma 4, we get:

ny/mg Cymsn?
/\0,/m1 )\inl\/

LT
= 1+ ]||vk||Hm. (109)

On the other hand, based on the property that W,jj = 0 for j € P and its orthogonal property from
Lemma 4, for j € P we get

210 — trace(W; Z})| S | - [[Vi =

1 1
7W/§Dw(0) w'’ %W*JUZ = 7W§Dw(o) le*xl
/Tn1 +W7, /,,n1 ,
= trace(W* Z},) = trace(W; Z}.)
1 s *
= Wlwk Dw(0)7xi Wk i,

which combined with Equation (109) completes the proof. From the above, Equation (108) is also
clear. Finally, note that by Lemma 38 we have

W51 < Viamg/ (v/mado) /Z Vel Froe -

which Combined with Lemma 4 implies

191 /), [ 3 Vel + ”R’ e () -@\/>

while the other claims follows from Lemma 39 and Lemma 4, combined with Equation (97):

W31 < Z Wi l? + Z (Wi, Wi,)|
k1#k2

< STIWEI + S e+ (5 Dl
2 4 ”\Fg \/>3
L e OIS

< STIWEIR + S T+ Vi
< n\/> fj(

nzm
<SF v F<+Z||W+2||2 gy 2 Vil
< IRV ‘F3C+ZIIW*H2 ”m32||vkumo

=7 vy
i i e
S Vel G (14 00/ Qo) + 3G

Next, we move on to construct V* for the second layer.

A.12.2 SECOND LAYER, CONSTRUCTION OF V*

In this section, we present a couple of lemmas that step by step lead to the construction of V*.
we remind the reader that ¢(%) (z;) is the output of the first layer at initialization weights, ¢'(z;)
and $(?) (x;) are the changes in the output of the first layer when W' and W’ + W* are added,
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respectively, and finally ¢*(z;) is the optimal features that are generated by the matrix W* but with
the sign pattern of W) + W, i.e.

d)*(ﬂjz) = WSDw((J)+W/’wiW*Z'i.

1
Vi,
We also define « as

2 = O () + ¢ (@) =

Woo (WO + W'+ Wo)z,).
f my
To begin, we state a lemma to bound the magnitude of ||¢'(x;)||, given that the norm of W' is
bounded by C'; and the sign pattern Sgn((W(O) + W )xl> satisfies condition stated for the set of

indices P in Lemma 1. Later on, we exploit this Lemma in Lemma 33 to state bounds for ||¢(®) (z;)]|.

Lemma 6 Let the matrix W' with norm bound ||W'|| < C4, such that the signs of(W(O) + Wi,

and W° )ch can be different only for j € P, for P defined in Lemma 1. (Note that for W' at every
step of7 the algorithm, this is automatically satisfied by Lemma 1) Then

20 3/2

\/E
1
Particularly for large enough my compared to n, ms, Ao, k1, C1, we have

19" ()]l < Ch-

2O (WS 14y (14 O(md ) Ca

miAg

19 ()]l <

Proof of Lemma 6

We write

|9 () — (W', Z)| < 2/y/mi Yy [Wiail < 2/v/ma Y |W]l|

JjeEP JEP
’ 03/2 n37n3 1/4
<2/|P] W T8 y1/4, 110
VIPI W < 2 (e (10)

where the last line follows from the bound on |P| from Lemma 1.

On the other hand, because by Hoeffding we know that (Z},, Z},) < 1/1/m, by Lemma 40, we get
ms

Y W' Zi)? < (14 O(m3/Vmy)) W[5 < (1+ O(m3/Vmy))C

k=1

Combining this with Equation (110), we get
¢/l < ¢Z|¢ vs) — W20 + ¢z .z

205’/2 n3mj

\/El miAo

Next, we prove a structural lemma regarding the sign pattern in the second layer when we feed in 2
to it, with the important message that the dominance of sign patterns are specified by ¢(®) (24).

A

Y4+ (1+ O(m3/v/my))Ch. (111)

Lemma 7 Suppose we have mgn% > Cf, ng\/mz > (5, and my satisfies the condition on
Lemma 6. If we have the condition ||¢®) (z;)|| < C, which happens under the high probability
event E° defined in Lemma 33, then for every i € [n], there exist a subset P; which might depend on
WO VO W V' such that

Ct

~ C? 13 C?
Pl < ( 1 1 2 1/3)
REIRS <(m3/<;f)) + (e + Amszr? )(Ii%mg) mn
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Moreover, for every i € [n), for j ¢ P,,:

SIV080 ) 2 V6 ()] + V(60 (@) + 62 (2]
V06O 2 ()0 a6 @)

(0) ,(0) 1/3 2/3
V6 (x )|>(m2)/0 3|25 l-

Proof of Lemma 7
By assumption, we know that during the algorithm, we have ||[V’|| < Cs. Also, we know by
Lemma 33 that under E“:
6@ () ]| < 2C1.

Define the set

PL= {1V 00 @i)] < es( )20 16O @) (112)
and P’ = UP/. We have

PV 2¢O (x;)| < es 2)1/302/3H¢ O (@:)]) < es( 2)1/302/3/1-12

so by Bernstein, with high probability:

|P/| < 771202/3 (m )3 kg + \/mzcz/gczs( 2 3/ka +1 S C3m202/3(m )13 ks,
2

so with high prob.
Pl < esC3/3 (22)21°, (113)
K2
On the other hand, Note that
m1
(@) = S 1/vm Wi ;oW V) (114)
j=1

is subGaussian with parameter 02 = O(1/m1 Y i O'(Wj(o).%'i)2). Furthermore, note that if we com-

pute the variance of ¢,(€0) (z;) with respect to the randomness of W*:

ma

(O)(S(}i)Q = 1/m1 ZO’(WJ.(O){EZ‘)Q =N
7j=1

which itself concentrates around 1/2k2||x;||> = 1/2k? by another Bernstein, i.e. 8 = 1/2x3(1 &
O(1/y/my)). Therefore, by concentration of subexponential variables (Bernstein), it is not hard

to see that the squared norm of the vector ¢(®) (x;) is (msr?, k2 )-subexponential and concentrates
around m3N, i.e.

60 (2:)]|? = maR & O(k2v/m3) = mak?/2 + O(msk2 /v/my) + O(k3\/my), (115)
with high probability. Combining this with the fact that ||¢() (x;)|| < C; implies with high proba-
bility:

6O 5, Vs
lg@ (o)l ~ Ca

Now define P/’ = {j| |V/zj| > |Vj(0)¢>(0) (x;)]/3}. If j € P/’ — P/, then by Equation (116), with
high probability

VAP (@)l = [Vie® (2:)] = [V} (6O (i) + 6@ (2:)| = [V}

(116)
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0 K2 2/3
> (V060 @)l/3 2 es(2) 20 100 (@)l
or 9
2~ 2012 \2/3 44/3 13K
”Vj/” 2 C3(m72) / Cy le

But note that ||V’||% < C3 by our assumption, which implies

2 et m
P/ _ Pl < 22 Eryesod/3shT Ty &1 2403 117
| P/ AN 2/[63(m2) 2 C? ] c%mgnf P (117)
Now combining Equations (113) and (117), we finally obtain
Cf 2/3, M2
P/|=|P' —P/|+|P/| < L o232y,
‘z| Iz l‘+|l‘N(03+C§m3FL%)2 (52)
Now define the set
P = (| V" 6@ ()] > |V,V ¢O ()] /3}. (118)

Note that for every j € [ma], Vj(o) $©) (x;) is gaussian with variance ||¢(?) (x;)|| over the randomness
of Vj(o), SO
0
(V" 6O () < ana |6 (1)) £ e
Therefore, if we define the set
Qi = {j € mal] [V} 6 ()| < ol |6 ()1},

then for large enough ms, by Bernstein with high prob.:

Qi < ama. (119)
Now note that ¢(®)(z;) is fixed during the algorithm. On the other hand, by random matrix the-

ory, we know that with high probability, the eigenvalues of the matrix V() are in (ko (y/m, —

VM), ka(y/My + /ms)). Therefore, even if the vector ¢(?)(z;) is picked adversarialy (because
it keeps changing during the algorithm), we get that with high probability over the randomness of
V().

VO (20 < K3 (Vimg + Vimg) [P (2:)[1* S w3mallo® (2:)]|. (120)
Moreover, because ||¢() (z;)|| < C; and from Equation (115), with high probability over the ran-

domness of W (®); .
1 (i)l & Vmgk
@ (z)| ~  C
This means that for j € P{" — @;, combining these inequalities we conclude with high probability

7 el

maqakK
Vi (@) 2 ViV 6O (@)|/3 2 anal|6® ()| > aﬂz%llcﬁ@) Call

which combined with (120) implies

1P 5 2Ot
i I~ 2,2
msKia
Balancing this term with the one in Equation (119), we set
2/3
Lo_c
ERSSVENCTES
3 M
which implies
02
PSP = @il +1Qil < (Gmy) e
3y
Defining P; = P}’ U P}, we finally get
. C? 13 C? 2/3, 1 :
Bl < ( 1 L ¢ 1/5) .
‘ ‘ ~ ((mgfi%)) + (C3 + C?))mg/i%) 2 (H%mz) ma

Clearly by the definition of P and P} the proof is complete.
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Corollary 5.1 Under the condition ||¢® (z;)|| < Oy (which happens under the event E° defined in

2/3 2
Lemma 33), setting c3 == —ot—7s( “222)1/3 in the previous Lemma, we obtain /i € [n]:
777,3 K/l 2

C? )1 /3
(mar?)
Also for j ¢ Pi, the conditions in (112) and (118) becomes the same as

23
WW(O) () |-
ms' Ky

1P| < ( ma.

W60 (@)] < ks

Hence, for every i € [n] and for j ¢ P, with high probability:

2
W00 @)l = (W6 @) + Wi (60 (@) + 63 ()], (121)
(72/3
WO (z;)] 2 @WW%»H 2 ka(vmgri CT)Y?, (122)
ms' K]
(72/3
WO6O ()] 2 — A7) (123)

~ m:l,)/ 3 Kg/ 3
Next, we state concentration result for the gram matrix of ¢(?) (z;)’s.

Lemma 8 For every iy, is € [n], with high probability over the randomness of WO and VO we
have

(@O (@1,), 0O (2,)) = maEo(W V2 )o(W Vzi,) £ O(msk? /Vmy + Vmgk?).
Proof of Lemma 8

First, we compute the expectation:
B0 (@), ¢ () = Lm0 Y EWR, Wiy, o (W) ws o (W) zi,)

J1,72€[ma] k€[ms]

s s 0 0 0 0
=1/my Z E Z Wk,jka’jQU(Wj(l)xil)a(Wj(Z)xiQ) + mg/my Z O'(Wj( )l‘il)U(Wj( )xiz).

J1#J2  k€[ms] JE€[ma]
But U(W](?)xil )U(Wj(f)xiz) is (m1k7$, k?)-sub-exponential, so
Z O-(WJ'(O)xil)U(Wj(O)xiz) = mlEU(Wj‘(O)xil )U(Wj(O)xiz) + O(\/El’%)v
j€lma]

which means with high probability:

E(6 (21,), 6 (23,)) = msEo (W "z, )o (W w;,) £ O(msk?/v/m,).

On the other side, we know that (;3,&0) (z;,) is subgaussian with parameters o2 =

1/ma Z:j(T/Vj(O)xil)2 = ¥y and 0% = 1/my Zj(Wj(O)xiz)z = Ny respectively. On the other
hand, we know that by Bernstein w.h.p

Ry = 1/263(1 4 O(1/y/m,)).

Hence, o\ (2s,)0\” (24,) is (RiRy, v/R1Np)-subexponential, and so (¢ (z;,), ¢ (z;,)) is
(ms3R1Ng, v/R1Ny)-subexponential. Therefore, applying another Bernstein on the top, we get

<¢(O)(5Ei1)a ¢(O)($iz)> = ]E<¢(O) (x4,), ¢(0) (z4,)) £ O(\/rng\/ NiR;)

= msEo(W " 2;, )o (W " 2;,) £ O(msw? /v/m,) +

VI (1 3 01y

= msEo (W " 2, )o (W " z;,) £ O(msk? /v/m, + Vmgh?).
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Now we define the matrix L; € R™3*™2_ with its jth column L; ; equal to

V60 @) 2 0} (@),

First, we state the following lemma which characterize a concentration result for the gram matrix of
(Li)?zl‘

Lemma 9 With high probability, we have the following approximation:
(Liys Lia) = (6" (002), 6" (i) [ o (2F((@ir, 1)) ) £ O(my Vi /).
Proof of Lemma 9
By Hoeffding:
(Liv, Liy) = 1/ma Y 6% ()" 6" (i) 1V, 60 () = 01{V” 61 (23,) = 0)

= 0" ()76 (1) (BL(V," 0V @s,) 2 031{V; V6 (31,) = 0} £ O(1/vimy) )
= 6" (22,)7 0" (i) (P (6 (1,), 00 (@)} (16 (@) 16D (i) ) O/ yma) ),

where recall

Fy(z) = 1/4 + arcsin(z) /27,
measures the angle between two unit vectors based on their dot product. Now notice that according
to Lemma 8, with high probability:

<Li17Li2>/<¢*('ri1)a ¢*($12)>

msEo (W "z, o (W Vzy,) £ O((ma/im, + Vmg)w?3)
V maBa(W O 2 & O((ma /iy + v/img)i3)) (msBo (W, )2 & O..)
_ F2<F3<<xh,x¢2>> £ O/, + Vi) | o Vi),

- B +0(1/v/m,))

12+ O(1/y/m, + 1/v/imy)
where recall F3 : [—1,+1] — [-1/2,1/2] is defined as:
V1—22 =z xarcsinz
Fz)=—— 4>+ ——.
2w 4 2w

It is easy to see F3 has the property that for unit vectors x1, x5 and w sampled as standard normal:
F3((z1,13)) = Eo(wlz1)o(wl zs).

But because |F5(.)| = O(1), we have
(Liys Liy) /(9" (2iy), 9" (w45)) = Fo (2F3(<73i17$i2>) £O0(1/vVmy +1/vVm,y + 1/\/%3))

Now notice that the derivative of F5, i.e. 1/2mwv/1 — 22 is increasing in the interval (0, 1), so for a
fixed 0, the maximum of |F»(x) — Fy(x — 0)| happens at = 1. On the other hand, by writing the
first order approximation of arcsin(1 — ¢2) around ¢ = 0 and upper bounding its derivative in the
interval [0, 1], we get that for 0 < ¢ < 1:

arcsin(1 — §) > arcsin(1) — 2/6.
Therefore, Fy(x +6) = Fy(z) £ O(+/6). Hence:
(L, L) 6" (21,), 6" (22,)) = B> (2Fs({zis,02)) ) = O 1/vimy + 1/ +1/v/imy)

= B (2B (@i, 2i)) ) £ O(my Vg,

which completes the proof.

Finally, we are ready to construct the weights V* for the second layer.
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A.12.3 CONSTRUCTION OF V*

Lemma 10 Let

2 ny/mg {1+ nCll
\/ﬁl )\0 K1
Suppose we have the condition that for every k € [mg]:
max | Vi < €, (124)

where recall the definition of Vy in Equation (58). We assume enough overparameterization to make
sure R < 1. Recall for the matrix A defined by

A= (@1, 20) Fa(2Ps((wy,2:))) ) (125)

b
1<i1,i2<n

we have
(F* @) TATH (S (@) < G-

Then, there exists weight matrix V* which only depends on the random initializations W)V (0)
(e.g. not on V' and W) for the second layer, such that having enough overparameterization

IV*% < 2, (126)
and for every j € [ms]:

1+ R)nv/nls

1V oo < ¢ TRV i gV, (127)

1 Vel
V7l < 1+ 9y 220 Pl gy, (128)
2

and further under the high probability event E° defined in Lemma 33:

1 Ch
\/ﬁz \/mg,“l

|—a" Dy v V6" (@) = @) S (=) P04 R) (G D Vil = R
k

(129)

Proof of Lemma 10
Let
n
Ve=>Y VL,
i=1
be the minimum norm vector which maps L;’s to f*(x;)’s. As a result, for the matrix

L= (<Li1,Li2>>

11,12
it is easy to see
V5 = (F (@a))ima "L ()i

Now combining Lemmas 5 and 41, we get

16" (x:)]loc < (1+R)E, (130)

6™ @)l < L +R), Y IVl ]ee (131)
k

(16" (i), @™ (@02)) = (@i @) < QR+ R D [ VillFre
k

and
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Now by Lemma 9:
iy Lia) = Aiyia| S @R+ R IVl [Fa (2B (i, w20)) ) | + (1, 22) (g g 1)
k

+ other cross term.
By applying (Zi,, Zi,) < ||, [[[|Z,[| we get

LHS < (3 [Vellz) (2R + 32)| B (2P (@i, wia)) )| + (mi /o mg Vo))
k

S (X IVl (R g 7 ).
k

Therefore,

I = (L L)), Nl < A= (Lo Li) e

91,12

< n(z ||VkH%,oo)(§R+ ml_l/4 + m2_1/4 + m3_1/4) = R,.
k

Note that 5 naturally goes to zero (with poly dependence) as &8 — 0 and mq, ms, m3 are large
enough. Now if all of the eigenvalues of the matrix A are £2(1/n?), then if we overparameterize
enough such that 5 = O(1/n?) with small enough constant so that Ry is less than half of the
smallest eigenvalue of A, then for the ith eigenvalue \; of A and L we can write

Ai(L) > Ni(A) = Ra > Ni(A)/2,
SO
ML) <2x,(47h),
which implies the property
IV*I% < 2¢. (132)

However, A might have very small eigenvalues. To remedie this, we use Lemma 42; we can substi-
tute f* with some f* such that
2

Ralf7) < 2Ra(f7) + =, (139
frAT < AT (134)

where f* is on the subspace of eigenvectors of A whose eigenvalues are larger than Q(1/n?). But
it is easy to check that in the context of Theorem 3, such substitution results in a f *T A1 <
f*T A1 f* < ¢ and ©(f*) parameter (as defined in (41)) with respect to f* which satisfies 7/2 < v.
Note that the algorithm is with respect to the setting v, however we want to exploit generalization
bound with respect to f* whose parameter is © as it enables us to use our analysis in this Lemma.
Furthermore, note that using Equation (133) we can further upper bound the empirical risk of f*
with that of f*, which makes it straightforward to derive a similar generalization bound as in (45)
with respect to f*, of course with a change of constants. Note that f* is just the sum of A-eigenbasis
directions in f* whose eigenvalues are larger than ©(1/n?). Hence, given a pair (f*, G), as we also
point out in remark 1, we can construct the suitable pair (f*, G) algorithmically and then use that
pair to initialize the parameters of the algorithm (namely ¢ and v/). Otherwise, if we are not explicitly
given a pair (f*, @) and instead want to run the doubling trick described in Theorem 1, we do not
even have any additional computation; since using Theorem 1, within the framework of the doubling
trick, the risk of the final network is competitive with respect to any choice of (f*, G). Note that as
we mentioned in Lemma 42, the constant 2 is arbitrary and can be reduced to any number less than
2, and it is easy to see that one can pick choice of constants along the way such that we end up with
a factor two behind the risk (first) term in the definition of our complexity measure.

Therefore, without loss of generality we can use substitute f* by f* and still obtain Equation (132).
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On the other hand, the definition of V* implies

1 T kKN L pR(
\/mQa DV(0>,x7-,V (b (1’1) _f (xz)

But note that by Corollary 5.1, under the high probability event £ defined in Lemma 33, Dy o) ,,

and Dy, 01y ,, can only be different in the index set P; and

ma,

2
25 (i)
1
Therefore, for all ¢ € [n]:
1
N

aTDv(0)+VI)Ii V*¢* (l‘z) —

<1/Vmy Y V)™ (i)

jep

<1/Vmy Yy V7 lllg" ()

jep

1P|
< V(1 + %) ‘/ZHkaQm
(&5 1/3
< /
N(\/ﬁg,/ﬂjl) §2 1+§R Z”Vk”HOOa

which proves the first claim. On the other hand, we get:

1 T
T Dy, V* " (25
Wza V) z; (b (xl)‘

2 2 |[V*|[F = VLY.
But because \p,in (L) > 1/n2, we get
VILY 2 |V3/n?,
which implies

V2 S /¢,

But now using Equation (130), we can write
Vil <3 VillLijul < \F ¢ () Hooz Vil
i=1

< “}Wi’g;w < (1+ REVAIV] /v

(A + R)nvnc
Vm,

which proves the other part. Moreover,

£,

A

HV}*IlzéHvllz (O 19 @) f (1%\/4‘22!!%%00/%-
k
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A.13 EXISTENCE OF A GOOD DIRECTION

Our aim in this section is to show that if the objective value is above certain threshold, there exists a
good random direction which reduces the objective in expectation. Particularly our aim is to prove
the following theorem (informal):

Theorem 6 For a given pair (f*,G) with

<H007G> S Cla

f*T(Koo ®G>—1f* S C27

recall the ideal random matrices (W4, Vsy) constructed in Appendix A.12, where ¥ is a random

diagonal sign matrix. Specifically, W, is defined in Equation (107), and Vs, is the projection of the
rows of matrix V* onto the orthogonal subspace spanned by (¢ (z;))7_,.

Using the parameter setting for i = 1,2
Y= — (136)

with respect to an arbitrary parameter v > 0, then for every pair (W', V') such that |W'| <
Cl, ||V/|| S CQ and

LW V') > A+, (137)

for parameters my, ma, m3, 1/k1, 1/ka polynomially large enough in B,1/Xg, n, C1,Co and small
enough step size 1, we have

Ex L(W' — n/2W' + /W, V' —n/2V’ + /iVs) < LW, V') —qu/4. (138)

In order to prove the above theorem, we first state and prove the following lemma which is the core
of Theorem 6.

Lemma 11 For matrices (W*,V*) constructed in Appendix A.12, specifically for their random
coupling (W3, V) as denoted above, we have:

Esl(f(1—nj2ywr s yawe,(1—nj2yvityave (@), i) < (L= mE(fir v (@), yi) +0l(f* (@), yi) £ 0o,

where © goes to zero with polynomially large overparameterization (the exact dependence is re-
vealed via the proof).

Proof of Lemma 11

For brevity, we use the notation D: , here to refer to the diagonal binary sign matrix when
the input is multiplied by the sum of weight and smoothing matrices. It will be clear in the context
of the equation that what the “input” and the “weight” matrices are. This notation is also defined and
used in Lemma 28). Here, we bound multiple cross terms that are created as a result of moving in
the random direction. To simplify the presentation and avoid confusing recursions in the proof, we
have made a sublemma for each of these cross terms and has deferred its proof to Appendix A.14.
We use difference sub-indices of the symbol  to illustrate terms that go to zero by growing the
overparameterization in our architecture.
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We start by using Lemma 28,

EEE(JC(/pn/z)Wur\/ﬁwg,(17n/2)v'+\/ﬁv§ (i), Yi)
= EslEwe ve f(—n2w + mawe+we,(1—n/2)v'+ ave+ve (Ti), Yi)

= EEE(EWp,vpaTD/Vp(V(O) + (L =n/2)V' + VP + VS )W*Ds ,(WO + (1 —5/2)W' + WP 4 /W),

+ Rg, yz)

= Esl(Ewrvo [a" D1y (VO + (1= n/2)V" + VAW Do (WO 4 (1= 0/2)W + W),
+ 10" D VAW D1 yWai] 4+ iBweve (a7 D (VO 4 (L= 0/2)V' + VO)W* D, Wea
+ "D VEW D1y (WO (1= n/2)W + W)z

+ %8777%)

Now using the notation introduced in Lemma 18, we have
WD (WO + (1= /)W + W), = 6O () + (1= /28 () + 26 (x).
By Lemma 18, we have the following bound for ¢’ (z;):

1
]EWp,Vp WQQTDv(O)_;'_Vp_i_V/,xi (V(O) + VP + (1 - 77/2)V/)¢(2)/(x2)

< (koy/mams 4+ /ms B2 + C2)Rs.
Therefore, Combining this with Lemma 20, we get

= Ext(Ewnve [a"Drp(VO + (1= 0/2V + VW (6O (a:) + (1 = 0/2)6) ()

+ 10" D1 VAW D1 Wei] 4+ iBweve (a7 Do y(VO) + (L= 0/2)V' + VO D, Wiz
+aT D VEW Dy (WO + (1= nf2) W' + W]

£ O((a/mamg + /i + Ca)Rsm) £ O(Ren). v, )

= EEE(IEWp,Vp [(1 —0)a" D ,(VO + V' 4 VPYW* (O (2;) + ¢ (23))

+ 10" D VAW D1 W] 4+ iBwe vo a7 D (VO 4 (L= 0/2)V' + VO)W*Dr Wz

+aT D VEWEDs (WO + (1 —n/2)W' + Wp)xl}

+ O(N(RG + Ra + (Vmzkz + B2)(C1 + Vmyzp1))) £ O((kay/mams + vVmy B2 + Ca)Rsn) + O(Rsn), yz)

- Eg@((l —0) v (23) + nBawo vea Di  VEWS D Wik,
+ /Ewe. v [aTDgp(V(O) + (1 —n/2V + VWD Wiz

+aT D VEWEDi (WO 4 (1 —5/2)W' + W”)xl}

+ O(n(RG + Ra + (Vmyrg + B2)(C1 + Vmsf1))) £ O((k2y/mams + V/mzfBa + Ca)Rsn) £ O(Ren), yz)

49



Published as a conference paper at ICLR 2022

Moreover, using the notation (;S*’(a:i) introduced in Lemma 15 and the bound in Lemma 17, we can
rewrite the second term as:

LHS = EEZ<(1 — ) fiyr v (@) + nBwe vea® Do V5 (9% (25) + 6™ (24))
- ViEwsvo [ Dry (VO 4 (1= n/2)V' + VWD, Wik,
+ "D VEW D1 (WO o (1= n/2)W + W)z
OI(RG + R + (Vigwz + B2)(Cr + Vi) £ O/ + taf + Ca)Rm) £ O(R) i)
= Esl((1 = 0) flyr o (@) + nBwo,vea” D V36" (2:)
+ /TEwe.ve [aTD,,p(V@) + (1= n/2)V' + VAW D, Wiz
+ "D VEW D1y (WO (1= n/2)W + W)z
+ O(nMio) £ O(N(RG + Ra + (Vmgra + B2)(Cr + Vmsp1))) £ O((k2y/mamz + vVmsfa + Co)Rsn)+
O(Rsn), y) (139)

Now we write the gradient-lipshitz inequality for ¢ at point

1 * [k
Py = (L= 1) flyr v (@) + 1w vea® Di V™ (2:) £ npn,
and regarding the following vector, where ¢; is the sum of all the noise terms above and goes to
zero by over parameterization:

Pl = ViiBws.ve a7 Dy (VO + (L= 0/2)V' + VWD, Wesz
+aT D Vi W Di (WO 4 (1 —n/2)W' + Wp)xz} .

Hence, using the 1 smoothness of £(., y;):

, 1
LHS < Est(p))) + Esi(p) /i + SnEs (). (140)
But note that
Exl(p)y/ipy) = 0(p)y/Esp = 0. (141)
On the other hand, using the notation of Lemma 15 and the result of Lemma 16:
2
Es (EwmwaTD/,p(V(o) (1 n/2)V + VP)WSD,WW@;Z-) (142)
2
- Esx (EWP,VpaTDQ,,(v(O) + (1= n/2)V' + VP)(Se* (2:) + ¢*/z(zi))) (143)
2
< 4Es, (IEW,J,WaTD,,p(V@) T (1—n/2V + V”)qu*(xi)) (144)
2
+ 4By, (]EWpypaTD/’p(V(O) +(1—n/2V +VP) E(:m)) (145)
<RI+ RE. (146)

Moreover, using again the result on ¢(?)(x;) from Lemma 18 and the fact that $() (x;) is orthogonal
to the rows of Vsi:

Ewe veal Di ,VEWeD: (WO 4 (1 —/2)W' + WP)z
= a" D0,V (0O (@) + (1= 1/2)6®) (1))

0" D1, Vo™ ()
=(1- )TD Vst ()
+ 307D VEW D,y (a)
S(- )TD PV (2:) £ Rs.
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Combining the last Equation with Lemma 14:
2
Es (EWWMTD,,,JVZ*WSD,,,J(W<0> (1= /W + Wf’)xi)
S (1= D)%a" D1 VEW D6 () + %2
< R2 4+ RE (147)
Combining Equations (146) and (147):
Ex(p)? S R + R, + R + 82 = po. (148)

Combining Equations (141) and (148), plugging into (140), and reopening the definition of p(zl):

LHS 5 Ezf((l =) fiyr v (@) + nEwe vea” D, Vsig* (2;) £ npr, y) +npapa. (149)

Now note that we can easily bound the magnitude of the term nIEWp,VpaTDg Vs * (x;) as:

|Ewevea’ Di V™ (2)| < Ewo vola® Dr Vi ()]

< IVSllFlle™ (@l < IVl (2]l < V26 (1+R) ‘/Z VellFroe

while using Lemma 34:

|f1//V/,V/ (351)‘ < (Hszg + 52)(\/53’11 +C + \/Egﬁl) + 02(01 + \/7%351)7

which is O(C1Cs) for enough overparameterization and smoothing parameters i, 3 as defined
in A.20.1. Furthermore, from Equations (131) and (126), we easily see that

Ewoveal Dr Vg™ (z:) < v/20(1 + R) ZIIVkHHoo

Now taking 1 small enough so that the bound 7v/2{2(1 + R)+\/>_; [[Vk||%~ and np; both also
be bounded of order O(C1C53), we observe that the term inside the argument of ¢(.,y;) Equa-

tion in (149) is O(C1Cs2). Hence, we can use the Lipschitz parameter of ¢ in the interval
[-O(C1C3),0(C1Cy)], given by Lemma 9 to take out the noise term:

LHS S Est((1 =) fiy: v (2:) + nEwo,vsa” D V36" (2:),3:) £ 01 +n0(C1Cs + B)ps.
(150)

Now by applying Lemma 19 and writing the Lipchitz property of £ at point (1 — 7)) fiy v/ (z:) =
O(C1Cy):

LHS S Ezf((l =) fivr v (i) + nf " (x:) £ nRo, yi) +np1 +n0(C1C2 + B)po
= Bl (1= ) iy v (@) + 0" (@), s ) £ 1R £ 01 +nO(C1C + B) g
= 0((1 = ) fiyr (@) + 0f*(22), 1) % 7,

where the last line is just definition. Now Convexity of ¢ finishes the proof.

Next, using Lemma 11 we prove Theorem 6.

Restating Theorem 6 In the same setting as Theorem 6 and having enough overparameterization
such that p < £ (p defined in Lemma 11) and polynomially small enough step size 7, we have

ExL(W' — W'+ /W, V' — V' + /nVss) < LW, V') — nv /4.
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Proof of Theorem 6

First, note that taking expectation w.r.t 3

m3 ms3

Ex|(1—n/2W' + iWs|* = Es(1 —0/2)*|[W'[|* +2(1 = n/2) (W', Y SeWyi) +al Y SeWi||?
k=1 k=1

= (L= n/22[W'|? +0 ) IWE|%,
k

which by orthogonality of W;’s:
LHS = (1= /2% [W/|? +n|W*|2 = (L= )| W'|12 4+ nl| W2 + | W]
Similarly for V’:
Ex(1=n/2)V"+y/aVs | = (1=n/22| V' |2+Esl|V* S|P = (1) [V/ [P+l V242V
Now using Lemma 11:
EsL(W' —n/2W' + /qWs, V' —n/2V' + /nVs)
< (L=mEzl(fiyr v (2),y) + nEzL(f* (), y)
+ (=) (La W2 + V) + (W12 + 0l V1) + 0 (0 + (W12 4+ [V712))
< LW V) = (LW, V') = A= 16 = a6 ) + (o + n(IWIP + V%)),
which by the choice of ¢;’s is equal to
LHS < LW/, V') = (LW, V') = & = v/2) + 0o+ n(IW7 + V']
LHS < LW, V') = /2 + (o + n(IW/I* + V'3

Moreover, using the condition
p <v/8,
and picking n as small as
n(IW/ 1+ IV')1?) < n(CF + C3) <w/8,

we finally get
LHS < L(W' V") —nv/4.
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A.14 EXISTENCE OF A GOOD DIRECTION HELPER LEMMAS

In this section, we state and prove the core lemmas that are used in the proof of Lemma 11. Notably,
through all of this section, we assume the norm bounds |W’|| < Cy,||V’|] < C5 and that as our
usual assumption, the rows of V"’ are orthogonal to ¢(*) (;)’s for all i € [n]. A notation that we use
throughout the proofs is V& which refers to the projectiono of ¥ *X onto the orthogonal subspace to

(@O (@)

Lemma 12 Let P(.) be the projection operator onto the subspace spanned by (¢'°) (z;))™,. Also,
we denote the projection of rows of V*3 onto the orthogonal subspace to (qb(o)(xi))?:l by ng.
Then

Es|[Vs; — Vi'E)|? < 03¢n/ms,
with high probability

< 03§y
~ \/ﬁ2 b

Vs, = Vis)ll

Proof of Lemma 12

By Equation (128), we have [[V'[c < 03§/ /m2. Now suppose that ui,...,u, are an
orthonormal basis for the subspace span(¢(®) (z;)),. Then

(2

Ex| Vs, = V)P = Ex| P(V;E)P =) Vijuin < Vi ll%n < 03€*n/ma.
k
Also, by Hoeffding, with high probability:

m3
PV =Y OV i) SnllVylI%,
i k=1

which implies the second part.

Lemma 13 The first cross term goes away because of the definition of V. (inside the expectations
is zero almost surely)

1 2
Es (EVP,WP[ a" Dy tyoyv miVE*‘ZS(O) (x)}) =0
\/%2 +Ve4+V7, ?
Lemma 14 Second cross term:
EE (EVP Wwe [LG/TDV(O)+V/J+V/ V§¢(2) (.’I;)])z (151)
T /my i
< E((1+R)2nC + 02n)(CF +msBi) = N2. (152)

Proof of Lemma 14

53



Published as a conference paper at ICLR 2022

This time we use Equation (128) in Lemma 10 and Lemma 12:

1 2
Es; (Evews v 0" Dy pvosvr.o V0D (@)
2

< B (B Vi 3V, (1))
J

1 2
< %EZ,VP,Wﬂ ( Z |V§j¢(2)($i)|>
J

< EveweEs Z |V§j¢(2)($i)|2
J

S EveweEs > (Vs = ViD)e® (2:)]> + ) [V 86 (2;))?
J J

SEveweBs Y IV = ViD)PII6® (@) I” + Y IVi 1% N6 ()13
J J

S (L + R)*nG€ + 03¢ n)Eve wollo® (x4)]13-
Now according to Lemma 33, we have
Evewello® (z:)]? < C1° +mspBi?,

which completes the proof.

Lemma 15 We get an additional term ¢*'(x;) as a result of smoothing which we define as

1
o (z) = WWSDW@ swrawe .o, Wati — ¢ 5 (x). (153)
1

P(¢* (2:) # 0) < myexp {—c3/(867)}.

Moreover, we have the following inequality almost surely (over the randomness of W?):
6% @lloo S, D IVell3ree-
k

According to Lemma 1, for j ¢ P, for every i € [n] we have
(W + W))ai| > ez/2/m,.

Now note that as long as the sign patterns for j ¢ P does not change, ¢*'(x;) will be zero. Therefore
by union bound

Then
Proof of Lemma 15

P(¢* (z;) #0) < Z]P’(sign change in j) < ml]P’(|(Wj(0) + Wizi| < W)
j=1
< mP(IWFai| > e2/(2v/my)).

But (W})z; is Gaussian with variance (% /m;. Hence

LHS < myexp{—c2/(883)},

which proves the first part. For the second part, according to Equation (105) in Lemma 5, for every
ke [mg]:

* 1 s * *
"% (2)] < |\/77L Wi Dy o) ywrswe o, Wil + | (24)] (154)
1

<2/Vm Y WS <2AW e S D0 Vel (155)
J k

which implies the second part.
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Lemma 16 Fourth Extra term:

1
EW/J,VP[\/% a" Dy oy yvoryrz, (VO + VP + (1 =n/2)V")¢" ()]
2

< (k2y/mams + Cz + Vmgfa) ma exp {3/ (867)} I IVell3ee = Rus.
k

Proof of Lemma 16

Note that with high probability over the randomness of V(°), we have ||V (|| < \/mzmzky. Now
according to Lemma 15 and using the fact that ||V'||p < Ca:

1 *
< Eweve—— lalllIV© + V24 (1 =)V |21 6" (z:)]
2

=Ewe vo [V + VP + (1 —n/2V'||pll6* (z:)|

= \/Ew(||v<0> + 1= n/2QV|[5 + VP F) myexp {-c3/(867)}, /; Vellr

S \/IIV(O)II% V1% +ma g miexp{=c3/(867)}, | D Vel
k

< (kav/mams + Cy + V/mgf2) myexp{—c3/(887)} [ IVill3-
k

Lemma 17 Fifth extra term:

1 f
Ew., Vﬂ[\/» a DV<0)+VP+V’ x1VE¢*/ (@) ‘ \/le exp {—c3/(867)} ZHWHQ s = R0
My

Proof of Lemma 17

Similar to the previous Lemma, the inner expectation can be bounded as:

1 / * %!
< ]E\/Fn lal V55l elle* ()]l < BIVF[ell¢™ (@)l S v/Comaexp{—c3/(88D)}, [ D IIVell3-
2 k

Lemma 18 We have another extra term as a product of the movement —n/2W' in the first layer:
¢ (2;) = (W Dy swopw: (W O+ WP H(1=n/2)W")ar; =60 ()= (1-1/2)® (7).

Then

2
77\/7711

1 *
‘]EWI’,VP NG aTDV(D)+VP+V/,zi Vo ()

51 CQC 9
. 862)}C7) = Rs. (156)
\/C2m3< \F1 my exp {— 02/( 51 )} ) 5
IEWP,Vf7 WQTDV(°)+VP+V’,zi(V(O) + Ve + (1 - n/2)V’)¢(2)'(a:i)
2
S (kay/mamz + vmg B2 + C2)Rs. (157)

Proof of Lemma 18

First we prove the following approximation argument (for all k € [ms]):

C
51+C21

EW”|¢(2)/(mi) | = \/>
1

+ my exp {—c3/(853%)}C?. (158)
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‘We have

2
LHS = Ey» ‘

—WiDwo yweswr o, WO + WP WiDy o, WOz
\/*1 kHEWO +We+W 1( ) \/*1 kW

S Ewe

— WlsDW(m—&-WP,zi WO+ WP, Wi Dy o, W O ‘
1

\Fl

1 2
+Ewe W;CSDW<0)+W;7,M(W(O) +WP)x; — WW].:DW(O)+WP+W’7I7;(W(O) + WPz,
1

1
Vi,
By the independence of Wj” ’s, the first term can be upper bounded as

1

=Ewr— ((W(O) + WOz W + W)z > 0} — Wz, 1 {w Dz > 0})
1

j=1
1 & 1 g2 B2

< — ) Epo W= —) L =1L
_mlj; wel sz\ mlzﬂh mi

For the second term, note that for every j ¢ P, the jth entries of Dy TWe.xs and
Dy o) ywesw s, are different only if T, can make a sign change in the jth row, i.e. |(Wj(0) +
W/)ai| < |W]z;| should happen. We denote this event for every j ¢ P by E;. Furthermore, if this

happens for some j, then the value of (W(®) + W) ,z; is upper bounded by |W/z;|. Now similar
to our discussion in Lemma 15 and using the result of Lemma 1:

m
P(Uj¢pEj) = P(sign change in some j ¢ P) < Z P(sign change in j)
igp
< P(|(W? + W)zi| < [WEai]) < maP(Woai| > ea/(2v/my)).
But note that (W/)x; is Gaussian with variance 5% /m1. Hence
LHS < myexp{—c3/(88})},

So finally we can write

ﬁ
mll +Ewpm—1 O [Wai))? +Ewp—(]1{Uj¢pE P W)
JEP jépr
BgE P ~
< P Py 4 (U, By w2
mi mi
51 02C1 2 2 2
+ + myexp{—c5/(887)}CT.
Vi T {—c3/(8p7)}C7

which completes the proof for Equation (158). This immediately implies

c C
Ew |6 ()] < \/Ewell¢®" ()2 < \/m3 *+ \/2» Pl exp {—c3/(867)}C%).
1

Now we first prove Equation (156):

1 * 1 *
]Ewmvv[iﬁ GTDV<0>+Vﬂ+V’,xiV2¢(2)/($i)]‘ < Bwe o lallll Dy vosvr o, Vil [P (z:)]]]
2 2

< IVl rBwe P (@)llll < IVl 7Ewe | 6@ (20)]]]

miq m KR

2
< \/<2m3(1+ 20 —|—m1 exp {—c35/(867)}C1).
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To prove Equation (157):

1
Ewo vo N a" Dy tyopvr o, (VO + VP + (1 —n/2)V)oP (z;)

1
S Bweve —=llalllDvo tveran/av, 2 (VO VP (L= 0/2)V) | 2| 6®) (1)

2

S Eweve IICLHIIV(O) + VP4 (L= n/2)V||pl[¢ (23)]]

< N Hall\/le VO +[Vel5 + 11— n/2)V'[13)Ewe [P (z)]

S \/(H§m2m3 +msf3 + CHRs < (koy/mams + v/msfz + C2)Rs

Lemma 19 Closeness condition:
1 * % *
EE‘EWP,VP[WGTDV<U>+VMV/,@V2¢ s(@g)] = [ (2:)| S Ro,
2

where

R = 0s6v/n(1+R) [ [Vell}e + Rs (159)
k

+ g (exp {~(marO1)"%/ (255)) + ma exp{~CR/(SmapD) Vil + ) 5 IV
(160)
Proof of Lemma 19

Note that by Corollary 5.1 and according to the proof of Equation 129 in Lemma 10, if for
every j ¢ P we don’t have a sign change in Dy o) 1 vp 4y ., V¥ @ (), then get

1
|\/ﬁ2 aTDV(O)+VP+V’,xiV*¢*($i) - f* (1"1)‘ < %3'
Also, note that we need the event £ (defined in Lemma 33) to happen in order to be able to use
Corrolary 5.1. Hence, given a W? for which £ happens, we upper bound the probability of sign
change with respect to the randomness of V. We define the following event with respect to the
randomness of V' when conditioned on a W# for which £ happens (P;’s are defined in Lemma 7):
SC = {3j ¢ Py st|VPal] 2 (Z2)3C3| )}
ma
Now from the result in Corollary 5.1 we have < 1{sign change in j ¢ P;} < 1{SC}. Therefore,

El{sign change} < 1{SC} < 3 P(V/wl| 2 ()03 i)
igP; e
K2 \1/3 ,~2/3
<maP(VYai] 2 (220 ).
mo
But note that (V”)x} is Gaussian with variance B5|«%||? /m2. Hence

LHS <mgexp{— (m21€202)1/3/(2[32)} (161)

Now let D be a sign matrix random variable such that if £¢ and SC* both happens, then it is equal
to the valid sign matrix Dy (o) {04y 4, and otherwise it is equal to an arbitrary valid sign matrix in
the case when both £° and SC* happen. Now using Equation (116) we have with high probability
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over the initialization:

1 * ok *
Ez‘EWP,W[ﬁQGTDv<o>+w+vng2¢ s(@i)] = f*(x:)
1
SEE‘EWP.VP[iaTDV(O) verv: o (Ve = V)" s (24)]
) m2 +Ve4+V/ix; \VE 2
1
+ Es[Ewe vl =0 Dy voyve, V'S s (@) - £ (1)
N e .

< Ewe,veEx| a" Dy o 1yopviz (Ve = VE)¢ 5 (z))]

1
Vi,
1
+ Ex|Ewe,velo=—a" Dy svesyre, V6" ()] - £(@)
mg +Ve+Vy,

1 * * *
< BweveEs - > Vs, = ViE e s (@)
J

+Ex ‘Ewp,w [(\/1%2 a" DV*¢* () — f*(xi))

G/TDv(O)+V/’ri V*¢* (.’L‘l> — D)]‘

1
—Hl{SCUE}(\/m
2
1 * * *
< IEWP,VPEEWT2 S OIVs; = VrEllot s (@)
5

+EsfBwo v [(a™DV'6 ) - 1 (20)|
1{SC U E}(

1
+ EsEwoye T Dy V'8 (@) ~ "DV ()|
2

1
NG
Z VEsIVE; = VyE|2le @)l

1
S EWP,VP \/TT’L
2

+ Rz +2P(SCUE) max’

a" D'V (x).

Vm,

Now note that for any sign matrix D’, we have the following bound:

1 1
NG < WQIIGHIIV*HFIW(%)II SVGI+R) /Z”VkHHOO'

Also, applying a union bound and using Lemmas 33
P(SCUE) <P(SC)+P(E)
< exp {—(mar3C3)"?/(263)} + mu exp{~CF/(8maf7)}.

Hence, also applying Lemma 40, we further write

LHS < 03&v/n(1+R) Z Villire + Rs
+ mz(exp{—(mznéc’é)”?’/@ﬁ%)} +m exp{—C%/(Smgb’?)}) G +R) Z Vil -

Lemma 20 Suppose we have mzr3 > C%. Then, for the following basic term we have:

1
EWP’VP[\/%
2

"DV ()

" Dy o) svopyr o, (VO + V2 4 (L= 1/2)V) (@ (2:) + (1 = 0/2)6® (7))

1

SJ (1 — U)EW/),VP [WQTDV(O)J',V;)JFV/,Ii (V(O) + VP + V/)((Z)(O) (1‘1) + ¢>(2)(a:i))
2
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(R + R+ (Vmgra + 52)(C1 + Vi)

where

1/3
Ry = C2(C1 + vVmsB1)ma GXP{—C§/3(\/%2"€2)2/3/8£} + ( €2 Co(C1 + vVmgpr),

Vmghiz)t/?
R = my exp{—CF/(8msf7) }V/msr1(vmy + B2) + Re,
and R is defined in Lemma 22.

Proof of Lemma 20

First, note that by orthogonality of ¢(°)(z;) to the rows of V":
1
LHS —n/2Eweve [WQGTDWO)H/%V@M (VO + V) (zy)

1
= LHS —n/2Ew» v [WaTDVm) wvesvie, (VO + VP 4+ (1= 0/2)V")80 (2;)
2

= (1= n/2)Ewn,vo| jm a" Dy 1yo iy, (VO + VP + (1= n/2V)(6 (i) + 6P (2:))]
2
= (1—1/2)Evs| }% a" Dy vy o (VO + VP + V) (0O (z) + 6P (2:))]
+ (1 -1/2)(n/2)Evs] fm a" Dy 4oy e, (VO + V) (0O (2) + 6P (2:))] (162)
2

But note that for the second term:

1
Ewe vol e Dy vy, (VO + V(00 (@) + 62 (@)
2

1
S Ewe vel =0 Dy v g, (VO + V(00 (@) + 6 (@)
2

foe Y V@O 6D w)

j: sign change

0Dy v g, (VO + V)60 1) + 92 (2)]

1
=Bl
1

16 (1,
+ > Ve (). (163)

Now conditioned on z, by the result of Lemma 31 we know there exists a set of indices O C [ma],

J: sign change

2/3
s.t. |0] < (\/—T%ng and for j ¢ O we have
2

2/3 1/3
0 C5' " (V/mgyka)

VO] > 22222 |l

2
and 23

Vg < 02 (VmQHQ)l/S /

| j$i|_ 2/m [l -
2

Now for j € [ms], define the event

02/3(\/m Ko )/3
Rj = {|ijl‘;| > 2 2\/*2 ||$;H},
my

and R = U; R;. First, note that using Gaussian tail bound, ? is a rare event:

P(R) < 3 P(R;) < myexp{—Cy/*(v/mynn)?/ /853}.
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Now for j ¢ O and under R¢, clearly we have that the signs of (Vj(o) +V/)z; and (Vj(o) +V)+V])x;
are the same. Therefore, applying Lemma 33, we can argue under R®:

1 1
Eweve—e 3 [V/6® ()] < Ewo—e 3 [V} (1)
\/ﬁ2 j: sign change \/%2 Jjeo
[ 2) c,”°
<AL IV Ewe |62 (2] < C2(C1 + vmgpr).

ma (Vmgk2)1/3

Hence, overall, using Cauchy-Shwartz

c)/?
(Vmyha)1/3

LS VD ()] < VB 6 () [B(R)+

]EWP7VP \/TTL 02(01+\/E351)
2

J: sign change

/3
< Co(Cy + VmaB)ma exp{—Ca'3 (V/myr2)?/? 1882} + 2z Co(Cr + Vimyy) = Ra.

(Vimgriz)
(164)

On the other hand, using Lemma 30, we have with high probability over the randomness of initial-
ization
1
Vi

aTDV<0) "y V(O)¢(2) (z;) < Vmgks| ¢(2) ()]
Hence:

Eys| aTDv(0>+Vp’zi(V(O) + Vp)¢(2) (z:)]

1
Vimg

1
<Ewor vo|

Vi
= EW"%“T%%V“)%” () + BB | ()]
2
< (Vmgkz + B2)Ewe |0 (z:)||
< (Vmska + B2)(CL + Vmsfr). (165)

1
T V(52 (4, V”¢5(2) )
a” Dy ,, ¢\ (ws) + 1% ()]
v, /., zj: J

Combining Equations (164) and (165) into Equation (163):

1

vl Ty

a" Dy yvosvr o, (VO + V2@ (2)]| < Ry + (Vmgka + B2)(C1 + vms ).
(166)

Moreover, for the first term in (162), using Equation (165) and Lemmas 33 and Lemma 30 we have

1
|EVP[\/E2 a" Dy 1yory e, (VO + VP + V)o@ (2))]]
1 1 1
< |Ew»r ve Doy VO 2 (4 Ewe ve 25 (. - '@ (1.
S Ewev \/HQCL v Vo (@) + Ewe,v \/EZZj:quﬁ (zi)] + \/EZZJJVJ(? ()]
< kavmg(C1 + Biv/mg) + (Ca + B2)Ewe |6 ()
< kav'my(C1 + Brv/my) + (Co + B2)(Cr + Vmyfr). (167)
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Substituting Equations (166) and (167) into Equation (162), we finally get

LHS —1/2Ews vo| a" Dy tyopvr o, (VO + V)0 (2))

1
N
S (1= n/2)Eys|

1
m a"Dy© vy, (VO + V2 + V)@ (2))]
2

+ g(m + (V/mgka + B2)(C1 + \/771351))
1
Vi,

S (1 =n)Ey| aTDV<0>+Vﬂ+V’7wi (V(O) + VP + V/)Qb(z) ()]

2
£ LBy [—=a" Dyorpvesyea, (VO + V2 + V)6 (@)

1
v,
+ g(§R4 + (V/mgka + B2)(Ch + \/771351))

1
1- n)EV" [\/%2
+ 12 (kev/mz(C1 + Biv/mg) + (Ca + B2)(Ch + VmsB1))

+ 77(3?4 + (Vmgka + 82)(C1 + \/%3&1))- (168)

< " Dy yvopyre, (VO + VP + V)P (2;)]

—~

Now by picking n small enough so that the second term is dominated by the third term we get:

1

LHS —1/2Bwe v [ﬁaTDVm) wvervr e, (VO + V)60 (2;) (169)
1

S- n)]EVp[WQGTDV(O)JrVPJrV’,m(V(O) + VP4 V) ()] (170)

in(er(\/ﬁg@Jrﬁg)(Cl +\/5361)). 171)

Now we aim to bound the term Eyy» 1/ [\} aT Dy pvesy: o (VO +VP)pO ;). First assume
My Ehad2

that we are in the event E¢ defined in Lemma 33, i.e. we have ||¢(? (z;)|| < C;. Conditioned on
such W*, we now work with the randomness of the initialization and V”. Note that the random
matrix V(©) + V* jointly over the randomness of V* and the initialization is also Gaussian, and its
variance is

2
K3 < K3+ % < 2k3, (172)

where the inequality follows from the fact that ry > \%ﬂ and B, < 1. Therefore, applying
2

Lemma 22 for the random matrix V(*) in the Lemma as V(*) 4 V# here, the bound does not change
up to constants because of the inequality (172). Hence, with high probability, lets say with prob.
1 — 6, this time over both the randomness of initialization and V' °:

1
£ = | =" Dy vosy (VO + V)00 1) < Re (173)
2

This means that with probability at least 1 — /5, over the random initialization, then we have (173)
with prob. at least 1 —+/8; over the randomenss of VV”. We name the latter high probability statement
as (x). Moreover, note that by Lemma 32 and assuming mg log(ms) < ms, we have the following
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almost surely bound (also note that V/¢(%)(z;) is Gaussian with std % 6@ ()])):
2

1
Evs| o= aTLRNm+VW+Vﬁ$4tﬂ°>+fVW)¢“D(xa( (174)
1
— Ey» \/ﬁz " Dy yyosyr o, (VO + V) (xi)’ (175)
O (@ |+—EVPVF7 }:\VW¢@> )] (176)
1 mo
SO @)l s vﬁf j{:Iv’ |+—44———j£: ol (177)
sw@mWW@+@) (178)

Furthermore, note because each variable [V O ()] is %H(é(o) (z;)|| subGaussian. Therefore,
2

L is subGaussian with parameter ||¢(?)(x;)||32 with respect to the randomness of V”. Now the
point is that the high probability argument in (%) is much stronger than what one can get from
the subGaussian ineqaulity with parameter ||¢(®)(z;)||32 (with the corresponding expectation term
69 (2:)||(v/my + B2)). However, the disadvantage of (%) is that it only works for a fixed d;.

In other words, at least it is not obvious from this argument that why for a fixed W(® in a high
probaiblity region of the random initialization, whether we can send d; to zero by growing the
constant behind Rg with logarithmic rate log(1/4). This makes our job hard for bounding the
expectation with respect to V' if we only wish to rely on (x). Therefore, we combine it with the
inequality that we get from the subGaussian parameter that we introudced above. More rigorously,
we define the thresholding parameter

G = [0 @)l (v + B2) + 160 :)1182 Log (16 ()| (g + B2) /Re)
= (1160 @)lI(v/m + B2 10816 () | (Vimy + B2) /Rs))

for which we have
ﬂmag@mwgmg%&

we divide the range of values for £ into three parts:
E[£] = E[£] £ < R|P(£ < Ro)
+EVw%gcgqp@%§£§@
+E[L| U< E}P(U <r)

< B[L] £ < Re| +P(Rs < £<0) + R

< Rs + \/516
Now by choosing §; < 1/U, we conclude with high probability over initialization and conditioned

on W*’s such that £ happens we have

a DV(O)+V;}+V! x4 (V(O) —+ VP ¢(0) ‘ = < §R6

Finally, we integrate also with respect to W*. To control the random variable when E happens, we
use the bound in (178) and the fact that £ is a rare event due to Lemma 33:

Ewo ve

0T Dy vy (VO V)6 )| S B[00 (i o) +B(E R
2

< my exp{—C}/(8msf})}vmsk1 (Vimy + B) + Re = Ry
Substituting this into (171) the proof is finally complete.
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Lemma 21 Third cross term: with high probability over initialization, we have

1 2
Es (EW",V”[WGTDV(U>+V"+V/,M(V(O) +Vi+ (- 77)V/)2¢*($i)])
2

< &3 (my exp{—C7/(8msf37)}(k3mams + Bims) + RZC3) == R,
Proof of Lemma 21

Note that the way we defined the matrix W* and as a result ¢*(z;) only depends on the ran-
domness of W not on W’ or the randomness of V(9. Now using Equation (130) and Jensen
inequality we can write (for vector v, the notation v%® is another vector with each entry as the
second power of the corresponding entry in v):

2
— B (Ewp,w[ " Dy syoivra, (VO + VP 4 (1 - n)V’)Ed)*(xi)])

1
N

1 . 2
Tt Dvorsvesy e (VO + V2 (1= )V (1))

= Ew» vroEsx ((

< EsEwe ve (

1 N 2
T Dy sy (VO £V (L= )V), S0 (2:)))
1 20
= EWP,VP<(WQGTD\/(OWVMV',@(V(O) + VP4 (1 - U)V')> , @ (xi)2®>
1
N

< &Ewo e

< Ewo,ve GTD\/(O)+VP+V/,3:,3(V(O) +VP+(1- n)vl)

2
o0

Jso

2
a" Dy yopvr o, (VO + VP + (1 —n)V) ,

1
Vim,
1
v

1 2
S Dvorvesy s (VO V0| + €0 -0V

1

2
S 252]EWP’VP aT‘DV(m-‘y—V”-‘rvl,xi (V(O) + Vp)H2 + 252]EWP$VP

< &Ewo e

2
< EBwo ve aTDV(O)_i,-VP_I,-V”xi(V(O) + VP)H2 +&*(1—n)*C3.

1
Vi,
Now under the event E¢ defined in Lemma 33 we get that ||¢(?)(2;)|| < Ci, so we can bound the
above as

T
a DV(O)-‘,-VP-‘:-V/,.’ﬂi(l
VMo

-V’

1 2
< EBys sup — | @O v+ V)@ @) + ) = 04 + )|
IV ISC2, V! Lo (i) [l ||<Cy T2 1 75
(179)
+&2(1—n)*Cs3. (180)

Now defining
2

1
L= || S { + V 4 V6O @i) +2) 2 0}V + V)]
J

to bound the first term, we want to apply Lemma 23 using the same trick that we did in the proof
of Lemma 20. Note that L5 is the same term as Fi,’v, in Lemma 23 except that it is defined with

respect to V() 4+ Ve instead of V(9. On the other hand, note that V(©) + V' has Gaussian entries

2 2
with variance x3 + % and we know k3 < k3 + % < 2k3, which means the argument of Lemma 23
holds true here up to constants:

sup Ly S R2
[VISCa2, V7 Lo (w3), [l || <Cy

This holds with probability say 1 — 5 over the randomness of both V(©) and V*. Therefore, with
probability 1—+/85 over the initialization, then with probability at least 1 —+/35 over the randomness
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of VV” we have the above. Moreover, with a simple Cauchy-Swuartz we get the following almost
surely bound:

L2 SIVOUE +IVAIE. (181)

Now the variable ||V?||? is subexponential with parameter (3{m3, 37m3). Furthermore, with high
probability we have ||V (9|2, < mgymgr3. Therefore, taking

Uy = @(m%mgmg + Bims log ((k3mams + 5fm3)/§R7)),
then one can easily see by the subexponential tail:
E[Lo| £z > Us] = 0(U2)),
P(Ly > Us) < R2/Us.
Hence, we can apply the same trick as Lemma 20 as
E[Co] = E|£a] £2 < RE|P(L; < R2)
+E[£2| R2< Ly < 62]1@(%3 <Ly < 62)
+E[£2| U2 < 52}@)(62 < L)
S B|Lo] £2 < RE| + PR < L5 < Up) + B2
< R2 + V5,0s.
Now taking d, < R%/U%, we finally get that conditioned on W*’s where E happens, then

Eve Ly < R2.

On the other hand, to handle the case when E happens, we can use the bound in (181) as it does not
depend on the occurrence of E as well:

Ewe,voLo < P(E)Ey, (|VO|? + |V7|?) + P(E)R?
< ma exp{—C7/(8maf7)} (k3mams + Bima) + R7.
Plugging this back into (180) we finally get
LHS < & (mi exp{—C7/(8m37)} (k3mams + Bims) + R7) + £2C3.
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A.15 BOUNDING THE WORST-CASE SENARIO

’
x

Lemma 22 Suppose mg > log(msz) and /msk1 2, C1. We define the sign matrices DY o4y s,

and D,

V) . With respect to the multiplications

VO + V) (6O (x;) + o),

and
VO (O () + 27).
Then, with high probability:
1

- T z’ (0) +(0) .
sup a’ D , IV (b (xl)
2/ SO IV || <CaV7 Lo VT VO LV
S ( (CiCa)” (0102)2/3m§/3(/€1/€2)1/3 log(mz)) (1 + log(mz) 011/3(/£2\/ﬁ2)2/3)
T ) my’? Oy (ki) 1/3

m® 2k

Sﬁm(bg(m?’) + 1Og(log(m2))) + K1K2y/ M3 1og(m2) =

2

Proof of Lemma 22

Consider a cover for the euclidean ball of radius C; in R™3 with precision ¢, i.e. Bg, (€).
So for every ' € R™3, there exists an © € B, (e) such that |z — 2/[| < ¢, and [Bc, (¢)| < (1)™=.
Now fix ' and z. We have

1 o 1 ) ©)
Loy = EGTDWOMV/MV(OW)(O)(Sﬂz‘) - NG ;ail{(vj‘ +V)) (0 (z:)+2') > 0}V; ¢ ().

Now by a union bound, because each variable Vj(0)¢(0) (z;) is Gaussian with parameter
r2]|¢®) (2;) | and using Equation (115), with high probability we have for every j € [ms]:
V60 @) S kol (@) v/og(ma) S k12 /my og(ma). (182

Therefore, by Hoeffding over the randomness of the Bernoulli variables a;, for a fixed 2’ with high
probability:

1 &
Toim 3 V7 (60 w0 +0) 2 01,060 w) S mama /s Togma)
j=1

On the other hand, We know that the VC-dimension of the class of binary functions with respect to

’

halfspaces in R™? is mg + 1. Therefore, the set of different sign patterns in matrices DY, q, . is
bounded by m3"* !, i.e. for
D = {Dic/(o) :l)| :E/ € R"”S},
we have
DI S mya .

Therefore, by taking a union bound over all sign matrices in D, we get with high probability

sup Ty < K1kay/ms log(ma)y/log(ma™s 1) = k) koms log(my). (183)

Now for a threshold » which satisfies
r> 2\/53/126, (184)

we define 0
T = {3 € (o] V" (8 (1) + )] < 7).

Now by Equation (115)and the assumption of the Lemma /m4x; 2 C1, we have
19 (z:) + x| < 6P ()]l + 2] S Vg1 + Ci. (185)
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161 (2:) + x| = |7 (zi)[| = |2l Z Vmgr1 = C1 Z Vimgra. (186)
Hence, Vj(o) (¢(©)(x;) + x) is Gaussian with standard deviation at least Q(rz2+/m4#1). Therefore,

(0)( 4(0) (4. <<
PV (¢ (LHI)IJ)N\/@KM-

This implies

E[|Tzr]] S (187)

~ \/73/111’62

On the other hand, note that |jx7r| is the sum of my Bernoulli random variables, so it is subGaussian
with parameter ms. Therefore, with high probability

Tog| S ——=——mo ++/m.
| ZT| f312 my.

Now taking maximum over all z € B¢, (€) and exploiting the subGaussian tail of the random
variables, we get with high probability

max

r
<
r€Bc, (€) |jm,'r| ~ \/ﬁ?ﬁmz

my + v/ log(|Be, (€)])

DS o=
~ \/mglillig

ma + /mamg log(1/e).

(188)
Moreover, consider a threshold 1 < 6, such that e—0%/8 < mgy/mg, and define the following set of
indices

TE, =4 € ma]| [VV!| > 6ryC1 ).

Then, using Lemma 29 and noting the fact that the standard deviation of Gaussians in V(%) is x5 and
that [|¢(?) (x;)|| < C}, with high probability:

'-SHuPH—l |jl( 9| < ms(log(ms) + log(log(mz))). (189)

Now note that for each j € [my], ||Vj(0) |2 is subexponential with parameters (mz3, £3), which
means that with high probability:

max [V;”* < mond + vimgwiv/loa(ma) + w3 log(ms).
But with condition m3 > log(ms), we can further upper bound it as
ma [V * < man3.
Now for fixed x, 2/, for j € J, , we have

V26 (@) + )] < [V (8 (@) + )| + [V, ! — )]
< V26O () + 2)| + |V, ||z — x|
S+ Vmgkae.

On the other hand, for j ¢ jm(,Q ?9:
V72| < 0ryC. (190)

Therefore, for j € Jp,» — jaf,z’)e:
V26O @) < V(6O (@) +2)| + [V,'| S 7+ Vimgrae + 0raCr. (191)
In a similar fashion, if j ¢ 7, ., then using assumption (184):

V6O (@) + )| 2 [V (6O (@) + 2)| — [V (@ — )| Z 7 — Vimghoe > /2. (192)
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Hence, using the fact that ¢(%) (x;) is orthogonal to %%

HW + V)60 @) +a) = 0} = 1V (60 () + o) = 0}
< V(6 (@) +2')| 2 [V (6O (@) + 2|}

<1{|V}a'| 2 [V, (6O () + o)}

<Vl 2 [V, (6 () + )]}

<{|V/lICy 2 [V (6O (i) + ')}

V2 ¢O@) +a) | r
<1 N> 2 )
< 1{IVjll 2 el + 36

(193)

Now by triangle inequality and Equations (193), (191), (190) and the fact that ||V’||r < C5, we can
write:

Tar = Tor v

< YU Ve @) +a) 2 0 - 1O 60w + ') > 0} V060 )

VI 2)
JEJm,T—Jm,ﬂ

1
b X [T V6O @) +a) 2 0 - 160 @) +a') 2 0}V 60 )
JE(Te 0T D)

+}nZ > [HEO V60w +a') 2 0} - 1YV @O w) + ') 2 0}V 60 o)
i€g?,

IN

0
= Ter = I max V9O
J \7%7»—._71',,9

1 VOO (@) +a) 0
= E 4|V > 2 VO p0) (4,
J(Ta,r0TG)

\r 767 ] max [V 6 (ay)

< \Tow — TS max V9O ()]
\/72 JGJJ.V -7(/29

VO (6O (2;) + o))
f >z - e +7<|v (6O (2;) + 2')| + OraC1)
3 (Ta,rUT )

\r |J‘/>9|max|v(°)¢0>< )l

< \Tor — TS5y max VPO (z,)]
\/TTLQ 0 §€Ta =T,

1
= > VI Z A GV + 6maCh)
Vi Ch
J8(Te,r 0TS
) 0) (0
+ R|ng9|§1€1§é V76O ()]

1 C r
< _ 72 1 - o> 12
S o Wi = T+ Vilgrae + 0raCh) + = \/#(J IV z &) VI

67



Published as a conference paper at ICLR 2022

1 . T
+ f (J CIViZ )9'f2cl + f\j( ol max |Vj(0)¢’(0)($i)\
(2) CciC3
< f |\Twr — Ty 9|(7“+\/>3/€26+01€201) N
C(:136(2 9

2 0
oty ﬁ 7:7%p] mmax [ViO 6 ().
2 2

Now using Equations (207), (189), (182), and (184), and the bound on |«7x('2 )9| from Lemma 29, we
write

cic3 | CiC3
Vmgr  /mgr?

|jw7«|(’l“+9f€201) ms log(mg) =+ 0 K9

\/» |j/9|’€1’€2
ma + \/maoms 1og(1/e)) (r+ 0k2Ch)

N\fz

r
<
- \/EQ (\/aglilK/Q
1 C?C2 C;C3
+ ﬁz (mg(log(mg) + log(log(mg))))mmg ms log(ma) + r\l/FnZ + \F27%29 9.

1 T
<
< T, (\/mgfilf‘fz ma + /Mmams log(l/e))(r + 0k2C)

mi %K1k c:c: e o

1 1 log(1 194
=, V/log(ms)(log(ms) + Og(og(mz)))Jrr\/FnQ 2 (194)
Now setting
. ma'(kyro) /3
= (01 Cp) /323 (11/32)
My
By this choice, from (194) we obtain
DT | << (C1Co)*/3 +(0102)2/3m§/3(H1H2)1/3 log(l/e))(1+0011/3(H2\/%2)2/3)
T T N (Vmgke) V3 (Vmg k)13 ma/ C23 (k1 /mig)1/3

3/2
ms RiR2

+——=—v/log(mz)(log(ms) + log(log(my))).
Vi,
Now we set
0* := 3log(ma),
which also satisfies the condition of Lemma 29 and combining with Equation (183), we get that with
high probability

[Corvr| < Taryr = Tor| + [Tar|

(C1Cy)*/? (C1Co)*m3* (k19) /% /log(1/€) Cr (av/my)*/?
S ((\/52/‘62)1/3(\/53%1)1/3 2 3 m;/gﬂ )(1+log(m2)cz/3(m\/»3)1/3>
m3/2/<;1/<;2
+ —=—=1/log(mz)(log(m3) + log(log(ms))) + K1#2+/m3 log(ms),

Vi

where ||| < Cz and ||V'[|p < Co, Vj @ V/o ©)(z;) = 0. We also need to satisfy condition (184),
which regardlng this choice for # — 6* becomes

m /6(K1H2)1/3
r* = (0102)2/33# > 2v/mgkage, (195)
my
for which it suffices to set
L/3
€ = (C10y)%/3 1 (196)
2(m2m3)1/3/€§/3

Substituting this choice of € above and picking the overparameterization large enough to dominate
the magnitude of Cy, C5 so that log(1/€*) < log(ms), the proof is complete.
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Lemma 23 Under the following condition

(Vimgra) '/ (Vmgr1)?/® > log™"/%(m2)(C1Ca)/?,
with high probability we have

(0) (0) (0)
sup — | a; 1{( Vi +V)(¢ (x;) + ) >0}V I
2/ |SCLIIV || F<Ca, V! L) VTl Z ’

< Vmgko log(ma) + E\/\;Zngg/g (0102)2/3 logl/G(mg) R

Proof of Lemma 23

Similar to Lemma 22, define the helper functions I';» and I'; v as

v = 7 Zaﬂl{ VO 4+ V) (6O () + 2') > 03V, (197)
Fx/:ﬁuijjajﬂ{vj (@O (@) +2") = 01V, (198)

First we bound sup,, I';s. To this end, note that because Vj(o) € R™3 and the VC-dimension of
half-planes is m3 + 1, then by Sauer’s Lemma, the set

D ={Dyw . |2 €R™, |l2'|| < C1}
of all sign pattern matrices has cardinality at most
D] < mg*

Now note that with high probability, the entries of the matrix V ©) are all less than
O(k2+/log(mams3)). On the other hand, for each fixed sign pattern D¥ we have for the
sum with respect to this sign pattern.

v(m
Zaﬂl{V (6 (i) +2') = 0}V (199)
is (makilog®(mams), k3 log(mams)) sub-exponential with respect to the randomness of a, be-

cause each entry of the vector \/»%% Zj aj]l{‘/j(o)(qﬁ(o)(xi) +a') > O}Vj(o) is (rg+/log(mams))-
subGaussian. Therefore, with high probability we have

1 (0) ¢ 4(0) / (0) 12
|7 ;aﬂl{Vj (6@ (i) +a') = 0}V (200)
1 0 0 -
< E|l N Zaj]l{l/}( (6O (2) + 2') > O}Vj( )11?] + deviation (201)
2
< mak3log(mams) + vVmgka log(mams) + k3 log(mams). (202)
Similarly, if we take a union bound over all sign matrices in D and using the fact that mo > mg:
1 (0) ( 4(0 0) 2

supT? = sup |— Y a; 1{V V(¢ (z;) + 2') > 0}V, 203
wrd = e e StV ) +) 207, 203)
< mak3log(mams) + v/mgrs log(mams)y/log(mT= ) + k2 log(mams) log(my™= ™) (204)
< mgmg logQ(mg), (205)

which implies

sup Ty < V/mgko log(ms). (206)
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Moreover, defining 7, , similar to Lemma 22 and using the similar approach we get with high
probability

max

z€Bc, () [ Terl S \ﬁ K1K2

—=———ma + /mzlog(|Bc, (€)|)

DS o=
~ \/ﬁgmmg

ma + /mamg log(1/e).

(207)

Now for simplifying the analysis, we assume that for indices j € J,, we can change the sign
pattern with no cost on V’, i.e. we can pick any subset of them. Therefore, we first compute a high
probability upper bound on the following quantity:

(0)
sup +V2 . (208)
VMg S g, tsigns I ; i

If we form the matrix V() (Jz,r) be the matrix which only keeps the rows with indices in 7, ,-, then
the above quantity can be computed as

1
N su :tV(O) = 7 su ’UTV(O) jr r (209)
\/EQ SCJm,T,pisigns H ];S J ” \/EQ 116{0,1,—11)}‘~7mm\ ” ( s )”
1 1
< Amax(V(O) (jz,r)) sup ||U|| < )\max(V(O) (jw,T))‘jx,r|7 (210)
\/EQ \/ﬁz

where \,,q, 1S the maximum singular value of the matrix. Now by random matrix theory, we know
for a fixed = and arbitrary ¢ > 0, the following argument holds:

POmax (VO (Ton)) /62 2 /s + A/ | T +1) < 267 211)

Therefore, as |D| < m5 ™, we get with high probability

(0) < m +1
5 AV (T ) § oVl /1] log(mgs ) 212)
log(ma)ms + Ko m (213)

(0)
sup swp SV < 22\ floglma)malTusl +17unl). 214)
x€Bc, (€) \/77"2 SCTx,r jGZS \/7 v !

Therefore, with high probability

On the other hand, as in Equation (192) in the proof of Lemma 22, for j ¢ 7, , we have:

V2 (6O @) +2)] 2 [V (00 (@) + 0)| = V" (@ = 2)| Z 7 = gz, (Q215)
Picking
_ r
- 2\/E3I€2’
we get for j ¢ Ty.r
VO (6O () + )| 2 7
Now similar to the derivation in (193) we have

WV + V)00 (@) + ') 2 0} = 1V (60 (@) + ') = 0} (216)
<{V]lIcr 2 [V (6O (i) + ')} (217)
<1Vl z &) (218)

Hence, because ||[V'||p < Cs, the number of indices for which ]1{( © 4 V’)(QS(O)( i) +a') >

0} # ]1{Vj(0)(¢(0 (z;) + ') > 0} is at most [ = (6‘2762‘2) Therefore, we bound the following
quantity to use in the analysis:

sup 1" =V, (219)
SC[mz] & |S|<I,Esigns jes
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But if we define for mo < j < 2mp,

) _ (0)
V; =V e

then
0 0
sup IS+ @< s 13V
SC[mz] & |S|<l,tsigns jes SC[2m2] & |S|<L jes

jes V( ) is Ik subGaussian. Hence, the quantity || > (O)||2

is (m3l%k3, k3) subexponential. Therefore we have with high probability

2
s |V S B VO + i o (7)) + i o (7))
jes jes

2 2
< malk3 4+ /malk3y [ log ( Tlnz> + IkZlog < 72)
< malk2 4+ Vmgl? 2621 /log(ms) + 1262 log(my).
sup | SV S Vimg Vi + lizy/log(ma).

| ‘ ]GS

Now note that each entry of > jesV,

Hence

Now using Equation , we can write
|F - — / V/|

1S @V, + V(0O (@:) +2') > 0} = 1{V, V(¢ () + 2') > o) V||

J€Tx,r

> @O+ V@O (@) + ) > 0} = VO (6O (i) + 2') > )V
JETw,r

0
sup |V

- vJm Gons
2 SCJx,r,Esigns jes

1 (0)
sup 1y v
VM2 gcims] & |S|<(C192)2 tigns  jes

— \/7’% ( log(m2)m3‘jm,r| + ‘jx,rD + % <m3\/llﬁ§2 + lK/2\/ log(m2)>

< ﬂ( s o (L)) gl + )

(Vims(C1Cafr)ma + (C1Ca )iz loa(m) )

FKQ ))

_\Fz

fz

A

3l

3

A

SIS

~ \rz (\/53/?152 \/m2m3 tog
(\/ﬁg(clc2 /)R + (CLC /1) 1og(m2)).
Combining this with (206):

IDar o] S V/imgha log(ms) (220)

T\FQ ﬁ’”
\/7351 ) *

+

§\~

+ Kot/ m3 log( <f3(Cng/r)/<;2+(ClC2/r) Ko log(m2)>.

(221)

\Fz

Now setting
1/6 :
mg/ (H1/€2)1/3

I %/3(0102)2/3 log!/®(my),
my
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we get

LHS £ s log(ms) + E\ﬁj’ziz (CCo) log S my)

m§/3ng/3(0 Co)/3

/2, 1/2
+ Komy' “log < (m2) + 1/6 1/310g1/6( )

< Vmgkz log(ma) + E\/\C§:i§2/3 (C1C3)%?1og b (my)

+ my k3 (C10y) /3
(V/myk2) /3 (\/gin )13 1og"/© (mg)
Now under the condition
(Vmaka) /3 (Vmigr1)?/® > log ™"/ % (my)(C1C2) Y3,

The final term is dominated by the first term, which finally completes the proof.
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A.16 CONVERGENCE

The goal of this section is to prove Theorem 7.

Theorem 7 Letting X = 4B2, by Corollary 8.1, we have L'(0) < N. We define the domain
D =A{|v'] < C; = N$4l7 V|| < Cy = %} For a large enough constant | = O(1) and

1
function LY (w == (w’,v")) : RN — R. Moreover, suppose L' is py Lipschitz, py gradient Lipschitz,
and ps3 hessian Lipschitz in the domain D; (p1,p2,ps > 1), in the sense that their first, second,
and third directional derivatives in an arbitrary unit direction is bounded by the corresponding
parameters. Suppose we have access to the gradient of L' at each point in Dy plus a zero mean
noise vector £ such that 0?1 < ELLT < 031 and || £]] < Q almost surely. Also, suppose for a
threshold ¥, < R, if L' (w) > R, and w € Dy, then we have at least one of the following conditions
holds:

v

1) (|IVLY (w)]| > ————, (226)

(D IVLE )l = NGEe

(2) Ain (VLM (w)) < —. (227)
Then starting from wy = 0, with probability at least 0.999 after at most

poly(p1, p2, p3, Q, R, C1,Ca,1/v,1log(01/02)) number of iterations, we reach a point w;
such that L (w;) < N,.

Proof Our proof here is a refined version of that in Ge et al. (2015a). As we mentioned in section 5,
the key fact that we are using in the other parts of our proof is a uniform upper bound ||w’|| < Ci,
[[v'|l < Cs which is unjustified by only naively using Ge et al. (2015a). Here, first we restate a
refined version of Lemmas 14 and 16 in Ge et al. (2015a) in Lemmas 24 and 26 respectively, and
then use them to also bound the upward deviations of L. Moreover, to avoid writing repeated
proofs and overwhelm the reader, we mostly treat the arguments in Lemma 16 of Ge et al. (2015a)
as blackbox and use them for our purpose here. A point to mention before we start, unlike Lemma
14 of Ge et al. (2015a) where the dependency on other parameters than the step size 7 is more
explicit, Lemma 16 hides the dependencies on all the other parameters (which is polynomial). Here,
we follow the same style.

We refer to the trajectory of the steps of algorithm by (w;);>¢. In Lemmas of this section, To avoid
introducing new notation and complicating things, we refer to the current point of the algorithm by
wy, while for the next point of the algorithm we use w; (in Lemma 24), and wr (in Lemma 26)
respectively. Also, similar to Ge et al. (2015a), O and (2 below means we are looking at the depen-
dency on 7).

Lemma 24 Suppose L' (wq) < N+21, and consider a parameter x > 1 which can be set arbitrarily.

VL (wo) | > 2¢/n(Q? + 03N)papd (2x + 1),

then for wy = wo — n(V L™ (wo) + £) and random variable R, (depending on wy) defined as
EL"(w:) — L (wo) = —n* %7, (228)

For every point wq such that L™ (wo) < R + 2,

we have R = Q(1) a.s., and almost surely:

LM (wy) — LM (wo)| < n%1/v/p2x.-

(the expectation is over the randomness of £).

Proof This lemma is a tuned version of Lemma 14 in Ge et al. (2015a). First, note that the condition
LH(wo) < RN 4 21 assures the smoothness coefficients p1, p» and ps for LI by Corollary ??. We
follow similar to Ge et al. (2015a) (picking < 1/(2p2)):

202paN
EL™(w1) — L™ (w) < = [ VL™ (wo)||? + T222=
n 1 n?02paN
< 2 IVL wo) [P = 1P (03N + Q)papd (2x + ) +
< — VL™ (wo) |? — 20°Q%papix. (229)
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where we used the fact that p; > 1. On ther other hand, LM s p1 Lipcshitz, so we have almost
surely

[ (w1) = L (wo)| < pun(|V LM (wo) + £]]) < pinp([|V L™ (wo) || + [ £]])
< pin([[V L (wo) || + Q). (230)

(To be completely precise, we should justify that we can write the Lipschitz inequality at point wy,
we also need to make sure that w; remains in the domain that we have the Lipschitz parameter in,
i.e. D;. To see why this is true, see the next Corollary).

Therefore

2
(p2x)| LM (w1) = LM (wo) | < 202 p3 pax || VL (wo) > + 2p2x7° p7Q°. (231)
Taking
1 < (8ppax) (232)
we get from Equation (229):
EL" (wy) — L™ (wo) < =217 pF pax || VL (wo)||” — 2p2xn*.p71Q°. (233)
Combining Equations (231) and (233), we see that
2
(p22) |2 (wn) = L™ (wo)| < —(EL" (1) = L (wo)).

Hence, if we define
EL"(wy) — L™ (wg) == —n*R3,
we get
‘Ln(wl) - LH(WO)‘ <R /V/p2X, (234)
and from Equation (233), that
RT > 207 pax || VL (wo) > + 202xp7Q° > 202xp7Q% = (1),

Moreover, because the function is p;-Lipshitz at the domain point wg, we get from Equation (230):

1
—* R =ELY (wr) — L (wo) = —npr(IVL (wo)l| + Q) = —npr(pr + Q) =~
by taking
1< (prlpr +Q)p2x) ™",

which implies

1

nR; < .

p2X

This, combined with Equation (234) and triangle inequality implies:
LM (wy) = EL™(w1)| < 191 /v/p2x + 7°RT < 209 /V/pax. (235)

Lemma 25 As long as the value of the function at some w is bounded by N + 21 (L™ (w)
N + 2[), then n can be picked small enough (polynomially in other parameters), namely 7
1/ (IVLR (wo)|| + Q), so that the change of the function by a step is bounded by l.

INIA

Proof Let 1) = min{wy,9}. First, note that as the function is bounded by R + 2[, we have the
Lipschitz parameter py, hence ||V LY (w)|| < p;. Therefore, the change in w in a step is bounded as

IVL (w) + £] < Q + p1.

n< (\/Nz?)l - \/NZ21)/(Q+m),
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N+31
,LZ) b

the smoothing parameters even after one step. Therefore, now we can use the Lipcshitz parameter p;

to bound the value of the function after one step as it is written in Equation Equation (230). Using

this Equation, it is enough to pick 7 as small as:

n < /(IVLY (wo) || + Q), (236)

so that the change in the function would be at most ! as desired.

we guarantee that the value of w after a step remains in the ball of radius hence we still have

Lemma 26 For a fixed point wy s.t. L' (wq) < R + 21, suppose we pick n small enough such that

§(n) = 2\/77(622 + 03N ) p2p?(2x + 1) < -

27 16y/CT+ 03
Then, note that for |V LY (wo)|| < §(n), condition 227 implies:
Amin (V2L (o) ) < 7.
Then, using the notation Er for the high probability event corresponding to Equations (36) and (44)

in Ge et al. (2015a), for small enough n (polynomially small w.r.t other parameters), for Rs defined
as

E[L" (wr) — LM (wo)]1{€Er} = —R3n?, (237)
we have almost surely
(L7 (wr) — L™ (wo)]1{€r}| < Ran/v/p2x- (238)

Note that in the expectations above wy is assumed fixed. Furthermore, we can assume P(Er) >
1-0@°).

Proof This Lemma is a tuned version of Lemma 16 in Ge et al. (2015a). We change a couple of
things here. First, we consider an implicit coupling that if w; exits D; we do not move it anymore,
ie. wy = wy, V' > t, which means the noise vectors also becomes zero, i.e. £y = 0,Vt' > t.
This way, the sequence of noise vectors remain bounded by @, because if w; is inside D;, then by
assumption || .£¢|| < @, while otherwise £; = 0. We denote the event that the sequence wy, . . . wr
remain in D; by Ep, where T is defined in Lemma 16 of Ge et al. (2015a).

Note that we also have the smoothing parameters p1, po, p3 for all (w;) because of this coupling. In
fact, we will use a more strict coupling; we consider the event &7 to be the high probability event
corresponding to the bounds in Equations (44) and (36) of Ge et al. (2015a) holding for all ¢t < T
We will see that €, C Er at the end of this proof, but for now we assume it is true. An important
point to note here is that in Ge et al. (2015a), P(€r) is bounded by O(n?). However, the exponent
dependency of 7 in this bound comes from Azuma-Hoeffding type inequalities, particularly used in
Equations (60) and (42) in Ge et al. (2015a), in which by considering larger constants one can easily
get higher exponents. For our analysis, a bit stronger dependence of ° is required.

Also, because the distribution of our noise depends on the point w, our sequence of noise vectors
(£+) is a martingale instead of being i.i.d, so we apply Azuma-Hoeffding inequality instead of the
simple Hoeffdings in Lemma 16 of Ge et al. (2015a). (because we are also sampling a random
(z4,y;) to compute the estimate of the gradient, this could be simplified to the case where we com-
pute the actual gradient and then inject an i.i.d noise vector in each step, but it is an overhead to
compute the actual gradient, so here we choose to analyze the more complicated case.)

Next, notice the definition of A and A right after Equation (66) in Ge et al. (2015a), which in our
notation translates to

. - 1~ - 1 . a ~
A= VLM (wo)"6 + 55%5, A= VLM (wo)"s + §6T7-[6 + 06T HS + %n(s +6]%. (239)

where

(SZIZJT—U)O, 6:IUT—U~}T,
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for (w;) which is a coupled sequence with (w;) as defined in Ge et al. (2015a). Note that we apply
the coupling for the sequence w; as well, i.e. if w11 = w;, we also set w41 = W;.

To show Equation (237), we want to use Equation (67) in Ge et al. (2015a), though we only use the
expansion for the first term which is under 1{r}, i.e.

E[L™(wr) — L™ (wo)]le, = EAle, +EAle,. (240)

First of all, as it is mentioned in Lemma 16 of (Ge et al., 2015a), in the case where the noise vector
0121 <E££LT < 0921 instead of having E£ £T = 021 for a fixed o, in order to still get a negative
term of order 7 in Equation (68) of (Ge et al., 2015a), we just need the size of T}« to be as large
as O(%(logd + log 22)), and it does not change the order of 7 in any other part of Lemma 16.
Now similar to Equation (68) of (Ge et al., 2015a), if w.l.o.g we assume the smallest eigenvalue g
corresponds to ¢ = 1:

N T-—1
- 1
EAle, <5 > A D> Loucop(1 = nh)* n’ofP(€r)+ (241)
i=1 7=0
1 N T—-1
5Z/\ 11y,503 (1 — n\)* %03 (242)
=1 7=0
2r _ON—1 f o
< % [03 P %o P(€Er) > (1+ 7770)27} < —7771- (243)

7=0

where in the last line we use the fact that P(¢7) < 1/2 plus the additional log(cz2/0y) factor.
Second, note that our threshold §(n) for the size of gradient in Lemmas 24 and 26 has the same
order of 77 compared to that of Lemmas 14 and 16 in Ge et al. (2015a). Therefore, the arguments in
Lemma 16 that considers the order of 1 and treat the other parameters as constants is true here as
well. Hence, we still have Equation (69) of Ge et al. (2015a) which is under the event Er. Applying
it to Equation (240),

Hence, finally by a similar derivation of Equation (67) in Ge et al. (2015a):
E[L"(wr) — L™ (wo)|1{€r} < —Q(1). (244)

Next, we turn to prove the second bound (238). Combining Equations (36) and (44) in (Ge et al.,
2015a), we get with high probability (we use the final high probability parameter of Lemma 16
which is the result of a union bound over all the high probability arguments which is equivalent to
the occurrence of &), i.e. when € happens,

~ 1
[wr — wol| < O(n? log ) (245)

Picking 1 small enough such that for the bound above we have

1 1 N+ 3l N+ 2]
O(nZlog—) < — ,
(n gn)_\/ m \/ ”

we get for every w in the line connecting wy to wr :

IN+ 3
wl| < 4/ —=,
o] < "

which implies that L' has the smoothing parameters p1, p2, p3 along wg to wy. Therefore, by the
p2-gradient smoothness property of LI:

!
IVLY (@) = VL™ (wo)|| < p2llwo — || < O(p2n* log iz

Combining the assumption of the Lemma ||V L (wp)|| < O(n2), we get
IVL™ (@)|| = O(n'/*1og(1/n)).
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(The last O also hides the dependency on p3). Now integrating over the derivative along the direction
from wq to wr:
1
LY (wr) = LM (wo) + VLY (two + (1 — t)wr)T (wr — wo)dt.
t=0
Therefore, using (245) one more time, under the event Ep:

1L (wr) — L (wp)| < / ’VLH(twO + (1= tywp)T (wr — wo)|dt

1
g/ IV L (two + (1 — Ewn || wr — wol|dt
0

< O(n'?log1/n)||wr — woll = O(nlog®1/n).

Hence
1L (wr) — L (wo)]1{€7}| < O(nlog? 1/n), (246)
which

Now comparing Equations (244) and (246), it is clear that one can pick 1 small enough (again
polynomially small in the other parameters) such that for some random variable Ry, which also
depends on 7, so that equations (237) and (238) hold.

It remains to show & C &p. This is desirable as up until now we have only proved (237) and (238)
for the coupled sequence (which does not move outside the ball D;), but we know that under the
event &7, the coupled sequence and the original sequence are the same, which automatically implies
the conclusion for the original sequence. Notice that the bound in (246) is an a.s. upper bound on
the change of the function value under the event &7 for every 1 < t < T Therefore, by picking n
small enough (polynomially) s.t. the quantity O(n log(1/n)?) in Equation (246) is bounded by I, we
again make sure that the value of function during these steps changes by at most [ compared to wy,
ie. forevery 1 <t <T:

[L™ (wy) — LM (wo)]1{&;}| <1, (247)

hence, remains bounded by R + 3{. This implies &7 C E7 as promised.

A.17 PROCESS FROM A HIGHER VIEW: DEFINITION OF THE (X') SEQUENCE

The goal here is to find a w* with LY (w*) < ¥, using Lemmas 24 and 26 (recall the definition of
N, from Theorem 7). The main result of this section is Lemma 27. For this purpose we define a
useful coupling: to begin, as done in Ge et al. (2015a), define a sequence of times 7; inductively in
the following way: To define 7,4 based on 7;, if the condition

Ny < LM(wy,,,) <N +21 (248)

does not hold, then just set 7,11 = 7; x(1). Otherwise, using the conditions (227), we are either in
the situation of Lemma 24 or Lemma 26 by setting the value of wy in these Lemmas as wy = w-,.
In the first case, define 7,41 = 7; + 1 %(2). In the latter case, Let &7 be the same high probability
event that we consider in Lemma (26), which happens when the aggregate behavior of the noise
vectors is normal, as a result of which w remains close to the starting point wg. Note that from
Lemma 26, we know P(&7) > 1 — O(n®). Now if the event &1 happens, define 7,1 == 7; + T
*(3), for T also from Lemma 26 and defined originally in Lemma 16 of Ge et al. (2015a), while
otherwise, define 7,11 = 7; x(4). Moreover, if €1 does not happen, define the rest of 7;/’s equal
to 7;: 7+ = 7; for every i’ > 4. At the same time, we define the monotone increasing events {G; },
where G, happens in the case x(4), and G;;1 happens in case x(4). Also, G; happens if any of the
previous G;/’s happen for i’ < i; in other words, G; is included in G; ;. We use these events to
bound the probability that the process remains above X,. Moreover, define the sequence of random
variables (X;) as X; = L"(w,,). Note that by Lemma 25 and Equation (247) in Lemma 26, we
have Xy — [ < X; < N+ 3l. The key idea behind defining X;’s is that we want to bound the MGF
of LY (w;), without worrying about falling out of the assumptions of Lemmas 24 and 26. With the
definition of (X;) and G;, we are ready to state the theorem which roughly says the sequence 7; will
most likely stop after a number of steps.
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Lemma 27 Let Qp = Ufil ({ 7. <R}N QZ) Then, for some

O(log(1/61))(R + 31)
On? ’

we have P(QRr) < 01. In other words, after R iterations of PSGD, the defined sequence (X;) above

has either been in situation (1) or x(4). Here, 0 depends polynomially in the other parameters.

R:

(249)

Proof By Equations (228) and (244) in Lemmas 24 and 26, there exist a constant # depending
polynomially on all parameters except 7 such that

E[Xi1 — Xi| Gi) < —0(7i41 — Ti)ﬁz- (250)

Now for some constant C' that we specify later, define the random time 2 as the largest ¢ where
7; < C/n?. Using the fact that G, _; C G;, for every i we have a.s.:

X1 1{G;} — X;1{G; 1} = 1{G; — Gim1 }(—X;) + (Xip1 — Xi)1{G;}.

Now summing this for ¢ = 1 to 1, taking expectation from both sides and using (250):

EXZ+1]1{Q_Z} — X() = iEl{QZ — gi,l}(—Xi)]l{z 2 Z}

i=1
+Z i1 — X){Gin{v > i}}
< ZE(H{@} —1{Gi-1})(—Xy)

+ Z E(Xi1 —
i=1

< supsup | X;|
1

N {1 > z})ﬂj’(g_l N{r>1i})

+ eZE<—<Ti+1 — ) |G = PG N {2 i)

= supsup | X5 —n F)ZE Tiv1 — ) 1{G;i N {n > i}}.
1=1
Now using Lemma 25, we know that in except when € happens (in which we stop the time se-
quence T7;), the increments of X; are at most [. Therefore, the value of X;’s always remain bounded
by N + 3I, hence:

(o)
LHS S N + 3l — 0772 ZE(TH-l — TL)]].{GZ n {Z Z Z}}
i=1
Also, by restricting the integration of the second term to the part [ J;° (Ql Nn{r >2C/ 772}) of the

sample space, we know that under the event {+ > i}, G; automatically happens when 7,1 # 7; (it
is easy to check). Therefore:

Q
D
——
a
I\/

(@

LHS <N+ 3l — 9n2E]1{ }Z Tiv1 — 1) 1{Gi N {e > i}}

&
Il
—

=N+3l— an2m{

s
Il
-

(@

=R+3l— 9n2m{

@,
Il
—

=R+3l— 97721[-3]1{

(@
—~ o~
Qi
D
—~
2
Y
Q
\
3
(%]
-
N— N— N— v
—
—
.
+
AR
|
A
=
—_~
-~
vV
«
[

(@

@
Il
-
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Now by the definition of ¢, 7,41 > C/ 772. Hence, we can write

LHS <N+3l— 97,21@11{6 (g} N{r; > C/nz})}(C/nz)
=1

N+ 30— OQ}P’( G (g}, n{n > C/nQ})).

1=

But note that X;’s are a.s. bounded between 0 and Y + 3/, which implies the LHS above is at least
—(N + 31). Therefore, we finally get:

P(J (G:nim = cm)) < QNCZGZ.

i=1

Picking C' = C* := 2(2X + 61)/6:

(251)

N =

(@:

B (6 tmi = 07 /})) <

3

Il
-

Note that the differences between 7;’s is at most Thax = 0(1 /n) Ge et al. (2015a). Hence, again
for 1 polynomially small in other parameters, (251) implies that for R = 2C* /n?, there exists

R = poly(.) such that after R iterations on the main sequence (w; ), the corresponding sequence (7; )
has either been in (1) or x(4) with chance at least 1/2. Repeating this argument log(1/d,) times
(using the markov property of the process) we conclude the proof.

A.18 BOUNDING THE MGF OF X;’s

Next, we want to exploit X;’s to bound the upward deviation of L™ (w;). For a fix  the goal
here is to bound E[exp{6X;}] (this is a different §!). More precisely, let F; be the sub-sigma field
generated by variables w; from time zero to ¢, and F; := F, be the sigma field of the stop time ;.
Then, obviously, X; is measurable w.r.t ;. We prove the following theorem:

9(X71—X0))<i>0

Theorem 8 For any 0 > 0, the sequence (Ee ° 1 Is a supermartingale with respect to the

filteration (F;),
Proof We proceed inductively by jointly conditioning on the previous X; and whether G; has hap-
pened or not, and whether we are in situation x(2) or x(3). We have
Elexp{0(Xi+1 — Xo)}| Fi]
= Elexp{0(Xit1 — Xi + X; — X0)}1{Gi}|Fi]
+ E[EXP{H(X¢+1 - X+ X; - Xo)}ﬂ{gl N *(2)}|]:1]
Now by the a.s. bounds of Lemmas 24 and 26:
E[Xlurl — X1| g_l‘, wTis.t. * (2)] = —9{%7]2,
E[Xit1 — Xi| Gi, wrs.t.x (3)] = —R3n?,
(XiJrl — Xl>]]_{gz} =0. (a.s.)
Where fR; and R, are r.v. defined in Lemmas 24 and 26 and are clearly F; measurable. This implies
E[(Xip1 — X)1{Gi, w,,s.t. % (2)}| Fi] = —9R39°1{G;, wy,s.t. % (2)},
E[(Xip1 — X)1{Gi, w,,s.t. % (3)}| Fi] = —R3n°1{G;, wy,s.t. % (3)}.
Now we mention the following fact:

Fact For a o subGaussian random variable X we have E[exp{6X}] < exp{6?c2}.

Using the a.s. bounds of Lemmas 24 and 26, we get that conditioned on {G;, w,, s.t. x (2)},
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Xit1 — EX;41 is as. bounded by 2n0R;/(p2x), and conditioned on {G;, w,, s.t. x (3)},
Xi+1 — EX, 1, is bounded by 29092 /(p2x). Therefore, using the above fact

E[GXP{G(Xz‘H —E(Xi+1| Gis wr, st % (2)))}‘ Gi, wr, s.t.x (2)] < exp{4°0*R/(p2x)},
(252)

E[exp0(Xis1 — B(Xis1| Gir wr, sitox (3))] Gi, wr, st x (3)}] < expl4n®0°R3/ (0210},
(253)

which implies in the notation of conditional expectation on sigma field:
E[exp{0(Xis1 — E(Xis1| 7)) }{Gi, #(2)}

E[exp{H(Xi_H — E(X;41|F:))}1{G:, *(3)}

]-"1} < exp{4n?0*RT/(p2x) Y 1{Gi, x(2)}, (254)

Fi| < exp{an®6°%3/ ()} 1{Gi, +(3)}. (255)

Now we write:
LHS < Elexp{0(Xi+1 — Xo)}1{G:}| Fi]
+E[exp{0(Xis1 — E[Xip1| Fi)) } exp{0(E[Xis1| Fi] — Xi)} exp{0(X; — Xo)}1{G;i N %(2)}| Fi]
FE[exp{0(Xis1 — E[Xip1| Fi]) } exp{O(E[Xs11| Fi] — Xi)}exp{0(Xi — Xo)}1{G; N *(3)}| Fi]
< exp{0(X; — Xo)}1{G:}
+exp{0(X; — Xo)}E[exp{0*Rin"/(p2x)} exp{—0(R1n*)}1{G; N #(2)}| Fi]
+ exp{0(X; — Xo)}E[exp{0*R3n°/ (p2x)} exp{—0(R37°)}1{G; N x(3)}| Fi]
< exp{0(X; — XO)}EK]l{gi}
+exp{0?Rin?/(p2x) — O(RT*)}1{G; N %(2)}
+ exp {02080/ (p2x) — O(R3)}1{G: 0 (3)})| 7).

Now setting 6 := 1 and picking x > 1/pa:

LHS < exp{(X; — Xo)}E [11{@} F1{G: N%(2)} + 1{G; N *(3)}] f]
=exp{X; — Xo}.
Now by hypothesis of Induction we have
Elexp{Xiy1 — Xo}] = E[E[exp{Xi+1 — Xo}| Fi]] < E[exp{X; — Xo}] <1,
which finishes the proof of step of induction.

Now using Doob’s Maximal inequality for positive supermartingales and R defined in (249):
P( sup (X; — Xo) > 2)
1<i<R
=P( sup exp{X; — Xo} > exp{z}) < Elexp{Xr — Xo}]/exp{z} < e™*. (256)

1<i<R

A.19 PROOF OF THEOREM 7

Finally with the developed tools, we are ready to prove Theorem 7.

Proof of Theorem 7 Starting from wy = 0 with L'(wy) < X, we use Equation (256) to get
P(sup;<;<pexp{X; — Xo} > Q(log(1/61))) < 61. Therefore, setting [ = ©(log(1/d1)) and a
union bound implies with probability at least 1 — 20; we should have gotten into situation x(1) or
*(4) without the value of X; exceeding X + 2. On the other hand, using Lemma 26 we know that

¢ happens with probability at least 1 — O(n5) for every 1 <t < R which is equal to 7; for some ¢
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and when we are in the situation of Lemma 26. As a result, the chance that even one of &7’s happen
along R iterations is at most

o 4O(log(1/5,))(R + 31)
RO(n°) =7 ;

But picking 1 small enough with respect to log(d1) and other parameters, we conclude that with
probability at least 1 — 34, after R rounds, we should have gotten into situation x(1) and not x(4) and
not exceeding X + 2/, which means that X; = L(w,,) has gotten under the threshold X,. Note that
as soon as that happens, we terminate the algorithm. We elaborate on this more in Appendix A.10.

A.20 GAUSSIAN SMOOTHING

In this section, we describe our smoothing scheme and the approximation that it provides which
enables us to keep the signs from the case n = 0. Recall that we use Gaussian smoothing matrices
Ve ~ N(0,57/my) and W7 ~ N (0, 53 /m2). Here, we will particularly specify lower bounds
for 81 and s in order for our sign approximation to be precise. On the other hand, we normally
prefer the smoothing noise to be as low as possible so the primary and smoothed functions are close,
so we set /31, B2 equal to their lower bounds, and use this setting in the other parts.

To begin fix one of the inputs x;. In order to reduce and simplify the amount of notations, we refer
to the sign pattern matrix (diagonal sign matrix) of both the first and second layers by D with the
appropriate indices. More specifically, for the first layer, we refer to Sgn(W(©) + W' + W*)x; by
D: , and Sgn(W© + (1 —n/2)W' + WP + /jW*)z; by D ,. Similarly, for the second layer,
of course depending on the input vector, we refer to the sign matrix with respect to the matrices
VO + V' +VPand VO + (1 —n/2)V' + VP + /V* by by D/ , and D , ,,, respectively. We
introduce two new notations as well for the output of the first layer with respect to different matrix
and sign patterns:

gD = WD, (WO + (1 =)W + WP+ V)i, (257)
B =WoDs , (WO (1 — )W + WP 4 7V, (258)

For further brevity, we sometimes refer to 2’/(?) by .

Now we are ready to mention our approximation theorem regarding the smoothing and the sign
changes.

Lemma 28 Under the conditions k1v/mg 2, C1 + B1y/mg and my > mglog(ms), then for every
‘]EWP,W aT Dy, (VO + (1 =)V + VP + VWD, (WO (1 =)W + WP + V")
—d"Dr,(VO + (1 =)V + VP + VWD, (WO 4 (1 — )W + WP + V" )z,

< nosBy " [(01 +vmgp1)?/ (k1vmg) + [\/E:}mlﬂl + Cl:| GXP{—O%/@W?)%)}}
02/3

X [exp{—C§/3( /m21£2)2/3/(8ﬁ§)} + W]
C2 2m m.
1 (ay/mz + C1 ) (exp{—c3/(3281)} + — 7 )¢ P = i (259)
1V1my

Proof of Lemma 28
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‘We can bound the Left hand side above as
LHS <

‘Ewp,vpaTD/wm(V(O) + A=)V + VP VWD, (WO 4 (1 =)W + WP 4 /W ™)z

—a"Di (VO 4 (1 =)V + VP 4 VYWD, , (WO 4 (1 =)W' + WP + W)z,

+ ’Ewp,vp a"Dr (VO + (1 =)V + VP + VYWD (WO 4 (1= )W+ WP+ W)

— "D, (VO 4 (1 =)V + VP 4 VYWD ,(WO + (1 =)W' + WP + /aW )z,

We bound A; and A, separately. First, we start with A;.

Let P; be the set of indices j for which ]l{|(Vj(0) + V])2'| < R*ral|l2’||} happens. Then, from
Lemma 31, we have |151| < R*mgy. Now for j € [mo], we write

1{sign change in thejth neuron} x |amount of change)| (261)

]' *
T Vi vy
2
(262)

0 * 0
< HVia' € (VO —Via' + V]2’ — Ve, VO — Via')} x

Moreover, note that
Via') = [V} (2’ — ¢ (),
* _ * 0
Via!| = V(2 — ¢ (z:))].

Also, because [|V/[| < [[V’|| < 2C; plus using Equation (128), we can further upper bound the
above indicator as:

< YVfa' e (~VOu Vi l|V] |+l Vi) ming|2'||, |2’ — ¢ ()|}, ~V, "2’ ~V]z')}

< ja IV + Vil e — 6O ()]
< 1{Vfa' € (—V 0/ —V]a'—(2nCot+ /o2 /v/msy) min |2 |, ||z ()|}, =V, V2'~V/a')}
x \/717—12(27702 T VoVl - 6O ()]l
Taking /7 < 0/(2C2/m.,), we can further upper bound as
SV € (-VV2 - Vo' — 2oy min{ |’ — ¢ (i), |2’ ||}/ Vg, V2’ — Via')}
% (Vo2 /ma)|lz’ — O ().

Therefore, conditioned on z’:

Ey»[1{sign change in thejth neuron} x |amount of change| | z'] <
B(Vfa' € (~V;"2' = Vo' = 2y/Mea min{[la’ — 6 (@) |, |2’ |[}/v/ima, =V’ = V]a'))
x (Voz/ma)|z’ — ¢\ (w:)].
Now notice that for j ¢ Pi, we have
| = V2! = V]a'| = Romalla’].

Also, note that the variable V2’ is gaussian with variance ||2'[| 2//m, Therefore, conditioned on

x', for j ¢ ]51-, we have (note that 2’ does not depend on the randomness of V?):

B(V/a' € (V"' = V]’ — 2y/mesmin{|la’ — ¢ (@)L, ||}/ vVima, ~V{"a' — V]a'))
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< exp {min{| — V"2’ — Vo' — 2y/mosa’||/vmal, | — V"2’ — VI'|}/ (V2|2 || B2/ /) }?
x([[']| B2/v/ma) ™t x (v/os min{||z’ — ¢ (z,)]|, |||} /v/m)-

This equation follows from the fact that

b .
Pla <N <b) < l@ =B min?a,0 /07, (263)

g

2/3 1/3
On the other hand, note that for /7 < % we have:

2/3 1/
R*K/QHIIH/Q _ C2 (\/MQ"{Q)
2/,

el > 2yealle’ v/
which implies
< exp {R*malla |/ (2v21a" | B2/ v/imo) Y (ViTea/ B2)
< exp {=Cy (Vimyma)*/* [ (853)} (/e / o).
On the other side, for j € P;, we can write
B(V/a' € (~V;"' — V]’ — 2y/meamin{[la’ — O (wi)||, ||’} /vy . —V}"a' —V]a'))
< (I'1182/Vimg) ™ (Vi min{ 2" — 6O (). 12"}/ vimz) = min{l|2’ — ¢ () [|/1a”]], 1} v/To2/ Bz

Therefore, overall using the fact that [|[V*[| < g2/+/m,, we can write

A1 S Y e {=Cy P (Vimyra) ' [(883)}(viloa/ B2) minf |2’ — ¢ (i) [2/I|a|I, 2" — (i)}

j¢pP
+ 3 (iea/ ) mind e’ — 6O @) /12,13 x (s /ma)lla’ — 6O ()]
jep
< [ma x exp (O3 (Vimama)?/*(862)} (viiea/B2) x (vfiea/ms)
0035 mingla! — 9 (@)l e/ — 6 o)1}
» /3
< neis " min |/ = 00 (@) 216/ " = 60 )} exp (=C3(imama)/*(853)) + Tt |

(264)

Next, we bound A,. First we bound Eyy» ||/ —2/(2)||. Recalling the setting co = 2,/nmzC1/v/Ao
and the definition of in P from Lemma 1, we obtain that for j ¢ P, we have for all i € [n]:

W O2:| > eaf Vi,
(Wiai| < ca/(2vmy),
which means for j ¢ P:
(W + W))a| > eaf(2v/my). (265)
Also, we have

|P| S CQ\/El/Hl. (266)

Now using Equation (104) in Lemma 5, we can write for every ¢ € [n]:
val; = 1{sign change in thejth neuron} x |amount of change
0 N 0
<YWz € (—Wj( Vg — Wiz + nWiz; — nW; i, —Wj( )y — Wiz;)}

X (VW xi + nWiai|).

1
Vi,
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Using the fact that [[W][| < [[W'||p < Ci, and Equation (104) (|[W}|| < o,/:2) and picking

VN < Cf)l‘\/ﬁi‘ we obtain

< YWla; € (W Oz — Wiz —nl|Wi| — vallw; |, Wz, — Wia;)}

1 * !/
X \/ﬁl(\/ﬁHWj |+ nlW;l)

< ]l{szi e (—I/Vj(o)xZ VV'IZ - ZIQ\FS Wgo)xi - W]’xl)}

vmy

Now for j ¢ P, because W/ x; is Gaussian with std ﬁ %
(0) / \F My ) / Vi,
Ewoelval;] <P(Wlw; € (-W; " 2 — Wiz — Q\fgf ~W; a; — Wia;)) x \F V1o \Fl

< exp— {min{| - W%, — W’xZ—ZIQ:??’II WO — Wia'[}/(V28, /i)Y

P Vit 1
(B V)™ < (oY) \ﬁle o

Now from Equation (265) and by picking /1 S < so that

2\/779\/\/%' < o/ (4v/m),

then
2
LHS 5 exp{~3/(3280)n T (267)
prm
On the other hand, for j € P we have
vm (0, m
Eval; < P(Wla; € (—W " a; — Wia; — 2/0Yrsd, —W e, — Wia,)) x 3
e ) Ve i, M oy
\F \F Q ms
< m Al = 268
Now define the following random variable with respect to the randomness of W*:
mi
Val = Z 1{sign change in thejth neuron} x |amount of change]
j=1
then for every k € [mg], we have
|:r:/(1 ;(2)| <Val,
which implies
|2'® — '@ < /msVal.
But Combining Equations (267) and (268):
P
EVal < (exp{-c3/(3289)} + | |) Qﬂm"
1
o°ms
< (ex c5 /(32 + )
p{=3/ G280} + = Ju
which implies
2
E (1) _ @) < —¢2/(3232 C2 Y m3\/m3. 269
wolla'® = 2@ < (exp{-c/(3260)} + = Jn (269)
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Now we can write

]aTD,, VO L A=V + VP + V'@ —aTD, (VO 4 (1 =)V + VP + vV *)a’D

1 & .
< o= 2NV + (A= n)V) + V] + i) @@ — 2 D))
2

J=1

N

mao
< f Z\vm) /W) 4 (1= V(@O = 2O+ VP @ =2 D) 4 vy () D)
2

1 =

D (@ =)IVil+valvy D@ — ")

2 j=1

_ ﬁ Z “/}(0)(%/(2) _ xl(l))l + |‘/jp(x/(2) B x/(l))| +
2 j=1

I 2,0 "
< e LIV =) VP = O (Ve Ve ) [ = 20
2j:1

Now by Equation (126) in Lemma 10 (i.e. |[V*||r < v/(5) and the fact that ||[V'||p < Cs, and by
taking
Cy
< 77
Vs e

we have

(@=mlIVlle+vailv*ir) S €1, @70)

so we can bound the above as

mo
1

O n(2) _ (1) (2) (1 n(2) (1)
LHSS,\/@;(HG (@@ — /O 4 VP (@@ — ))|)+C1||x ) O,

Furthermore, using Lemma 32 and noting the fact that the entries of V(?) are normal with standard
deviation k2, we get with high probability over the randomness of V():

1 &
S i D V@O = O (a2 log(ims) +Tog(log(ma))+C1 ) )=V
2 j=1

Now note that V' (2/(?) —2/()) is normal with standard deviation \/% ||2'® —2'(M||. Hence, taking
2
expectation w1th respect to V7*:

Ey»

"Dy (VO + (1 =)V + VP 4+ V)2’ — 0T Dy (VO + (1= )V + VP (/Y )2’

< (Hzﬁ-l— Hz\/m3(log(m3) + log(log(m2))) + Cl) ||x/(2) _ x/(l)H.
271)

Finally, Combining Equation (264) and (271) and applying it to Equation (260) implies with high
probability over the random initialization:

Eweve a’ Drpn(VO + (1 =)V + VP + gV )Wea'®
—dTD (VO £ (1 -V + VP + \/ﬁv*)wsx’“)’

<A+ A

2/3
< Evwong3y  min{ | — 6 () |2/, la' — 6 (@]l exp {~C2/3 (Vinama)?/(883)) + e |

(Vmyha)*/?

+ Ewe (123 + h2y/ms(log(ms) + log(log(m2))) + 1 ) /@) — /0]
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Now notice that under E°, using the assumption x1+/m4 2 C1 + y/m4 (1 and Lemma 33 we have
'] = 16 (@)l = [l — ¢ ()]
> "fl\/%g —(C1+ \/5351)
2 Kl\/E?H
and
2" — ¢ (z:)]|* < (C1 + VimgPB1)?, (272)
which implies:
Evwo min{||z’ — ¢ (z;)[*/[l'|], |2 — ¢ ()1}
< Ewo H{EY|2" — 6@ (@) 1P/ [l2']| + L{E}Ha" — ¢ ()]
< (C1 + Va8 (s vimg) + B 1{EY ' — 60 ()]
S (C1+ V1) (k1) + [vVimgma i + C1 | exp{=C3/(8mas?) }.

Substituting this above and further applying the result of Lemma 33 and Equation (269) and the
assumption that ma > mg log(ma):

Ay + Ay Snospy ! [(Cl +vmsB1)?/ (kivmg) + [\/E:}mlﬂl + Cl} eXp{*Cf/(8m3ﬂf)}}

x [exp {~C5"* (Vimgra)?/*/(853)} + (ﬁf;)/}
2
oy + ) (exp{=c/ (3280} + ) 2 M,

which completes the proof.

A.20.1 SETTING 31 AND 3

As we mentioned, to minimize the amount of deviation of the smoothed function compared to the
original one, we prefer to choose (31, 32 as small as possible. (The benefit of such choice, indeed, can
be observed more explicitly in other parts of the proof, e.g. Appendix A.14.) Observing the bound in
Equation (259) and noting that we can easily make the exponential terms orders of magnitude smaller
than the poly terms, it is easy to find the following optimal setting for the smoothing parameters:

B2 =0, ((Hlﬁg)fl(\/ﬁsz)i%),
B = @p <m3m3/(ﬁ1m1))-

Using this setting, we still can make g arbitrarily small. Here, we remind the reader that O, only
cares about the non-logarithmic dependencies on the overparameterization, i.e. m1, Mo, M3, K1, K2.
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A.21 BAsic TooLS
In this section, we introduce and prove some lemmas that we use in our analysis as basic tools.

Lemma 29 Suppose V©) € R™2%™3 has standard normal entries and a is a random sign vector.
Suppose theta > 1, R < 1 are given thresholds, such that

maR 2 ms(log(1/R) + log(ms) + log(log(msz)),

e=0°/8 < mg/ma.
Then, for the following quantities:
Ni(@) = #(j € m]: [V,"2] < R)
Ni(@) = #(j € s v,z = 0),
with high probability we have
sup Np(z') < maR,

/[l =1
Sup Nj(2') < ms(log(ms) + log(log(mz))).
x'||=1

Proof of Lemma 29

Suppose Bj (¢) is a cover for the Euclidean ball in R with precision e. We know
[Bi(e)| S (1/e)™.
Now for a fixed ||z|| = 1, we have
P(W "z < 2R) < R.
Therefore, using Bernstein, with high probability we have
#(j € lmal s V02| <2R) S maR+ VmaR+1.

Hence, using union bound, we have with high probability

sup )#(j e fm]: [V,"a] < 2R) S maR + /log [Bi(e)[V/ma R + log | B (¢)
xre By (€
= moR + \/maRms3log(1/e) + m3log(1/e).
By picking
e S R/(v/mslog(mams)),
The assumption implies m2 R > m3 log(1/€), which implies
LHS < myR.

On the other hand, note that with high probability we have

sup VY] < Vlog(mams). (273)

j€[m2],kE€[ms]

Now for ||z’|| = 1 which is not in the cover, if z is the closest point to it in the cover, i.e. z € B (€)
and ||z — 2'|| < ¢, then for every j € [m3] we have

1V Oz — (VO || < [V |lz — 2| < v/m3log(mams)e < R,

0)

by picking a small enough constant. Therefore, for a j that |Vj( x| > 2R, then

V%' > 2R~ R=R.
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Therefore, we get that with high probability, for every ||2’|| = 1:
sup #(j € [mo) : \Vj(o)x'\ < R) < maR.

llz"l|=1

For the second part, note that for ||z|| = 1, by the tail bound for normal vars:
[P’(Wj(o)ac >0/2) < e/,

Hence, again using Bernstein, we have with high probability

sup #(j € [ma] : Wj(o)x| > 9/2) < mae /8 4+ Vlog |Bi(e)|[v/mae=0%/8 + log | By (€)

z€Bi (€)

S mae= /8 4+ \/ms log(1/€)v/mae=92/8 4+ m3log(1/e).
By picking
e S 1/(y/mslog(mams)),

and using the assumption m26’92/ 8 < mg, all terms are dominated by the third term so we can
bound the above as

sup # (i € [ma] : |V,"a] > 6/2) < ma(log(ms) + log(log(ms)).
€ B (€)

Now for ||«’|| = 1 not in the cover, for the new € we can write

1V, O — VO < [V Nllx — 2'|| < v/mslog(mams)e < 1/2 < 6/2.
Hence, with high prob.

sup #(5 € ma]  1V}"z] 2 6) S malog(ma) + log(log(ma))).

Lemma 30 For x € R% and W € R™*4 which has standard normal entries (and a is a random
sign vector), we have with high probability:

1 _ L 10
Hleuz)l f(z): \/ﬁa c(WOz) < Vd.

Proof of Lemma 30

For the first part, we first compute an upper bound on

1
E sup ——alo(WO).
llzll=1 VT

To do so, we use Dudley’s chaining. Note that the for x1,x2 € RY, the variable U(Wj(o)xl) —

O'(Wj(o)QSQ) is subGaussian with parameter ||z; — z2||, so the variable f(z1) — f(x2) is also sub-
Gaussian with parameter ||z1 — x2||. Hence, by Dudley’s integral:

E sup —a o(WOz) < / \/1og(N(BL, €)) < V.
[|z||= 1\/7

Now for a fixed x, note that

1 1
—a U(Wll’) - 7& g ng ||W1 W2 H S HWI — W2||F.
vm vm Z J J

Hence, the function f(x) is 1-lipchitz with respect to W and [2 norm, so is the function sup f(z).
Hence, by Gaussian concentration, sup f(x) is 1-subGaussian around its mean, so we finally get
with high probability

sup f(z) SVd+1 <V
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Lemma 31 For
c3

we have with high probability over the randomness of V' (©):

R* =

sup #(j € [ma] : \(V(O) + Vj)a'| < R*kall2’ H) < R'ma.
2V |[V|<Coa

Proof of Lemma 31

Note that obviously the condition of Lemma 29 is satisfied with this choice of R = R*.
Therefore, with high probability we have for an arbitrary z':

#(|V 0a'| < 2R kol|2’ ||) < msR".
On the other hand, note that for j € [ms] such that [V/2'| > Rks||2’||, we have
Vil = [Via'| = Rea '],

which implies
IVi[l > Rks.

Therefore, there are at most Therefore, setting aside mo R + R2 Yy of j’s, for the rest we have

R2 2
0 0
(VO + V') > VO | - |Via!| > 2Rm2|\x’u — Ro|2'|| = Rea 2.

Setting R* as defined above balances the terms mo R and 2 Yt which completes the proof.

Lemma 32 If V() e R™2X™3 js q matrix with standard normal entries, then with high probability

1 A
SUp —— Z Wj(o)x/| < Vma + \/m3(log(m3) + log(log(my))).
2 j=1

llz" =1

Proof of Lemma 32

Let B (€) be a cover for the unit Euclidean ball with precision e, for which we have | By (€)| < (2)™2
Now for a fixed x € Bj(¢), note that because V(O)x is a standard normal variable, the random
variable |Vj(0)a:’| —IE\VJ-(O)Q:’\ is O(1)-subGaussian, which means \ﬁ > (|Vj(0)x’| —E|Vj(0)x’|)
is also O(1)—subGaussian. Now from the tail of maximum of subGaussian variables:

mo

Z |V(O)£C| E|V(O)$| < Vlog(|Bi(e)]) = /malog(1/e).

sup

€ B (€) \/7

On the other hand, note that ]E|Vj(0)x’ |) = O(1), which implies w.h.p:

Z|V x\N\/ 2+ v/mglog(1/e).

sup

z€B1(€) V 2
Moreover, note that again by the tail of subGaussian variables, we have w.h.p:

(0)
max V| < y/log(mams),
je{mz],ke[m3]| ik | g(mams)

which implies with high prob for every j € [ma]:

HV | < v/mslog(mams).

&9



Published as a conference paper at ICLR 2022

Now by picking
-1
€= ( ms log(mgmg)) ,
we get with high probability

1
sup —— Z |Vj(0)x\ < /mg 4+ /mas(log(ms) + log(log(ms))). (274)
z€ B (€) \/77"2 =1
On the other hand, for an arbitrary =’ with ||z’|| = 1, if @ € Bj(e) is the representative of 2/, we

have by definition ||z’ — z|| < ¢, which combined with (A.21) implies

0) s (0) 0) s (NI
VO = v )| < VO @~ ) < 1V’ - 2l

S \/mg log(mgmg) <\/m3 IOg(QOg)) - S 1.

Therefore
1 ma ©) 1 m2 0)
LI | ALY S 7 9:|‘ < /. (275)
‘ Vmy ; J Vg ; J

Combining Equations (274) and (275), we conclude the result.
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A.21.1 DEFINING THE RARE EVENTS F;
Lemma 33 For 2'® defined in Equation (258) we have

Evollz'® — ¢ ()], Ew» [ (2:)]| < C1 + Vg,
Ew[|¢® (2:)|* < CF + msfi.
Moreover, for the events
Ej = {‘ijl‘ll > Cl/\/mgml}, FE= UjEj,
we have under E°:
12 = 6@ (@3)|I, 16 ()| < Ch-
Furthermore, E happens rarely:
P(E) < myexp{—C7/(8m3f7)},
Ewe L{E}|6® (@0)]] < [Vimgma By + C1 | exp{~C3/(8msB)}.
Ew e 1{E}2"® — 60 (@) < [vmami By + C1] exp{~CF/(8m3p?)}.

Finally, we have the following almost surely bound.:

ma 1
6@ (@)l < C1+ Vimg Y ——=W/z,|.
= Vm

Proof of Lemma 33

We start by writing

1 o 1
2] = — Wie (WO 4 (1= )W+ W) < S — | WPay. (276)
AL 2
Now notice that by Lemma 1, we know for every j ¢ P:
W] > ea/v/ms, @77)
(L =mWijwi| < caf(2v/m,y). (278)

In addition, by Equations in (104) from Lemma 5, for every j € [my]:

m
Wi < 91\/*3,
my

so by picking
1 < c2/(dovmy)
we obtain e
Wizl < . 279

Combining this with Equations in (278), we see that the signs of (Wj(o) + (1 =)W+ W)z,
and Wj(o)xi are the same for j ¢ P.

Moreover, the matrix (1 —n)W’ + /nW* satisfies
1A =mW' + /W= < (1 =n)Cr + Vnv2(e < Cy,
by picking \/n < C1/ V/C,. Hence, the conditions of Lemma 6 are satisfied and we get:
1

v

Weag(WO + (1 =)W' 4+ aW*)z; — 6 (2)|| < Ch. (280)
1
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Combining Equations (276) and (280):
miq 1
2 0
2/ — O ()] < Cl+\/53j;ﬁl|wfxi|~ (281)

In exactly similar fashion, one can derive

16 (z:)]| < C1 + Vmg Z Pay]. (282)

Now first of all, note

Jx'L' S 617

mi
Ewoe
2V
which proves the first part of the claims. For the second part, note that by the Gaussian tail bound

P(|WFx;| > Cy/y/msmy) S exp{—C7/(8msf3})}.

Therefore,
<Y P(E;) < myexp{—C}/(8msf7)}.
J
Moreover
J2 J#J2
= —Z > Ewe[Wlzi| + — ZEWp (Woa|| E;]|P(E;)
[\/7711 J2 j#j2 }

< [miBi + Cofvms| exp{~C/(8m3 ).

Plugging this into (281) finishes the proof. Also, under £ by Equation (281) we have
|2'® = O (zi)], 62 ()| < C1.
Finally, exploiting Equation (282):
Evwol|¢ ()]

1
,S 012 + ngEWp (Z |ijxt|)2 S 012 + ngWp Z |ij$1|2
J J
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A.21.2 BOUNDING THE VALUE OF f’

The following Lemma provides a reasonable bound on the value of the smoothed function.

Lemma 34 We have the following general bound on the values of the smoothed function: With high
probability over the initialization, for |W'|| < C1, ||V'|| < Cq and Vi € [n] (having small enough
choices of 31, Ba described in Appendix A.20):

| fivr v ()] S (Kav/ms + ﬁz)(\/rnglﬁ +C1 + ﬁgﬁl) + Co(C1 + Vmyph),

which is O(C1Cx) for large enough overparameterization as described in AppendixA.3. Moreover,
we have the following almost surely bound (with respect to the randomness of W? and V°):

|fwrswe vigve ()]

S /iy + V1) (Vs + Co (e S0 IWED) + CofCot (i 32 Wil

Notably, with slightly higher overparameterization, the high probability bound in (34) holds even if
we take supremum over x.

Proof of Lemma 34

Using Lemmas 30 and 33 and using the fact that ¢(®)(x;) is orthogonal to the rows of V'
(recall 2, = ¢ (z;) + @) (z)):

|fwrswe vigve ()]

1 . 1
< aTo(VOzl) + — |(VE 4+ V)
T SR

My
1
< (kav/mg)||zi]| + —= > [VFal] + Col|o®@ (z))||
5]l %;g | |

< (r2vmg + [Vl p) 2] + Callo® (a:)])

1 1
< (rav/mg + [Vl ) (Vimgis + C1 + /i

T WD) + CalC o Vi ( 3 W)
’ (2;33)

Note that above, if we apply the stronger worst-case norm bound of the first layer’s output presented
in Lemma 46, we would get sup,, (=1 | fw'+we v'+ve(x)| is bounded by the RHS, which in turn
proves a stronger uniform bound on f’.

Similarly, this time by taking expectation with respect to W* and V*:

|fove v (@) = [Ewo vo fvr v ()]
< Ewe,velfwr v (xi)]
= Ewe(k2v/mg + B2)l|2i]| + Callz; — ¢ (2,)]]
S (ka/my + B2) (Vinga + C1 + Vimafi ) + Ca(Cr + Vimah).

Corollary 8.1 If we set C; = Cy = 0 above, we get
Fh 0@l < (ke + B2) (Vimgms + vims 1),
the point being these terms go to zero by an order of O((\/ﬁyig)_%). Therefore, taking

(\/mzlig)_% << B, we make sure that |fj | < B, so by the 1 smoothness of { and B bound-
edness of the labels we get {(fg (), y;) < 4B>.

93



Published as a conference paper at ICLR 2022

A.21.3 BOUNDING THE DIFFERENCE BETWEEN ORIGINAL AND SMOOTHED FUNCTIONS

The following Lemma bounds the difference between the smoothed function and original function
of the network.

Lemma 35 Bound on the smoothing change under the assumption mq > mglog(ms): with high
probability over the initialization, for any (W', V') with |W'|| < C1, |V']] < Cs:

| fovr v (i) — fir v (20)]

< Ba(k1v/mg + C1 + VmgBr) + (Cz + sz/mQ)\/%gﬂl'
Proof of Lemma 35

We write
|fW/,v'(33i) - fév/,v/ (%)\ = \fW/,V/(mi) - EWﬂ,VPfW/+Wv,V'+VP (xz)|
= ’EWP,VP (fW/,V’ () — fW'+WP,V/+VP(CEi)>’
< Ewoeve|fwr vi(zi) — fwriwe vigve (z;)

In the following, 0 means we apply Relu activation to the vector in front of it (entrywise):
1 1
alo(VO 4+ V' 4 Vo) ——Wea(WO + W' + WP)z;
my my
1
vm.

1 5 1
alo(VO £ V) —Wee(WO + W + WP)a;
Vi, N :
1 5 1
— ——a"o (VO 1 V) — W (WO + W)z,
Vm, v
Now for the first term above, using the previous notation of z representing the output of the first
layer and using Lemma 33:

LHS <Ewoye

1
ATo(VO £ V) —We(WO + W + WPz,
2 Vmy

+EWp7Vp

1
aTo(VO 4 V' 4 vP)

Weo(WO + W +Wr)a;
My my

]EWp,VP

1 1
— —aTo(VO V) —W3e(WO + W + WPz,
Vm, vmy

1
< Ewr ve—— [Vl

< BoEwol| 2|
< BaEwe,ve (6 (i) + 163 (z:)])
< Ba(k1vms + C1 + VmgfBh). (284)

For the second term, by starting off with a simple triangle inequality:

Ewo vo alo(VO 4 vzl — %a%(v@) + V(6O (z;) + ¢(2)ﬂ(xi))’

my my

LSO 4 iy el — 6O (a)) — 64z,
sEWp,VPﬁQ;](vj +V))(at = 00 @) — 6 (a))
1 — / / /
< Bwove——>_ |V (@l = 60 (@) = 67(@))| + [V} (@) = 6 (@) = 6P¥(a1))|
2 j=1
/ 1 — /
< ol = 00 (w1) = 6P| + Buo e SOV 0] = 60 ) = 90¥(w2))|.
2 j=1
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Now using Lemma 32:

S (Ca+ mama B ot = 900 () — 622, |
1
< (CQ + st/mg) \/%BEWP ; WJW;’xi‘
S (02 + /€2\/W2) Vms . (285)

Combining Equations (284) and (285) we conclude the proof.
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B.1 SMOOTHNESS COEFFICIENTS

Recall that for a function f € C? on R?, we say it is y; Lipschitz, po gradient Lipschitz, and j3
hessian Lipschitz at point z if for every unit direction v, | 2% f (2 + Av)| < 1, | %f(r + )| < o,
and |j—/\22f(w + )| < ps.

The aim of this section is to bound the Lipschitz coefficients of the loss £(,y) and objective

L(W’, V') in a bounded domain |W’| < C1, ||V’|| < Cs. The following is our main Theorem
in this regard:

Theorem 9 For given values C1,Coy > 0, in the domain |W'|| < Ci,||[V’|| < Cy, for any
label |y| < B, the loss function {(.,y) is O((C1Co + B?))-Lipschitz (having enough overpa-
rameterization) and 1 gradient-Lipschitz x = fy,, y,,. Moreover, the loss function L(W', V") is
(O(C1C3) + B)¥q + 2(Cy + C3) Lipschitz, W3 + (O(C1C3) + B)Wq + 4 gradient Lipschitz, and
3,0y + (O(C1Co) 4+ B) V3 hessian Lipschitz, where U1, Vo, W5 are defined in Lemma 36.

Proof of Lemma 9

As in the proof of Lemma 36, let (W,V) be a unit direction, ie. |W|> + ||[V]? = 1.
Then, using Lemma 34, we know that for every i € [n]: |[fjy v/ (z:)] = O(C1C2), so by
1-smoothness of the loss and B-boundedness of the labels, we get that £(.,y) is (O(C1C2) + B)
lipshcitz at point f{/V,y,. The gradient smoothness parameter of the square loss ¢ is bounded by 1
and its third derivative is zero. Now using these coefficients, we can easily compute the coefficients
for L as well by simple differentiation:

d . d
| v aw (20 9l = [ 90) 1 /1 < (O(C1Ce) + B) .
d . d . d? ,
|W£(f{/[//+)\w,vl+/\f/(zi)7yi)l = M(f/7y7)(af )2 +£(f/?yi)ﬁf | S \Il? + (0(0102) + B)\IJQ
d d . PO d? d ; d3 /
|W5(f1;vl+/\w,vl+,\‘7($i),yi)| = (f/,yi)(af/)d +30(f 7%)Wf/af/ +f(f/7yi)wf |
< U3 4 30,0, + (O(C1Cy) + B)Vs.
Moreover, note that
W XTI = 2007 X W)| = 2 ) < 2w = 201,
& / 17112 FTaR .1
d3 / 17112
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and similarly for ||V’ 4+ AV ||2. Combining these results finishes the proof.

Above, we used parameters ¥y, Wo, U5, the Lipschitz coefficients of f’ in domain [|[W'| <
Cy, ||[V']| € Ca, which we bound in Lemma 36 below.
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B.1.1 COMPUTING THE LIPSCHITZ COEFFICIENTS OF f{;, 1/

In this section, we bound the Lipschitz coefficients of fy 1, in the domain [|[W’|| < Oy, [|[V'|| < Cq
by poly(m1, ma, ms, 51, B2) functions.

Lemma 36 For every point (W', V") in the domain |W'|| < C1,[|[V'|| < Ca, we have the following
bounds on the Lipschitz coefficients of fiy v (W, V) is a unit direction with |W||? + |V ||? = 1):

A=0 ‘

S B%(;éQ Vims(k1+C +ﬂ1)(“2\/ﬁ3 +C2) + \/Bé\/ﬁg(m +Ch +61))

7 (v

d2
d)\2 fW’+>\W V’+>\V( )

‘ afW/-F)\W,V’-‘r)\V(xi)

2

) (ravi + Ca) + oy (e (s + €1) + )} =

(i a)

A=0

< (BT + Z2171) (v + €202 4 3) o+ €2 4 7] = 0

‘CD\SfW’—&-)\W V’+/\V( ),\:o‘

. L \3/2
< (2L 2 M2 5702 2 2 2 2] .
s (VP +Z171) WS((@mng) +63) (51 +C2 + 7] = W
(286)
Proof of Lemma 36
Let
1 wepz o ve?
pr,Vp):: expi— — s
( («/27r)mg’rn3+7n1d(ﬁl/\/ml)7rL1d(52/ﬁ2)m277L3 { 2ﬂ%/m1 Zﬂg/mQ}

be the density function of the law of W” and V” which is a joint Gaussian. Then to compute the
derivative and second derivative of the function in the unit direction (W, V), s.t. [|[W|% + ||[V]|%,
we can write the value of the smoothed function as an integration with density p, change variable,
and then take derivatives:

d
afilzv'+,\v1/,v'+/\\7 (i) A0

d/\EWp vefwriawswe, viiavsve (i)
B a/fW/+AW+Wﬁ,V/+/\\7+VP(xi)P(Wp7Vp)d(Wp,V”)
d 4 ~
= /fvv+,v+(:1:7:)p(W+ (W AW), VT — (V! 4 AT )W, V).

But one can easily see that for fixed V' and V, the set of functions fyy+ v+ (z;)p(W+ — (W' +

)\I/V)7 Vt—(V'+ )\f/)) for a small neighborhood of A can simultaneously be upper bounded by an
integrable function. Hence, the Leibnitz rule holds here because of dominated convergence theorem,
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and we can change the order of integration and derivation:
d ~ -
_ /fW+ e () (W = (W' AW,V — (V4 A7)+, V)

= [ w0 V(D (W = ) () (v = v 420

mi ma

p(WH — (W £ AW), V — (V£ AV)d(WH, V)

= [ w77, e 2V howe v eya(we, v)

51 " B3
= Ew» V"(ﬂ1 <W Wp> 52 <V ve >)fW'+AW+WP,V/+W+VP(:u)(iﬂi) \—0
= Ew» Vp<ﬁ1 (W, we) + G LTV fwrewe vrsvoce (@) (287)

Similarly we can compute the second derivative:

d2
Wf{/V%)\W,VUrAV(xi)

A=0
= i J e e OV PG (W7 = ) (0 (V- 7 7))
p(WH — (W' + )\W)7 vt (V' + )\V))d(WJF,V‘F)

= [ e @[O0 9, (L) (0 = 4 a), (2 (v - i ) -

my ma2

(W, ), ((fi)lw (ﬁ)lmﬂp(vw — (W4 AW), V= (V! 4+ AV)d(W, V)

— [ fwewr @ (079, O 51 W V) (7.0 R S0 v v awe. v)

= Eweve [ (G5 W, W) + E me ) - (G I+ ZZ V1) [ i,y )

= Burvo (307 07) + Z2T.V0)) = (G + Z20712) s v 0.

A=0

(288)
Similarly for the third derivative:
d3
d/\3 fW +)\W v’ +)\V( )
/fW+ NED) < (W+ (W' + AW)), (fi)—l(w — (V' + W)))f-
<<W7v> (2w, <5 ) v>>}p<w+ — (W XV), V= (V4 AV, V)
/fW+ v () [(OF, ) (W= (W AW, (fi)-l (vr-v'+ Af/)))>3

~s(or 7, (- (W+ (W’HW)),(fi)l(W<V'+W>)>><<W,V),(<5l>1 W, (22)17) )]

mi ’ mao
p(WH — (W +AW), VT — (V’ AV AW, V)

= Eyo v [(61 (W, We) + 22(7, VP)) - 3(

52 (W, WPy +

ZWVn) (G I+ V)

B 52

Jwrswe vigve(e,) (fﬂi)} :
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Now for first derivative, exactly similar to the derivation in (283), we can write

’]EWP Vp<51 <W Wp> < >>fW’+WP,V’+VP(a:i)(‘Ti)

< Bweve 7 (" Wp>+*<‘7 VO | furswo v e ()

< Bweye |3 (W W7) & 2 (V. V)| (eav/ms i1 + IV el + By %2;%%@0
< B (|7 (0. 97| + [ (V. P>|)(@mg:c;<2>||+||V’F||x;<2>w;nz;wfz;@n)
_ %(EW (Vv Bl (2 v/ms + 1V 1) +EW,,EW\/%‘<9,W>‘ ? vra)

+ 5 ((Ewe a0, W) (/s 1V ) + B (7, W7) v \/% Z vrelo)

< 57 (B (7.7 | B )||<m2f3+02)+EWp]EVP\F (7ve >‘Z|Vp )

mi

i ((Ewo l20 (W, W) (m2v/ims + C2) + Ews

T P p,./(2)
(W, W) |Bys — v ;Wj #1),
where the last line follows because ||V’|| < Cy. But notice that because ||V |z < 1, |[W||r < 1,

then <‘~/, Ve > and <W, we > are Gaussian variables with variances at most 33 /mz and 3% /m;.
Hence

Bvo|[(V,V?)] S Ba/v/ima, (289)
Euwo [ (W, W7)| 5 B1/v/m,. (290)

Similarly, using the same derivation as in (33), one can also get the following a.s. bound (over the
randomness of W 7).

@ < L P
1421 5 Vs (m o+ €+ xIm; zil), @91)
therefore
1
Ewo |2\ || S vims (1 + C1 + Bwo——= > [WPx,| (292)
A e Swre)
< Vmg (m +C1 + 61). (293)

Moreover, for every j € [ma]:

~ - 2
, <V, VP> ‘ v < \/Evp V, VP Byo| Va2

o 52 62 H /(2)”7 62 ” /(2)||
\ngf

Ews <W,Wp>’|W;’zi| oy (294)
my
Similarly, using Equation (291) we bound

]EWP||x;<2>\|]<W, WP>‘ < ims (]Ewp <W, W”>’(m + 01) + EWP\/% 3 KW Wp>’|ijxi|)
J

< \/>3(\/»1 (m + 01> \/ﬂn»il) (295)
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Now applying these bounds (290), (293), (294), and (295) to (289) and using the fact that

EVp

1
Z= 2 VP < Ballal )
2 .
J

we get

LHS Srgg(\/6%2\/773(514-014-51)(/{2\/%34-02) +EWP\/7 |z 2)”)
+T§§(ﬂa(¢%l (k1 1)+ \/’%)(nzﬁg + o) + B | (W, W) 8212
S5 (it + ot )i+ G2+ ZEv ()
+nﬂ?(m3(\/%l (m + Cl) + \/‘%i)(@\/»?) + 02) "‘52\/»3(\/—1 (Iﬂ + C’l) \/Brjnl))

To make it easier for handling the second and third derivatives, we first bound the expectations of
Lo iwo v +Vo(ay) (i) Which enables us to use Cauchy-schwartz. Again using similar derivation

as in (283) and Equation (291):

2
EW",VPfW'+WP,V’+VP(zi)(xi)

1 2
< Ewo ve <H2m3||x;(2) ” + CQng(Q) ” + W Z |Vjp$2(2) ‘)
2
1 2
< (sav/my + Oo)Ewe [ |+ Bwo By (30 V)
J

< (k2 + Co) By 2 ||2+EWPfZEwva P+ Bwe = 3 Evg IVl By [Vl

J1#J2
m(m —1
< (ka/img + Ca) B 22| + EWP%nx;@)H? + By 3 D)
(R2v/ms + C2)* + 83 ) Ews ||

l€2\/73+02 +ﬁ2)Eme3</€1+C1+\/f Z|prl>2

J1¢Jz

< ((
= ((
(mfﬁcz +ﬁ§)m3 (k1 + C1)? +—Z]Ewp|W”xl\2+— > Ewe |Wjﬁxi|EW]el|W]in|}
(

(K2v/my + Co)? +ﬂ§)m3_(/€1+01)2 61 +5M}

A

— ms ((@\/ﬁg T )t ﬁg) :(;-;1 L)t ﬁl]. (296)
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Now for the second derivative, we can proceed by applying Cauchy-Swartz:
d2
ﬁfW'+,\W viaw ()

A=0
ma .z mo -~
< Ewovo| (8 % W)+ Z2T. V) = (G + BRI s v v (@0
my, = My |~ 2myms ~
< EW’HV” ﬁ4 <W Wp> a2 ||W||2 54 <V Vp> 2 HVH2 52ﬁ2 <W Wp><Va Vp>‘
i 65 103
‘fW’+WP,V'+Vp(Ii)(xi)
m? - my .~ Mo, ~ 2mims 2
<.|E T3 iy weyz — Pigize 4 2207 vey2 — P2y 4 WWpVVp(
\/ weve| ( ) 3 W]* + 54 < )2 - 5 V2 + 25 ( ) )

fW’+WP,V’+VP(z71)($i)

Jeurr

Now note that the cross terms have expectation zero, so we get

- 2 _ N2 4
B (070 ) (20 v BT s g, v

S

m2 -~ m2 - 4mime
S\/inl4+f|Vl4 W2V (12 /Ewe ve
1 2

2

fW/+WP,V/+VP(z7:)(xi)

2

fW’+WP,V’+VP(a:i)($i)

feies
mq .= mao  ~
s (Iwie+ ﬁgnvn?)%@Wﬂ,w

Now applying Cauchy-shwartz and Equation (296) to above and combining it with Equations (288):

d2
2 wraw vroap (@)

2
fW’+WP,V’+VP(a:i)(xi)

A=0
< (S + Z2IVIP) s (Coam, + Co2 + 38) o+ 0o+ 58]

Similarly for the third derlvatlve.

ol

CURICES i V)’ =3(G W)+ V) (TP + Z V)|

‘ A3 fW’Jr)\W vraav (@)

= ]EWF"VP

‘fW/+WP,V/+VP (z:)

< \/EW,J,W ((Gporawe)« Z2w.ve)) —a(Grav.we) + 2 ve)) (v + B2V )|

B3
\/Ewn,vp

But note that

2
(297)

fW’+WP,V’+VP (33@)

3 ~ . - 2
Buve,ve (7 (VW) 4 G0V )= 3(r W, we) 4+ 20, v) ) (3 IW P + 217 |
< By (LT, WPy 1 27 vy
< 2B,y (G (W, W) + 27, V7))
mi mo -~ mi ma 2
+18( G IWIP + 21V ) e (T W)+ V)
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Now note that %(VTL Wr)y + %(V, V'P) is a normal variable with variance %HVT/H2 + %HV”2
1 2 1 2
Therefore, by the bound on the moments of normal random variables:
my, .~ mo | ~ 3
LHS S (S IWI2 + Z2IV)1) (298)
Eh B3
Plugging this into Equation (297) and also using Equation (296):

a3,
wfwwz\vi/,v%w(xi)

o

- - 3/2
< (G2 + S21712)" s (o 4 38) [ + O+ 1]
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B.2 REPRESENTATION LEMMAS

In this section, we prove lemmas mostly related to the representation power of the network, which
we mainly use in Appendix A.12.

B.2.1 REPRESENTATION TOOLBOX

Lemma 37 Recall the definitions of W, and % from Equations (64), and (60). For all k,i € [n]:
|Zi x — trace(W,F Z1)| < /n/(mado) || Vil o=

Proof of Lemma 37

n n
trace(W," Z}) = trace(Z, > Vi Z1) = > ViilZi, Z}). (299)
j=1 i'=1

But note
mi
i il 0 0
(25, 2) = 1/my Y Wi AW O T e YW O e Hag, @)
j=1
(T4, ) < - (Oky or
J:

Now note that (z, 2;) < 1, and 1{W " Ta;}1{W " T2/} is a Bernoulli with

EL{W T2} 1{W " Ty} = 1/4 + arcsin((z, y)) /27.
Therefore, by Hoeffding inequality we get
(Zk 20) = Hi5| = O(1/y/ma).
Hence, because obviously ||[H>||2 < 1, we get
trace(W,} Z}) = ZV;”/H”, +0(1/v/m)) Zv,”/ =Zip +O(1/v/my) Zv;“ :
=1 =1 ir=1
which implies
[trace(W,! Z;) — Zix| < O(1/v/my)vn|[Viell2
< O/ (Vmy Vo)) Vil =
< vn/(mido) Vel e

Lemma 38 (Bounding the rows norm) For every 1 < j < my, we have

W) < ms/ (vV/mide) ZHVkHHoc

Furthermore, for every k € [mg], we have
IWFEI < Vi Aoma Vil . (300)

For the ease of notation, because here we want to work with row sub indices of the matrix W,j , We
refer to it by W**. Proof of Lemma 38
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For a fixed 1 < j < m; we have with high probability over the randomness of the sign
matrix W?*:

m3 ms n
s 0
W= 11w = 11> w1/ mn Y Ve W Ve > 0}
k=1 k=1

i=1

< Vi), | 31D Veaw (W, > 0}

< M/m\/z (S ml)’

< mg/ymi [n Y |[Vel)?
k

< Vimsn/(vmixo) [ [Vil3e.
k

Furthermore, for every k € [mg], we have

W< 1y Y Wed < (Vafv/mn) [Vl < (Ve v/ Roma) [ Vil e

Lemma 39 With high probability over the initialization, we have
IWEHIE < (1 £ O(n/(Aov/mn))) [Vl Free -
Proof of Lemma 39

Recall from the definition of W*¥ in Equation (64):

IWE 15 = 1D VeaZillE = D2 ViiVia (24, Zi)

i=1 i=11'=1
=2 D VeiVea (HZ5 £ 0(1/vVmy)) S VEH®Vi £ O(([Vilh)?/v/ma)
i=14'=1

= [Vill3re £ Vil F O(n/(Aov/ma)) = (1 £ O(n/(Aoy/ma))) || Vil Fre

B.2.2 SOME LINEAR ALGEBRA

Lemma 40 Forn < s, letry,...,T, be s-dimensional vectors that are approximately normalized
and orthogonal to one another, i.e. given some § > 0, for every 1 < i # j < n:

—5 S <7"Z‘,7"j> S 5, HTZHZ S 1 +5.

Then, for any vector v we have

n

D (0,r)? < (146 +n(n—1)5(1+6)*)o]*.

i=1
Proof of Lemma 40
Define

n

vy = Z(v,ri>m, Vg =V — V1.

i=1
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First, note that

n n

D (o) < (1+3) Z(v,n>2llm\|2

=1

:(1+6)||Z(v,ri)ri||2—2(1—|—(5) > (oo ) (ri )

1<ij<n

=@+ OolP —20+8) 3 (oo rary).

1<i#j<n

Next, we write

I
tﬂ
=
5
S
~
[\v]
I
Pj
=
5
S
~— L
[\v]
I
2o
Pj
=
.
3
<=
=
<
-
N
=<
3
3
.
.
o

i i i#j
=-2 Z<v7ri><v,rj><ri,rj>.
i#]
Therefore
D ) <@+ (ol + v —wl?) =200 +8) Y (wora v i) {riry).
i=1 1<i#j<n

<@+ 8)(lorl* + o = v1]|* 4 2(v1, 0 — v1))
+2(1 +5) Z <’U,7’i><7],7’i><7‘7;,7’j>

1<i#j<n
S@+0)IP+200408) D> olPlrilllirlis
1<i#j<n
<A+IF+201+0) Y follP(1+0)d
1<i#j<n

= 1+ 8)[[v]* +n(n - 1)8(1 +6)*[[v]|?
= (L+0+n(n—1)5(1+8)*)]vlf?,
which completes the proof.

In the following lemma, we state a trivial bound on the norm of z; based on (3.

B.2.3 BOUND ON THE NORM OF Z;’S

Lemma 41 For every i € [n], we have

Izl < [ IVellfre = V.

k

Proof of Lemma 41

By definition:
ms

z = (Hloovk> k=1

Now consider the Cholskey factorization H>* = K K”. Because of the assumption ||z;|| = 1, we
know that the diagonal of H° is all 1/2. Hence, for the ith row of K we have || K;|| = 1/2. Now
by Cauchy-Swartz, we have

2f = (Y Vil Ki)? < U1 VeGP 1K 2 = 1/20 Vil -

Summing over ¢ and noting Equation (59) completes the proof.
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Lemma 42 In the context of Lemma 10, for o < 2nB?, one can substitute f* by f* such that

-~ 2

* * B
Ru(F) < 2Ra(f*) + —,
f*TA—lfT* S f*TA_lf*,
and furthermore, f* is in the subspace of eigenvectors of A with eigenvaue larger than Q(#)

Moreover, the constant 2 is arbitrary and can be changed to any constant more than one, with the
cost of an additional constant behind the second term.

Proof of Lemma 42

For an arbitrary i € [n] and some given vector f* (we will specify later), we define
6= |f i* - fz* |a

and suppose the slope of £(.,y;) at point f is equal to c¢. Then, using the convexity, the fact that
2(y;,y;) = 0, and the 1-smoothness of £(., y;), it is not hard to see the following poincare inequality
between the value and derivative of £(., y;) at point f:

¢ < \J20(fF ) = 2. (301)

where from now on, for brevity, we refer to £(f,y;) by £. Also, from the definition of § and again
using 1 smoothness property, it is easy to see that

((F7 i) < (c+0)0 + (S yi) = (e +0)d+ 1, (302)
Plugging Equation (301) into (302) and using AM-GM inequality:
UfF y) <02 +ced+ 0 <82 +V25+1
<SP0+ 6%/244
< 20+ 36%)2.

Summing above for i € [n], we obtain
Ro(f7) < 2Ra(f) + 317 = [13/2. (303)

Now we write an eigendecomposition for A as A =Y.' | A\;u;ul for orthonormal basis {u;}, and

let f* =), 7v;u; be the representation of f* in this basis. Then, from our assumption, for arbitrary
w>0

ny?Az—l _ f*TA—lf* S 47’1327
which implies
w! Z 72 < 4nB?
i A <w
or equivalently
%2 < 4n82w, (304)
i A\ <w

where notice that )~ , _, 77 is the squared norm of the projection of f* onto the directions whose

eigenvalue is at most w. Now taking w = ﬁ and defining f* by keeping only the directions in the

expansion of f* in the eigenbasis of A, for which \; > w, completes the proof.
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B.3 COUPLING FOR Vyy, Vy

In general, because the gaussian smoothing matrices (/W*, V) can become unbounded, the gradi-
ent estimates (Viy, V') = Vi v l(fwrwe vrsve (2i),yi) also become unbounded. However, in
analyzing the stochastic behavior of SGD and showing that it can escape saddle points, it is conve-
nient to assume the gradient’s noise vector is almost surely bounded. The goal of this section is to
introduce a coupling between (W*, V?) and another random variable that is a.s. bounded polynomi-
ally in other parameters. As that the coupled random variables take different values is exponentially
small while the number of iterations in our algorithm is only polynomially large, without any con-
cern we instead work with this new random varaible, and with an overload of notation we also denote
itby (WP, VP).

Lemma 43 For an arbitrary parameter x >> 1, On any pair for (W', V') with |W'|| < C4,
IVl < Cs, there exist a mean zero random vector A with respect to the randomness of the uniformly
picked data point (x;,y;) and the smoothing matrices W+, W2, VP and VP2 which define

Vw v (meaning it is a function of those variables), such that with probability at least
1—2exp{—(x* — 1)dm, /4} — 2exp{—(x* — 1)mgma/4} =1 - 41,
we have
Vw v = Vigr LW, V') 4 A, (305)
and finally A is a.s. polynomially bounded, i.e. almost surely we have
|A|l < poly(my, ma, m3,Cy,Ca, B, X).

Proof of Lemma 43

Remember that 2 was the output of the first layer (by considering the smoothing matrix
W*). Now with high probability over the initialization,
D(x]
IV s rsn @l = 9o foawn e o) 2008
D(z}
IVt o veave @) )

1
Vg
1

< (VO + 1Vl + 1V l) (e D Idiag W) Do 1)
Lok

1 . s
T 2 Idiag (V) Duwe e o )
1 g

R
=" D (VO 4V VOl 2 S ding(Wi) Dursawo o
1 k=1

< (/i + Co + V]| )

S (I{Q\/mgmg + CQ + ||VPI|F) (306)
On the other hand, using the final bound in Lemma 33:

m

1
Vv fwrpwe vrpve (@) F = || diag(a) Dy qvoai" || p < |2}
v
1 P
< kivmg + Cy + /g Z fm/] ;|
; v

< Kk1vmg + C1 + Vmg|[W? || F. (307)

Denoting é(fW/+Wp,1’V/+Vp,1’yi)vw’7V’£(fW/+WP,2’VI+Vp‘2 (xi)7yi) by €W’,V’, then combin-

ing Equations (306) and (307) and using the 1 gradient lipschitzness property of the square loss,

Vv e
d(e(f, yi

| ML) 19 furrns v @) B+ Vv fivrsna e (@) I3

df

< (|fW’+W”1,V/+VP1 (IZ)‘ + |B|> (I{l\/Eg + Cl + \/E3||WP’QHF “+ Koy/Mmoms + 02 + ||Vp’2||p>.
(308)
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Finally, applying Cauchy-Swartz to the second a.s. bound in Lemma 34 we have:

fW’+WP,V'+VP(£Ui)
< (kav/iy + (V211 ) (Viltgss + C1 + VA IW7] ) + Ca(Ch + /s W),

Combining this with (308):

Vw v llr
SP+MW%+WNmb%m+a+ﬁﬁwmmﬂma+ﬁﬂwmw
x (Wi + C1 + Vg [WP2| p + ko + C + V02 ).

Therefore, using the Lipschitz bound in Theorem 9:

IVwr v = Vwr v By gzl iy v (i), 9) |7
< IVwr v e + 1B yomz Vv vl fwriwe vrpve (@), yi) | 7
< [B+ (kav/imy + [V ) (Vimga + C1 + s W) + Co(Ca + yimg W)
X (Klﬁzg +Ci + \/E?)HWP’QHF + Koy/momsz + Co + HVP’QHF) + (0(0102) + B)‘l/l
(309)
Now we define the following events
Ev = {IWPlp 2 xVdBy Vv WP ||p > xVdpi},
Ea = {V*lF = xvmsfa V[V |lr = xv/msBa},
where recall we assume y >> 1. Then, as we know the variable |[IW?||% has mean df? and is

subexponential with parameters (df3; /m1, 3% /m1). Hence, by a union bound and Bernstein (Note
that W1, W*-2 are independent):

P(=1)

<2P(|W?|p > xB1Vd)

= 2B(|W*||% > x283d)

< 4max ((exp{—(* = 1)281d%/(4d3} /m1)}, exp{—(x* — 1)82d/ (453 /m1)})

= 4 max (exp{—(x2 — 1)%dmq /4}, 2exp{—(x* — 1)dm1/4}) < 2exp{—(x* — 1)dm, /4}.

Similarly for || V?|| p:
P(Z2) = P(|V*|[r = xB2v/ms) < dexp{—(x* — L)mzma/4}.

Moreover, because of the subexponential tails of ||[IW?||% and ||V?||%, for each of W*1 or Wr2,
Ve or VP2
E(|W?|rl E1) S xVdBr, E(W*|13] E1) S x*dBs.
E([V?[lr| Z2) S xvmsbz, E(IV?|3] E2) S x*maf3.
Now Defining = = =; U =3 and combining the above equations:
E(IW?I1{Z}) <E[WPI(1{E1} + 1{Z2}) = E(|W7|[| E0)P(E1) + E(|W7|)P(Z2)
S xVdpi2exp{—(x* — 1)dmy /4} + VdBi2 exp{—(x* — 1)mgma/4}
= 2VdB1 (x exp{~(x* = 1)dm1/4} + exp{~(x* = Dmama/4}),
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and
E[[WPP1{Z1} = E(|W*[*] E1)P(Z1)
< 2dBix? exp{—(x* — 1)dm. /4}.
Similarly
E(|VPIII{Z}) < 2vmgBa(exp{—(x* — 1)dmi/4} + x exp{—(x* — 1)mama/4}),
and

E(|VPI*1{Z2}) < 2mafix® exp{~(x* — 1)mama/4}.

Applying these equations to (309) with Cauchy-Schwartz to get the upper bounds
EL{Z }|We || |[We2]| < EL{E }|W?|* and (Ew. [|[W?])? < Ewe||W?||? (for terms with only
one W#:* or VP we simply write them as W* and V°):

EwevelVw v = Vwr v B, yomz iy v (@), y:) |l F1{E}
< Ewo vo e | B+ (rov/my + V24 ) (Vi + Cy+ Vimg[WP] ) + Co(Ca + img [W7))|
x (k1v/ms + C1 + Vg |[WP)|p + ka/imzms + Ca + V7| p) + a(O(C1Ca) + B) ¥y
[BJF (kav/msg) (\/>3/‘61+01)+0102}
x (wa/mg + C1 -+ a/mains + Ca + VimgBuw L{E} WP + Bvo LYVl )
(

+ (B + (Vimk1 + CL )V + (kams + Cav/mig) + v (k13/ms + C1 + ka\/mams + 02))
X (Ewe H{EHWP FEv [[VP|lp + Ewe [|[W? || pEve 1{E2}|V?|| )

+ (B + vmgki + C1) (B 1{E2}|[V?[|* + P(E1)E[[V?]?)

+ Coms(Bw» 1{E1 }|W?||* + P(S2)E[|W*|1?)

+ma(Bwe {EHWPPEvo VP + Ewo [WP*Eys 1{E2} V7))

+ Vg By {E VP PEwe [WP| + Evo [V *Ewe 1{Z1 W)

1+ (0(C1Cs) + B)U,B(Z)

< (exp{—(x? — 1)dm1/4} + x exp{—(x® — 1)mgms/4})poly(m1, ma, ms3) = negligible. 410
But note that
Vv = Vs + Vv (0 [W] 4 oo [V]?),
Vv LW V') = Vi v B,y mz iy v (20),5i) + Vv (W2 + 4o [V]]?).
Applying this to Equation (310), we get that if we define
A= Vv = Vv LW V),

then

E[[AT{E}]| < (exp{—(x* — 1)dm1/4} + x exp{—(x* — Lymgma/4})poly(m1, ma, ms).
On the other hand, note that using again Equation (309), we have the following a.s. bound:

||A]]‘{EC}|| = polY(mla ma,ms, 017 027 X)

Defining
A = AT{E"},
Ay = I{E}E(A[Z),
A=A+ Ao,
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we get that with probability at least 1 — P(Z):
Vw: v =V v LIV, V') + A
and also note that
EA = EA = 0.
Finally by the a.s. bound for A, we have a.s.:
Al < Ewe,ve,(epn0 IAL{EH + |AL{Z}|

< (exp{—(x* — 1)dmy /4} + x exp{—(x* — 1)mgma/4})poly(m1,mz, m3) + poly(mi, ma, ms)
= poly(m1, ma, ms, C1,Ca, B, X),

which completes the proof.

Corollary 9.1 It is easy to check that running PSGD with unbiased gradient estimate Vw: v
is eqmvalent to running SGD after our change of coordinates, with unbiased gradient estimate

Vo o = TVW/ v+, where Y is the matrix for our change of coordinate, which is equal to Y
defined in Appendlx A.10 for the coordinates in V' and simply identity for the coordinates in W'.
Therefore, projecting both sides in Equation (311) of Lemma 43 onto ®+ by multiplying X implies
that with high probability for all iterations of the algorithm

Vo = TV v LYW V') + TA

= Vo LM (W', 0') + TA, (311)
where £ = YA (using the properties of A in Lemma 43) is a mean zero noise vector with almost
surely bounded norm, i.e. ||£] < Q' for some Q' = poly(my,ms, m3,C1,Cs). (we dropped the x
parameters by considering constant high probability argument).
Finally, note that injecting noise (21/(|Z1]|, E2/(v/m1||Z2]|)) by PSGD results in adding an extra
zero mean noise (21,Z2) = (YZ1/||Z1], Y=2/(y/m1||Z2l])) to the gradient ¥V , LY (w',v").
Therefore, overall running SGD on L™ (which is equivalent to PSGD on L) observe an unbiased

noise vector deﬁned as £ = £ + (él, ég). Now it is easy to check that the moment matrix of =
and =5 are 04?1 and o1 for

1
oh? = (312)
1 %d
oy = malma =) (313)
my's,

which implies the moment matrix of £ is upper bounded by
051 == (Q'/(mamz + my1d) + max{c}? 5*})I,

and lower bounded by
031 = min{o}?, 42},

ie.
U%IEffT < 0'21

(Note that we look at the new coordinates (w',v') as a vectors, so the term E£ £ makes sense.)

|22l < 1 almost surely, which implies the following almost surely

I£]] < Q=Q +1+1/v/my.

bound for £:
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Lemma 44 Let g(x) be a second order differentiable function over RY such that at point x, there
exist a random direction y and deterministic direction z and fixed positive real r with:

Ey =0,
Eyg(z +nz +/ny) < g(x) —nr.

Then, for the gradient and Hessian at point x, we have either
r
V@) =
42|

or

Anin(V29(0)) < =35

Proof of Lemma 44

We write the second order tailor approximation of g around x:
1
9@ +w) = g(x) + Vg(@)"w + Sw Vg(z)w + o([[w]]*).

Now substituting w with nz + /7y and taking expectation with respect to y, as we send n — 0 and
using the fact that Ey = 0:

Eyg(x +nz +/y) = g(x) + By Vg(x)" (nz + y) + %(nz + Vi) V2 g(x)(nz + /igy) + olllnz + viyll?)

1 1
=Eyg(z) + nVg(z)" 2 + §n2zTV29($)Z + ninvzg(l’)y + o(nllyll*)

1
=Eyg(z) + nVg(@)" 2z + 05y V2g(x)y + o(n).

Combining the assumption with the above Equation, we get that for small enough 7, we have

nVg(a)"z + n%EnyWQ(x)y < —nr/2,
ie.
V(z)"z + %EnyVQQ(w)y < —r/2,
which means we should either have
Vy(x)'z < —r/4,
which implies .
IVg(z)| = e

or
E,y" Vig(z)y < —r/2,

which implies
r

2 MaXgesupport(y) ||g||2 .

Amin (Vzg(m)) <
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B.4 HANDLING THE INJECTED NOISE BY PSGD

In this section, we prove that having SGD injecting noise into our gradient estimates mostly does not
change the sign pattern of the first layer, namely among the set of rows in P defined in Lemma 1.

Lemma 45 Having enough overparameterization, with high probability, at every iteration of the
PSGD for W@ defined in the proof of Lemma 1, we have for every j € [my]:

2
(W2 < e/ (4/my).
Proof of Lemma 45

Let &’ be the subspace of the first layer weight matrices which is zero in rows j € P (P is
defined in Lemma 1), while in other rows it is the span of Z!’s, i.e. using our notation Z

introduced in the proof of Lemma 1, we can write ®' is span(ZF); .

Recall from Lemma 1 that we decompose the first layer weight W’ as W' + W' namely
the parts in the subspace ®' and subspace ®'* respectively. Moreover, let E1/(Vmy||E1) =
21 4+ =) be the decomposition of the injected noise at some iteration of PSGD into subspaces &’
and &' respectively.

Now recall that the current W' is the value of the previous iteration moved by the gradient plus the
injected noise:

W =W —n(Vw: + 20 +23)
_ ! v /71(1) /71(2) :(1) :(2)
—W n(vwl+2¢1w Fopw @ 420 4 = )

where W is the weight of the previous iteration and W’ 7’(1), W@ are again its decomposition to
@’ and ®'*, where @W/y/ is defined in Lemma 43. Applying Lemma 24 for the previous iteration
of the algorithm, we get Vi € & since the bad events E defined in Lemma 33 occurs only with
probability exponentially small (hence union bound across all the iterations rules it out). Hence, the
decomposition for the current iteration becomes

W' =w W (T 2w 420, (314)

W' = (1= 2w 1 E®, (315)

We handle the W'") part in Lemma 1 and prove that as long as W' D)2 < ||W)|? remains
bounded by C?%, then the sign pattern of the first layer, when only considering the W’ 1) part, is
specified by the initialization except within set P; here we handle the W’ @ part as well.

Note that for every row j €  [my], the variable H(El/(w/m1||51”)>,”2 is
J

(O(1/(mid)),O0(1/(m3d)))-subexponential with mean 1/m;. Therefore, with probability

that is exponentially small in m, | (51 /(JmT||E \|)) || is bounded by O(1/m ). It is not hard to
J

see the same argument holds for the projection of Z; /(1/m1||Z1]|) onto &+, i.e. Z(2). Applying a

union bound for all iterations, again using the fact that we run PSGD for poly iterations while the

chance of error is exponentially small in m1, we can then argue that with high probability over the
noise of gradients, at every iteration and for every j € [m]:

1= = 0(1/my). (316)
But applying trinagle inequality to Equation (315) and writing it in a telescope form, particularly

for the jth row, and further using the assumption in 316, we get that ||W’ 52) || grows at most to

O(1/(myn)); as we set 1/¢1 = O(poly(n)), assuming polynomially large enough m4 concludes
the claim.
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B.4.1 BOUNDING THE NORM OF THE FIRST LAYER’S OUTPUT IN THE WORST CASE

Lemma 46 Suppose W' satisfies the assumption of Lemma 1, i.e. [|[W'| < Cy, and |W]|| <

ca/(2+/my) except possible for indices in P, also defined in 1. Then, with high probability over
initialization

3/ n3ms
su "(2)|| < (14 O(m2d?log(m1)?/m1))C1 + Vg —— (——)1/4,
s 9] (-4 Ot ogomy ) Cr-+ Vi, S (5120

which is O(C4) for large enough overparameterization.
Proof of Lemma 46

Note the because the VC-dimension of the class of binary functions with respect to halfs-
paces in R? is d + 1, the number of different sign patterns DWm’m for different x can be at most
m¢!. Now similar to Equation (317), for k € [m3] define
Zu(z) = 1/ /mr (W,j j]l{Wj(O)Tx}x) ' (317)
: =1
Then, for k1 # ko, as ||z|| = 1:

1 s .
(Zk, (%), Zk,(2)) = o Z thjkal{Wj(O)Tx}
=1

1 - S S

< — sup g Dy ) 25.iWiy,iWis.j-
mi =z =

But for each fixed Dyy (o) ., using Hoeffding bound, we have with probability 1 — 4:

1 o . . log(1/9)
Jm, Do) i Wity jWis s S| ———
j=1

my
Applying the above for all possible sign patterns with § < O(1/m1%*!) and a union bound, we have
with high probability

1 L
sup (Zg, (v), Zk,(2)) < — supZDw<o>,xj,jW;§1,jW;§2,j S dlog(my)//ma.
j=1

a =1 mi s

We can even state the following stronger bound with respect to two adversarially picked vectors
z, 1’
1 -
" SHHP H (Zry (), Zgy (")) < mflSupZDw<0>,zj,ij<0>,x/j,szi,jWsz,j < dlog(my)/+/ma,
z||=1,||z'||=1 x
s 7j=1

(318)

because each Dy (o) 4 ; has at most m{+ cases as we discussed above, then Dy (o) i PDw©) 24,4

has at most mf“ possible cases, and applying a similar Hoeffding bound for each of them and a

union bound as we did will imply (318). We will use this generalized version in another section.

Now combining Equation (318) with the fact that ||J¥’|| < C4 and applying Lemma 40:

sup Z(W’,Zk(x)>2 < (1 + O(m3d?log(mq)?/m4))C?. (319)
Tvllj“H:l k=1

On the other hand, setting ms = my, ms = d, and R = ¢3/(2y/m k1) in Lemma 29, we get with
high probability

#(5 € fml+ 1VVu] < cof2ym)) < maca/(2y/imn) = vimea/ ().
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Noting that ||[W|| < c2/(2y/m,) for j ¢ P, we conclude that with high probability, for any =,
H{(W® +w"Tz > 0} and IL{WJ.(O)Tx > 0} can be different in at most /myca/(2k1) of the j’s
outside of [m4] \ P. Therefore, as we have also |P| < neov/m, /K1 from Lemma 1, we conclude

that with high probability, for any x, there are at most O(ncz+/m, /£1) sign changes by adding W’
to W (%), This further implies:

|65 (z) = (W, Zi(2))| < 2/v/my > Wizl

j: Sen(W VT 2)#Sgn((W @ + W) T )

< 1972 ] S2nW072) # Sen (W) + W) |y

< Cry/ neav/my [K1/v/my

B cy 2 ndmg 1
\/El mi )\0
Combining this with (319), we conclude with high probability:

/4

32 n3ms
sup ¢/ (2)[| S (1+ O(m3d*log(m)?/ma))Cr + \/ﬁsﬁ(i e
1

)
@l =1

miAg

which completes the proof.
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