Bedrock: Programmable Network Support for Secure RDMA Systems

Jiarong Xing Kuo-Feng Hsu Yiming Qiu Ziyang Yang Hongyi Liu Ang Chen

Rice University

Abstract

Remote direct memory access (RDMA) has gained popularity
in cloud datacenters. In RDMA, clients bypass server CPUs
and directly read/write remote memory. Recent findings have
highlighted a host of vulnerabilities with RDMA, which give
rise to attacks such as packet injection, denial of service, and
side channel leakage, but RDMA defenses are still lagging
behind. As the RDMA datapath bypasses CPU-based soft-
ware processing, traditional defenses cannot be easily inserted
without incurring performance penalty. Bedrock develops a
security foundation for RDMA inside the network, leverag-
ing programmable data planes in modern network hardware.
It designs a range of defense primitives, including source
authentication, access control, as well as monitoring and log-
ging, to address RDMA-based attacks. Bedrock does not incur
software overhead to the critical datapath, and delivers native
RDMA performance in data transfers. Moreover, Bedrock
operates transparently to legacy RDMA systems, without re-
quiring RNIC, OS, or RDMA library changes. We present
a comprehensive set of experiments on Bedrock and demon-
strate its effectiveness.

1 Introduction

Remote direct memory access (RDMA), a technology that
originates in high-performance computing (HPC), has gained
popularity in modern cloud datacenters [1, 2]. In RDMA
systems, servers expose a “remote memory”’ abstraction to
networked clients, offering high throughput and low latency.
Bypassing server CPUs, one-sided RDMA operations (e.g.,
READ and WRITE) enable remote accesses at hardware
speeds. This is achieved by the use of RDMA-enabled net-
work interface cards (RNICs), which enclose special ASICs
for translating RDMA operations to local DMA requests to
the main memory over PCle. Only control operations like
connection setup and teardown require CPU-based software
intervention. The datapath itself is free of software bottle-
necks and enables low-latency remote memory access.

The expansion from private HPC environments to pub-
lic, multi-tenant clouds, however, has put RDMA security
under greater scrutiny. Exposing server memory to remote
clients without CPU mediation comes with a host of secu-
rity implications. Recent work has demonstrated that RDMA
systems lack secure mechanisms for authentication [46,52];
that they have rigid access control mechanisms that are easy
to bypass [46,49]; and that they cannot produce audit trails

Xing and Hsu contributed to this work equally.

for forensics [46,49]. This has culminated in a systematic
study on RDMA security problems under varied threat mod-
els in ReDMArk [46]. The authors have considered varied
threat models and identified scenarios in which attackers can
inject spoofed RDMA packets, bypass access control mecha-
nisms, launch various types of denial-of-service attacks, and
leak data via side channels. Many of the vulnerabilities are
deeply rooted in the insecure RNIC hardware designs, there-
fore fundamental to today’s RDMA systems. While defense
analogues exist for traditional TCP/IP networks (e.g., against
IP spoofing or TCP injection attacks), RDMA systems present
a distinct challenge in bypassing the CPU. The key to RDMA
performance lies in the exclusion of CPU software processing.
This creates significant difficulty in using existing software-
based defenses without negating the performance benefits
afforded by RDMA.

The key research goal in this paper is to develop a suite
of defenses that are compatible with the CPU-bypassing
paradigm in RDMA systems, therefore preserving their raw
performance, but without requiring changes to RNIC hard-
ware, OS, or RDMA libraries. Bedrock secures the datapath
traffic directly inside the network, relying on advances in
networking technology that developed programmable data
planes in switches and NICs. With this technology, it be-
comes feasible to develop datapath defenses that operate at
hardware speeds. We can further programmatically insert
them underneath the RDMA layer in a transparent manner.
The Bedrock defenses consist of a set of network programs
in P4 [13,19], a high-level language for programming net-
work devices. Bedrock provides support for many security
mechanisms that are missing or inadequate in RDMA, includ-
ing source authentication, access control, as well as monitor-
ing and logging, which further serve as building blocks for
mitigating myriad attacks. Operating in network hardware,
Bedrock only incurs CPU processing for RDMA setup op-
erations, where software processing is already involved and
inevitable. In addition, these extra setup operations are also
achieved without OS or RDMA library changes via the eBPF
framework [4].

In TCP/IP networks, researchers have used programmable
switches for various security applications [23,34,41,58,63,
64], but compared to these work Bedrock represents a de-
parture in several dimensions. It focuses on RDMA security
instead of traditional TCP/IP, it develops a suite of protections
under varied threat models, and its conceptual novelty is to
demonstrate that we can develop a secure network foundation
underneath the RDMA layer while maintaining transparency

to legacy systems. This design principle makes Bedrock easier
to adopt, and it also points to a path for seamlessly integrating
new RDMA defenses if more attacks should be discovered in
the future: by programming them into the network.

Concretely, the Bedrock defense primitives enable source
authentication, access control, and monitoring and logging in
cloud datacenters. The individual defenses in Bedrock draw
parallels from defenses in TCP/IP settings, but they are archi-
tected to bypass CPUs and customized for RDMA:

» The Bedrock authentication mechanisms are inspired by
source authentication and path validation techniques for
IP networks [36-38]. But instead of relying on “clean-
slate” architectures, Bedrock is compatible to today’s net-
works. It binds RDMA endpoints to network invariants
(e.g., the datacenter topology), which in cloud settings
are outside the adversary’s control. This enables Bedrock
to recognize spoofed RDMA packets by checking these
invariants as they are processed by the network.

» The Bedrock access control refines the isolation mecha-
nisms in RDMA, such as memory regions (MRs), mem-
ory windows (MWs), and protection domains (PDs),
which not only use insecure, easily-bypassable tokens,
but also are hardwired in the RNIC. Bedrock takes a
“software-defined” approach, exposing the ACL mech-
anisms for programmability by building access control
primitives inside the switch. This also opens up opportu-
nities to customize or extend RDMA ACLs for network-
or application-specific policies.

» The Bedrock monitoring and logging mechanisms bor-
row techniques from network telemetry [29, 50], which
uses programmable switches to monitor network traces
or collect compressed TCP/IP traffic logs. In Bedrock,
the defense in effect monitors memory access patterns
inside the network, and the produced traces can detect
abnormal accesses and enable security auditing.

Combined, these techniques significantly improve the sta-
tus quo of RDMA security. The rest of this paper presents the
Bedrock design in detail, and evaluates it comprehensively us-
ing realistic setups. Our results demonstrate that Bedrock can
mitigate a range of RDMA attacks with minimal overheads.
Bedrock has been released in open source [3].

2 Motivation and Background

In this section, we provide necessary background on RDMA,
explain its security mechanisms and known attacks, ending
with an overview of Bedrock.

2.1 RDMA primer

Remote Direct Memory Access (RDMA) was proposed by
the HPC community decades ago for high-performance com-
puting, where low latency and high throughput are crucial
to application performance. Compared to TCP/IP networks,

RDMA significantly reduces software latency and CPU uti-
lization by kernel and CPU bypassing. An RDMA appli-
cation can directly issue read/write requests to the remote
server as if the memory is local. Further, these requests
are processed by the recipient without involving the CPU—
hence the name remote “direct” memory access. Under the
hood, RDMA requests are processed by special hardware en-
gines in RNICs (RDMA network interface cards) for high
performance. Given its performance advantages, RDMA
has gained wide deployment in datacenters recently in re-
sponse to the growing demands on network performance and
become foundational to many modern datacenter applica-
tions [1,2,24,25,39,43,48,60-62].

RDMA APIL. RDMA provides two types of API calls. Two-
sided API calls, such as SEND and RECV, are similar to tra-
ditional RPC messaging as they require CPU involvement.
The sender CPU issues a SEND request with a data buffer to
the RNIC, which transmits RDMA packets to the receiver.
The recipient CPU issues RECV to its RNIC to setup re-
ceive buffers for incoming data. One-sided API calls, such as
READ, WRITE, and ATOMICS, eliminate CPU overhead at the
receiver side. Except for connection setup, clients directly ma-
nipulate remote memory without the recipient CPU’s knowl-
edge. One-sided calls deliver strong performance benefits as
they have an accelerated datapath at ASIC speeds. Figure 1(b)
depicts the workflow of one-sided memory accesses. The vul-
nerabilities discovered by the security community also center
on one-sided, CPU-bypassing RDMA calls [46,49,52,54,56].

RDMA mechanisms. In one-sided RDMA, a server ex-
poses its memory to remote clients by memory regions (MRs).
A server registers an MR with a pair of local and remote pro-
tection keys (lkey and rkey, respectively), intending only for
RDMA clients with the knowledge of the rkey to access the
corresponding MR. The communication channel is repre-
sented by two dedicated hardware queues on the sender and
receiver RNICs, comprising a queue pair (QP) identifiable
by its queue pair number (QPN) at each end. The connection
setup process involves the exchange of rkey, QPN, and MR,
all as a form of (unfortunately, insecure) credentials. RNICs
usually come with software connection managers [14] as a
library to manage connection setups. Such RDMA libraries
use unencrypted TCP channels, but applications can employ
secure protocols (e.g., HTTPs) if they choose to implement
their own setup process.

RoCEv2. A widely used implementation is “RDMA over
Converged Ethernet Version 2” (RoCEv2) [15], where RDMA
packets are carried by Ethernet frames over traditional net-
work infrastructures using UDP and IP as the carrier. Com-
pared to Infiniband (IB) in HPC networks, which requires spe-
cialized network infrastructures, RoCEv2 is backward com-
patible with the Ethernet L2 infrastructure [68]. Therefore,
RoCEV2 is the technology of choice for large-scale deploy-
ments in cloud datacenters—it is also Bedrock’s protection
target. In this setting, RNICs add and remove Ethernet head-

Memory address, rkey, DMA length |

RDMA
Header

Eth L2 P ubp &
Header Header Header i

FCS

PD
RDMA client

MR
addrl

rkeyl

Qr1,QP2, ... || .-

— malicious connection

—— normal connection
RNIC -
--—> inject
7 N
%U RN

MR ’
- ™1 G RNIC ;
MW <

MW ™2

& 8]

Read/ | ==
Write -I =:#

1_1
e @

(b) One-sided RDMA

™3

(c) The relation between PD, MR, and MW

x RN
connect

(d) Threat model

Figure 1: Remote direct memory access and its security implications. (a) A common RDMA protocol called RoCEv2. (b)
One-sided, CPU-bypassing RDMA operations. (c) Security mechanisms in RNIC hardware. (d) Threat models under which

attacks have been discovered in recent projects.

ers before interpreting RDMA semantics and completing the
memory operations via local DMA. Figure 1(a) shows the
packet format. A well-known UDP destination port is used
to indicate the use of RDMA, and the inner RDMA header
itself contains rkey, destination QPN, and the target memory
address. An RDMA packet also contains a packet sequence
number (PSN) for in-order delivery and a checksum (ICRC)
for packet integrity. All headers and payload are transmitted
in plaintext.

2.2 RDMA-native security support

RDMA has several built-in, basic security mechanisms. Re-
cent work has demonstrated that they are insufficient in shared,
multi-tenant cloud datacenters.

Authentication. Upon receiving a request, the RNIC per-
forms basic authentication in three aspects. First, the request
must target an existing server-side queue pair number (QPN)
that has been negotiated in the setup phase. Second, it must
target a valid memory region (MR) with a correct rkey. Fi-
nally, the accessed virtual memory address must be within
the destination MR. Requests that violate any of the above
constraints will be dropped by the RNIC without notifying
the receiving application. Those that pass all checks are trans-
lated into local DMA requests from the RNIC, via the PCle
interconnect, to the main memory.

Authorization. RDMA supports three insecure and fixed-
function access control mechanisms: protection domains,
memory regions, and memory windows. As Figure 1(c) shows,
a protection domain (PD) contains a group of queue pairs that
have the same access control privileges for the same set of
memory regions. A memory region (MR) is further associated
with virtual memory boundaries and access control privileges
(e.g., read-only vs. read-write). A memory window (MW) is
akin to a fine-grained protection domain with only one queue
pair. These mechanisms are insecure and easily bypassed

if the attacker presents the correct rkeys and QPNs. Also,
RDMA ACL mechanisms pose integration issues with other
forms of cloud ACLs, as they are baked into hardware and
CPU intervention is hard to come by [30]. Elsewhere in the
cloud, non-RDMA, software-based access control systems
are easily reprogrammable to incorporate alternative ACL
policies.

Integrity. RDMA packets are unencrypted, and only use
two naive mechanisms for integrity. A 32-bit ICRC checksum
is included for each packet, which is inherited from the Infini-
band (IB) standard from HPC settings. When RDMA packets
are carried over RoCEv2, RNIC vendors view ICRC as re-
dundant as Ethernet already has checksum mechanisms. 'A
24-bit packet sequence number (PSN) functions similarly as
TCP sequence numbers, enforcing ordered delivery and pre-
venting packet injection. However, the checksum algorithms
and seeds are publicly available, which leads to low-entropy
PSNs. A recent project, SRDMA [52], has developed crypto-
graphic support for RDMA packet encryption.

2.3 Threat model and attacks

We base our threat model upon ReDMArk [46], the state-
of-the-art study of RDMA vulnerabilities. In particular, we
target threat models for multi-tenant cloud datacenters, as de-
picted in Figure 1(d), where clients access remote servers via
the network. In this setting, we assume that the network and
server infrastructure are part of the trusted computing base
(TCB). Only clients are considered to be potentially malicious.
Although ReDMArk has also identified attacks that are possi-
ble under an actively malicious network, such a threat model
is beyond the scope of Bedrock. We present the considered
threat models below and note on the correspondence to those
presented in ReDMArk when appropriate.

!Discussion with Nvidia/Mellanox.

Threat Model TM1: The attacker is located at a different
end host from the victim, either in a virtual machine (VM)
or container. She does not have root privilege on the cloud
machine, so cannot inject raw RDMA packets or sniff net-
work traffic. However, she can launch arbitrary malicious
RDMA apps, which can issue reads and writes to remote
servers—e.g., racks hosting RDMA-enabled storage services.
This corresponds to the T1 threat model in ReDMArk.

Threat Model TM2: An enhancement of TM1. The adver-
sary runs in baremetal cloud machine, or she has compromised
the cloud software stack and obtained root privilege. She can
therefore fabricate and inject arbitrary RDMA packets with-
out needing to establish queue pairs first. The spoofed packets
are manipulated to use fake UDP, RDMA, or other headers.
This corresponds to the T2 threat model in ReDMArk.

Threat Model TM3: The adversary and victim run VMs
or containers on the same machine. The attacker launches
malicious RDMA apps, but she does not have root privilege
and cannot subvert the client VM/container directly. However,
unlike TM1 and TM2, the adversary’s and victim’s RDMA
traffic originate from the same cloud node, and their packets
are routed by the network via the same paths. This distinction
is relevant for Bedrock as it leverages network invariants for
defense; but this does not correspond to a separate threat
model category in ReDMArk.

Threat Model TM4: Finally, we also consider cases where
attackers have compromised an RDMA client on another ma-
chine via techniques like code injection and malware. This
corresponds to the T4 threat model in ReDMArk, where ad-
versaries can exfiltrate data to other machines silently.

The T3 threat model in ReDMArk assumes a malicious
network, which is beyond the scope of our discussion. Under
threat models TM1-TM4, we summarize the possible attacks
identified in existing work [46,49,54,56].

2.3.1 Insecure source authentication

Existing RDMA authentication mechanisms can be bypassed
easily. An attacker can gain access to other users’ remote
memory regions if she obtains the correct QPN, rkey, and
memory address. Unfortunately, these elements can be pre-
dicted by the attacker [46]. (i) QPNs: ReDMArk [46] finds
that RNICs generate the next QPN by incrementing the cur-
rent one. If an attacker finds her QPN to be r, she can reliably
infer that [0..n — 1] are valid numbers as well. (ii) rkey: The
rkey generation mechanism is also predictable [46,56], e.g.,
either by incrementing rkeys by a fixed delta (e.g., Broadcom
RNICs increment by 0x100 for each new rkey), or using low-
entropy randomness (e.g., static initialization values and the
same key generator for all protection domains) [46]. (iii) Mem-
ory addresses: Since traditional ASLR [57] (address space
layout randomization) does not apply to memory ranges ex-
posed by RDMA, virtual addresses are trivial to guess. If an
adversary wishes to launch injection attacks, she needs to
additionally guess the packet sequence number (PSN), which

is intended to guarantee ordered delivery just like in TCP.
However, TCP sequence numbers have random initial values
as generated by the OS, whereas many open-source RDMA
apps hardcode their initial PSNs [46]. RDMA sequence num-
bers are also more susceptible to brute-force attacks as they
are shorter than TCP sequence numbers (24 vs. 32 bits). An
attacker can enumerate the entire space in 10s for Mellanox
RNICs and 23s for Broadcom RNICs [46]. These vulnerabili-
ties lead to the following attack scenarios.

Scenario 1 (S1): Unauthorized memory access via mali-
cious queue pairs (TM3). An attacker Bob creates its client
QP, but accesses server memory granted to Alice’s QP. He
achieves this by using Alice’s rkeys and using Alice’s server-
side QP number without negotiating with the server. This is
feasible under TM3 where Bob and Alice reside in the same
machine and have the same IP address.

Scenario 2 (S2): Unauthorized memory access via raw
packet injection (TM2). An attacker Bob can inject packets
to Alice’s queue pair if he can craft raw packets as root user.
He also needs to obtain Alice’s QPN, memory address, rkey,
and PSN using the methods described in ReDMArk. This
corresponds to the A1 attack in ReDMArk.

Scenario 3 (S3): DoS attacks by increasing the expected
sequence number (TM2,TM3). Bob can inject packets to ad-
vance Alice’s PSN, either using root privilege (TM2) or by
locally modifying his QP’s PSN without root privilege (TM3).
This will cause the server to drop actual packets from Al-
ice with lower sequence numbers. The DoS attack can be
prolonged by continued packet injection.

Scenario 4 (S4): DoS Attack by transitioning QPs to an
error state (TM2,TM3). Bob forces an existing QP to transi-
tion into an irrecoverable error state via injecting malformed
packets either using root privilege (TM2) or by modifying his
valid QP to target Alice’s QP at the server side without root
privilege (TM3). Injected packets may use incorrect memory
opcode (e.g., aread-only QP receives a write request) or incon-
sistent payload and DMA lengths [46]. These errors can cause
RNIC:s to trigger error detection and bring down the victim
QP [7]. This corresponds to the A2 attack in ReDMArk.

2.3.2 Inadequate access control

Existing RDMA isolation mechanisms fall short in several
aspects. First, they rely on insecure tokens (e.g., rkeys) that
are generated by hardware in predictable patterns [46]. An
adversary can easily guess another queue pair’s rkey and
perform injection attacks. Second, they have fixed-function
semantics and cannot be easily integrated with other forms
of cloud ACLs as they bypass the software stack [30]. The
authors of ReDMATrk have performed a study of open-source
RDMA projects, and found that many existing systems only
use one single protection domain (PD) [46]. Following ReD-
MArk’s methodology, we have studied 13 publicly available
RDMA systems [6,24,28,31-33,40,44, 51,52, 55, 60, 61],
and found that none of them uses memory windows (MWs)

either. This means that rkey-guessing attacks can be easily
launched against these systems due to inadequate access con-
trol. Implementing ACLs in the network switch re-exposes
programmability and puts control back to the network oper-
ator’s or the RDMA application’s hands. They can enforce
customized ACL policies in the network, or integrate RDMA
ACLs with other forms of access control.

Scenario 5 (S5): Unauthorized memory access that crosses
access control boundaries (TM1-TM3). An adversary can
cross the boundaries of RDMA access control and gain access
to other clients’ queue pairs. This corresponds to attack A3 in
ReDMATrk.

2.3.3 Lack of monitoring and logging

Security auditing is critical for cloud services—Ilogs are usu-
ally maintained by the servers for forensic purposes, which
in turn enable attack detection, postmortem analysis, and ser-
vice repair. However, CPU-bypassing RDMA requests are
not visible to these auditing systems. The following attacks
can easily slip under the covers without leaving a trace.

Scenario 6 (S6): DoS attacks via queue pair exhaustion
(TM1-TM3). An attacker can exhaust RNIC resources by cre-
ating a large number of QPs to deny the service to other clients.
In principle, 24-bit QPNs can distinguish between 2% QPs,
but in practice RNICs only support a much smaller number:
32,707 for Broadcom and 261,359 for Mellanox RNICs [46].
This corresponds to attack A4 in ReDMATrk.

Scenario 7 (S7): Performance degradation attacks (TM1-
TM3). RDMA packets bypass server CPUs but incur process-
ing overhead at RNIC engines, and these engines have their
own processing limits. An attacker can issue a large volume
of RDMA requests to overload the RNIC engine itself, so that
normal clients’ packets cannot be processed. ReDMArk [46]
shows that an attack from 1-2 nodes can easily reduce normal
clients’ read throughput by 8x-10x. This corresponds to attack
A5 in ReDMATrk.

Scenario 8 (S8): Side channel attacks (TM1-TM3). RNICs
have on-board memory to cache data structures like page
table entries, and they use the main memory as a backing
store to handle cache evictions and misses. Cache misses trig-
ger expensive main memory accesses as they cross the PCle
bus in a round-trip, leading to detectable latency differences
compared to cache hits. An attacker can use prime-and-probe
or evict-and-reload techniques to cause cache evictions and
construct timing channels to observe memory access patterns
of a victim client served by the same RNIC [54].

Scenario 9 (S9): Data exfiltration (TM4). CPU bypassing
can also lead to exfiltration attacks. Normally, exfiltration at-
tacks will leave audit trails in software logs, which can be used
for forensic analysis. However, if an attacker compromises
an RDMA node, she can leak data by initiating connections
from remote machines and directly reading the memory of
the compromised node without leaving a trace. This makes
it challenging to even detect data exfiltration attacks. This

corresponds to attack A6 in ReDMATrk.
2.4 BedRock Overview

Bedrock develops RDMA defenses in network devices with
programmable data planes, which accept P4 programs for
customizing packet processing behaviors. Consider pro-
grammable switches as an example. A P4 program specifies
necessary packet headers and protocols for the switch. The
programmable parser extracts these headers and construct
packet header vectors (PHVs). The PHVs are sent through
multiple hardware stages in the switch for match/action pro-
cesssing. The programmable deparser reassembles headers
before forwarding the packet. Bedrock leverages this capabil-
ity to process RDMA headers on-the-fly for source authenti-
cation.

The main P4 processing takes place in a series of match/ac-
tion tables. Each table may have different keys (e.g., header
fields) and perform varied actions (e.g., arithmetic or bitwise
operations) on the headers. Hardware ALUs and CRC hash
units are integrated with every processing stage to enable
programmable actions per packet. Table entries, on the other
hand, are stored in switch SRAM (Static RAM) or TCAM
(Ternary CAM) for exact and range matches, respectively.
Each type of resource has its own constraints—typically,
O(100Mb) for SRAM and O(10Mb) for TCAM for a pro-
grammable switch. TCAM tables are especially important for
RDMA access control in the design of Bedrock.

Switch SRAM can also be used as register arrays to store
data across packets. These are akin to arrays in C, where
each register is accessible via an index. A packet is limited to
accessing one register per stage, so K accesses are possible
across K stages. Bedrock leverages registers for RDMA mon-
itoring and logging; it also uses packet mirroring primitives
to duplicate packets.

Deployability. Bedrock requires the use of P4-
programmable network devices in RDMA deployments.
Although P4 is a recent development, it is gaining traction
from industry [12]. Academic projects also make extensive
use of P4 switches [23,35,41,42,50,58,67]. As an example
of real-world adoption, Alibaba has deployed Tofino switches
in their production networks at scale [53]; the same cloud
provider also relies on RDMA deployments for their storage
service [26]. We believe that these industry trends show
promise of the deployability of Bedrock in realistic scenarios.
Our primary design goal is for Bedrock to run in top-or-rack
switches to protect racks of servers.

As P4 is a target-independent language, P4 programs can
be deployed to NIC-based targets as well. Existing P4-capable
platforms not only include programmable switches like Intel
Tofino and Nvidia Spectrum, but also programmable NICs
like Netronome Agilio and Xilinx Alveo. These platforms pri-
marily differ in their cost-to-performance ratios, performance
characteristics, and deployment scenarios. Switching ASICs
have lower cost-to-performance ratios and can be deployed to

serve entire racks of servers. Programmable NICs have higher
cost-to-performance ratios and are suitable for server-local
deployments. Programmable NICs also exhibit more perfor-
mance variability than switching ASICs. We show some con-
crete data points by analyzing the list price from the same
vendor: today, a 3.2Tbps P4 switch costs $8,695 [5], trans-
lating to $2.7 per Gbps; a 40 Gbps P4 NIC costs $555 [11],
and this translates to $13.8 per Gbps, which is several times
higher. Later, we also include performance benchmarks on a
P4-programmable NIC.

3 Network Support for RDMA Security

Next, we present the three components of the Bedrock system.
3.1 RDMA source authentication

Bedrock is inspired by work in source authentication mech-
anisms for the general Internet [36-38], where mutually-
untrusted parties wish to authenticate packets’ origins. How-
ever, unlike the Internet at large where ISPs and their network
infrastructures are assumed to be untrusted, RDMA deploy-
ments occur in controlled environments where the attacker
cannot easily subvert the underlying infrastructure. Bedrock
harnesses the fact that the network itself is part of the TCB,
and develops lighter-weight mechanisms without requiring
architectural changes and cryptographic operations for rout-
ing, forwarding, and source authentication. Instead, Bedrock
derives identifiers that are coupled with the cloud infrastruc-
ture (e.g., the network topology and system information) that
is beyond the adversary’s control.

3.1.1 Packets from different machines

We first consider threat models TM1 and TM2, where the at-
tacker is located at a different machine from the victim client.
Bedrock leverages network topological invariants for authenti-
cation, in a manner that is transparent to applications. Spoofed
traffic can be easily detected by Bedrock as such packets will
violate the topological invariants. Concretely, Bedrock enables
this by constructing a mapping for each RDMA client that
maps from its IP address to the topological information—the
switch ingress port ID (iPort) for the client. This requires
assigning a unique ID for each switch port in the network
(e.g., by the operator or network management tools), and con-
figuring the mapping in the switches’ match/action tables.
At runtime, Bedrock switches check these invariants for each
RDMA packet, and detects packets whose IP addresses do
not match the topological information. In the P4 program,
Bedrock enforces this based on the network mapping stored
in match/action tables. Under this design, Bedrock ensures
that RDMA packets are bound to the original endpoints from
which the connections have been initiated. If an attacker uses
the IP of the victim, her packets will be detected and blocked
by Bedrock. If she uses her own IP address, her packets will
be rejected by the remote RNICs as the source IPs are incon-
sistent. Combined, Bedrock mitigates impersonation attacks
effectively.

pid-cQPN list
Client ; Server

[1 [1
1 [
driver driver

create[qp / 001 cOPNI,cQPN2,..
modify|qp 002 cQPN3, cQPN4, ... mpdify_gp

sQPN replacement

cQPN-sQPN|_

! RD’\:A. kernel Programmable switch
river
RNIC hardware | CQPN1 SQPN1 —'1— RNIC hardware
capPN2 SQPN2 ¢
CQPN3 SQPN3

Figure 2: The illustration of source authentication for clients
in the same machine.

3.1.2 Packets from the same machine

Next, we consider threat model TM3, in which spoofing at-
tacks can be launched from the same machine as the victim.
This creates more challenges for recognizing spoofed packets,
as traffic originating from attackers and the victim are indis-
tinguishable by the ingress port information. Therefore, we
need to go one level further and identify other types of system
information that the attacker cannot easily control.

Figure 2 illustrates our design. Bedrock relies on the pro-
cess ID (pid) which is generated by the OS kernel, as another
class of identifiers. RDMA connections are bound to identi-
fiers that reflect both topological constraints and system in-
formation. To achieve transparency, we extract the pid using
eBPF [4], which is an infrastructure present in most main-
stream Linux kernels. eBPF allows the injection of runtime
monitors into the kernel without affecting user applications.
We intercept the RDMA verb create_gp, which creates a
hardware queue at the local RNIC and returns the generated
QPN to the application. Bedrock constructs a list of client
QPNs (cQPNGs) for each pid during its lifetime, and destroys
the list upon application exit. Therefore, a malicious applica-
tion that misuses other applications’ QPNs can be detected
by the eBPF script.

However, the above defense does not prevent attackers from
using their own cQPNs to communicate with some server
QPN (sQPN) that they have not authenticated with. At the
server RNIC, the ASIC only checks if the server QPN is
valid. It does not validate the originating client QPN—in fact,
cQPNs are not even included in RDMA packets. This is the
root cause why attack S1 is feasible. One way to mitigate this
attack is to modify the RDMA standard for the inclusion and
validation of cQPNs; Bedrock instead resorts to a transpar-
ent approach: overwriting the sQPN header with the cQPN
value. Specifically, Bedrock first ensures that the client uses
its own cQPN by checking the pid-cQPN list. It then uses the
eBPF framework at the client side to intercept the modify_agp
call and replace the parameter sQPN with cQPN. In this way,
Bedrock tightly controls which server QPN a client can com-
municate with. Even if clients specify a different server QPN,
it will get modified by Bedrock to the correct value.

So far, Bedrock establishes an invariant that, for all in-

flight RDMA requests, the sQPNs that they carry are equal to
the originating cQPNs. At the server side, Bedrock authenti-
cates the request in the network by querying a switch-based
mapping to obtain the actual server QPN. This mapping is
obtained by the server-side eBPF framework, which simi-
larly monitors modify_gp calls. The actual server QPNs, and
the originating client QPNs, are inserted to the switch in a
match/action table. RDMA requests match on this table, and
their sQPN headers are replaced with actual server QPNs
before they are sent from the switch to the RNIC. In effect,
Bedrock interposes a layer of indirection for security.

One practical issue here is the ICRC checksum of RDMA
packets need to be recalculated when the last-hop device
changes the sQPN. This can be easily done using pro-
grammable NICs, but current programmable switches cannot
easily support this [17]. However, ICRC fields are redundant
for RoCEv2 packets as Ethernet frames already have check-
sums. This feature was inherited from the Infiniband (IB)
version of RDMA, and can be disabled in RoCEv2 settings.
Our setup disables ICRC to resolve this issue.

3.2 RDMA access control

Next, Bedrock develops a “software-defined” approach to
RDMA access control. Today, RDMA ACLs are hard-
wired and pose integration issues with other types of cloud
ACLs [30]. By offloading ACLs to a programmable switch,
Bedrock exposes RDMA access control for programmabil-
ity. Datacenters regain the ability to customize or modify
ACL policies for CPU-bypassing traffic. Advanced, scenario-
specific ACL policies also become possible without having to
resort to software intervention. Section 3.3 presents several
policies that monitor RDMA traffic patterns and make ac-
cess control decisions based on these patterns—e.g., denying
access if signs of DoS attacks are detected. Here, we first
focus on developing RDMA ACL support in programmable
switches.

Figure 3(a) shows our design, which consists of an RDMA
external library on servers, a policy setup daemon in the
switch control plane, and a policy executor in programmable
data planes. The library offers an easy-to-use API for users to
specify ACL groups and add/remove QPNs to/from a particu-
lar group. The API is invoked in an application-independent
manner without RDMA application changes—i.e., the user
writes a configuration script without modifying her apps. If de-
sired, the RDMA apps can also call into this library for direct
integration. The ACL policies are sent to the switch daemon
by Bedrock, which configures them into the switch programs.
Memory ranges, queue pairs, and RDMA opcodes are all
part of the policy decisions. The policies are implemented in
programmable match/action table, where rule insertions and
deletions reflect ACL changes.

The policy executor is a P4 program that enforces access
control in the switch data plane. Its rules are populated by
the configuration scripts stated above. The executor checks

Start address range ‘ End address range

0000 FF00 0000~00FF 00FF FFFF ‘ 0000 FFOO 0000~00FF O0FF FFFF

Table 1: An example memory range for ACL.

ID ‘ bit[47:32] bit[31:16] bit[15:0]

rl 0000~0000 FFOO~FFFF 0000~FFFF
r2 0001~00FE 0000~FFFF 0000~FFFF
r3 00FF~00FF 0000~00FF 0000~FFFF

Table 2: Each memory address requires three TCAM rules.

i) whether the memory range of an RDMA request is within
the memory boundary assigned to the client; and i7) whether
the requested operation is allowed using the match/action
tables. As shown in Figure 3(a), Bedrock instantiates an ACL
table with five keys: the start and end memory addresses, ACL
group, opcode, and priority. The memory addresses use range
matches in TCAM; other keys use exact matches in SRAM.

3.2.1 Compressing RDMA ACLs

The design of the data plane executor creates challenges due
to switch resource limitations. Whereas memory addresses
are 48-bit long (for 64-bit systems), TCAM range matches
have shorter lengths (20 bits in Intel/Barefoot Tofino [10]).
A simple solution is to segment a 48-bit memory address
into three 16-bit segments and designate a range match for
each of segment. The overall match result will depend on the
three individual matches. However, this will consume large
amounts of TCAM resources since the segments will contain
duplicate information. Consider a memory range 0000 FF00O
0000~00FF OOFF FFFF in Table 1. To check whether a re-
quest is contained by this, logically, we only need to check the
request’s start address against this range and then its end ad-
dress. However, each memory address (start/end) needs to be
split into three 16-bit rules (see Table 2) due to TCAM restric-
tions. Checking a request’s start and end addresses against
this memory range further requires six rules stemming from a
“cross product”. This creates high overhead, as switches only
have O(10Mb) TCAM. We address this using a combination
of three techniques.

#1: Adjustable ACL granularity. First, the above overhead
is only necessary if we require byte-level access control. If
coarser-grained ACLs are sufficient, Bedrock can ignore the
least significant bits. Bedrock makes the ACL granularity
adjustable—for instance, if 4kB page-level ACLs are suffi-
cient, Bedrock ignores the 12 LSBs and uses two segments to
represent a page address.

#2: Table decomposition. Second, we reduce the redun-
dancy of start/end address combinations by decomposing a
logical table to two different tables, one for the start address
and another for the end address. This deduplicates the logical
table by avoiding the “cross product” problem. Figure 3(b)
visualizes this idea, where the Y-axis indicates different ACL
permissions (e.g., RO vs. RW) and the X-axis indicates mem-
ory ranges. In this illustration, a memory object is represented
as a horizontal line that specifies a memory range at a priority

add_obj_to_acl_group(userGroup, obj1, sizeof(obj1), readOnly, permission1);
add_obj_to_acl_group(oup, obj1, sizeof(obj1), readWrite, permission2);

Permission

Exact (28bit) Range (8bit)

0bj5: 6-10, RW
qp = create_qp();) [v—)ﬁ
add_gp_to_acl_group(gp.qpn, userGroup); req2 H
. | Requests
remove_qp_from_acl_group(userGroup, qp); obj1::0-2, RW, obj4: 6-12, RO Snrall-range
—_—— ! —_— S rules
S o L obj2:i0-4, RO obj3: 4-10, WO : Exact (16bit) Range (20bit)
Control plane Protected APP —y— —
Client APP Daemon process m
= Internal API -I External libra I
. ry —
RDMA library) an Allow Memory address —D Medium-range
i) (RIS > rules
Policy executor RDMA library tabl---tab2 tab3---tab5
- e Sy mmmmm [Perm3 [opcode | Action | Range (16bit)
= Deny graun | Add
group Addr Addr* | Group 1 1 02 e | Orange D Blue w Allow L, IELali'eg;e-range
101 1 02 0-2 1 0%y 2 Allow 1 2-4 None None Orange
Default - Deny
105 2 DR |- - : E iy If start.perm1 == end.perm1 { use tab3 }
else if start.perm2 == end.perm2 { use tab4 }
S . else {use tabS})
(a) System overview (b) ACL checks in data plane (c) TCAM/SRAM tradeoff

Figure 3: The Bedrock access control overview and optimization techniques.

denoted by the Y-axis value. An RDMA request is repre-
sented with two vertical lines that represent the start and end
addresses as denoted by the X-axis values. The ACL decisions
are made by checking if a request’s vertical lines intersect
at the same memory object. If there are multiple intersected
objects, the one with the highest ACL permission is used. In
the example, ob j2 will be selected for reql; but request reqg2
will be rejected, as the start and end addresses do not intersect
at the same objects.

#3: TCAM/SRAM tradeoff. Further, Bedrock groups rules
that share the same address prefix and use SRAM-based exact
matches on their common prefix. As SRAM is more abundant
than TCAM, this tradeoff enables Bedrock to support more
ACLs. Figure 3(c) shows how Bedrock organizes the policies
hierarchically based on the common prefix lengths, and re-
quests match against the three tables in parallel. Moreover,
Bedrock adjusts the prefix lengths and table sizes based on
the object size distributions, in order to maximize the use of
common prefixes for each scenario. Storage objects usually
follow zipfian distributions in terms of the size [16,20,27,66].
As a concrete example, say, if 70% objects are smaller than
IMB and 99% smaller than 4GB, and if page-level isolation is
the desired granularity, then Bedrock would create three tables.
The first table uses a 28-bit common prefix and 8-bit range
match, covering all memory objects under 1MB. The second
uses a 20-bit range match, covering all objects between 1MB
and 4GB. The tail distribution matches the third table with
range matches.

3.3 RDMA monitoring and logging

Bedrock enables RDMA systems to regain visibility by in-
network monitoring and logging.

3.3.1 Building blocks

Bedrock performs RDMA monitoring in the switch. Moni-
toring results are further used by ACL policies for advanced

access control. To maintain monitoring state across packets,
Bedrock borrows from work in approximate data structures—
such as count-min sketches (CMSes) [22] and bloom filters
(BFs) [18]—for space savings. We eschew the technical de-
tails of these data structures and refer interested readers to
existing work [18,22]. At a high level, a count-min sketch
performs approximate counting, a bloom filter performs ap-
proximate membership checks, both with strong error bounds
guarantees. For monitoring, Bedrock also supports tumbling
windows, where one sketch or bloom filter records data for
the current window and another for the next. It rotates across
these entities for each time epoch.

Bedrock enables RDMA logging by tracking RDMA re-
quests and recording them at backend servers. It does not log
every single RDMA data packet, but only RDMA requests,
which already contain sufficient metadata (e.g., QPs, memory
addresses, opcodes) to build audit trails. By cherrypicking
these request packets from the rest, Bedrock enables NetFlow-
like logging and auditing on RDMA traffic. This is done
in a P4 program that extracts RDMA metadata for request
packets, and stores them in stateful registers as a temporary
buffer. It reads/writes one register per switch stage, but multi-
ple accesses are possible across several stages. Therefore, one
RDMA log entry is generated for a batch of requests, which
further correspond to a much larger number of data packets.
This reduces the bandwidth that is needed for auditing.

3.3.2 Regaining visibility

Using the auditing capability, Bedrock enables the detection
and mitigation of the following types of attacks.

DoS attacks. Bedrock is able to detect and block DoS at-
tacks, including S3, S4, S6, and S7. To detect S3, Bedrock
monitors the highest PSN of each remote QPN that has been
seen by the switch. Bedrock detects S4 by checking the con-
sistency between opcodes and MR privileges and between
payloads and DMA lengths. Inconsistency would transition

queue pairs into an error state for denial of service. For S6 and
S7, Bedrock monitors the resource usage of each connection,
application, or IP address to make access control decisions
using the approximate data structures. Concretely, to detect
and mitigate S6, Bedrock checks the number of QPs created
by each client IP in a time window against a threshold. Upon
detection, Bedrock drops or rate-limits the requests. Bedrock
detects S7 by tracking the sizes of the requests sent to each
QPN in a time window.

Side channel attacks. Another application is to detect side
channel attacks [54] based on the fact that malicious traffic
has different memory access patterns from normal traffic [47].
Side channel attack S8 builds an eviction set by reading a set
of specific memory pages, which produces a distinct mem-
ory access pattern. Bedrock logs memory read requests to
a backend server from the switch. The server further uses
software-based algorithms (e.g., SCADET [47]) to perform
memory pattern analysis to detect S8.

Exfiltration attacks. Armed with in-network logging,
RDMA reads and writes become auditable—operators can
scrutinize the log to find unexpected requests. To enable foren-
sic investigation of data exfiltration attacks (S9), all read-
s/writes are logged to the backend server, and the log entries
are processed in software to identify data exfiltration.

Further customization. The monitoring and logging ca-
pability in Bedrock serves as a building block for scenario-
specific security applications. As a concrete example, con-
sider reconnaissance attacks, which are a necessary step for
the adversary to guess rkeys. In this reconnaissance phase, the
attacker enumerates the rkey space and tests whether a partic-
ular rkey is valid, e.g., by trying many different rkeys until
success and reconnecting if a guess fails [46]. Bedrock tracks
the number of distinct rkeys that a machine (as identified by
its IP address) has attempted to a remote memory region. First,
it uses a combination of the source IP and the rkey as the key
to a bloom filter to check whether this probe has been seen
before. If not, it increments the count-min sketch counters
using the source IP as the key to track the number of probes.
Further probes are blocked by the Bedrock ACL if the sketch
counters exceed a threshold.

4 Evaluation

In this section, we describe our prototype implementation,
experimental setup, and present a comprehensive set of ex-
periments to evaluate Bedrock. Our evaluation focuses on
several dimensions: a) the effectiveness of Bedrock against
RDMA attacks; b) the overhead of Bedrock; c¢) workload-
based evaluations; and d) comparison with a programmable
NIC deployment.

4.1 Prototype and setup

Prototype. We have implemented a Bedrock prototype us-
ing approximately 6700 lines of code, including the various
defense primitives, eBPF functions, switch control plane func-

—&— S1 (no defense)
—— S§2-S3 (no defense)
S1 (Bedrock)

- % - §2-S3 (Bedrock)

w
Packet rate (K pkt/s)

Malicious request rate (K req/s)
w
T

Time (s)

Figure 4: Bedrock enables source authentication. With
Bedrock, S2-S3 attacks are blocked at the switch (right Y-
axis); S1 impersonation uses its own QP and is dropped by
the RNIC (left Y-axis).

tions, and backend server logging module.

Experimental setup. For our main experiments, we have de-
ployed Bedrock to a Wedge 100BF-32X Tofino switch, which
has 32x100Gbps ports and is programmed in P4. The switch
is furnished with an eight-core Intel CPU at 1.60GHz for the
control plane, which runs a Debian 8.9 Linux distribution
as the operating system. It is configured as a Top-of-Rack
switch in our cluster, which is connected to a RDMA client
node, a RDMA server node, and a backend logging node. Our
cluster also contains several other machines, from which we
launch RDMA attacks based on the methodology in ReD-
MArk (S1-S7, S9) [46] and Pythia (S8) [54]. All machines
have a six-core Intel Xeon E5-2643 CPU, 128 GB RAM,
1 TB hard disk, all running an Ubuntu 18.04 OS. They are
also equipped with Mellanox ConnectX-4 MT27710 25Gbps
RNICs that are configured to use RoCEv2.

Methodology. We validate the ability of Bedrock defenses to
detect and mitigate attacks S1-S9. In addition, we measure the
overhead of Bedrock (e.g., control and data plane overheads,
switch resource utilization). Our workload-based evaluation
generates realistic workloads following the metholodogy of
existing projects, and measures the impacts of Bedrock on
request completion times (RCTs) and throughputs. Last but
not least, we deploy Bedrock to a P4-programmable NIC,
Netronome Agilio CX, to understand its performance charac-
teristics as compared to switch-based deployments.

4.2 RDMA source authentication

Figure 4 shows the effectiveness of Bedrock against imperson-
ation attacks via authentication. We test each attack with and
without Bedrock enabled to evaluate the difference. Attack
S1 launches impersonation attacks using its own QP, and the
figure plots the attacker’s request rates. Attacks S2 and S3
work in different ways, but the defense effects are similar;
we group them in the same curve that shows the number of
packets that are successfully injected to existing QPs. As we
can see, without Bedrock, the attack traffic reaches the servers

Bedrock
Baseline

=== Bedrock
=3 Baseline

Supported #rules (*1000)

30 30 -
s Bedrock s
g 25 | Baseline 8_ 25
S 20 5 20
o o
=] =]
g 15f £ 15F
3 3
£ 10| L 10}
o o
o Q
S s} s 5}
@ @
0 1 ' . .) 0 L
1 1.2 1.4 1.6 1.8 2 0 20

Skewness of Zipf's law

(a) Influence of skewness

40

Read ratio (%)

(b) Influence of read rule ratio

10
8
6
4
2
0 1)
0 10 20 30 40 50

Workload

60 80 100

(c) Workload-based evaluation

Figure 5: Bedrock outperforms the baseline by its ACL compression techniques. We further measure Bedrock under different
skewness of memory region sizes, read/write rule ratios, and use realistic workloads based on Twitter, Idiada, and Arctur traces.

and successfully masquerades as the client, resulting in mali-
cious memory modification. Under Bedrock, all attacks are
detected and blocked. We then launch attack S4, which at-
tempts to inject 1000 packets with inconsistent payloads and
DMA lengths. Bedrock has detected and dropped all packets
(not shown in figure).

4.3 RDMA access control

Next, we evaluate the effectiveness of Bedrock ACLs by
launching attack S5 that violates access control policies.
Specifically, we create attacks that attempt to a) access mem-
ory addresses beyond the granted ranges or b) to access valid
memory addresses using ungranted permissions, e.g., writing
to an object when read-only privilege is granted. All such
attacks are recognized by Bedrock and blocked at the switch.

We then evaluate the effectiveness of Bedrock in compress-
ing RDMA ACLs, against the baseline solution without com-
pression. The key metric is the number of ACL rules sup-
ported in the Tofino switch. We vary the skewness of zip-
fian workloads [16, 20, 27, 66], and also measure Bedrock
using realistic workloads based on Twitter, Idiada, and Arctur
traces [27,66], for a comprehensive evaluation. Since the P4
compiler statically rejects a program if the ACLs consume
more memory than switch resources, our methodology is to
gradually increase the number of ACLs until the P4 compiler
rejects the program due to resource limitations.

Figure 5a shows the results for different skewness, with
a fixed read rule ratio of 0.5. We can see that both Bedrock
and the baseline can support more ACLs at higher skewness
with many small MRs, because smaller ranges can be encoded
in fewer ACL rules. Bedrock outperforms the baseline as it
leverages cheaper SRAM matches to reduce TCAM usage:
the smaller ranges are supported using exact matches in more
abundant SRAM. Figure 5b further indicates that the num-
ber of rules supported by Bedrock is robust to different read
rule ratios. Figures 5c evaluates Bedrock with three realistic
workloads. Bedrock outperforms the baseline consistently,
supporting 26%, 6.95%, and 2.98x more ACLs on Twitter,
Idiana, and Arctur traces, respectively.

The latest Tofino hardware contains more resources than

25 600

~ —%= Normal
§ 20 3 -8~ Malicious
- @D
e @ 400
¢ 15 =
G =% w/ Bedrock =t """"""
2 4 -8~ w/o Bedrock 2
= 2 200
I <}
;e :
0 1 1 1) ok = = "
0 20 40 60 80 100 0 2 4 6 8
Time (sec) Time (sec)

(a) Defense against S6 (b) Defense against S7

Figure 6: Bedrock detects and mitigates attacks S6 and S7.

our switch, so we extrapolate based on the specifications of
Intel/Barefoot Tofino2 [9]. We estimate that the number of
ACLs that Bedrock can support using Tofino2 is up to 2.98x
more than that in our current switch.

4.4 RDMA monitoring and logging

Next, we evaluate Bedrock with attacks S6-S9, which require
monitoring and logging capabilities as well as ACL decisions
based on runtime traffic patterns.

Figure 6a shows the S6 attack, which consumes a large
quantity of QPs to deny the service to other users. Without
Bedrock, the attack has exhausted 20k+ queue pairs within
80 seconds. Bedrock monitors and enforces an upperbound
limit of 1k QPs per user, successfully detecting the DoS attack
and preventing it from exhausting available QPs. Excessive
requests are denied in the network.

Figure 6b evaluates attack S7, where the attacker uses mul-
tiple machines to launch a performance degradation DoS
attack. At time t=1.7s, the normal client sends traffic within
the enforced bandwidth limit. At time t=2.7s, the malicious
client starts: it uses normal rates at first but one second later
it boosts its traffic rate to launch the attack. As we can see,
this significantly degrades the performance of the normal
client. At time t=5.4s, we enable Bedrock, which enforces a
rate limit per user. It detects and blocks the malicious client
immediately, and the normal client’s performance goes back
to normal.

120 q 400
—&— Accuracy —»— Probe rate

100 130 &
_ {300 ¢
< 80 S
& {250 §
= =t
g 60 1 200 &
g J 150 2
2 40 5
4 100 3
20 150 £

0 3 Sh e ol o gl o oolon 0

0 5 10 15 20 25 30 35 40 45

Time (s)

Figure 7: Bedrock can detect and mitigate the side channel
attack S8 effectively.

Defense| SRAM TCAM Hash bits ~ Meter ALU
Auth. | 417 % 2.08 % 2.48 % 0%

ACL | 1052% 68.75 % 2778 % 0%

Mon. | 26.56 % 7.64 % 16.39 % 27.08 %
Log. | 1229% 11.46 % 12.22 % 68.75 %

Table 3: The Tofino switch resource usage of each defense.

Next, we evaluate the ability of Bedrock to log and analyze
side channel attacks (S8) using the Pythia setup [54]. The nor-
mal client and the attacker are both connected to the RDMA
server, and the attacker infers the client’s memory access pat-
terns in the following way. It evicts a target victim address’s
cache line from the RNIC by generating many different page
accesses, and then measures the access latency to the target
memory address to determine whether the client has triggered
RNIC caching. This attack is launched continuously to differ-
ent memory addresses, and we show the accuracy of the attack
over time in Figure 7. Close to Pythia’s results, the inference
accuracy is around 97%. At time t=22s, we enable Bedrock
to detect this attack. The Bedrock switch collects memory
access addresses for all QPs, and logs these entries to the
backend server. The server implements the SCADET [47]
side channel detection algorithm in software to detect attacks.
After detection, Bedrock blocks the attacker’s probes and its
traffic rate drops to zero.

Bedrock enables audit trails for S9, the data exfiltration
attack, using its logging capability. Figure 8 measures the
logging rates and the CPU utilization of the backend server,
using workloads generated from an RDMA benchmark tool,
perftest [8]. We also show the results for different request
sizes. Larger requests produce more data packets, so the log-
ging rate is lower—this is because Bedrock only logs request
metadata, not the data packets. Since each log packet contains
8 entries, the logging rate is in proportion to the request rate
by a factor of 8. Moreover, the server uses one single CPU
core to receive the logging data, and as the figure shows, the
utilization is under 90% of one core.

—»— CPU

—_— i
1000 - Logging rate

7 100
80
600 60

400 - 40

CPU usage (%)

200 - 20

Logging rate (*1000 pkt/sec)

o4 96 28 910 12 o14 516
Req size (Bytes)

Figure 8: The traffic logging rates and logging server CPU
usage of different request sizes.

4.5 Defense overhead

Control operation overhead. Since Bedrock uses eBPF in
the authentication defenses, this incurs extra latency when a
queue pair is initialized. To evaluate this overhead, we use a
microbenchmark to measure the time needed for the RDMA
library to accept new connections. With 7.04 ms as the native
performance for setting up queue pairs, Bedrock increases the
latency to 7.11 ms, which represents 1% additional overhead.
Since this overhead is only incurred for control operations
when setting up a queue pair, it preserves the goal of achieving
native RDMA datapath performance.

Resource overhead: Table 3 shows the resource usage of
Tofino switch for each of our defenses. Overall, Bedrock
has reasonable resource utilization across different metrics.
SRAM and TCAM are used for match/action table entries.
Hash bits are used for header transformation. Meter ALUs
are used to access stateful registers for monitoring as well as
logging. The ACL component is evaluated with the maximum
number of rules that the switch can support.

4.6 Workload-based evaluation

Next, we perform workload-based evaluation of Bedrock us-
ing YCSB benchmarks [21], which are widely used in recent
RDMA projects [54,59,61]. We first use YCSB workloads at
different read/write ratios, using request sizes ranging from
16 bytes to 4096 bytes. Following the HERD [31] method-
ology, we generate YCSB workloads and replay them to the
RDMA system. We also adopt object size distributions from
realistic traces based on Twitter [66], Idiada [27], and Arc-
tur [27] workloads. Our main evaluation metrics are a) request
completion times (RCTs), which measure the time it takes for
an RDMA request to finish; and b) throughput, as measured
by the number of RDMA requests per second. Each metric is
measured with and without Bedrock.

YCSB. We evaluate read-most (95% reads), write-most (95%
writes), and balanced (50% reads and 50% writes) YCSB
traces. As we can see, Bedrock incurs low overhead. The
RCTs of different workloads increase by 3.2% on average;
and the throughputs decrease by 1.0% on average. The differ-
ent defense components in Bedrock also have similar perfor-

10 r 10 10
—&- Baseline -&- Logging -8~ Baseline -&- Logging -8 Baseline -&- Logging
gl 7 Monitoring Auth. sk 7 Monitoring Auth. sl 7 Monitoring Auth.
—#= ACL - ACL - ACL
3 3 2 ef
[} o (o3
E E E 4l n e
= = = i .
2F 2 2r
0 L L L L L L L) 0 ! ! ! ! ! ! !) 0 L L L L L L L)
o4 95 96 o7 08 99 910 oft oi2 24 95 96 o7 98 99 210 oft 512 o4 95 96 o7 98 99 210 oft oi2
Request size (Bytes) Request size (Bytes) Request size (Bytes)
(a) Read-most (95%/5%) (b) Balanced (50%/50%) (c) Write-most (5%/95%)
10 r 10 10
= Baseline B Logging Baseline == Baseline ==
P B Monitoring EEE Auth. —~ gl Monitoring EEE —~ gt Monitoring EEEI
2 =3 ACL 2 ACL =3 2 ACL =3
2 2 Logging 2 Logging
S 6} S 6t Auth. mm S 6 Auth. m=
=3 3 =3
£ £ £
S 4r 2 4r g 4
<} 2 <}
< < =
F o2 F o2f F o2

04 95 96 o7 98 99 510 olt 12
Request size (Bytes)

(d) Read-most (95%/5%)

o4 95 96 o7 98 99 510 olf 12
Request size (Bytes)

(e) Balanced (50%/50%)

04 95 96 o7 98 99 510 oft 12
Request size (Bytes)

(f) Write-most (5%/95%)

Figure 9: Bedrock incurs minimal overheads with different read/write ratios. (a)-(c): request completion times (RCTs). (d)-(e):
throughputs as measured by the number of request operations per second.

1000 1000
I Baseline I Baseline
B Monitoring B Monitoring
100 f =3 ACL 100 F 30 ACL
B Logging B Logging

= Auth. B3 Auth.

Time (us)
=
Time (ps)
5

1000

I Baseline
B Monitoring
= ACL

B Logging
= Auth.

100

Time (us)
5

0.1 0.1 0.1
Twitter Idiada Arctur Twitter Idiada Arctur Twitter Idiada Arctur
Workload Workload Workload
(a) Read-most (95%/5%) (b) Balanced (50%/50%) (c) Write-most (5%/95%)
10 10 10
I Baseline I Baseline I Baseline
5 B Monitoring - B Monitoring @ B Monitoring
3 1 = ACL 3 1 = ACL 3 1 = ACL
s B | ogging = B | ogging = I | ogging
= = Auth. = = Auth. = = Auth.
2 od 3 o 2 od
= = =
[=2] [=2] [=2]
=3 3 3
o o o
< 0.01 < 0.01 = 0.01
[= = [=
0.001 0.001 0.001
Twitter Idiada Arctur Twitter Idiada Arctur Twitter Idiada Arctur
Workload Workload Workload

(d) Read-most (95%/5%)

(e) Balanced (50%/50%)

(f) Write-most (5%/95%)

Figure 10: The request completion time and throughput under realistic workloads.

mance, which is expected as switching ASICs are designed
to achieve near-constant performance. Larger requests lead to
higher RCTs. The throughput (as measured by Mops/s) also
decreases with larger requests. These trends hold for both the
baseline and Bedrock.

Twitter, Idiada, and Arctur. Next, we use object and re-
quest size distributions from real-world traces: Twitter [66],
Idiada [27], and Arctur [27], with the same set of read/write

ratios as before. We again measure the RCTs and throughputs
with and without Bedrock. Figure 10 shows the results, with
similar takeaways: Bedrock adds an average latency overhead
of 2.94% and a throughput overhead of 0.09%. Workloads
enjoy minimum performance interference. Different defense
components in Bedrock have on-par performance.

= Logging
= Auth. 25

B Logging

B Monitoring
= ACL = Auth.

= Monitoring
= ACL

Normalized time
Normalized time

16 256
Request size (Bytes)

4096 16 256

4096
Request size (Bytes)

(a) Netronome RCT (b) Tofino RCT

1.6 1.6
B Monitoring
= ACL

B Logging

1.4 == Auth.

14

B Monitoring EEE Logging
1 ACL =

Auth.

Normalized thoughput
Normalized thoughput

16 256 4096 16 256 4096
Request size (Bytes) Request size (Bytes)

(c) Netronome throughput (d) Tofino throughput

Figure 11: The request completion time (RCT) and throughput of Bedrock deployed in the Netronome NIC and Tofino switch.

The number has been normalized to their baselines respectively.

100 [1
80 |-]—

60 - 1

40 | .

CDF (%)

20 1

0 1 1 1 1 1 1 1

0 1 2 4 8 16 32 64
latency (us)

Figure 12: Microbenchmarks: The Netronome NIC exhibits
variable latency across packets.

4.7 Programmable switches vs. NICs

Earlier, we have already discussed the differences between
programmable switches and NICs in terms of their cost-to-
performance ratios and deployment scenarios. Further, we
have conducted a set of experiments to understand their per-
formance characteristics. We have deployed Bedrock to a
P4-programmable NIC (Netronome Agilio CX) and retested
all the attacks. Our high-level findings are a) Bedrock works
effectively on both platforms; and b) programmable NICs
experience more notable performance variability depending
on the program logic. We use the NIC as a forwarding device
to connect four RNIC-based servers for benchmarking.

Figure 11 shows the performance variability of the pro-
grammable NIC across defenses, using the switching ASIC
performance as a comparison point. In a programmable
switch, the latency variance of Bedrock is under 0.5us con-
sistently across defenses, but in the programmable NIC, the
variance can be up to 12us. Moreover, switching ASICs also
have more stable throughputs across defenses, with at most
3.2% degradation as compared to the baseline. This is because
switching ASICs are designed for near-constant performance
under worst-case assumptions. The Netronome NIC, on the
other hand, has variable performance (up to 53% degradation
across defenses) compared to baseline.

As a further microbenchmark, we have used a stress-test
trace on the ACL defense in the programmable NIC, and
plotted the latency CDF in Figure 12. We find that the latency

of each packet depends on the program paths it takes, as well
as whether the packet happens to hit the flow cache on the
programmable NIC. This performance variability is consistent
with existing studies of programmable NIC performance [45].

In summary, programmable switches and NICs have dis-
tinct cost-to-performance ratios, deployment scenarios, and
performance characteristics. In Bedrock, we have targeted
switches as our primary scenario. However, we believe that
both programmable switches and NICs are important plat-
forms for security applications, and the specific choice would
depend on the deployment requirements.

5 Related Work

RDMA security. RDMA systems have gained popularity
in cloud datacenters [24, 60, 61], and their security implica-
tions have been recently studied in a series of work [46, 49,
52,54, 56]. ReDMATrk [46], in particular, has described a
comprehensive range of RDMA vulnerabilities under varied
attack models. Many of the problems we address are from this
project. SRDMA [52] has developed cryptographic authenti-
cation and encryption of RDMA packets on programmable
NICs, whereas Bedrock considers a complementary set of
defenses. Bedrock’s main target is programmable switches,
but as P4 is a target-independent language, it can be deployed
to programmable NICs as well. Bedrock inherits the perfor-
mance characteristics of the underlying platforms.

Programmable switches. Programmable switches have
found applications in many cloud applications [35, 50, 67],
and more recently in TCP/IP security [23,34,41,58,63,65].
Bedrock is inspired by such work, but it develops security
support for RDMA systems. As these systems offload their
datapath operations to hardware, the design decision of us-
ing programmable network support respects the performance
goals of RDMA while providing stronger security.

6 Conclusion

We have presented Bedrock, a defense system that provides
a secure foundation for RDMA systems. RDMA systems
bypass server CPUs, achieving high performance; but at the
same time, security problems are much harder to mitigate
as software defenses cannot be easily added in the datapath.

Bedrock leverages programmable data planes in modern net-
work devices to build CPU-bypassing defense primitives for
authentication, access control, and monitoring and logging.
Using a set of comprehensive experiments, we have shown
that Bedrock can effectively mitigate many attacks, and that it
incurs low overheads with realistic workloads.

7 Acknowledgments

We thank the anonymous reviewers for their helpful feedback
on this work. This work was partially supported by NSF
grants CNS-1942219 and CNS-1801884.

References
[1] Alibaba builds high-speed RDMA network
for Al and scientific computing. https:

//www.alibabacloud.com/blog/alibaba-buil
ds-high-speed-rdma-network-for-ai-and-scie
ntific-computing_594895.

[2] Availability of Linux RDMA on Microsoft Azure.
https://azure.microsoft.com/en-us/blog/azu
re-linux-rdma-hpc-available/.

[3] Bedrock source code. https://github.com/alex123
0608/Bedrock.

[4] eBPF official website. https://ebpf.io/.

[5] Edgecore wedge 100bf-32x 32-port 100gbe p4 switch
price. https://colfaxdirect.com/store/pc/view
Prd.asp?idproduct=3485.

[6] Experimental analysis of state-of-the-art RDMA-based
in-memory key-value stores. https://github.com/m
ashemat/local-key-value.

[7] Infiniband Architecture Volume 1 and Volume 2.
https://www.infinibandta.org/ibta-%$20speci
fications-download/.

[8] Infiniband verbs performance tests. https://github
.com/linux-rdma/perftest.

[9] Intel Tofino 2. https://www.intel.com/content/
www/us/en/products/network-io/programmable
-ethernet-switch/tofino-2-series.html.

[10] Intel tofino p4-programmable ethernet switch asic
that delivers better performance at lower power.
https://www.intel.com/content/www/us/en/pr
oducts/network-io/programmable-ethernet-sw
itch/tofino-series/tofino.html.

[11] Netronome agilio cx 40gbps smartnic price.
https://colfaxdirect.com/store/pc/viewPr
d.asp?idproduct=2871.

[12] Open networking foundation: P4. https://opennetw
orking.org/p4/.

[13] The P4 language repositories. https://github.com
/pdlang.

[14] RDMA communication manager. https://linux.di
e.net/man/7/rdma_cm.

[15] Supplement to InfiniBand Architecture Specification
Volume 1 Release 1.2.1. https://cw.infinibandta.
org/document/d1/7781.

[16] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In Proc. SIGMETRICS, 2012.

[17] R. Beltman, S. Knossen, J. Hill, and P. Grosso. Using
P4 and RDMA to collect telemetry data. In Proc. INDIS,
2020.

[18] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. In Communications of the ACM,
volume 13, 1970.

[19] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. ACM SIGCOMM CCR,
44(3), 2014.

[20] Z. Cao, S. Dong, S. Vemuri, and D. H. Du. Characteriz-
ing, modeling, and benchmarking RocksDB key-value
workloads at Facebook. In Proc. FAST, 2020.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
ycsb. In Proc. SoCC, 2010.

[22] G. Cormode and S. Muthukrishnan. An improved data
stream summary: The count-min sketch and its applica-
tions. J. Algorithms, 55(1):58-75, Apr. 2005.

[23] T. Datta, N. Feamster, J. Rexford, and L. Wang. SPINE:
Surveillance protection in the network elements. In
Proc. FOCI, 2019.

[24] A.Dragojevié, D. Narayanan, M. Castro, and O. Hodson.
Farm: Fast remote memory. In Proc. NSDI, 2014.

[25] A.Dragojevié, D. Narayanan, E. B. Nightingale, M. Ren-
zelmann, A. Shamis, A. Badam, and M. Castro. No
compromises: Distributed transactions with consistency,
availability, and performance. In Proc. SOSP, 2015.

[26] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li,
Y. Wu, S. Liu, L. Yan, F. Feng, Y. Zhuang, F. Liu, P. Liu,
X. Liu, Z. Wu, J. Wu, Z. Cao, C. Tian, J. Wu, J. Zhu,
H. Wang, D. Cai, and J. Wu. When cloud storage meets
RDMA. In Proc. NSDI, 2021.

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sanchez-
Artigas, P. Garcia-Lépez, Y. Moatti, and E. Rom. Crystal:
Software-defined storage for multi-tenant object stores.
In Proc. FAST, 2017.

J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with Infiniswap. In
Proc. NSDI, 2017.

A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-
ford, and W. Willinger. Sonata: Query-driven streaming
network telemetry. In Proc. SIGCOMM, 2018.

Z. He, D. Wang, B. Fu, K. Tan, B. Hua, Z.-L. Zhang,
and K. Zheng. MasQ: RDMA for virtual private cloud.
In Proc. SIGCOMM, 2020.

A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA efficiently for key-value services. In Proc. SIG-
COMM, 2014.

A. Kalia, M. Kaminsky, and D. G. Andersen. Design
guidelines for high performance RDMA systems. In
Proc. ATC, 2016.

A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast,
scalable and simple distributed transactions with two-
sided (RDMA) datagram rpcs. In Proc. OSDI, 2016.

Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and
X. Luo. Programmable in-network security for context-
aware BYOD policies. In Proc. USENIX Security, 2020.

N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford.
Hula: Scalable load balancing using programmable data
planes. In Proc. SOSR. ACM, 2016.

T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu,
and A. Perrig. Lightweight source authentication and
path validation. In Proc. SIGCOMM, 2014.

J. Kwon, T. Lee, C. Héhni, and A. Perrig. SVLAN: Se-
cure & scalable network virtualization. In Proc. NDSS,
2020.

M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Per-
rig. EPIC: Every packet is checked in the data plane of
a path-aware Internet. In Proc. USENIX Security, 2020.

B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. Kv-direct: High-performance
in-memory key-value store with programmable nic. In
Proc. SOSP, 2017.

Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: an rdma-
enabled distributed persistent memory file system. In
Proc. ATC, 2017.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and
M. Vechev. NetHide: Secure and practical network
topology obfuscation. In Proc. USENIX Security, 2018.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad:
Making stateful layer-4 load balancing fast and cheap
using switching ASICs. In Proc. SIGCOMM, 2017.

C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and
J. Li. Balancing CPU and network in the cell distributed
B-tree store. In Proc. ATC, 2016.

M. Poke and T. Hoefler. Dare: High-performance state
machine replication on RDMA networks. In Proc.
HPDC, 2015.

Y. Qiu, J. Xing, K.-F. Hsu, Q. Kang, M. Liu, S. Narayana,
and A. Chen. Automated SmartNIC offloading insights
for network functions. In Proc. SOSP, 2021.

B. Rothenberger, K. Taranov, A. Perrig, and T. Hoefler.
ReDMArk: Bypassing RDMA security mechanisms. In
Proc. USENIX Security, 2021.

M. Sabbagh, Y. Fei, T. Wahl, and A. A. Ding.
Scadet: a side-channel attack detection tool for tracking
prime+probe. In Proc. ICCAD, 2018.

J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast and
concurrent RDF queries with RDMA-based distributed
graph exploration. In Proc. OSDI, 2016.

A. K. Simpson, A. Szekeres, J. Nelson, and I. Zhang. Se-
curing RDMA for high-performance datacenter storage
systems. In Proc. HotCloud, 2020.

J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M.
Smith. Scaling hardware accelerated network monitor-

ing to concurrent and dynamic queries with *flow. In
Proc. ATC, 2018.

P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler,
N. Ioannou, and I. Koltsidas. Crail: A high-performance
I/0O architecture for distributed data processing. IEEE
Data Eng. Bull., 40(1):38-49, 2017.

K. Taranov, B. Rothenberger, A. Perrig, and T. Hoefler.
sRDMA: efficient NIC-based authentication and encryp-
tion for remote direct memory access. In Proc. USENIX
ATC, 2020.

B. Tian, J. Gao, M. Liu, E. Zhai, Y. Chen, Y. Zhou,
L. Dai, F. Yan, M. Ma, M. Tang, J. Lu, X. Wei, H. H.
Liu, M. Zhang, C. Tian, and M. Yu. Aquila: A practi-
cal usable verification system for production-scale pro-
grammable data planes. In Proc. SIGCOMM, 2021.

S.-Y. Tsai, M. Payer, and Y. Zhang. Pythia: remote
oracles for the masses. In Proc. USENIX Security, 2019.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

S.-Y. Tsai and Y. Zhang. Lite kernel RDMA support for
datacenter applications. In Proc. SOSP, 2017.

S.-Y. Tsai and Y. Zhang. A double-edged sword: Se-
curity threats and opportunities in one-sided network
communication. In Proc. HotCloud, 2019.

F. Vano-Garcia and H. Marco-Gisbert. Kaslr-mt: Ker-
nel address space layout randomization for multi-tenant

cloud systems. Journal of Parallel and Distributed Com-
puting, 137:77-90, 2020.

L. Wang, H. Kim, P. Mittal, and J. Rexford. Pro-
grammable in-network obfuscation of traffic. arXiv
preprint arXiv:2006.00097, 2020.

X. Wei, R. Chen, and H. Chen. Fast RDMA-based
ordered key-value store using remote learned cache. In
Proc. OSDI, 2020.

X. Wei, Z. Dong, R. Chen, and H. Chen. Deconstruct-
ing RDMA-enabled distributed transactions: Hybrid is
better! In Proc. OSDI, 2018.

X. Weli, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-
memory transaction processing using RDMA and HTM.
In Proc. SOSP, 2015.

M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei,
H. Lin, Y. Dai, and L. Zhou. Gram: Scaling graph com-
putation to the trillions. In Proc. SoCC, 2015.

J. Xing, Q. Kang, and A. Chen. NetWarden: Mitigating
network covert channels while preserving performance.
In Proc. USENIX Security, 2020.

J. Xing, W. Wu, and A. Chen. Architecting pro-
grammable data plane defenses into the network with
FastFlex. In Proc. HotNets, 2019.

J. Xing, W. Wu, and A. Chen. Ripple: A programmable,
decentralized link-flooding defense against adaptive ad-
versaries. In Proc. USENIX Security, 2021.

J. Yang, Y. Yue, and K. Rashmi. A large scale analysis
of hundreds of in-memory cache clusters at twitter. In
Proc. OSDI, 2020.

N. Yaseen, J. Sonchack, and V. Liu. Synchronized net-
work snapshots. In Proc. SIGCOMM, 2018.

Y. Zhu, D. Firestone, C. Guo, J. Padhye, S. Raindel,
M. Zhang, Y. Liron, H. Eran, M. H. Yahia, and M. Lip-
shteyn. Congestion control for large-scale RDMA de-
ployments. In Proc. SIGCOMM, 2015.

	Introduction
	Motivation and Background
	RDMA primer
	RDMA-native security support
	Threat model and attacks
	Insecure source authentication
	Inadequate access control
	Lack of monitoring and logging

	BedRock Overview

	Network Support for RDMA Security
	RDMA source authentication
	Packets from different machines
	Packets from the same machine

	RDMA access control
	Compressing RDMA ACLs

	RDMA monitoring and logging
	Building blocks
	Regaining visibility

	Evaluation
	Prototype and setup
	RDMA source authentication
	RDMA access control
	RDMA monitoring and logging
	Defense overhead
	Workload-based evaluation
	Programmable switches vs. NICs

	Related Work
	Conclusion
	Acknowledgments

