2212.05144v1 [cs.LG] 9 Dec 2022

arxiv

Networked Restless Bandits with Positive Externalities

Christine Herlihy, John P. Dickerson

Department of Computer Science
University of Maryland, College Park
College Park, MD, USA
cherlihy@umd.edu, johnd@umd.edu

Abstract

Restless multi-armed bandits are often used to model budget-
constrained resource allocation tasks where receipt of the
resource is associated with an increased probability of a fa-
vorable state transition. Prior work assumes that individual
arms only benefit if they receive the resource directly. How-
ever, many allocation tasks occur within communities and
can be characterized by positive externalities that allow arms
to derive partial benefit when their neighbor(s) receive the
resource. We thus introduce networked restless bandits, a
novel multi-armed bandit setting in which arms are both rest-
less and embedded within a directed graph. We then present
GRETA, a graph-aware, Whittle index-based heuristic algo-
rithm that can be used to efficiently construct a constrained
reward-maximizing action vector at each timestep. Our empir-
ical results demonstrate that GRETA outperforms comparison
policies across a range of hyperparameter values and graph
topologies. For reproducibility purposes, all code is available
at: ©) crherlihy/networked_restless_bandits.

1 Introduction

We study the planning task of allocating budget-constrained
indivisible resources so as to maximize the expected amount
of time that members of a cohort will spend in a desirable
state (e.g., adherent to a prescribed exercise regimen). Rest-
less multi-arm bandits (RMABs) are well-suited for such
tasks, as they represent each individual as a Markov deci-
sion process (MDP) whose stochastic state transitions are
governed by an action-dependent transition function.
Conventionally, an arm must receive the resource at time
t to derive any benefit from it, where benefit takes the form
of an increased probability of transitioning to the desirable
state at time ¢ + 1 (i.e., relative to non-receipt). However,
many resource allocation tasks occur within communities
and can be characterized by positive externalities that allow
arms to derive partial, indirect benefit when their neighbor(s)
receive the resource. We consider chronic disease manage-
ment programs as a motivating example. These programs
often combine resource-constrained physician support with
less cost-intensive, more scalable peer support to encourage
participants to make lifestyle modifications. To this end, we
introduce networked restless bandits, a novel multi-armed

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

bandit setting in which arms are both restless and embed-
ded within a directed graph. We then present a graph-aware,
Whittle-based heuristic algorithm that is constrained reward-
maximizing in this setting. Our core contributions include:

(i) Our networked restless bandit model, which lets us rep-
resent topological relationships between arms, and asso-
ciate arm ¢’s receipt of a pull with positive externalities
for its neighbors.

(ii) GRETA, a graph-aware, Whittle index-based heuristic
algorithm that lets us efficiently construct a constrained
reward-maximizing mapping from arms to actions at
each timestep.

(iili) Empirical results which demonstrate that GRETA out-
performs comparison policies across a range of hyper-
parameter values and graph topologies.

1.1 Related Work

Restless bandits: The restless multi-armed bandit (RMAB)
framework was introduced by Whittle (1988) as a way to
model the sequential allocation of a budget-constrained, in-
divisible resource over a population of N dynamic arms,
where: (1) at most k < n arms can receive the resource (i.e.,
a pull) at any given timestep; and (2) the state of each arm
evolves over time, regardless of whether or not it is pulled.
We provide a formal description in Section 2.1.

Indexability: In the general case, it is PSPACE-hard to
pre-compute the optimal policy for a given cohort of restless
arms (Papadimitriou and Tsitsiklis 1994). However, as con-
jectured by Whittle (1988) and proven by Weber and Weiss
(1990), when each arm is indexable, a tractable solution ex-
ists that is provably asymptotically optimal: we can decouple
the arms and consider a Lagrangian relaxation of the original
problem. In this context, the Whittle index can be thought
of as the infimum subsidy required to make an arm indif-
ferent between a pull and passivity, given its current state.
Whittle-index based policies use these index values to rank
arms when selecting which k arms to pull.

Proving indexability can be difficult and often requires the
problem instance to satisfy specific structural properties, such
as the optimality of threshold policies (Liu and Zhao 2010).
Additionally, much of the foundational work in this space
focuses on the two-action setting, and cannot be directly
extended to the multi-action setting that we consider.

mailto:cherlihy@umd.edu
mailto:johnd@umd.edu
https://github.com/crherlihy/networked_restless_bandits

Glazebrook, Hodge, and Kirkbride (2011) do consider the
multi-action setting, but for divisible rather than indivisible
resources; they also require an arm to consume this resource
at a level that is decreasing in the resource charge. Killian,
Perrault, and Tambe (2021) study multi-action restless ban-
dits and do not make any of the structural assumptions re-
quired to verify indexability, but instead develop a Lagrangian
bound-minimization approach; however, they do not consider
relationships among arms.

Mate et al. (2020) introduce the collapsing bandit model,
and demonstrate that this problem is indexable when forward
or reverse threshold policies are optimal. They also introduce
an efficient, closed-form approach to computing the Whittle
index called THRESHOLD WHITTLE (TW), and empirically
demonstrate that this approach performs well even when
optimality conditions are not satisfied. We leverage TW as a
subroutine within GRETA.

Bandits and graphs: Prior work at the intersection of
multi-armed bandits and graphs has tended to focus on
stochastic, rather than restless arms, and on graph-structured
feedback (i.e., rewards), rather than the embedding of arms
within a directed graph, and/or the spillover effects associ-
ated with allocation in the face of adjacency. For example,
Valko (2016) examines a graph structure among actions in
stochastic bandits, and Lu, Hu, and Zhang (2021) examines a
graph structure over rewards. However, we examine a graph
structure among arms in the restless bandit setting.

In recent work, Ou et al. (2022) look at a mobile inter-
vention setting. Similarly to our model, they combine the
traditional restless bandit setting with network externalities;
however, their model and goal are fundamentally different.
Their arms represent locations on a network with pulls im-
pacting a mixture of subpopulations that are located at or
near that pull, probabilistically. In contrast, in our model, ver-
tices represent individual arms, and our algorithm exploits—
when advantageous—the propensity for allocating a high-
cost, high-benefit resource to one arm to unlock potential
lower-cost, intermediate-benefit resources for the arm’s neigh-
bors.

2 Model Preliminaries
2.1 Restless Multi-arm Bandits

The restless bandit (RMAB) setting features an agent with
n € N arms. The state of each arm evolves over time and
in response to the agent’s actions, in a way that is governed
by the arm’s underlying Markov decision process (MDP).
Each MDP is defined by a state space, S, an action space,
A, a cost function, C : A — R, a local reward function,
r: S — R, and a transition function, P : S x A — S. The
objective is to find a policy, 7 : S — A, that maximizes total
expected discounted reward over a finite time horizon, T—
i.e., m* = argmax, E, [R(-)]. The agent must select exactly
one action per arm at each timestep, and the associated costs
must not exceed the per-timestep budget, B € R>.

2.2 Motivating Example

For ease of exposition, we ground our networked restless
bandit model in a motivating example: let arms represent

patients striving to adhere to a chronic disease management
program, such as an exercise regimen. A patient’s “state” on
any given day is thus determined by whether they adhere
(i.e., exercise), or fail to adhere to their regimen. To encour-
age adherence, many such programs feature a combination
of resource-constrained physician- and peer support (Fisher
et al. 2017). Examples include, but need not be limited to, a
reminder call from a physician, a supportive message from a
fellow participant, or the provision of awareness-raising out-
reach materials. Thus, a coordinator seeking to maximize the
number of patients who exercise over the program’s duration
might select a small subset of patients each day to receive
a call from a physician, and ask these people to message a
handful of their peers in turn, or pass along an educational
pamphlet to their caregiver(s). In each case, the lower-cost,
easier-to-scale information dissemination option amplifies
physician outreach, allowing a broader subset of individuals
to receive partial benefit.

2.3 Networked Restless Bandits

With this motivating example in mind, we now introduce our
networked restless bandit model, which allows us to model
directed relationships among arms. Given a set of n arms, let
G = (V, E) be a directed graph, and let there exist a bijective
mapping ¢ from arms to vertices — i.e., Vo € V, Il i €
[n] s.t. @ (i) = v. Let a directed edge, e € E, exist between
arms v and v if it is possible for v to benefit indirectly when
u receives a pull. Let Njy(u) = {v € V| e, € E} and
Nowt(u) = {v € V| Jey, € E} represent u’s one-hop
indegree and outdegree neighborhoods, respectively. This
graph is assumed to be constructed or operated by the agent;
as such, it is assumed to be observable. Real-life examples
with this property include mentoring programs and online
social networks.

State space: We consider a discrete state space,
S := {0,1}, where the states admit a total ordering by
desirability, such that state 1 is more “desirable” than state 0.
In our example, state O represents non-adherence to the exer-
cise regimen, while state 1 represents adherence. We assume
each arm’s state is observable (e.g., via fitness tracker data).

Action space: The traditional restless bandit setting con-
siders a binary action space, A := {0,1}, where 1 (or 0)
represents the decision to pull (or not pull) arm ¢ at time ¢.
To model positive externalities, we define an extended action
space, A := {0 : no-act, 1 : message,2: pull}. Here,
actions 0 and 2 correspond to the actions don’t pull and pull
respectively. We note that our me s sage action need not rep-
resent a literal message. Instead, it represents an intermediate
action with respect to desirability that gets “unlocked” as an
available action for vertex v at time ¢ only when some vertex
u € My (v) receives a pull at time ¢.

Transition function: For each arm i € [n], let P.";, rep-
resent the probability that arm ¢ will transition from state s
to s’ given action a. In the offline setting, these transition
matrices are assumed to be static and known to the agent at
planning time. This assumption is reasonable when historical
data from the same or similar population(s) provides a source
for informative priors, as is common in many domains, in-

cluding healthcare and finance (Steimle and Denton 2017;
Pasanisi, Fu, and Bousquet 2012). Extension to the online
setting where transition matrices must be learned is possible
via Thompson sampling (Thompson 1933; Ortner et al. 2012;
Jung and Tewari 2019; Jung, Abeille, and Tewari 2019).

We assume nonzero transition matrix entries, and
impose two sets of domain-motivated structural con-
straints (Mate et al. 2020): (i) Va € A, Fgy < Pf; and
(i) V(a,a') € Ax A,a < d — P¢, < P&y PPy < P
Constraint set (i) implies that each arm is more likely to stay
in the desirable state (i.e., s = 1) than transition there from
the undesirable state (i.e., s = 0). Constraint set (ii) implies
that messages and pulls are beneficial when received and that
a strict preference relation over actions can be defined for
each arm, such that no-act < message < pull.

Cost function: We map our action space to the cost vector
é¢=10,v,1], where 0 < ¢ < 1. Intuitively, this mapping pre-
serves standard notion that no cost is incurred when an arm
does not receive any form of intervention. It also encodes the
idea that the more beneficial an action is, the more expensive
it is to provide, which motivates us to exploit positive exter-
nalities. Additionally, when there are no edges, i.e., E = (),
and no messages can be sent, the unit cost of a pull lets us
recover the original restless bandit setting, where we must
choose which k < n arms to pull at each timestep.

Objective and constraints: It is possible, though not
tractable at scale, to take a constrained optimization-based
approach to solving for the optimal policy, 7*. We build
on Killian, Perrault, and Tambe (2021)’s approach below to
show how our constrained setting can be modeled. To begin,
let s represent a vector containing the state of each arm, i.e.
[s' € S|i € [n]], and let X represent a matrix containing
binary decision variables, one for each of n arms and |.A|
actions. We require our local reward function, 7 : S — R to
be non-decreasing in s, which is consistent with our goal of
maximizing the expected time that each arm spends in the
“desirable” state. Equation 1 formalizes our task:

n—1
J(s) = m):éx{z r'(s") + BE[J(s), X]}
n_llz\(.JA|fl

subject to Z Z xi5-c; < B

i=0 j=0

Tiq1 < \/ Tir 2

i’ €Nin (%)

Vi € [n]

|A[—1
Z xi,j =1

7=0
X € {0, 1}l

Vi € [n]

ey

Our goal is to find assignments of the decision variables
contained in X such that expected discounted reward is max-
imized, subject to a series of feasibility constraints: (i) across
all actions and arms, do not expend more than B budget;
(ii) ensure that if message is chosen for an arm ¢, then that
arm has at least one indegree neighbor 7’ such that pull

was chosen; and, (iii) ensure that each arm receives exactly
one action at each timestep. However, two challenges arise:
(1) a direct solution via value iteration is exponential in n,
and (2) Lagrangian relaxation-based approaches rely on the
decoupling of arms, which jeopardizes the satisfaction of
our neighborhood constraint on actions. This motivates us to
propose a graph-aware, Whittle-based heuristic algorithm.

3 Algorithmic Approach

Here, we introduce GRETA, a graph-aware, Whittle-index-
based heuristic algorithm that can be used to efficiently con-
struct a constrained reward-maximizing policy. A key insight
that GRETA exploits is that while we cannot decouple arms in
the networked setting, since we must know whether any of an
arm’s indegree neighbors will receive a pull at time ¢ to know
if the arm is eligible to receive a message, we can compute
two sets of Whittle indices for each arm, by considering each
active action as a separate instance of a two-action problem.
Note that the structural constraints ensure that for a given
state, an arm will require a higher subsidy to forgo a pull as
opposed to a message. We can then construct an augmented
graph that allows us to compare the cumulative subsidy re-
quired for the arms represented by directed edge (u,v) to
forgo a pull and message, respectively to those required by
other directed edges € G (including, importantly, the inverse
action-pair implied by edge (v, u)).

3.1 GRETA: A Graph-aware Heuristic

Set-up: We begin by building an augmented graph, G'. This
graph contains every vertex and edge in G, along with a
dummy vertex, —1, and directed edge (u, —1) Yu € V. This
lets us map each directed edge (u,v) in G to the action
pair (pull, message), and (u,—1) to (pull, no—act).
We also construct an augmented arm set, [n] U {—1}, and
extend our bijective mapping from arms to vertices such that
@ : —1 +— —1. Appendix A.1 provides pseudocode.

Next, we pre-compute the Whittle index for each vertex-
active action combination (v, @) € V' x A\ {0}. When we
compute the Whittle index for a given (v, «) pair, we seek the
infimum subsidy, m, required to make arm i (i.e., @ 1 (v))
indifferent between passivity (i.e., no—act) and receipt of
action « at time ¢t (Whittle 1988). We cannot compute the
Whittle index for our placeholder —1 vertex because it is not
attached to an MDP, so we map it to 0.

Algorithm 1: Compute Whittle indices for V' x A\ {0}

1: procedure WHITTLE(V', o € {1,2}, @)
0, ift =—1
2: Xi=1ir L inf {m | Vin(si,ai = 0) >
Vin(st,al =)}, otherwise
3 return W, < {doo '(v) |veEV'}

m -l-_r(si) +ﬂVm (s@_l) no-act
(55) + BlstVin (PE2) + @
(1 —5¢)Vim (Péﬁ)}

Vin(st) = max

The value function represents the maximum expected dis-
counted reward that arm i € [n] with state s¢ can receive at
time ¢ given a subsidy m, discount rate 3, and active action
a e {1,2}.

GRETA: With our augmented graph and Whittle index
values in hand, we now present our algorithm. We provide
pseudocode in Algorithm 2, and structure our exposition
sequentially. At each timestep ¢t € T, GRETA takes as input:
(1) an augmented set of restless arms, [n] U {—1} embedded
in an augmented directed graph, G’ = (V’, E’); (2) a budget,
B € R; (3) a cost function, C : A — R; (4) a message cost,
1 € [0,1); and (5) a set of Whittle index values per active
action o € {1,2}, denoted by Wy and W5, respectively.
Given these inputs, GRETA refurns a reward-maximizing,
constraint-satisfying action vector, d;.

Algorithm 2: GRETA: graph-aware, Whittle-based heuristic
Note: all sorts are descending; arrays are zero-indexed.

1: procedure GRETA(G', V', E', B, C, 4, W1, Wa)

2: 675 — O‘V‘
3: B'+ B
4: while V ¢z GETCOST(u,v,d@:,C) < B'AE' # () do
5: b + min(B’,2)
> Consider only pulls
6: G2, v2 + PULLONLY(E', |b|, W2)
> Consider pulls and messages
7. &(1,2)71/(1,2)7E/® <_MP(G/7b707¢7617W17W2)
> Select max-val candidate actions; update d;, B', G’
8: if vy > V(1,2) then
9: as, B’ + MODACTSB(G', C, a2, a:, B')
10: E',G" + UPDATEG(V', E’, a2, 0)
11: else
12: dt, B', <~ MODACTSB(G', C, a1 2y, dr, B')
13: E',G" <~ UPDATEG(V', E', G(1,2), Eb)
14: return a;

In lines 2-3 of Algorithm 2, we initialize @; such that
each vertex is mapped to 0 (no—act), and set our remaining
budget variable, B’, equal to the per-timestep budget, B.

In lines 4-13, we iteratively update our action vector @, un-
til we have insufficient remaining budget to afford any avail-
able edge-action pair, or our augmented edge set, £’ = ().
The termination check in line 4 requires us to: (1) check if
we’ve already incurred the cost of a pull or message (mes-
sage) for vertex u (v); and (2) offset accordingly when we
compute the cost of (a}' = 2,ay = 1), per Alg. 3.

Algorithm 3: Compute cost to pull © and message v

: procedure GETCOST(u, v, @, C)
cu + C(2) 1 —1(af > 0))+1(af =1)(C(2) —C(1))
¢ — C1)(1—1(af =1Vv=-1))

return c,, + ¢y

RN

The subroutines called in lines 6-7 of GRETA serve to
ensure that we will only deviate from the pull-assignment
choices of graph-agnostic THRESHOLD WHITTLE—i.e., by
considering a combination of pulls and messages—when it
is strictly beneficial to do so.

Since pulls have unit cost, and ¢ € [0,1), we consider
our per-timestep budget in sequential chunks of 2. We have
two options for allocating each chunk over actions: (1) con-
sidering only pulls, and selecting the two arms with highest
Wy index values; or (2) considering messages and pulls, and
selecting the set of directed (u, v) edges with highest edge-
level subsidies such that each u receives a pull, and each v
(excluding —1) receives a message. In lines 8-13, we select
the candidate action set with the highest cumulative subsidy,
and update d;, B’, and G’ accordingly.

Pulls only: Allocation option (1) maps arms who have
yet to receive a pull at time ¢ to candidate actions € {0, 2}
by sorting their W5 index values in descending order and
selecting the top-2 arms to receive pulls. App. A.1 gives
pseudocode (Alg 7).

Messages and pulls: Allocation option (2) maps arms to
candidate actions by computing an edge index value for each
directed edge € E’. Algorithm 4 provides pseudocode.

Algorithm 4: Cumulative subsidy of max pull-message set
Note: all sorts are descending; arrays are zero-indexed.

1: procedure MP(G’',b € R, C, %, @, W1, Wa)
2 @ =(V'E) G

3: d(172) MRS V// — 5;)

4: f:(u,v) e B" =R

50 EL<+ 0
6
7
8

Z/(LQ) — 0
while V. cpv GETCOST(u,v,a,C) < b A E” # () do
foru e V" \ {1} do

'/\/;)/ul(u) — {”U|(’LL, U) € E" A &(1,2) = 0}

10: EDGEINDICES(f”, u, Now (), b, 1, Wi, Wa)
11: values + SORT({f((u,v))|(u,v) € E"})
12: if [values| = 0 then
13: break
14: for f((u,v)) € values do
15: CcoSty,y + COMPUTECOST(u, v, G(1,2), C)
16: if costy,s < Db then
17: h:u— 20— 1
18: @(1,2), b + MODACTSB(G", C, h,a(1,2),b)
19: E",G" + UPDATEG(V", E" 4(1,2),0)
20: Vi) += F((u,v))
21: El, «+ E, U{(u,v)}
22: break

> Return best arm-actions, cumulative subsidy, E
23: return a1 2y, v(1,2), Eo

In line 2 of Algorithm 4, we start by defining G to be
a local copy of our augmented graph, G’. We then create
a function, @, 2y to map each vertex v € V" to its can-
didate action, which we initialize to be @; (line 3). We do
this because we require the current G’ to determine which
(pull,,message,) edge-action combinations are possible,
and for @ to correctly compute the cost of these hypothetical
actions, but we don’t want to modify d@; or G’ in-place. Next,
in lines 4-5, we define a function, f that maps each edge
(u,v) € E’ to areal-valued edge index value, and a set, E/,,
to hold the edges we will need to remove from G’ if we select
the candidate actions returned by Algorithm 4. In line 6, we
initialize v(; 3y = 0 to represent the cumulative subsidy of

our candidate action set.

In lines 7-22 of Algorithm 4, we iteratively update our
candidate action function, d(y 2y, until we run out of (small-
b) budget, or E” = (). Inside each iteration of the WHILE-
loop, we begin by computing an edge index value for each
directed edge (u,v) € E’ (lines 8-10). To do this, we loop
over vertices in V' \ {—1} (line 8), and for each vertex u,
let N (u) € Now(u) represent the subset of u’s one-hop
out-degree neighbors currently slated to receive a no—-act
at time ¢.

For each edge (u,v) € N, (u), our edge index value
represents the cumulative subsidy required to forgo a pull for
arm u (i.e., W3') and a message for arm v (i.e., W7’). Note:
if we pull u, message v, and have budget left over, we can
message up to |M¥| vertices v’ € N, (u) at time ¢ without
incurring additional pull costs, where |M¥| = [N, (u)| if
¥ = 0 and min(|2/ |, [N, (u)]) for ¢ € (0,1).

To exploit this diminishing marginal cost, we sort u’s,
neighbors by their index-values and let the max-valued edge
represent the cumulative, cost-feasible value of A7, (u),
rather than just (u, v). Algorithm 5 provides pseudocode.

Algorithm 5: Compute edge index values
Note: all sorts are descending; arrays are zero-indexed.

1: procedure EDGEINDICES(f, u, Nyy(u), b, 1, Wa, W1)

2: nmsgs< [Now(u)|if 1 = 0 else min([>/y], [Now(u)|)
3 msg_values ¢ SORT(g : v € Ny (u) — WY)

4: max-edge < (u, arg max, msg-values)

5: for v € Njy(u) do

6: if (u,v) = max_edge then

7 f((u,v)) + W3 + Z?jggs*l msg-values;

8 else

9 F((u,v)) + Wy + W7

10: return > f is updated in-place

Then, in lines 11-13 of Algorithm 4, we sort the edge-index
values in descending order. Note that we break if there are no
values to be sorted; this corresponds to the scenario in which
no additional pulls are available/cost-feasible, and every arm
not receiving a pull is already receiving a message, but we
still have budget left—i.e., when ¢ = 0. In lines 14-22, we
choose the top cost-feasible edge-action pair from our sorted
list, and update our candidate action function, &'(172) and local
budget, b accordingly. Note that if 1/ = 0 and arm u receives
a pull, we message every v € N, (u). App. A.1 provides
pseudocode for the MODACTSB subroutine (see Algorithm 8
in Appendix A.1).

Finally, we update our local copy of the augmented graph
by removing (u,v), as well as any directed edge terminat-
ing in u, and the placeholder edge, (u,—1). This is be-
cause: (a) we do not want to reconsider the edge-action pair
we’ve selected; and (b) by virtue of how we select (u,v),
f((u,v)) > f((-,u)) or any such u-terminating edge is cost-
prohibitive. App. A.1 provides pseudocode for the UPDATEG
subroutine (see Algorithm 9). We conclude the MP subrou-
tine (Algorithm 4) by returning our candidate action function,
d(l,g), the associated cumulative subsidy value, vy 2), and
the set of candidate edges to be removed from G’, £,

Putting the pieces together: With the exposition of each
of GRETA’s subroutines complete, we now return to lines 8-
13 of Algorithm 2. We compare the cumulative subsidy values
returned by the PULLONLY and MP subroutines, and use
the candidate action function associated with the maximum
cumulative subsidy to update our action vector, d@;, remaining
budget, B’, and augmented graph, G’. When the WHILE-loop
terminates, we return d;. By virtue of how this action vector
is constructed, it is reward-maximizing and guaranteed to
satisfy the budget constraint.

3.2 Theoretical Analysis

Bounding expected reward: Per Theorem 3.1, the expected
cumulative reward of GRETA with message cost, ¢ > 0, will
be lower-bounded by that of graph-agnostic THRESHOLD
WHITTLE, and upper-bounded by GRETA with ¢ = 0. See
Appendix A.2 for a complete proof.

Theorem 3.1. For a given set of [n] restless or collapsing
arms with transition matrices satisfying the structural con-
straints outlined in Section 2.3, corresponding directed graph,
G = (V, E), budget B € Rx, non-decreasing local reward
function, r : § — R, cumulative reward function, R, and
cost vector ¢ = [0,1,1] such that ¢ € [0,1), we have:
Erw[R] < Egu,y>0[R] < En,y=o[R]

Proof Sketch. The first inequality follows from how GRETA
constructs each a;. The second inequality follows from the
fact that: (a) per our structural constraints and choice of r,
E[ri|st, al] is strictly increasing with a} Vi, t; and (b) for
1y = 0, we can message at least as many arms as when
¥ > 0. O

Computational complexity: Per Theorem 3.2, GRETA is
efficiently computable in time polynomial in its inputs; see
Appendix A.2 for a complete proof.

Theorem 3.2. For convenience, let: £ = 1(¢v > 0) x
min(|E’|?, L%J\E’D + 1(v = 0) x |V'||E’'|. Then, for
¥ € [0,1) and time horizon, T, the time complexity of
GRETA is:
O (max (&|V'Plog |V'|, EIV'|E'P)T), ify>0
O (max (&2|V'|?log |V'|, E|V'||E'|?, E|V'PIE|)T),
otherwise

These bounds indicate that GRETA is well-suited for sparse
graphs and values of ¢ = 0 or ¢» — 0.5 (¢ > 0.5 will also
improve runtime, but may reduce opportunities to exploit
externalities). Conversely, pathological cases will include
large-scale dense graphs and values of the message cost, v,
which approach but do not equal 0. We consider improving
scale to be a valuable direction for future work. The com-
binatorial nature of the problem we consider suggests that
sampling and/or distributed methods will be critical in this
regard (Zhou et al. 2020; Almasan et al. 2022).

4 Experimental Evaluation

In this section, we demonstrate that GRETA consistently out-
performs a set of robust graph-agnostic and graph-aware
comparison policies. We begin by identifying the set of poli-
cies we compare against, as well as our evaluation metrics,

graph generation, and mapping of arms to vertices. We pro-
ceed to present results from three experiments: (1) GRETA
versus the optimal policy (for small n); (2) GRETA versus
comparison policies for a fixed cohort and graph; and (3)
GRETA evaluated on a series of different budgets, message
costs, and graph topologies.

4.1 Experimental Setup

Policies: In our experiments, we compare the policy produced
by GRETA against a subset of the following graph-{agnostic?
and aware'} policies:

Compute Whittle index values using pull as (only) active
action. Pull | B| arms with highest Whittle index values;
all others get no-act (Whittle 1988; Mate et al. 2020).
Construct G'; select budget-feasible edge-action pairs
uniformly at random until budget exhausted.
Construct G'; select budget-feasible edge-action pairs
weighted by out-degree centrality of src vertex until
budget exhausted.
Construct G'; sort edge-action pairs by expected reward
at t + 1. Select cost-feasible pairs until budget exhausted.
VALUE Find the optimal policy via value iteration for system-level
ITERATION (VD)f MDBP (intractable at scale, but computable for small |V| and |E|).

THRESHOLD
WHITTLE (TW)@

RANDOMT

CENTRALITY-
WEIGHTED RANDOMT

Myorpict

Table 1: Comparison policies

We note that in the restless (but graph-agnostic) setting:
(1) RANDOM and MYOPIC are common baselines. Here, we
have extended them to the networked setting. (2) THRESH-
OLD WHITTLE represents a state-of-the-art approach. To the
best of our knowledge, no additional (efficiently computable)
graph-aware policies exist for the novel networked restless
bandit setting we propose.

Objective: Our optimization task is consistent with assign-
ing equal value to each timestep that any arm spends in the
“desirable” state. This motivates our choice of a local reward
function r4(s!) := s¢ € {0,1} and undiscounted cumulative
reward function R(r(s)) = >,ciny 2overr 7(50)-

Intervention benefit (1B): For each policy, we compute total
expected reward, E,[R(-)], by taking the average over 50
simulation seeds. We then compute the intervention benefit
as defined in Equation 3, where NOACT represents a policy in
which no pulls or messages are executed, and GH represents
the policy produced by GRETA.

_ Ex[Ry ()] — ExoaalR()]
IBNoact,cu () : Eon[B()] = Exona[B()] 3)

Graph generation: For each cohort of n restless arms that
we consider in our experiments, we use a stochastic block
model (SBM) to generate a graph with | V| = n vertices (Hol-
land, Laskey, and Leinhardt 1983). This generator partitions
the vertices into blocks and stochastically inserts directed
edges, with hyperparameter p;, (pout) € [0,1] controlling
the probability that a directed edge will exist between two
vertices in the same (different) block(s).

We consider two options for ¢ : [n] — V: (1) random;
and (2) by cluster. For mapping (1), we generate [{5 | blocks
of uniform size, and map arms to vertices—and, by extension,
to blocks—uniformly at random. This mapping represents
allocation settings with a peer support component where
participants are randomly assigned to groups, without regard
for their behavioral similarity.

For mapping (2), we use an off-the-shelf K-MEANS algo-
rithm to cluster the arms in flattened transition-matrix vector
space (Pedregosa et al. 2011). We use the cardinality of the
resulting clusters to determine the size of each block and map
arms to vertices based on cluster membership. This mapping
represents intervention allocation settings with a peer sup-
port component where participants with similar transition
dynamics are grouped together.

4.2 GRETA vs. the Optimal Policy

In this experiment, we compare GRETA to 7y, where 7,
denotes the optimal policy obtained via value iteration for the
system-level MDP (Sutton and Barto 2018). This system-level
MDP has state space S” := {S}", action space A’ := {A}",
a transition function, P : &’ x A" — &', and reward func-
tion, R’ = Zie[n] s®. To ensure budget and neighborhood
constraint satisfaction, only cost- and topologically feasible
actions, A" C A’ are considered. Figure 1 reports results for
a synthetic cohort of 8 arms embedded in a fully connected
graph (i.e., pin = Pour = 1.0). We let T' = 120, ¢ = 0.5, and
report unnormalized E, [R], along with margins of error for
95% confidence intervals computed over 50 simulation seeds
for values of B € {1,1.5,2,2.5,3}. GRETA outperforms
TW for each value of B (with predictably larger gaps for
values with remainders = 1) that graph-agnostic TW cannot
exploit), and is competitive with respect to 7y;.

CW-Rand Myopic —— Rand VI
—— Greta NoAct T™W

500 A /
£, 400 // /
58} =
300 :/

10 15 2.0 25 30
(a) Budget

Figure 1: E[R] by policy and budget

4.3 GRETA vs. Alternative Policies

Here we compare GRETA to the graph-agnostic and graph-
aware comparison policies outlined in Section 4.1. We con-
sider a synthetic cohort of n = 100 restless arms whose
transition matrices are randomly generated in such a way
so as to satisfy the structural constraints introduced in Sec-
tion 2. We use a stochastic block model (SBM) generator
with p;,, = 0.2 and p,,; = 0.05, and consider both the ran-
dom and by cluster options for ¢. We let T' = 120, B = 10,
and ¢ = 0.5.

In Table 2, we report results for each mapping-policy com-
bination, along with margins of error for 95% confidence
intervals computed over 50 simulation seeds.

0] Policy E[IB] (%) () |
RANDOM 75.82 £ 0.890
CWRANDOM | 74.79 + 1.068

randomly MYOPIC 87.83 £ 1.115
™ 83.57 +0.779
GRETA 100.00 + 0.000
RANDOM 64.19 +0.786
CWRANDOM | 63.59 + 0.804

by cluster MyoriC 76.24 + 0.921
™W 72.65 +0.684
GRETA 100.00 =+ 0.000

Table 2: E[IB] by choice of ¢ and policy

Key findings from this experiment include:
* The policy produced by GRETA achieves significantly
higher E [IB] than each of the comparisons.

* The gap in E, [IB] between GRETA and MYOPIC, which is
the best-performing alternative, is larger for the by cluster
mapping than the random mapping. This suggests that in
assortative networks, relatively homogeneous transition
dynamics within blocks facilitate the exploitation of the di-
minishing marginal costs associated with the pull-message
dynamic.

4.4 Sensitivity Analysis

‘We conduct sensitivity analysis with respect to: (1) the bud-
get, B; (2) the message cost, ; and (3) the underlying graph
topology, via the pi, and poy hyperparameters of our stochas-
tic block model graph generator. As we vary each of the
aforementioned hyperparameters, we consider a fixed cohort
size of n = 100 randomly-generated, structural constraint-
satisfying arms, a time horizon, T' = 120, and a mapping
@ : i € [n] — v € V from arms to vertices that is deter-
mined by cluster. We report unnormalized E.[R], along with
margins of error for 95% confidence intervals computed over
50 simulation seeds, for GRETA, THRESHOLD WHITTLE,
NOACT, and MYOPIC, which is the best-performing non-TW
alternative. We describe each task below, and present results
in Figure 2.

Budget: We hold message cost fixed at v = 0.5, let
Pin = 0.25, pox = 0.05, and consider values of B €
{5%,10%,15%} of n. As Figure 2(a) illustrates, E[R] in-
tuitively rises with B for each policy considered. For each
value of B, we find that GRETA achieves higher E [R] than
the comparison policies and that the gap between GRETA and
the best-performing alternative also increases with B.

Message cost: Here, we hold the budget fixed at 6,
let p, = 0.25, poix = 0.05, and consider values of
¥ € {0.0,0.25,0.5,0.75,0.9}. As Figure 2(b) illustrates,
E, [R] decreases as the message cost, t, increases for GRETA
and MYOPIC, while it remains constant for active-action ag-
nostic NOACT and message-agnostic TW. For each value of
1 that we consider, GRETA achieves higher E[R] than each
of the comparison policies. This gap is intuitively largest
when ¢ = 0, and decreases until GRETA converges with
TW-—notably, without suffering loss in total expected reward
due to divisibility issues with respect to B, when ¢ = 0.75.

Graph topology: We hold the budget fixed at B = 10, let

—— Greta Myopic NoAct TW
x10°
6.0
5.01
I3
)
4.0 /
3.04
5 10 15 000 025 050 0.750.90
(a) Budget (b) Message cost (y)
—— Greta Myopic NoAct TW
%103
3.8
364 //H
3.4, 1
= =
3.2
[m]
3.0
2.8
2.6

000 025 050 0.75 1.00 0.00 025 050 0.75 1.00
(c) Assortativity (Apin; pout = 0.1) (d) Disassortativity (Apout; pin = 0.1)

Figure 2: Sensitivity results, by varied hyperparameter

message cost, 1) = 0.5, and consider two sets of increasingly
assortative (disassortative) (Din, Pout) ordered pairs. In each
case, we start with £ = (—i.e., (0.0,0.0), and then hold poy
(pin) fixed at 0.1 and steadily increase pin (pour). Figure 2(c)
and (d) present results. For GRETA, while E[R] is generally
increasing in the number of edges, the rate of growth levels
off as assortativity rises but remains robust as disassortativ-
ity rises. This suggests that homophilic clustering of arms
with respect to transition dynamics may undermine total wel-
fare by inducing competition within neighborhoods, while
heterophilic clustering can help to smooth out subgroups’
relative demand for constrained resources over time.

5 Conclusion & Future Work

In this paper, we introduce networked restless bandits, a novel
multi-armed bandit setting in which arms are restless and em-
bedded in a directed graph. We show that this framework can
be used to model constrained resource allocation in commu-
nity settings, where receipt of the resource by an individual
can result in spillover effects that benefit their neighbor(s).
We also present GRETA, a graph-aware, Whittle-based heuris-
tic algorithm which is constrained reward-maximizing and
budget-constraint satisfying in our networked restless ban-
dit setting. Our empirical results demonstrate that the policy
produced by GRETA outperforms a set of graph-agnostic and
graph-aware comparison policies for a range of different bud-
gets, message costs, and graph topologies. Future directions
include: (1) relaxing the assumption of perfect observability
of transition matrices and/or graph topology; (2) consider-
ing individual and/or group fairness; and (3) incorporating
sampling and/or distributed methods to improve scalability.

A Heuristic Policy

In this section, we provide additional details related to the
heuristic policy we introduce in Section 3, including pseu-
docode for subroutines and complete proofs for theorems.

A.1 Pseudocode

Construct G’ Recall from Section 3.1 that GRETA takes
as input a pre-constructed augmented graph, G’ = (V', E’),
where V' and E’ represent augmented vertex and edge sets,
respectively (Alg. 2, line 1). Algorithm 6 provides pseu-
docode for the construction of this augmented graph:

Algorithm 6: Construct G’

1: procedure CONSTRUCT(V, E)
2 Ve Vu{-1}

3: E +— Eu{(u,-1)|ueV}
4 G =(V,E)

5 return V' E' G’

The figure below visually represents this process for an
example graph, G, and corresponding augmented graph, G’:

PULLONLY subroutine Here we present pseudocode for
the PULLONLY subroutine called in line 6 of GRETA (Algo-
rithm 2).

Algorithm 7: Cumulative subsidy of top-2 arms (pulls)
Note: all sorts are descending; arrays are zero-indexed.

1 procedure PULLONLY(E',b € N, Wa)
Vs + {u] (u,v) € E /\U——l}
b + min(|V3],b)

pull_vals < SORT(g:u € V3 —
G2 :u € me(pullvals[:b]) — 2
ve « >, mr(pullovals;)

(u, W3'))

AN AR R

> Return top-b arm-actions and their cumulative subsidy
8: return das, V2

MODACTSB subroutine Here we present pseudocode for
the MODACTSB subroutine called in line 9 or 12 (depending
on the IF/ELSE in line 8) of GRETA (Algorithm 2), as well as
in line 18 of the MP subroutine (Algorithm 4).

Algorithm 8: Update @; and budget per max-value action(s)

1: procedure MODACTSB(G', C, a*,d:, B')
> For every vertex v with an updated action:

2: for u € dom(*) do
3: if a*(u) = 1 then
> New action is a message; update a;, B’
4. B —=C()(1-1(a*(u) =1Vu=-1))
5: ay <1
6: else if & (u) = 2 then
> New action is a pull; update dy, B’
7 B' —=C(2)(1 — 1(a*(u) > 0))+
8: 1(a" (u) = 1)(C(2) - C(1)
9: ay + 2
> If C'(1) = 0, message every v € Ny (u)
10: if v = 0 then
11: for v € Nj,(u) do
12: a; «+ max(ay,1)
13: return d;, B’

Algorithm 9: Update £’ and G’

1: procedure UPDATEGRAPH(V', E', 4", Ef,)
2 for u € dom(a*) do

3 if a" (u) = 2 then

4: El « E, U{esiles: € E'A
5 t=uV(s=unt=-1))}
6. E « E'\E,
7 return £/, G’ = (V' E')

UPDATEG subroutine

A.2 Proofs

Bounding expected reward Here, we begin with Re-
mark A.1, and proceed to prove Theorem 3.1 (restated for
convenience below).

Remark A.1l. For any restless arm ¢ € [n| whose transi-
tion matrix entries satisfy the structural constraints intro-
duced in Section 2.3, action space A := {0 : no-act,1:
message,2 : pull}, and non-decreasing local reward
function,r : & — R, we have: o
V(a,a') € Ax A,a < a' — E[r}|s},a;] < E[ry|s}, a}]

Theorem 3.1. For a given set of [n] restless or collapsing
arms with transition matrices satisfying the structural con-
straints outlined in Section 2.3, corresponding directed graph,
G = (V,E), budget B € R>o, non-decreasing local reward
function, r : S — R, cumulative reward function, R, and
cost vector & = [0,1, 1] such that p € [0,1), we have:
Erw([R] < Ecn,y>0[R] < Egu,y=o0[L]

Proof. The first inequality, Erw [R] < Egn,p>0[R)], follows
directly from how GRETA constructs each @;. GRETA’s PUL-
LONLY subroutine (Algorithm 7) computes candidate ac-
tion vector do, which represents the actions we would take
when following graph-agnostic TW for each budget chunk,
b + min(B’, 2).

Since we do not execute a; until we are finished construct-
ing it—i.e., until we have run out of budget or edges, per

the WHILE-loop termination logic in line 8 of Algorithm 2,
the arms’ states don’t change from while loop iteration ¢ to
i + 1. Thus, per the inequality on line 11, GRETA will return
the same mapping from arms to actions as that returned by

graph-agnostic TW with k = |B] if A, 10 > 1/21(2)))
and a mapping containing pulls and at least one message
otherwise—i.e., when it is strictly advantageous to do so.

The second inequality, Egn y>o0[R] < Egu,yp=0[R], fol-
lows directly from Remark A.1 and the fact that when ¢ = 0,
we can message at least as many arms as we can when ¢ > 0.
Let M} represent the set of potential messages that is “un-
locked” when a given node u receives a pull at time ¢. The
cardinality of M} can be bound as follows:

, .
|IMY| = {|./\{;)m(u)|, / ifyp=0 (4)
min([5/v], [Now(w)]), ¢ >0
This is because when 1) = 0, for each node u that we
pull at time ¢, we message every one-hop outdegree neighbor
v € N, (u) that has not already received a pull or message
at time ¢ (see Algorithm 8, lines 10-12). In contrast, when
1 > 0, we must take the budget constraint into account.
The original claim follows from the transitive property.

Computational complexity Here, we prove that GRETA
is efficiently computable in time polynomial in its inputs.
We begin by introducing several lemmas related to the
runtime of GRETA’s subroutines, and then proceed to prove
Theorem 3.2 (restated for convenience below, immediately
preceding its corresponding proof).

Remark A.2. The CONSTRUCT subroutine (Algorithm 6)
used to construct the augmented graph, G’ , has computa-
tional complexity O(|V|), since we insert the dummy vertex,
—1, and a directed edge (u, —1) foreachu € V.

Lemma A.3. Using graph-agnostic THRESHOLD WHITTLE
to pre-compute the Whittle index for each vertex-active action
combination (v,a) € V' x A\ {0} has time complexity
O(IVI|AIS*T).

Proof. Per Mate et al. (2020), THRESHOLD WHITTLE has
time complexity O(|S|?T) per arm-active action. There are
N = |V|arms and | A\ {0} active actions. Thus, Algorithm 1
has time complexity O(|V||A||S|?T). O

Lemma A.4. The PULLONLY subroutine (Algorithm 7) has
time complexity O(|V'|log [V']).

Proof. Line 2 of Algorithm 7 has cost O(|V’]). Lines 3, 5,
and 6 have cost O(1). The cost of this subroutine is thus
dominated by the cost of sorting the Whittle index values
(line 4), which is O(|V"| log |[V’)). O

Lemma A.5. The EDGEINDICES subroutine (Algorithm 5)
has time complexity O(|V'|log|V)).

Proof. Lines 2 and 4 of Algorithm 5 have time complex-
ity O(1). The FOR-loop on lines 5-9 has time complexity
O(|V']), since in the worst case, [N, (u)| = |V'|. Thus,
the time complexity of this subroutine is dominated by the

O(|V’|1og |[V']) cost of sorting the Whittle index values (line
3). O

Lemma A.6. For ¢ € [0,1), the MODACTSB subroutine
(Algorithm 8) has time complexity O(|V'|) if ¢ > 0 and
O(|V'|?) otherwise.

Proof. In the FOR-loop contained in lines 2-12 of Algo-
rithm 8, we iterate over each vertex u with an updated action
(i.e., Vu € dom a*), with cost O(|V”’|). In lines 3-9, we decre-
ment our remaining budget, B’, and update our candidate
action vector; each of these operations have time complexity
O(1). If ¢ > 0, lines 10-12 are not executed. Conversely,
if ¢ = 0, lines 10-12 are executed, and we iterate over u’s
one-hop, outdegree neighbors with cost O(|V’|). Thus, the
time complexity of this subroutine is O(|V']) if ¢» > 0 and
O(|V’|?) otherwise. O

Lemma A.7. The UPDATEGRAPH subroutine (Algorithm 9)
has time complexity O(|V'||E'|).

Proof. In the FOR-loop contained in lines 2-5 of Algorithm 9,
we iterate over each vertex u with an updated action (i.e.,
Vu € dom a*). Lines 4-5 and 6 each have cost O(| E’|). Thus,
the time complexity of this subroutine is O(|V'||E’|). O

Lemma A.8. Let W, p represent the number of WHILE-
loop iterations that occur during any given call to the
MSGPULL subroutine (i.e., Algorithm 4, lines 7-22). For
¥ € [0, 1), we can upper-bound Wy p as follows:

O(min(|E'|, [%52])), ifv >0
o(v'), otherwise

Proof. There are two cases: ¢ > 0 and ¢ = 0. We consider
each below:

Case A.8.1. 1 > 0: For any given arm i € [n], and WHILE-
loop iteration j > 0, let an action upgrade represent a mod-

ification to (1 oy such that &211’?2)) > dgll"gl). The small-b
budget is initialized = 2, and is strictly decreasing in the
number of action upgrades when 1) > 0. The worst case
from a time complexity perspective will be when our only
upgrades are messages, since C'(pull) > ¢ for ¢ € [0,1)—
i.e., | 222 iterations.

Additionally, at each iteration we either: (a) have at least
one cost-feasible action upgrade, which results in the removal
of at least one edge from E” when we call UPDATEG in line
19 (note: E” is initialized in line 2 as a copy of F’, so it is
always the case that |E”'| < |E’|); or (b) do not have any
cost-feasible action upgrades remaining, in which case, the
WHILE-loop terminates when we call GETCOST in line 7.

Thus, we can conduct at most min(|E’|, | %2 |) iterations

P
before breaking.

Case A.8.2. 1) = 0: Each time we select to pull vertex u
in lines 14-22, we message every vertex v € N (u) that
is currently slated to receive a no—act (i.e., when we call
the MODACTSB subroutine on line 18). The next time we
encounter u in the FOR-loop on line 8, the construction of
N, (v) on line 9 will yield @, since we include only neigh-
bors for which a;,2) = 0. This will hold for each vertex

€ V”, so we will break on line 13 after at most O(|V’|)
iterations of the WHILE-loop.

O

Lemma A.9. For notational convenience, let £ = 1(yp >
0) x min(|E’|?, L%ZHE’\) + 1(y = 0) x |V'||E'|. For
¥ € [0,1), the MSGPULL subroutine (Algorithm 4) has time
complexity O (max (¢|V'|?log [V'|, {IV'||E'|?)) if ¥ > 0,
and O (max (&|V'[2log [V'|, (|V'||E|2, €|E'|V'|?)) oth-

erwise.

Proof. Regardless of the value of v, lines 2-6 of Algorithm 4
are dominated by the cost of constructing G’ (line 2), which
has cost O(|V’| + |E’|). The WHILE-loop termination check
we perform in line 7 has time complexity O(|E’|) since we
call GETCOST (Algorithm 3) for each edge e € E”.

In the FOR-loop contained in lines 8-10, we loop over
each vertex v € V' (line 8; O (|V'])), collect the one-
hop, outdegree neighbors currently slated to receive a
no-act (line 9; O (|E’|)), and then call EDGEINDICES.
Thus, per Lemma A.5, the time complexity of lines 8-10 is
O (max (|V'|?log [V'|, [V'||E"])).

The cost to sort the edge index values in line 11 is
O(|E’|1og |E'|); the termination check on line 12 has cost
O(1).

In the FOR-loop contained in lines 14-22, we iterate over
edge index values (line 14; O(|E’|)). Lines 15-16 and 20-21
each have cost O(1). Per Lemma A..6, the call to MODACTSB
(Algorithm 8) in line 18 has cost O(|V’|) if ¢y > 0 and
O(|V'|?) otherwise. Per Lemma A.7, the call to UPDATEG
(Algorithm 9) in line 19 has time complexity O(|V'||E’|).
Thus, for ¢» € [0,1), lines 14-22 have time complexity
O(|V'|E']?) if ¥ > 0 and O (max (|V'||E'|?, [V'|?|E"]))
otherwise.

Finally, we consider the subroutine in its entirety. For no-
tational convenience, let £ represent the outer cost of the
WHILE-loop, where the maximum number of iterations is
defined per Lemma A.8:

. / b=2 / / /

¢ =1(> 0) x min(|E[?, LTJIE)+1(yp =0)x [VI[|E]

Then, for € [0,1), the time

complexity of the MSGPULL is:
P >0

O (max (&|V'|Plog [V'|, EIV'||E')?, €IV'PIE'])), else
O

{o (max (£[V'|*log [V'], E[V'||E'?))

Theorem 3.2. For convenience, let: £ = 1(¢p > 0) x
min(|E’|?, L%HE’\) + 1(vp = 0) x |V'||E’|. Then, for
¥ € [0,1) and time horizon, T, the time complexity of
GRETA is:
O (max (&|V'Plog |V'|, EV'||[E'P)T), ify>0
O (max (€2|V'|*log [V'|, &|V'[|E']?, &|V'P|E'|) T),
otherwise

Proof. Per Remark A.2 and Lemma A.3, the time complexity
of constructing GRETA’s inputs is dominated by precomputa-
tion of the Whittle indices, which has cost O(|V||A||S|*T).
Lines 2-3 of GRETA (Algorithm 2) have cost O(1).

10

The WHILE-loop termination check we perform in line 4
has time complexity O(|E’|) since we call GETCOST (Algo-
rithm 3) for each edge e € E’. Line 5 has cost O(1).

Inside the WHILE-loop (i.e., Algorithm 2, lines 4-13), the
call to the MSGPULL subroutine on line 7 contributes the
dominating cost. Per Lemma A.9, for ¢ € [0, 1), this subrou-
tine has time complexity:

O (max (&|V'[Plog [V'|, EIV'I|E'?)) , ¥ >0

0] (max (f\V’|210g|V/\, EV'I|IE)?, f\V’|2|E'D) , else
where

. 2 | b=2 ’ / /

€= 16 > 0)xmin| B[, 72 [B') + 1w = 0) x V'|| 2|

Next, we can bound the number of WHILE-loop iterations
that occur during any given call to GRETA in a way that
proceeds identically to the bound we establish for the MsS-
GPULL subroutine’s WHILE-loop in Lemma A.8, with one
small modification: we replace b with the full budget, B,
noting that b < B. This accounts for the presence of the £2
term in Theorem 3.2.

Finally, we note that we call GRETA once per timestep
t. Thus, when we consider the time complexity over time
horizon, T, the cost of computing @; 7" times dominates the
O(|V||A||S|?T) cost of precomputing the Whittle indices,
and we are done. O

B Additional empirical results

Here we provide additional empirical support for Theo-
rem 3.1, reproduced below for convenience:

Theorem 3.1. For a given set of [n] restless or collapsing
arms with transition matrices satisfying the structural con-
straints outlined in Section 2.3, corresponding directed graph,
G = (V, E), budget B € R>¢, non-decreasing local reward
function, r : § = R, cumulative reward function, R, and
cost vector ¢ = [0,%,1] such that 1) € [0,1), we have:
Erw[R] < Egu,yp>0[R] < Egu,y—o[R]

We note that for any given directed graph, G = (V, E),
for fixed |V, as |E| tends toward a complete graph (i.e.,
|[E| — |V]=x (JV] — 1)), as long as we have budget
B > C(2) + C(1) (or, equivalently, B > 1 + 1), we can
pull any arm and gain the ability to message any other arm.
Thus, in the complete graph setting, we can modify the con-
strained optimization-based approach represented by Equa-
tion 1 (reproduced for convenience below) to: (1) include
the requirement that at least one arm receive a pull (i.e., con-
straint ¢); and (2) remove the neighborhood constraint (i.e.,
constraint a), since it is guaranteed to be satisfied without
being explicitly enforced.

J(s) = m)%x{z r'(s") + BE[J(s'), X]}

nAZfEA\—l
subject to Z Z zij-c; < B
i=0 j=0
(a) zin < \/ Tt 2 Vi € [n]
i €Nin (7)
[Al—1
(b) Z Ti 5 = 1 Vi € [’I’L]
j=0
n—1
(C) Z xm 2 1
i=0
(d) X € {0, 1} 1Al

Thus, for fixed set of restless arms with cardinality |V],
and message cost, 1, we can upper-bound Egy y [R] by the
expected reward achieved by the modified math program
when the graph in question is complete. Intuitively, this bound
will become tighter as the cardinality of | E| is increased.

To empirically validate this claim, we consider a synthetic
cohort of n = 100 restless arms whose transition matri-
ces are randomly generated in such a way so as to satisfy
the structural constraints introduced in Section 2. We let
T = 120,B = 10, and ¥ = 0.5. We can then construct
graphs using this fixed vertex set but containing edge sets
with varying cardinalities, expressed as a percentage of the
number of edges the complete graph would contain.

More concretely, we define a set of six edge genera-
tion seeds, and use each seed to select subsets of edges
uniformly at random, such that the subsets have cardinal-
ities € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} of
the complete graph. For each graph so constructed, we report
unnormalized E, [R], along with margins of error for 95%
confidence intervals computed over 30 simulation iterations

11

(see subfigures a-f). We observe that:

1.

2.

For each seed, and every value of |E
EGH,w [R] < EMP,w[R}-

We note that while GRETA’s expected reward does not
monotonoically increase with | E| in every case, this is to
be expected, since we are not guaranteed to get the same
subset of edges we had for smaller percentage values
as we increase | F|. This being said, expected reward is
generally increasing with |E|, and as |E| — |V|(|V|-1),
EGH,w [R] — EMp’w [R]

, ErwylR] <

— Greta NoAct TW MathProg

40001

3500 | //“Q/.——-r"'—r/._"i

3000

E[R]

25001

00 01 02 03 04 05 06 07 08 09 10
E] as % of [V[*([V|-1)

(a) Edge generation seed 1

— Greta NoAct TW MathProg

40004

2500 /\/f—l/*_(‘

30001

E[R]

2500 1

00 01 02 03 04 05 06 07 08 09 10
E] as % of [V|*(]V]-1)

(b) Edge generation seed 2

—— Greta NoAct T™W MathProg

4000

1500 M

3000

E[R]

2500

00 01 02 03 04 05 06 07 08 09 10
E] as % of [V|¥(]V]-1)

(c) Edge generation seed 3

— Greta NoAct TW —— MathProg

4000 -
3500
=
)
3000
2500
00 01 02 03 04 05 06 07 08 09 10
E| as % of [V[*(|V]-1)
(d) Edge generation seed 4
— Greta NoAct TW —— MathProg
4000 -
3500
=
[E]
3000
2500
00 01 02 03 04 05 06 07 08 09 10
E| as % of [V[*(]V|-1)
(e) Edge generation seed 5
—— Greta NoAct TW —— MathProg
40001 =
3500 1
=
[x)
3000 1
2500 1

00 01 02 03 04 05 06 07 08 09 10
|El as % of [V[*(IV]-1)

(f) Edge generation seed 6

12

C Additional experimental details
Source code: For the source code and instructions needed to

reproduce the experimental results we report in Section 4, see:

¢ crherlihy/networked.restless _bandits.

Compute resources: We ran all of our simulations on a
MacBook Pro with a 2 GHz Quad-Core Intel(R) Core i5 CPU
and 16 GB of RAM.

13

https://github.com/crherlihy/networked_restless_bandits

Acknowledgments

We were supported by NSF CAREER Award IIS-1846237,
NSF D-ISN Award #2039862, NSF Award CCF-1852352,
NIH RO1 Award NLMO013039-01, NIST MSE Award
#20126334, DARPA GARD #HR00112020007, DoD WHS
Award #HQ003420F0035, ARPA-E Award #4334192, ARL
Award W911NF2120076 and a Google Faculty Research
Award. The views and conclusions contained in this publica-
tion are those of the authors and should not be interpreted as
representing official policies or endorsements of U.S. govern-
ment or funding agencies. We thank Samuel Dooley, Pranav
Goel, Aviva Prins, Dr. Philip Resnik, and our anonymous
reviewers for their helpful input and feedback.

References

Almasan, P.; Suarez-Varela, J.; Rusek, K.; Barlet-Ros, P.; and
Cabellos-Aparicio, A. 2022. Deep reinforcement learning
meets graph neural networks: Exploring a routing optimiza-
tion use case. Computer Communications, 196: 184—194.

Fisher, E. B.; Boothroyd, R. .; Elstad, E. A.; Hays, L.; Henes,
A.; Maslow, G. R.; and Velicer, C. 2017. Peer support of
complex health behaviors in prevention and disease manage-
ment with special reference to diabetes: systematic reviews.
Clinical Diabetes and Endocrinology, 3(1): 4.

Glazebrook, K. D.; Hodge, D. J.; and Kirkbride, C. 2011.
General notions of indexability for queueing control and
asset management. The Annals of Applied Probability, 21(3):
876 —907.

Holland, P. W.; Laskey, K. B.; and Leinhardt, S. 1983.
Stochastic blockmodels: First steps. Social Networks, 5(2):
109-137.

Jung, Y. H.; Abeille, M.; and Tewari, A. 2019. Thomp-
son Sampling in Non-Episodic Restless Bandits. CoRR,
abs/1910.05654.

Jung, Y. H.; and Tewari, A. 2019. Regret Bounds for Thomp-
son Sampling in Episodic Restless Bandit Problems. In
Wallach, H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc,
F.; Fox, E.; and Garnett, R., eds., Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc.

Killian, J. A.; Perrault, A.; and Tambe, M. 2021. Beyond
”To Act or Not to Act”: Fast Lagrangian Approaches to Gen-
eral Multi-Action Restless Bandits. In Proceedings of the
20th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’21, 710-718. Richland, SC:
International Foundation for Autonomous Agents and Multi-
agent Systems. ISBN 9781450383073.

Liu, K.; and Zhao, Q. 2010. Indexability of Restless Bandit
Problems and Optimality of Whittle Index for Dynamic Mul-
tichannel Access. IEEE Transactions on Information Theory,
56(11): 5547-5567.

Lu, S.; Hu, Y.; and Zhang, L. 2021. Stochastic Bandits with
Graph Feedback in Non-Stationary Environments. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35(10):
8758-8766.

14

Mate, A.; Killian, J.; Xu, H.; Perrault, A.; and Tambe, M.
2020. Collapsing Bandits and Their Application to Public
Health Intervention. In Larochelle, H.; Ranzato, M.; Had-
sell, R.; Balcan, M.; and Lin, H., eds., Advances in Neural
Information Processing Systems, volume 33, 15639-15650.
Curran Associates, Inc.

Ortner, R.; Ryabko, D.; Auer, P.; and Munos, R. 2012. Regret
Bounds for Restless Markov Bandits. In Proceedings of the
23rd International Conference on Algorithmic Learning The-
ory, ALT’12, 214-228. Berlin, Heidelberg: Springer-Verlag.
ISBN 9783642341052.

Ou, H.-C.; Siebenbrunner, C.; Killian, J.; Brooks, M. B.;
Kempe, D.; Vorobeychik, Y.; and Tambe, M. 2022. Net-
worked Restless Multi-Armed Bandits for Mobile Interven-
tions. In Proceedings of the 21st International Conference
on Autonomous Agents and Multiagent Systems, AAMAS
22, 1001-1009. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems. ISBN
9781450392136.

Papadimitriou, C. H.; and Tsitsiklis, J. N. 1994. The Com-
plexity of Optimal Queueing Network Control. In Proceed-
ings of IEEE 9th Annual Conference on Structure in Com-
plexity Theory, 318-322. IEEE.

Pasanisi, A.; Fu, S.; and Bousquet, N. 2012. Estimating
Discrete Markov Models from Various Incomplete Data
Schemes. Computational Statistics & Data Analysis, 56(9):
2609-2625.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825-2830.

Steimle, L. N.; and Denton, B. T. 2017. Markov Decision
Processes for Screening and Treatment of Chronic Diseases,
189-222. Cham: Springer International Publishing. ISBN
978-3-319-47766-4.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learning:
An Introduction. Cambridge, MA, USA: A Bradford Book.
ISBN 0262039249.

Thompson, W. R. 1933. On the Likelihood that One Un-
known Probability Exceeds Another in View of the Evidence
of Two Samples. Biometrika, 25(3/4): 285-294.

Valko, M. 2016. Bandits on graphs and structures. Habili-
tation a diriger des recherches, Ecole normale supérieure de
Cachan - ENS Cachan.

Weber, R. R.; and Weiss, G. 1990. On an index policy for rest-
less bandits. Journal of Applied Probability, 27(3): 637-648.
Whittle, P. 1988. Restless bandits: activity allocation in
a changing world. Journal of Applied Probability, 25(A):
287-298.

Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang,
L.; Li, C.; and Sun, M. 2020. Graph neural networks: A
review of methods and applications. Al Open, 1: 57-81.

	1 Introduction
	1.1 Related Work

	2 Model Preliminaries
	2.1 Restless Multi-arm Bandits
	2.2 Motivating Example
	2.3 Networked Restless Bandits

	3 Algorithmic Approach
	3.1 Greta: A Graph-aware Heuristic
	3.2 Theoretical Analysis

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Greta vs. the Optimal Policy
	4.3 Greta vs. Alternative Policies
	4.4 Sensitivity Analysis

	5 Conclusion & Future Work
	A Heuristic Policy
	A.1 Pseudocode
	A.2 Proofs

	B Additional empirical results
	C Additional experimental details

