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Abstract

Polarization is an unprecedented coding technique in that it not only achieves channel ca-
pacity, but also does so at a faster speed of convergence than any other technique. This speed
is measured by the “scaling exponent” and its importance is three-fold. Firstly, estimating the
scaling exponent is challenging and demands a deeper understanding of the dynamics of com-
munication channels. Secondly, scaling exponents serve as a benchmark for different variants of
polar codes that helps us select the proper variant for real-life applications. Thirdly, the need
to optimize for the scaling exponent sheds light on how to reinforce the design of polar code.

In this paper, we generalize the binary erasure channel (BEC), the simplest communication
channel and the protagonist of many polar code studies, to the “tetrahedral erasure channel”
(TEC). We then invoke Mori-Tanaka’s 2 x 2 matrix over Fy to construct polar codes over
TEC. Our main contribution is showing that the dynamic of TECs converges to an almost—
one-parameter family of channels, which then leads to an upper bound of 3.328 on the scaling
exponent. This is the first non-binary matrix whose scaling exponent is upper-bounded. It also
polarizes BEC faster than all known binary matrices up to 23 x 23 in size. Our result indicates
that expanding the alphabet is a more effective and practical alternative to enlarging the matrix
in order to achieve faster polarization.

1 Introduction

A fundamental question at the center of the theory of communication is whether we can fully utilize
a noisy channel to transmit information. In modern terminology, can error correcting codes achieve
channel capacity? The answer is positive; in fact, multiple code constructions do so. Among them,
polar code is a special one as it achieves capacity faster than any other known code.

Polar coding was invented by Arikan around 2008 [Ari09]. During that time, Arikan was ex-
perimenting with channel combining and splitting. By treating two independent binary channels
as a single quaternary channel (combining) and tasking ourselves with guessing certain linear com-
binations of the inputs (splitting), he synthesized two channels, denoted by W= and W©, out of
the original channel W. Arikan realized that, when combining and splitting is applied recursively,
the channels undergo an intriguing dynamic that ultimately results in most synthetic channels
being either almost noiseless or extremely noisy. This is channel polarization, the first ingredient
underlying polar codes.

The second ingredient of polar codes, also given by Arikan in said seminal paper, is the relation
between the dynamic of synthetic channels and the construction and performance of the code.
Arikan’s insight was that synthetic channels that become almost noiseless can be used to transmit
information bits, and synthetic channels that become extremely noisy can be “frozen” to some



fixed values. The rate at which we communicate meaningful bits is then the proportion of synthetic
channels that are almost noiseless. So, whether we can achieve channel capacity becomes a problem
of counting the numbers of good and bad synthetic channels.

It then became apparent, perhaps even appealing, that one can study the dynamic of synthetic
channels by means of stochastic processes. Take the binary erasure channel (BEC) as an example.
Let W be BEC(e), the BEC with erasure probability e, where 0 < ¢ < 1. The channels W"-
and W© are BEC(2¢ — €2) and BEC(g?), respectively. A process {H,}, is thus defined by having
Hy=¢and H,4+1 =2H, — HTZL or H,% with equal probability. It can be shown that if

P{H, < f(n)} =1-Ho—g(n),

where f,g > 0 are functions in n, then there is a polar code of length 2" miscommunication
probability 2" f(n), and gap to capacity g(n).

It was at this point that the study of polar codes branched. On one branch, called the error
erxponent regime, g is a constant and the asymptotics of f is examined. On the other branch,
called the scaling exponent regime, f is a constant! and the asymptotics of g is examined. On the
error exponent branch, it was shown that f(n) is roughly exp(—e”™), where § > 0 is a constant
depending on the matrix used in the code construction. The task of determining 3 for each matrix
has been fully resolved; interested readers are referred to [AT09; KSU10; HMTU13; MT14].

On the scaling exponent branch, making progress is harder and slower. For BECs, [HAU10;
KMTU10] managed to estimate that g(n) ~ 27/3527. For binary memoryless symmetric (BMS)
channels, it was first shown that g(n) < 2=/ for some constant 0 < p < co [GX15]. This makes
polar codes the only known code family that converges to capacity at a polynomial rate in the
block length. More realistic estimates of p were given later: 3.553 < pu [GHU12], 3.579 < u < 6
[HAU14], pn < 5.702 [GB14], pn < 4.714 [MHU16], and very recently p < 4.63 [WLVG22]. Now that
we know the p for polar code and the optimal value being p = 2 for random code [BKB04; Hay09;
PPV10], the discrepancy begs the question: Can one modify polar code to reach a smaller scaling
exponent?

The answer is positive: Arikan used the matrix [19] (this is called the kernel in literature) to
combine and split channels. Instead, one can use a larger matrix, for instance
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to combine and split channels. In [FV14; YFV19; TT21; Tro21; BBL20; Lin21], binary matrices
ranging from 3 x 3 to 64 x 64 are deployed and the scaling exponents over BECs are estimated. The
best scaling exponent up to every matrix size is plotted in Figure 2. There are also meta-asymptotic
results stating that p =~ 2 can be achieved using larger and larger matrices. This statement was
proved over g-ary erasure channels [PU16], binary erasure channels [FHMV21], all BMS channels
[GRY22], and finally discrete memoryless channels [WD21].

As much as we want to lower polar code’s scaling exponent, there is one caveat that renders

large matrices impractical: the smallest matrix whose scaling exponent is strictly better than [}]

is the 8 x 8 matrix above. Using this matrix takes twice more time to decode (estimate based on

'Not always; sometimes f — 0 but only exponentially fast in n. Note that 2" f(n), the upper bound on the
miscommunication probability, is allowed to exceed 1, so the corresponding code can be meaningless. Yet the
asymptotics of g capture the behaviors of other meaningful codes.



the method of [BFSTV17]), whereas the benefit we gain is that p slightly decreases from 3.627
to 3.577. As the matrix gets larger and deviates more from the tensor powers of [}9], the time
complexity grows drastically. For this reason, it is unlikely that we will ever see polar code based
on large matrices (unless it is for other concerns [BGLB20]).

Large matrix aside, many other techniques emerge with empirical evidence that they improve
polar code—concatenation, cyclic redundancy check, and list decoder to name a few. But none of
them sees a proof of improvements in the scaling exponent; in fact, quite the opposite was reported
[MHU15]. So we are back to the starting point where we want to improve polar codes’ scaling
exponent while minimizing the complexity penalty.

One approach that seems promising, albeit very little is known due to its innate technical
difficulty, is to use a non-binary input alphabet. This line of research started from Sagoglu [STA09;
Sagl2; Chil4], wherein the goal was to find at least one way to polarize arbitrary finite alphabets
regardless of the speed. In particular, the usual matrix [}9] is known to polarize prime fields. Later,
Sahebi-Pradhan [SP11] and Park-Barg [PB13] showed that [}{] cannot polarize non-prime fields.
Then, Mori-Tanaka [MT14] classified all matrices that can polarize finite fields (i.e., the alphabet
size must be a prime power). One step forward, Nasser [Nasl6] classified all binary operators
(i.e., bivariate functions) that can polarize arbitrary finite alphabets. In [BGNRS22; BGS18], the
authors showed that, for any polarizing matrix over prime fields, one has u < co. In [WD21], the
authors showed that u =~ 2 is reachable over arbitrary finite alphabets.

Why is a non-binary input alphabet attractive? There are at least three reasons. First, mod-
ulation?: For quadrature amplitude modulation (QAM) and amplitude and phase-shift keying
(APSK), a constellation point is more likely to be confused with constellation points nearer to it.
A non-binary channel models this proximity relation more naturally than a series of correlated
binary channels do [SSSH13; CKW19]. Second, two-stage polarization: If we weakly-polarize a
binary channel with [1{], treat two binary channels as a quaternary channel, and strongly-polarize
the quaternary channel with the 4 x 4 Reed—Solomon matrix, we can improve the asymptotics of
f(n) from exp(—2%5") to exp(—20-5731") [PSL16] (see also [AMV22; CBM18]). Third, and most
importantly, scaling exponent: Several works have observed that non-binary matrices of the form
[L9] just polarize faster than [19] [YS18; LY21; Sav21]. Could it be that the non-binary scaling
exponents are smaller?

Consider [RWLP22)’s technique that uses [19] to polarize non-binary channels; their result has
an implication that non-binary channels’ scaling exponent is at least as good as binary channels’.
In this paper, we aim to answer the question of whether the former is strictly better than the latter.
By defining a toy model that contains a pair of BECs as a special case and estimating the scaling
exponent of [SJ?], we provide a proof of concept result that an expansion in alphabet size does result
in an improvement in scaling exponent. Recall that BECs form a one-parameter family and that
this property makes its scaling behavior easy to analyze. This paper’s overall strategy is to show
that the descendants of a quaternary channel converge to an almost—one-parameter family; we then
analyze the scaling behavior of this family and conclude the following.

Theorem 1 (main theorem). Treating a pair of BECs as a quaternary channel, the 2 X 2 matric

[L9] over Fy induces a scaling exponent less than 3.451. Here, w? +w +1 = 0.

This paper is organized as follows. Section 2 reviews the essence of polar code. Section 3
defines tetrahedral erasure channels (TECs), defines balanced TECs to be those that possess some

2Modulation means translating digital signals to analog signals. A digital signal will be mapped to a point on the
complex plane, which represents a sine wave with certain amplitude and phase; such a point is called a constellation
point, the union of all points a constellation diagram.



symmetry, and defines edge-heavy TECs to be those that will be polarized faster. Section 4 defines
serial combination and parallel combination that will be used to polarize TECs. Section 5 shows
that unbalanced TECs tend to become very close to balanced TECs, so it suffices to consider the
speed of polarization of the latter. Section 6 shows that edge-light TECs tend to become very close
to edge-heavy TECs, so it suffices to consider the speed of polarization of the latter. Section 7
shows the speed of polarization of a generic TEC is faster than the classical BEC.

2 Polar Code

Readers who are familiar with polar code can safely skip this section. This section serves a sim-
plified, high-level summary of classical polar code. More details are found in [Wan21, Chapter 2].
We assume BEC throughout the section.

Let X € [Fy be a random variable following the uniform distribution. Let Y € Fy U {7} be a
random variable with P{Y =X } =1—cand P{Y =7} = . Here, € € [0, 1] is called the erasure
probability. The pair (X|Y) is called a binary erasure channel (BEC) and denoted by BEC(g). The
entropy H(BEC(e)) = H(X|Y') = ¢ is defined through Shannon’s mean.

Let (X1]Y1) and (X2|Y2) be two iid copies of BEC(e). Define the serial combination BEC(e)"
to be (X7 + X5|Y1,Ys). That is, what do we know about X7 + X5 when given Y7 and Y57 One sees
that it is information theoretically equivalent to BEC(2¢ — £2). Define the parallel combination
BEC(g)© to be (X1|Y1, Y2, X1 + X5). That is, what do we know about X; when given Y7, Y», and
X1 + X5? One sees that it is information theoretically equivalent to BEC(¢2).

Serial and parallel combinations apply recursively. A polar code of block length 2™ consists of
a subset of strings Z C {m,0}". In this code, a synthetic channel

Cn

(-+ (BECE)™)) ) &)

will be used to transmit useful information iff (¢, ¢q,...,¢,) € Z. The code rate of this polar code
is |Z|/2". The exact miscommunication probability of this polar code is hard to find, but has an

upper bound of
ZH<( - ((BEC(e)1)) )C">
T

To define a good Z, choose a function f(n) and collect all strings (c1,c1,...,¢,) € {O,0}"
such that H (formula (1)) is less than f(n). The fact that the erasure probabilities undergo simple
evolutions ¢ +— 2¢ — &2 and ¢ — 2 motivates the following stochastic process: define {H,}, by
initial value Hy = ¢ and evolution rule H, 1 == 2H,, — HfL or H,% with equal probability. Then the
code rate |Z|/2" coincides with P{ H,, < f(n)}. The gap to capacity g(n) =1 — Hy — |Z|/2" =
1— Hy—P{H, < f(n)} is thus motivated.

In a way, the study of polar code over BEC is the study of the cdf of H,, with emphasis put on
the hard threshold at 1 — Hy. Abusing the same logic, this paper is a study of a stochastic process
{W,} that lives in [0,1)° N {p+ g+ r+ s+t =1}, which happens to have peculiar implications
in coding theory.

3 A New Channel Model

We are to define a type of quaternary channels in this section. This should be the smallest possible
set of quaternary channels that meet the following: (a) it should model a pair of BECs as a
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Figure 1: The Euler diagram of channels featured in this paper. The cross is the set of pairs
of BECs; it will converge to the set of balanced TECs (Section 5). The balanced TECs will then
converge to edge-heavy TECs (Section 6). And then edge-heavy TECs polarize faster than BECs.
Note that BECs are a one-parameter family of extreme BMS channels, hence the thick curve.

special case; and (b) it should be closed under pre-processing the input using invertible linear
transformations.
3.1 Tetrahedral erasure channel

Let the input alphabet be F%; and we assume the uniform input distribution throughout the paper.
For any input (71, z2) € F3, the output will be in (Fo U {?})3 and assume one of the following five
erasure patterns:

o (x1,x1 + x2, x9) with probability p;

x1,7,7) with probability g¢;

(
(
(?, 1 + w2, 7) with probability r;
(7,7, x9) with probability s;

(7,

?,7,7) with probability ¢.

Here we call p,q,r,s,t the subspace erasure probabilities and they sum to 1. Such a channel is
denoted by TEC(p,q,r,s,t). For brevity, we say a TEC outputs (x1,x2), outputs z1, outputs
x1 + x9, outputs xo, and outputs nothing to represent the five erasure patterns.

A TEC can be related to a tetrahedron whose vertices are (0,0,0), (1,1,0), (1,0,1), and
(0,1,1). Outputting (x1,z2) corresponds to the vertex (x1,z1 +x2,z2). Outputting z; corresponds
to the edge (z1,21,0)—(z1,1 — z1,1). Outputting nothing corresponds to the tetrahedron per se.
That is to say, a TEC takes a vertex as an input and outputs the same vertex with probability p,
outputs an edge attached to that vertex with probability ¢+7+s, and output the entire tetrahedron
with probability ¢.



There is another way to interpret a TEC. Consider F4 and let w be a primitive element therein.
A TEC takes z = zjw + z2 € F4 as an input and outputs z, tr(z), tr(wz), tr(z/w), or nothing,
each with probability p, ¢, 7, s, and t. Here, tr: F4 — F» is the field trace. It is the matrix trace if
we use the matrices [30], [59], [1¢], [{1] to represent 0,1,w, 1+ w € Fy.

TEC is not an ad hoc channel that we happen to know how to deal with. It relates to other

channels that have been discussed in literature.

Proposition 2. The “g-ary erasure channel with erasure probability €” [MT10; PU16], when q = 4,
is a TEC of the form TEC(1—¢,0,0,0, ¢).

Proposition 3. When transmitting two bits 1 and xo through BEC(J) and BEC(¢), respectively,
the outputs can be simulated by TEC( (1 —6)(1 —¢), (1 —6)e, 0,5(1 —¢), de).

The proofs are trivial. The propositions imply that any scaling exponent estimate for TEC
immediately generalizes to 4-ary erasure channels and BECs.

3.2 Channel functionals

The conditional entropy (hereafter entropy) of a TEC is defined by the following; it is meant to be
compatible with Shannon’s definition:

qg+r+s
2

The edge mass of a TEC is defined by the following; it measures the “polarizability” of a TEC:

H(TEC(p,q,r,s,t)) = +t.

E(TEC(p,q,r,s,t)) ==q+1r+s.
The Quetelet index of a TEC W is defined by
EW)
HW)(1 - HW))
Clearly, 0 < E(W) < 2min(H(W),1 — H(W)) and 0 < Q(W) < 4. We call a TEC W edge-heavy
if Q(W) > 24/7 — 4. Adolphe Quetelet invented the body mass index that determines if a person is

overweight or underweight. Here, we use Quetelet index to determine if a TEC possesses too much
edge mass (easy to polarize) or too little (hard to polarize).

QW) =

A TEC is balanced if ¢ = r = s. Put it another way, the edges of the tetrahedron weigh the
same. It is not hard to see that H and F uniquely determine a balanced TEC by

t—H(W)—E(2W).

The moment of inertia of a TEC is defined by
A(TEC(p, q,7,5,t)) = (g —7)° + (r — 5)> + (s — q)*.

A TEC is balanced iff its moment of inertia vanishes. See also the “symmetric over the product”
condition in [CLMS21] and the “equidistance” condition in [$TA09].

4 Channel Synthesis

TECs can be serially combined or parallelly combined as in the theory of density evolution [LHO6].



4.1 Serial combination

Let U .= TEC(p,q,r,s,t) and V := TEC(p/, ¢, ', s',t') be two TECs. The serial combination of U
and V is defined to be the task of guessing (u; + v, u2 + v2) given the output of inputting (uq, uz)
into U and the output of inputting (vq,v2) into V. Let us go over all 25 erasure patterns that are
classified into five scenarios.

Scenario one—U outputs (u1,uz) and V outputs (v1,v2): Now we know (u1 4+ vy, ug +v2) in its
entirety. This scenario happens with probability pp’.

Scenario two—U outputs u; with or without ue, and V outputs v; with or without wve, but
either us or vy is missing: In this case, we can infer u; + vy, but we cannot infer us + vs. So
this case feels like (x1,x2) = (u1 + v1, u2 + v2) underwent a TEC and only x; went through. The
probability that only z; went through is p¢’ + q¢’ + qp’.

Scenario three—U outputs (u1,uz) or u; + ug, and V' outputs (vi,vy) or vy + vy, but scenario
one does not happen: For this case, we know neither u; + v1 nor us + v9. But we can infer
(u1 4+ v1) 4 (u2 +v2). So this case feels like (1, x2) = (u1 + v1, ug + v2) underwent a TEC and only
x1 + w9 went through. The probability that only z1 + x9 went through is pr’ + rr’ + rp’.

Scenario four—U outputs ue with or without u;, and V outputs v with or without vy, but
either u; or v; is missing: In this case, we can infer x9 = uo 4+ v9 but not z1 := u; + v1. So this
case feels like x1 is erased. This scenario happens with probability ps’ + ss’ + sp'.

Scenario five—U outputs one bit (u; or u; + ug or ug) and V outputs one bit (v or vy + v or
vg) but the erasure patterns do not match; or at least one of U and V' outputs nothing: We cannot
infer u; + v; because either u; or vy is missing. We cannot infer us + v9 because either us or vs is
missing. We cannot infer (u; + v1) + (ug + v2), either. So this case feels like both z1 = u; + v;
and x1 := ug + vg are erased, so is x; + x2. The probability that we learn nothing about (z1,x2) is
(q+r+8)(d+r+5)—qd —rr —ss' +t+t —tt'.

Note that these five scenarios correspond to the five erasure patterns in the definition of TEC.
Denote by U ® V the serial combination of U and V; it is a TEC with subspace erasure probabilities

URV =TEC( pp/, pd +qd +qp', pr'+r' +rp, ps’'+ss’'+sp’, 1—the four to the left ).

4.2 Parallel combination

The parallel combination of U :== TEC(p,q,r,s,t) and V := TEC(p, ¢, ', s',t’) is defined to be the
task of guessing (u1,ug) given (uj + v1, uz + va) (the perfect output of U m V'), the result of feeding
(u1,u2) into U, and the result of feeding (vy,v2) into V.

Denote by U @ V' the parallel combination of U and V. One can go over its erasure scenarios
like the previous subsection does. For instance, if U outputs u; and V outputs vy + vo, then we
can infer v1 (using uy and uj + v1), followed by vy (using v; and vy + v3), and finally uy (using vy
and ug + v2); and hence we can completely recover u; and us. Details omitted, it can be shown
that U ® V is a TEC with subspace erasure probabilities

U®V :=TEC( 1-the four to the right, t¢'+qq¢ +qt’, tr'+rr' +rt’, ts +ss' +st', tt' ).

Note that there is a duality between TEC(p, ¢, 7, s,t) and TEC(t, s,r, ¢q,p) that keeps E as is,
maps H to 1—H, and swaps parallel and serial combinations. The duality grants us the convenience
of proving half of a theorem and the other half follows by symmetry.



4.3 Mori—Tanaka’s twisting kernel

A 2 x 2 polarization kernel K over 4 is defined with a “twist” as follows: For a pair of inputs
u,v € Fy, let K be the linear transformation that reads (u,v) — (u + wv, v) or, equivalently,

[u o] — [u U]L}) (1’]

This kernel was studied by Mori-Tanaka [MT14] and is shown to be polarizing. If we treat Fy as
F2, then K reads ((ul,ug) , (v1, 112)) — ((u1 + v1 + vo,us +v1), (’1)1,’1)2)) or, equivalently,

1
[ul ug V1 02]+—>[u1 U V1 ’Ug] |:1%1 :|,
1 1

where uy,u2,v1,v2 € Fo. The kernel K combines two TECs U and V to synthesize U W (Vw) and
U ® (Vw), where Vw is the channel that multiplies the input by w before feeding it into V. For
brevity, W ® (Ww) and W ® (Ww) are denoted by W= and W©, respectively.

Multiplying a TEC by w behaves like a rotation of order 3 (after all, w® = 1 and it is rotating
the tetrahedron). It maps TEC(p, q,r, s,t) to TEC(p, s, q,r,t). If W is balanced, rotation does not
alter it: W = Ww. If it is not balanced, then the rotation helps mis-match ¢, r, s so that a large
probability is paired with a small probability. More precisely,

TEC(p, q,r,s,t)7 == TEC( p°, ps+sq+qp, pq+qr+rp, pr+rs+sp, 1—the other four ),
TEC(p, q,r,5,t)° := TEC( 1 — the other four, ts+sq+qt, tq+qr+rt, tr4rs+ st t2 ).

Twisting makes it easier to reduce ¢, r, and s and redistribute the mass to p and t.

4.4 Channel process

For a TEC W, we call W5 the serial-child of W and W© the parallel-child of W. Together, they are
the children of W. The descendants of W are the children of W together with the descendants of
the children of W. The nth-generation descendants of W are the (n — 1)th-generation descendants
of the children of W; the Oth is W itself.

When W is understood from the context, let Wy be W. For n a positive integer, let W,, be a
random child of W,,_; with equal probability.

The common strategy used to estimate the scaling exponent concerns a concave function
¥: [0,1] — R such that ¢(0) = ¢(1) = 0 and is positive elsewhere. With ¢, one finds a 0 < u < oo

such that
YHW)) +y(HW))
29(H(W))

With this “eigenvalue,” a routine argument [Wan21, Sections 5.8-5.10] will show that

<2 Wk

P{ H(W,) < exp(—""") } > 1 — H(Wp) — 27"/,

5 Unbalanced TEC Becomes Balanced

In this section, we argue that TECs undergoing the polarization process tend to become more
balanced than before. We do so by showing that the moments of inertia are decreasing.



Theorem 4 (uniform loss of inertia). A(WH), A(W®) < A(W)(1 — A(W)/3) for any TEC W.

A proof of the theorem is in Appendix A.1. Now the recurrence relation A(Wy,11) < A(W,) X
(1 — A(W,,)/3) is equivalent to A(W,41) — A(W,,) < —A(W,,)?/3 and analogous to the ordinary
differential equation f’(n) < —f(n)?/3. Solving it, we get f(n) = O(1/n); analogously, A(W,,) =
O(1/n).

Corollary 5 (ultimate loss of inertia). Fiz a TEC W, then A(W,) = O(1/n) as n — oc.

Another way to look at it is the average decay of A(W,,).
Proposition 6 (average loss of inertia). A(WH) + A(W©) < A(W) for any TEC W.

A proof of the proposition is in Appendix A.2. By the proposition, A(W) > A(WP)+A(W®) >
AWBE) + A(WHO) + A(WOH) + A(WOO) > A(WBEED) ... Hence the expectation of A(W),,) over
all W, is at most A(W)/2™.

Corollary 5 and Proposition 6 imply that any unbalanced TEC will promptly become very
similar to a balanced one.? The speed of polarization of unbalanced TECs is thus dominated by
that of balanced TECs. We now turn to the analysis of the polarization speed of balanced TECs.

6 Balanced TECs Hoard Edge Mass

In this section, we argue that the Quetelet index Q(W,,) = E(W,)/H(W,)(1 — H(W,)) of a
sufficiently deep descendant is about 1.6. Put another way, there is a “trap” that constrains the
relation between E(W,,) and H(W),,).

Recall that a balanced TEC W is edge-heavy if Q(W) > 2/7 — 4. Let a = 2/7 — 4 ~ 1.3.

Theorem 7 (trapping region). If W is balanced and edge-heavy, then its children are edge-heavy.

A proof of the theorem is in Appendix B.1. The theorem implies that all descendants of an
edge-heavy are edge-heavy. For a TEC that is not edge-heavy, its descendants will still become
“edge-heavier” by the following theorem.

Theorem 8 (attraction toward the trap). Fiz any € > 0; choose 6 = 3¢/8. Let W be any
balanced TEC. We have that Q(W) < o — & implies QW) = Q(W)(1+ H(W)4) and Q(W©) >
QW) (1 + (1~ H(W))d).

A proof of the theorem is in Appendix B.2. It is clear that the factors H (W) and 1—H (W) before
§ slow down the rate at which Q(W,,) approaches 21/7 — 4, especially when H (W) is close to 0 or
1, respectively. These factors cannot be optimized away. To see why, suppose that H(W) =z ~ 1
and E(W) =y ~ 0. Then H(W®) is about 22 + O(y?) and E(W©) is about 2zy + O(y?). Hence
Q(W®) is about 2zy/2%(1 — 2?) =~ y/z(1 — x) = Q(W). That being the case, we would like to add
that TECs whose Quetelet index can hardly be improved are already polarized, so we shall not
worry about them. Besides, we can prove uniform attraction using Theorem 8.

Theorem 9 (uniform attraction). Fiz any € > 0. For any balanced TEC W such that Q(W') <
a — ¢, there exists an integer m > 0 such that Q(W,) = Q(W)(1+¢/8) for all n = m.

3Note that Corollary 5 is a weak statement about every single descendant of W, while Proposition 6 implies a
strong statement about A(W,,) averaged over all nth-generation descendants. Only Corollary 5 will be used later.



A proof of the theorem is in Appendix B.3. Uniform attraction means that every child is at
least making some positive progress toward the trap. Small steps of the descendants accumulate
to a giant leap of the family.

Corollary 10 (ultimate attraction). For any e > 0 and any balanced TEC W such that Q(W') > 0,
there exists an integer m > 0 such that Q(W,) = a — ¢ for all n > m.

Proof. Apply the uniform attraction theorem repeatedly. Every application improves the Quetelet
index by a factor of 1+ (o — Q(W,,))/8. So after a finite number of applications the Quetelet index
can be made > o — ¢. O

To summarize this and the previous section, we have two trends: unbalanced TECs tend to
become balanced; and “edge-light” TECs tend to become edge-heavy.

The following proposition is a bound on Quetelet index in the opposite direction.

Proposition 11 (attraction on the other side). Let W be a balanced TEC with Q(W) < 2. Then
QW) <2 and Q(W®) < 2.

Some comments on how to prove this proposition is in Appendix B.4.

The following proposition gives a tighter trapping region than Theorem 8 and Proposition 11
do. A proof is omitted but similar to those of Theorem 8 and Proposition 11. For the optimal
trapping region, see the discussion in Appendix D.

Proposition 12. Let f(x) == z(1 —
EWY) < f(HW')) and E(W®) <
EW) = g(H(W)) implies E(WP) >

x)(1.66 — 0.38z(1 — z)). Then E(W) < f(H(W)) implies
{( (WO)). Let g(x) = z(1 — x)(2 2x(1 — x)/3). Then

g(H(W®)) and E(W®) > g(H(W?)).

7 Edge-heavy TECs Polarize Faster

Let W be any balanced TEC with a fixed H(W) = z and a variable E(W) = y. Then H(WF) =
22 — 22 + y?/12 is increasing in y and H(W©) = 22 — y2/12 is decreasing in y.

The monotonicity has two applications. Application one: If we know too little to lower bound
Q(W), we will upper bound H(W©) using 22. In this case, the speed of polarization is at least
i~ 3.627, the number induced by the standard polar code. Application two: If we know Q(W) > «,
we will upper bound H(W©) using 2 — (ax(1 —x))?/12. This time, H(W©) and H(W5) are more
separated so the speed of polarization is strictly better than p ~ 3.627. Any positive «, not
necessarily 2v/7 — 4, can improve the scaling. This is demonstrated by the following lemma, that
uses 9/7 in place of a.

Lemma 13 (eigenfunction and eigenvalue). Let ¢(z) = (z(1 — 2))%%97(5 — \/2(1 —x)). For
balanced TECs with Q(W) > 9/7,

YHWT)) + H(H(WD))

S0 (H(TY) < 0.818.

Comments on how to verify the lemma is in Appendix C.

Theorem 14 (main theorem). Consider a pair of BECs treated as a TEC, or consider any TEC
where pgrst > 0. The 2 x 2 matriz [L9] over Fy induces a scaling exponent less than 3.451.
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Proof. Two iid copies of BEC(e) can be seen as W := TEC( (1 —¢)2, (1 —¢)e, 0,e(1 —¢), €?). If e
is 0 or 1, there is nothing to prove. Suppose 0 < & < 1, then both WE and W© have five positive
subspace erasure probabilities. (That is, their “p,q,r,s,t” are all positive). The descendants of a
TEC with five positive subspace erasure probabilities satisfy the same property. In particular, all
descendants have positive Quetelet index.

Let W be a TEC whose descendants all have positive ). By Corollary 5, it takes W a finite
number of generations to become very similar to a balanced TEC. That is, for any § > 0 there
exists an m > 0 such that A(W,,) < J. Although W, is never balanced, what we proved about
balanced TECs still hold for “almost-balanced” TECs up to a diminishing error term. So we may
proceed as if W,, is balanced for n > m.

By Corollary 10, it takes another finite number of generations to become “almost edge-heavy.”
In particular, there exists an m/ such that Q(W,,) > 9/7 (note that 9/7 ~ 1.286 and 2v/7 — 4 ~
1.291).

Before the m’th generation, the eigenvalues of the form

YHW)) + o (H W)
29 (H(Wn))

was less than 1. After the m’th generation, the eigenvalues of said form will be less than 0.818 <
2-1/3451 'hy Lemma 13. As n goes to infinity, 0.818 dominates the overall scaling behavior. Hence
W, and hence any BEC, enjoys scaling exponent less than 3.451. O

In the abstract, we claim that the scaling exponent of [L9] over TECs (and hence BECs) is
< 3.328. This number will be derived in Appendix D with more intense numerical calculations. In
particular, there is a new trapping region that is bounded by two linear splines and is significantly
smaller than the region bounded by ax(1 — z) for a = 2v/7 — 4 and 2; the attraction toward the
new trap is witnessed by sampling TECs with low edge-mass. In Appendix E, we also examine the
actual values of H(W),,) and its asymptotic behavior aligns with the estimate 3.328.

8 Conclusions

In this paper, we argue that [L9] polarizes BECs faster than [19] does. We first show that a
pair of BECs will be transformed into balanced TECs. We then show that balanced TECs will
be transformed into edge-heavy TECs. Finally, we show that edge-heavy TECs assume a better
scaling exponent.

Our rigorous overestimate of the scaling exponent is 3.451; there is another overestimate of 3.328
with strong numerical evidence. Compared to Arikan’s 2 x 2 matrix with y =~ 3.627, Fazeli-Vardy’s
8 x 8 matrix with p &~ 3.577 [FV14], Trofimiuk—Trifonov’s 16 x 16 matrix with p ~ 3.346 [TT21],
and Yao—Fazeli-Vardy’s 32 x 32 matrix with p ~ 3.122 [YFV19], our result suggests that one
should consider expanding the alphabet size prior to enlarging the matrix size. More precisely, the
rigorous estimate is analogous to a 15 x 15 binary matrix; the more accurate estimate is analogous
to a 20 x 20 binary matrix (see Figure 2).
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Figure 2: Horizontal axis: matrix size; vertical axis: scaling exponent of the best known matrix
[FV14; YFV19; TT21; Tro21; BBL20]. A matrix size will be skipped if no known matrix outruns
all smaller matrices. Underlying channel is BEC. Our estimates 3.451 and 3.328 are marked as
dotted lines.

A Proofs for Balancing Channels

The following fact is useful for this appendix and follows from the definition. For any TEC W =
TEC(p, q,7,5,1),

AW) =(q—r)*+(r—s)?+(s—q)
AWE) = (q=r)P(s+p)°+ (r—s)*(a+p)* + (s — )*(r + p)*,
(WO =(g—r)*(s+t)>+ (r—s)(q+t)*+ (s — @)*(r +1)>.

N

A.1 Uniform loss of inertia (Theorem 4)

Now we want to prove A(W©®) < AW)(1 — A(W)/3) for any TEC W, as A(WE) < A(W)(1 —
A(W)/3) will follow by duality.

Proof. We have (s +t)2=(1-p—q—7r)??<(1—q—7)?<(1—q+r)(1+qg—7)=1—(q—1)°
So we see that the three terms that sum to A(W©) can be bounded by

The average of these three terms is at most (A(W)/3)(1— A(W)/3) because A(W)/3 is the average
of (¢ — )%, (r —s)?, and (s — ¢)? and because x(1 — x) is concave in 2. We then conclude that
AWO) < A(W)(1 — A(W)/3). The upper bound on A(WU) follows by duality. O

A.2 Average loss of inertia (Proposition 6)

We want to prove A(WU) + A(WC) < A(W).

12



Proof. First, note that (¢ —7)%(r —s)(s —q) + (r —s)%(s —q) (¢ —7) + (s — q)*(q — 7)(r — ) is zero
by factoring out (¢ — r)(r — s)(s — q). Next, we want to prove that the following is nonnegative:
AW) = AWP) = AW®) = (¢ —r)*(1 = (s +p)° = (s +1)°)
+(r—s)*(1=(g+p)° = (g+1)°)
Fs— 02—+ 0~ (r +0?)
= (@=L~ (s+p)* = (s+1)° = (r—s)(s —q))
+(r=9*(1=(¢+p)° ~(¢+1)° = (s —q)(g—1))
+(s= (L= (r+p)’ = (r+)° = (g—r)(r—9))
It remains to show that 1 — (s +p)? — (s +1)%2 — (r — 5)(s — q) is nonnegative, as the rest will follow

by symmetry. To show so, replace 1 with (p+ ¢+ + s +t)2. One sees that (p+q+7r +s+1)% —
(s+p)?—(s+t)> —(r—s)(s—q) =(2p+q+r—+s+2t)(q+r)+qr+ 2pt is nonnegative. O

B Proofs for Trapping Channels

The following fact is useful for this appendix and follows from the definition. Let W be a balanced
TEC with H(W) =z and E(W) = y. Then

2 902 Y2
13 E(WO):2xy—%, HW"D) =2z — * +E E(W") =2y —2zy—

2y

H(WO) =a®— 3

B.1 Trapping region (Theorem 7)

Given Q(W) > a = 2v/7 — 4, now we want to prove Q(W®) > a as Q(W") > « will follow by
duality.

Proof. Consider a balanced TEC with entropy H (W) = x and edge mass E(W) = y. We first prove
that Q(W©®) > a whenever y = az(1 — z). To do so, we want E(W®) > aH(W®)(1 — HW®));
so we want the following quantity to be nonnegative:

2y2 y2 y2
oy _ oV _ oV — _ _ 2 _ Y 2. Y
BW?) —aH(WH(1 = HWT)) =22y — = O‘(“T 12)(1 v +12)
2 —_— —_— J—
— a2(1— 2)?- a?x(2 — 2)(24 — ?2?) + a*z? — 1202 — 96 + 144
144
20(2 — x)(24 — 452
:a$2(1_$)2'041'( i‘)( Oé:L’)—FO(l’.

144

The subformula —12a2 — 96a + 144 is removed from the numerator because « is a root of it.
The new numerator is clearly nonnegative because 0 < z < 1 and a < 2. This affirms that
E(W®) > aH(WC°)(1 — H(W®)) given that y = az(1 — z).
Now that we finished proving Q(W®) > a when y = az(1 — ), it remains to consider the case
when y > ax(1 — ). For that, consider the map

2
m(x,y) = (1:2— y—, 2xy — i)

We want to study the image of the hyperbola x? — y?/12 = ¢, where c is a constant. Firstly, notice
that the hyperbola intersects the parabola y = axz(1 — x) at exactly one point. Secondly, notice

13



that the z-coordinate of the image of the hyperbola is fixed (and is ¢). Thirdly, notice that the total
derivative of 22 — 32/12 should be zero, i.e., 2202z — ydy/6 = 0 and consequently Oz = ydy/12x.
We next focus on the y-coordinate of the image. It is 22y — 2y%/3 and its total derivative is

2y°0y  4ydy _ (62 —y)(2z —y)
122 3 6x

4y0
220y + 2y0zr — % = 220y +

- y.

This implies that when the point (z,y) is moving upward along the hyperbola z? — y%/12 = ¢,
the image m(z,y) is also moving upward. Therefore, when (z,y) is moving above and away from
the parabola y = ax(1 — ), the image 7 (z,y) will move above and away from the same parabola.
This finishes the proof of that when y > ax(1 — x), the image 7(z,y) lies above the concerned
parabola. O

B.2 Attraction toward the trap (Theorem 8)

We want to prove that Q(W) < a — ¢ implies Q(W®) > Q(W)(1 + (1 — H(W))§). And then
QWH) = Q(W)(1+ H(W)é) will follow by duality.

Proof. Let W be a balanced TEC with entropy H(W) = z, edge mass E(W) = y, and Quetelet
index Q(W) = y/x(1 —x) = b. Suppose b < o — ¢, then

b2z (2—x)(24—b%22) + b*z? — 1262 — 96b + 144
' 144
3e
T

E(W®) —bH(W®)(1 — HW®)) = ba?(1 — x)*

bPa(2—x)(24— if) Lbhe? 1108 S ba2(1 — )2

> ba?(1 — xz)?

Here, —12b% — 96b + 144 = —12(b — a)(b — (—2V7 — 4)) > 12¢(2v/7 + 4) > 108¢. Therefore

E(W©) 3bz?(1 — x)%e 3bz?(1 — )% 3b(1—x)e

W) = > b >2b+ ———— 20+ ——.
QW) = gwoya—amwoy = 0T o a—rmwo) 2 't Ty 20t T s

So 3¢/8, our choice of ¢, is valid. O

B.3 Uniform attraction (Theorem 9)

We want to prove that if Q(W) < « — ¢, there exists an integer m > 0 such that Q(W,) >
QW)(1+¢/8) for all n = m.

Proof. In this proof, we call a descendant W’ of W good if Q(W') > Q(W)(1 + ¢/8). Being
good is hereditary: if a balanced TEC is good, its descendants are all good because their )’s are
non-decreasing (Theorem 8). Now imagine the family tree consisting of the root W and all the
descendants that are not good. The goal of this theorem is to show that this tree is finite.

Fix a balanced TEC W, we know either H(W') > 1/3 or H(W) < 2/3. For the former case,

QUVY) > QW)(1+ H(W)3) 2 Q) (1+ 5 5) = ) (1+5).
For the latter case,
QUV®) = QUV)(1+ (1 - HW)3) > @) (145 - 2) > @um) (145,

14



We infer that H (W) > 1/3 implies W1 good and H(W) < 2/3 implies W© good. We see that the
family tree of the bad descendants is uniparous—every node in this tree has at most one child.

At this point, the only concern is whether there exists an infinite path of TECs W, W1, Ws, W3,
... such that each is a child of the previous TEC, and none of them has entropy lying in [1/3,2/3].
To see why this cannot happen, suppose we begin with x = H(W) > 2/3. We know WU is
definitely good so W1 must be W©. Given that H(W©®) = 22 —42/12 and 0 < y < 2 — 2z, we see
s ¥ o (1—-x)2 11 _ 1
H(W))==x —521‘ —T—Q—7>§.

This implies that the “gap” [1/3,2/3] is too large and that the path of TECs W, Wy, W, ... cannot
cross this gap—it must stay within (2/3,1) if H(WW) began there.

According to the last few paragraphs, what will contradict the theorem is a path of TECs
W, W1, ... such that each is the parallel-child of the previous and all of them have entropy > 2/3.
But this cannot happen because the H of the parallel-child is at most the square of the previous H,
and squaring a number in (2/3,1) will eventually make it less than 2/3. By duality, there cannot
be a path of TECs such that each is the serial-child of the previous and all of them have entropy
< 1/3. This finishes the proof. O

<

B.4 Attraction on the other side (Proposition 11)

To prove that Q(W) < 2 implies Q(W®) < 2 and Q(WUY) < 2, apply the same strategy as
Theorem 7 (Appendix B.1): expand E(W©) — 2H(W©)(1 — H(W®©)) (using a computer algebra
system) and show that it is a negative polynomial in x. To show a polynomial negative, one may
apply ultra-high—precision numerical approximations to “get a feeling.” One then applies Sturm’s
theorem to do the final check.

C Eigenvalue and Eigenvector (Lemma 13)

Lemma 13 has ¢(z) = (z(1 —))%%7(5 — \/z(1 — 2)) and W balanced and Q(W) > 9/7. We want
to verify that
YHWT)) + (H(WD))
2y (H(W))

Let HW) =z and E(W) =y = 92(1 — x)/7. Then H(W©®) = 22 — y?/12 = (16922 + 542° —
2724) /196, while H(WB) = 2z — 22 4+ y?/12 = (3922 — 16922 — 5423 4 272*)/196. The statement
we want to prove boils down to

< 0.818.

2 3_om,4 _ 2 kg3 4
¢(169x +51)3§ 27z )+w(392:p 169:1:19654:1: +27x )
< 0.818 2)
2¢(x)

for 0 < x < 1. One can verify this numerically.

If y > 9z(1 — x)/7, then H(W®) and H(W") are more separated than when y = 9z(1 — z)/7.
Hence ¢ (H(WE)) 4+ (H(W®)) is smaller than the numerator of formula (2) as 1) is convex. Hence
the quotient is still smaller than 0.818.
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C.1 Suboptimality

The eigenvalue 0.818 is not optimal in two aspects. For one, the eigenfunction v is not optimal. A
common practice is to run power iteration

Yo(z) = (x(1 - ))*7,

1692245423 —2724 3922—169x2 —5423 +27x4
U, ( 196 ) + Uk ( 196 )

Vit1(z) =

2 max Y

until ¥ converges (note: use spline). Then the limit of ¢ will induce a smaller eigenvalue. See
[WLVG22, Section III.C] for more details.

On the other, the trapping region we used is Q(W) > 9/7. A better value is 2¢/7 — 4. But even
Q(W) > 2¢/7 — 4 is not optimal. A smaller trapping region is y > 2(1 — x)(1.66 — 0.382(1 — x)).
But even that is not optimal. So in the next appendix, we will use power iteration to find the
optimal trapping region.

D Numerical Trapping Region

In this appendix, we want to find the optimal (smallest) trapping region. In this appendix, W is a
balanced TEC and z = H(W) and y = E(W). Recall that x and y determine W uniquely; define

2 y? 21/

hO(xvy) = H<WO) =T — Ea 6O(x7y) = E(WO) = 2.%‘2/ - 3
2 Y 29/
ho(x,y) = HW") =22 —2° + 13’ eq(z,y) = E(W") =2y — 2zy — ER

We call the lower boundary of a trapping region the inner bound and the upper boundary of a
trapping region the outer bound. For instance, y = (2v/7—4)x(1—z) and y = 2(1—x)(1.66—0.38z x
(1 — z)) are inner bounds; y = 2z(1 — z) and y = z(1 — z)(2 — 22(1 — z)/3) are outer bounds.
Paraphrased, the mission of this appendix is to find the optimal inner and outer bounds.

D.1 Inner bound

Suppose y = () is an inner bound, i.e., ¢ is such that the children of a TEC above the curve
y = p(x) will still be above the same curve. Then the definition translates into:

eo(,0(z)) = ¢(ho(z, (@), en(z, ¢(x)) = o(halz, ¢(2)))-
In other words,
p(r) < eo(hs' (@), p(hs'(2))), p(x) <en(hg'(x),o(hg' (@)

where h5' and hZ! are inverse functions of x +— ho (7, ¢(z)) and x + ho(z, ¢(z)), respectively.

Suppose there exists an optimal inner bound and it is of the form y = p(z), i.e., ¢ is the greatest
function such that the children of a TEC above the curve y = ¢(z) will still be above the same
curve. Then the optimality of ¢ translates into

o) =min( o (h3' @), o @) 5 en(h@)ethit@) ).
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We do not know a priori if the optimal inner bound exists. But we can consider the following
inductive definition

po(z) = 2z(1 — z),
hor(x) = ho(z, ¢r(T)),
hok(z) = ho(z, px(z)),
eor(r) = eo (hoy (@), er(hop (),
ecn(@) = en(hsy (@), op(hSi (),

Vk+1(x) == min(eqk (), eqr(x)).
These functions can be and were implemented by linear splines with 10° nodes. The advantage
of linear splines is that the inverse function of a linear spline is still a linear spline. Per our
computation, @ converges as k — o0o. So we suspect that the limit of ¢ is the optimal inner
bound.
A plot of the limit of ¢ is in Figure 3.

D.2 Outer bound

An argument similar to the previous sub-appendix applies to outer bound. Suppose y = x(z) is an
outer bound, i.e., x is such that the children of a TEC below the curve y = x(x) will still be below
the curve. The definition translates into

eO(x7 X(x)) < X(h@(l’, X(l’))), en (.1‘, X(.%')) < X(hD (:B, X(.CE)))
In other words,
x(z) = eo (ha' (@), x(h5' (2))), x(z) = eq(hg' (@), x(hg' (2))).

Suppose y = x(z) is the optimal outer bound, then the optimality implies

x(@) = max(eo(h5 @) x5 @) en(h5t@) x5 @) ).

This means that we can setup an inductive definition almost identical to the one above except that
the last line will be with max:

xo(z) = 2z(1 — ),
hok(x) = ho(z, xk(z)),
hok(z) = ho(z, xk(z)),
eon(®) = eo (hy (@), xi(hp (@),
eok(x) = en (o (@), Xk (hoy(2))),

Xi41(2) = max(eck (), eqr(2))-

We did the computation and the end result of x; is plotted in Figure 3.

D.3 Scaling exponent
Using the numerical limit of ¢y () in place of (2v/7 — 4)x(1 — ), we can strengthen Lemma 13
and Theorem 14. Details omitted, our final number is p < 3.328.

Theorem 15 (enhanced main theorem). Consider a pair of BECSs treated as a TEC, or consider

any TEC where pqrst > 0. The 2 x 2 matriz [L9] over Fy induces a scaling exponent less than
3.328.
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Figure 3: Horizontal axis: © = H(W),,); vertical axis: y = E(W,,). Curves from top to bottom:
22(1 — ), the numerical outer bound Y293, the numerical inner bound @129, and (2v/7 —4)z(1 — z).
Dots: the 10th-generation descendants of BEC(0.55).

E Simulations

In this appendix, we presents simulations in two figures. In Figure 3, we take a pair of BEC(0.55),
treat them as W, compute H(W,,) and E(W,,) for n = 10, and compare it with trapping regions.
In Figure 4, we compute the expectation of ¥(H (W,,)) for W,, defined by [}9] and that defined

by [L{]. The result shows a clear advantage of [L{] over [1{].
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